
“extended˙abstract”
2012/4/27
pagei

i
i

i

i
i

i
i

Predictive Path
Following without
Terminal Constraints

T. Faulwasser∗ and R. Findeisen∗

Nonlinear model predictive control (NMPC) for set point stabilization has been in-
tensively investigated. Furthermore, by now several formulations for non-classical
stabilization have been proposed, such as economic NMPC, and NMPC for trajectory-
tracking or path-following problems. While in trajectory tracking the objective is
to track an explicitly time dependent reference, in path following a geometric refer-
ence without any preassigned timing information should be followed. Often path-
following problems are solved without an explicit consideration of constraints, e.g.
by means of backstepping techniques. Here, we propose an approach based on a tai-
lored NMPC scheme which allows to consider input constraints explicitly. Existing
NMPC approaches for path following use terminal constraints and end penalties, or
contraction constraints to derive path convergence, see [1, 2, 4]. These constraints,
however, might lead to a high computational burden. In contrast to these works we
provide sufficient conditions which guarantee path convergence without such con-
straints for exactly feedback linearizable systems. We rely on recent results that
guarantee stability of discrete time NMPC via controllability assumptions [3] and
related first steps towards a continuous time extension [5].

Problem Statement and Proposed Control Strategy

Specifically, we consider square input affine MIMO systems

ẋ = f(x) + g(x)u, x(0) = x0 ∈ X0 (1a)

y = h(x) (1b)

where x ∈ Rn is the state, u ∈ U ⊂ Rm and y ∈ Rm refer to inputs and outputs,
respectively. The inputs u : R → U are piecewise continuous and take values

∗{timm.faulwasser, rolf.findeisen}@ovgu.de, Laboratory for Systems Theory and Automatic
Control, Institute for Automation Engineering, Otto-von-Guericke University Magdeburg, Ger-
many

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147994286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


“extended˙abstract”
2012/4/27
pagei

i
i

i

i
i

i
i

in a compact set U . Briefly this is denoted as u(·) ∈ PC(U). The maps f, g, h
are assumed to be sufficiently often continuously differentiable and (1a) is locally
Lipschitz. Additionally, we make the following assumption.

Assumption 1 (System properties).

(i) For a sufficiently large simply connected set X ⊆ Rn (1) has a well-defined

vector relative degree r = (r1, . . . , rm) with
m∑
i=1

ri = n.

(ii) For u = 0 the origin x = 0 is the only steady state of (1) contained in
{x | h(x) = 0}.

This assumption means that we consider systems, which are exactly feedback lin-
earizable in a sufficiently large subset of the state space Rn. This also implies that
(1a) has no internal dynamics with respect to the considered output (1b).
The objective is to follow an a priori known path P ⊂ Rm, which is given as a
regular curve

P = {y ∈ Rm | θ ∈ R 7→ p(θ)} . (2)

Here θ ∈ R is called the path parameter. And p(θ) is a parametrization of P, which
is assumed to be sufficiently often continuously differentiable and p(0) = 0. The
path is a geometric reference without an explicit requirement when to be where on
P. The conceptual idea is to treat the path parameter θ as a virtual state whereby
the evolution of θ can be influenced by an extra input. Thus the path parameter
dynamics t 7→ θ(t) are described by a timing law, which is a degree of freedom in
the controller design. We rely on the timing law θ(r̂+1) = v where r̂ = maxi{ri} is
the largest element of the vector relative degree of (1) and v(·) ∈ PC(V),V ⊂ R.
Using z := (θ, θ̇, . . . , θ(r̂))T this dynamic timing law can be expressed as

ż = Az +Bv, z(0) = (θ0, 0, . . . , 0)T . (3)

Now, we are ready to state the path-following problem in a formal way.

Problem 1 (Input constrained path following).
Given system (1) and the path P from (2) design a controller which achieves:

(i) Convergence towards the path: lim
t→∞
‖h(x(t))− p(θ(t))‖ = 0.

(ii) Convergence on the path: lim
t→∞
‖θ(t)‖ = 0.

(iii) Constraint satisfaction: The input constraints u(t) ∈ U are satisfied and the
states x(t) remain bounded.

The challenge is to obtain the real system inputs u(t) as well as the evolution of the
reference, which is defined by t 7→ θ(t), at once while satisfying the constraints. In
essence, the problem can be understood as an online trajectory generation on the
1-dimensional manifold P. However, note that the system initial condition x0, in
general, does not lie on the path, i.e. h(x0) 6∈ P. Furthermore, note that part (ii)
implies to stop at the final path point θ = 0.
We propose to solve this problem via a tailored NMPC scheme, i.e. we want to
compute u(t) as well as the timing θ(t) by repetitive solution of an optimal control
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problem (OCP). As standard in NMPC this optimization is done at each sampling
instant tk = kδ, k ∈ N, δ > 0. Predicted system states, outputs, and inputs are
denoted by superscript ·̄. Furthermore, optimal inputs are denoted with superscript
·?. The functional to be minimized at each sampling instant is given by

J(tk, x(tk), ū(·), v̄(·)) =

∫ tk+Tp

tk

F
(
ē(τ), θ̄(τ), ū(τ), v̄(τ)

)
dτ, (4a)

where Tp > δ is the prediction horizon. The cost function F : Rm×R×U×R→ R+
0

penalizes the path error e = h(x)−p(z1), the distance to the final path point (θ = 0),
and the inputs u, v. It is lower bounded by a class K function α(‖(e, θ, u, v)‖). The
OCP to be solved repetitively is as follows:

minimize
(ū(·),v̄(·))∈PC(U×V)

J(tk, x(tk), ū(·), v̄(·)) (4b)

subject to

(
˙̄x
˙̄z

)
=

(
f(x̄)
Az̄

)
+

(
g(x̄)ū
Bv̄

)
,

x̄(tk) = x(tk)
z̄(tk) = z̄(tk, z̄(tk−1)|v)

(4c)

ē = h(x̄)− p(z̄1) (4d)

θ̄ = z̄1 (4e)

∀t ∈ [tk, tk + Tp] : ū(t) ∈ U , v̄(t) ∈ V. (4f)

Note that the system used for prediction (4c) is an augmented one, which is com-
posed by the system to be controlled (1) and the path parameter dynamics (3).
The outputs (4d-e) refer to the path error and the path parameter, respectively. As
usual in NMPC the measured state information x(tk) serves as initial condition in
(4c). The initial condition for the virtual state z is taken from the last predicted
trajectory, i.e. z̄(tk) = z̄(tk, z̄(tk−1)|v(·)). The input applied to the real system (1)
is obtained in a receding horizon fashion, i.e. for t ∈ [tk, tk +δ) : u(t) = ū?(t, x(tk)).

Naturally, the question arises under which conditions the proposed NMPC
scheme guarantees convergence to the path P. To verify that the proposed control
scheme solves the path-following problem we rely on a controllability assumption,
similar to results on NMPC for stabilization of discrete and continuous time systems,
cf. [3, 5].

Assumption 2 (Controllability).
For all (x0, z0) ∈ Rn × Rr̂+1 there exist controls (u(·), v(·))T ∈ PC(U × V) defined
on [0,∞) such that the state trajectories x(t, x0|u(·)), z(t, z0|v(·)) generate output
trajectories e(t), θ(t) via (4d-e) which satisfy

∀T ≥ 0 :

T∫
0

F (e(t), θ(t), v(t), u(t)) dt ≤ B(T ) min
(u,v)∈U×V

F (e0, θ0, u, v) (5)

where the function B : R+ → R+ is C1, non-decreasing, and bounded.

Based on this the following result can be derived.
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Proposition 1.
Suppose Assumptions 1 & 2 hold, then a finite prediction horizon Tp ∈ (δ,∞) exists
such that the NMPC scheme (4) solves Problem 1.

Proof. Due to space limitations we provide only a brief sketch of the proof. Com-
pared to standard NMPC schemes for stabilization the main challenge is that the
cost function F is only positive semi-definite with respect to the augmented state
(x, z). Firstly, note that part (i) of Assumption 1 guarantees that the augmented
system (4c) has a well-defined vector relative degree r = (r1, . . . , rm, r̂ + 1) and
hence no internal dynamics with respect to the output (e, θ), see [1]. In essence,
Assumption 1 ensures that the augmented system (4c) is 0-detectable. In other
words, whenever the output (e, θ) and the input (u, v) of the augmented system
(4c) converge, i.e. lim

t→∞
(e, θ) = 0 and lim

t→∞
(u, v) = 0, then the state (x, z) also

converges.
Secondly, one relies on a continuous time version of suboptimality estimates for
NMPC schemes, cf. [3]. Using the ideas presented in [5], and based on Assumption
2, one can show that for a given sampling time δ > 0 a sufficiently large Tp ∈ (δ,∞)
ensures convergence of the augmented output (e, θ) and the augmented input (u, v)
to the origin.

Conclusions and Outlook

In this note we outline a conceptual framework for predictive path following of ex-
actly feedback linearizable systems in the presence of input constraints. We sketch
sufficient convergence conditions based on an augmented system description. In
contrast to previous works [1, 2, 4] we do not rely on contraction or terminal con-
straints.
Note that the inclusion of state constraints is non-trivial. The main challenge is
guaranteeing recursive feasibility of the OCP (4). Thus the consideration of path-
following specific state constraints related to the path parameter dynamics (3)—e.g.
restriction of the path parameter to an interval (θ = z1 ∈ [θ0, 0]), or forward motion
constraints (θ̇ = z2 ≥ 0)—is subject of future work.
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