
Predictive Path-following Control:
Concept and Implementation for an Industrial Robot

Timm Faulwasser, Janine Matschek, Pablo Zometa, and Rolf Findeisen

Abstract— Many robotic applications, such as milling, glue-
ing, or high precision measurements require the exact fol-
lowing of a pre-defined geometric path. We outline nonlinear
model predictive control approaches to path-following prob-
lems. We show the real-time feasibility of predictive path
following applied to an industrial robot. Specifically, we con-
sider constrained output path following with and without
pre-specified reference speeds. The proposed predictive path-
following approach is experimentally validated considering a
KUKA lightweight robot IV.

Index Terms— nonlinear model predictive control, con-
strained path following, real-time implementation, robot control

I. INTRODUCTION

Typically, one distinguishes the problems of set-point
stabilization and trajectory tracking. While the former refers
to the task of stabilizing a fixed point in the state space,
the latter describes the design of controllers that ensure
tracking of a time-dependent reference signals. However,
not all control tasks arising in applications fit well into
the framework of stabilization and tracking. An example
is the task to steer a robot along a pre-specified geometric
curve in its workspace, whereby the speed to move along
the curve is not fixed a priori. Clearly, this task is not
a set-point stabilization problem. While reformulation as a
tracking problem is possible by fixing the speed to move
along the curve, this often leads to performance losses.

To overcome this limitation path-following control
schemes have been proposed, e.g. [16]. Path-following prob-
lems refer to the tracking of a geometric reference with high
precision, whereby the timing to move along the reference is
of secondary interest, and can be considered as an additional
degree of freedom. Several approaches to path-following
problems have been developed over the recent years. Ex-
amples are geometric and Lyapunov-based design methods
[13, 16]. While stability guarantees can be given for such
approaches, it is in general difficult to consider constraints.
As an alternative, which allows for input and state con-
straints, predictive path-following concepts have been sug-
gested in [6, 7, 11, 17]. The aforementioned geometric and
Lyapunov-based path-following methods usually deal with
paths defined in output spaces—a problem which is termed
as output path following. In contrast to that, several works
on predictive path-following consider geometric references

TF is with the Laboratoire d’Automatique, Ecole Polytechnique Federale
de Lausanne, Switzerland. E-mail: timm.faulwasser@epfl.ch.
JM, PZ and RF are with the Institute for Automation, Otto-von-Guericke-
Universität Magdeburg, Germany. E-mail: {janine.matschek,
pablo.zometa, rolf.findeisen}@ovgu.de.

in the state space, i.e., so called state space path following,
see [7, 17]. From an applications point of view, however,
output path following is more relevant. First approaches to
predictive output path following are presented in [6, 11].

So far, only a few successful applications and implemen-
tations of path following to real systems have been reported.
In [13] the application of geometric path-following methods
to a magnetic levitation system is discussed; discrete time
predictive path-following control of an x-y table is presented
in [10]. Successful real-time implementations of continuous-
time predictive path-following controllers have not been
reported yet.

In this paper we consider the design of a continuous-
time sampled-data nonlinear model predictive path-following
control schemes in the presence of input and state constraints.
We outline and review two variants of path-following prob-
lems: constrained output path-following with and without
an assignment of the reference speed along the path. Our
main contribution is a proof-of-concept demonstration of
predictive path-following, which is obtained from a real-time
feasible implementation on a KUKA LWR IV robot in a
configuration with two actuated joints.

The remainder of the paper is structured as follows: in
Section II we briefly review the problem of path following
as well as the conceptual ideas of model predictive path-
following control. Details of the implementation of the
predictive path-following controller are discussed in Section
III. The results from laboratory experiments are presented in
Section IV.

Notation

The Euclidean norm of a vector x ∈ Rnx is denoted as
‖x‖. A trajectory y : [0, T) → Y ⊆ Rny is briefly written
as y(·). The solution of an ODE ẋ = f(t, x, u) at time t
originating at time t0 from x0 driven by an input u(·) is
denoted as x(t, t0, x0|u(·)).

II. PREDICTIVE PATH FOLLOWING

We consider nonlinear systems of the form

ẋ = f(x, u), x(t0) = x0, (1a)
y = h(x), (1b)

where x ∈ Rnx , u ∈ Rnu , and y ∈ Rnu represent
respectively the state, the input, and the output of the
system. The states are constrained to a closed set, i.e., for
all t : x(t) ∈ X ⊆ Rnx . The inputs u : [t0,∞) → U
are piecewise continuous, and take values in a compact set
U ⊂ Rnu which is briefly denoted by u(·) ∈ PC(U). The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147994276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

maps f : Rnx → Rnx and h : Rnx → Rnu are assumed to
be sufficiently often continuously differentiable and (1a) is
considered to be locally Lipschitz. Also note that the control
system is assumed to have a square input-output structure,
i.e., dimu = nu = dim y.

A. Path-following Problems

Output path-following refers to the task of stabilizing a
geometric reference in the output space (1b) of system (1)
[13, 16]. Here, we assume that this reference is given as a
geometric curve

P = {y ∈ Rnu | θ ∈ [θ0, θ1] 7→ y = p(θ)} . (2)

The scalar variable θ ∈ R is called the path parameter,
and p(θ) is a parametrization of P , which is assumed to be
sufficiently often continuously differentiable. The path is a
geometric reference. Note that for path-following problems
there is no strict requirement when to be where on P . In
other words, the path parameter θ is time dependent but its
time evolution t 7→ θ(t) is not specified a priori. Rather the
system input u : [t0,∞)→ U and the timing θ(t) are chosen
such that the path is followed as exactly as possible.

Subsequently, we investigate the problem of steering the
output (1b) to the path P and following it along in direction
of increasing values.

Problem 1 (Constrained output path following):
Given the system (1) and the reference path P (2), design a
controller that achieves:

i) Path Convergence: The system output y = h(x) con-
verges to the set P s.t.:

lim
t→∞
‖h(x(t))− p(θ(t))‖ = 0.

ii) Monotonous Forward Motion: The system moves along
P in the direction of increasing values of θ, s.t. θ̇(t) ≥ 0
holds for all θ ∈ [θ0, θ1] and limt→∞ θ(t) = θ1.

iii) Constraint Satisfaction: The constraints on states
x(t) ∈ X and inputs u(t) ∈ U are satisfied for all
times t ≥ t0.

Instead of this formulation, one might require that the path
parameter velocity θ̇(t) converges to a pre-specified evolution
θ̇ref (t), cf. [1, 16]:

Problem 2 (Speed-assigned constrained path following):
Given the system (1) and the reference path P (2), design
a controller that achieves:

i) Path Convergence: The system output y = h(x) con-
verges to the set P s.t.:

lim
t→∞
‖h(x(t))− p(θ(t))‖ = 0.

ii) Velocity Convergence: The path parameter velocity con-
verges to a pre-specified function θ̇ref (t) s.t.:

lim
t→∞

∥∥∥θ̇(t)− θ̇ref (t)
∥∥∥ = 0.

iii) Constraint Satisfaction: The constraints on states
x(t) ∈ X and inputs u(t) ∈ U are satisfied for all
times t ≥ t0.

The conceptual idea of many approaches to path-following
problems is to treat the path parameter θ as a virtual state
whereby the time evolution t 7→ θ(t) can be influenced by
an extra input [5, 16]. Usually, the time evolution t 7→ θ(t)
is described by an additional differential equation which is
termed timing law. Basically, the timing law is an extra
degree of freedom in the controller design. Subsequently,
we rely on a simple integrator chain as timing law

θ(r̂+1) = v, (3)

where r̂ ∈ N is sufficiently large as outlined later.
The virtual input of the timing law is assumed to be

piecewise continuous and bounded, i.e., v(·) ∈ PC(V),V ⊂
R. Using the representation z := (θ, θ̇, . . . , θ(r̂))T of (3),
path-following problems can be analyzed via the augmented
system (

ẋ
ż

)
=

(
f(x, u)
l(z, v)

)
,

(
x(t0)
z(t0)

)
=

(
x0

z0

)
, (4a)(

e
θ

)
=

(
h(x)− p(z1)

z1

)
. (4b)

In this description the system dynamics (1a) are aug-
mented by the dynamics of the path parameter state z :=
(θ, θ̇, . . . , θ(r̂))T , i.e., by ż = l(z, v) which is simply a state
space representation of (3). The output (4b) consists of two
elements, the path following error e = h(x)− p(θ), and the
path parameter θ = z1. With respect to the augmented system
(4) output path-following (Problem 1) means to ensure that
the error output e converges to zero while the path parameter
output θ converges to θ1, which corresponds to the final path
point.

Remark 1 (Choice of suitable timing laws):
It is fair to ask how to choose the parameter r̂ in the
timing law (3). If system (1) has a well-defined vector
relative degree with respect to the output (1b) then one
can choose r̂ such that the relative degree of the timing
law (3) is equal or larger than the largest component of
the vector relative degree of (1). This way, one can map
the augmented system (4) at least locally into suitable
coordinates, which allow identifying the directions in the
state space which are transversal to the manifold of state
trajectories corresponding to output trajectories travelling
along P . To obtain such a normal form one uses the path
error e and its time derivatives as new state variables (plus
additional states if required). System representations in such
coordinates are termed transversal normal forms. For details
on these normal forms we refer to [2, 5, 12].

B. Model Predictive Path-following Control

Subsequently, we briefly outline the main aspects of model
predictive path-following control (MPFC) as proposed in
[5]. We solve output path-following problems in presence of
input and state constraints via a continuous time sampled-
data nonlinear model predictive control (NMPC) scheme,
which we denote as model predictive path-following control.
In essence, we tailor continuous time sampled-data NMPC
schemes to tackle Problem 1, see [8]. We first focus on

Problem 1. How to tailor the MPFC scheme to problems
with speed assignment (Problem 2) is discussed later.

Our control scheme is based on the augmented system
description (4). As common in NMPC the applied input is
obtained via the repetitive solution of an optimal control
problem (OCP). At each sampling instance tk = t0 + kδ,
with k ∈ N0 and sampling period δ > 0, the cost functional
to be minimized is

J
(
x(tk), ē(·), ˙̄e(·), θ̄(·), ū(·), v̄(·)

)
=

∫ tk+Tp

tk

F
(
ē(τ), ˙̄e(τ), θ̄(τ), ū(τ), v̄(τ)

)
dτ. (5)

As usual in NMPC F : Rnu × Rnu × R× U × V → R+
0 is

called cost function and Tp denotes the prediction horizon.
The OCP to be solved repetitively is:

minimize
(ū(·),v̄(·))∈PC(U×V)

J
(
x(tk), ē(·), ˙̄e(·), ū(·), θ̄(·), v̄(·)

)
(6a)

subject to the constraints

˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(tk) = x(tk) (6b)
˙̄z(τ) = l(z̄(τ), v̄(τ)), z̄(tk) = z(tk) (6c)
ē(τ) = h(x̄(τ))− p(z̄1(τ)) (6d)

˙̄e(τ) =
∂h

∂x
f(x̄(τ), ū(τ))− ∂p

∂θ
l(z̄(τ), v̄(τ)) (6e)

θ̄(τ) = z̄1(τ) (6f)
x̄(τ) ∈ X , ū(τ) ∈ U (6g)
z̄(τ) ∈ Z, v̄(τ) ∈ V (6h)

which have to hold for all τ ∈ [tk, tk + Tp]. As mentioned
the MPFC scheme is built upon the augmented dynamics
(4), and thus they are considered as dynamic constraints in
(6b–f). One should note, however, that we penalize the path
error e as well as its time derivative ė in the cost function
F . Hence ė is added as additional output to the dynamics.
This choice is motivated by the fact that penalizing ė helps
to avoid undesirable oscillations around the path. This way
we avoid explicitly mapping the augmented system (4) to a
transverse normal form, which might exist only locally, cf.
Remark 1. We also need to ensure that for F (·) → 0 the
error converges such that ‖e‖ → 0 and the path parameter
θ → θ1. Thus we assume that F : Rnu × Rnu × R × U ×
V → R+

0 is bounded from below by a class K function
ψ(‖(e, θ − θ1)T ‖). Naturally, it is also possible to penalize
higher time derivatives of e(t) directly in the cost function.
To ensure path convergence it suffices, however, to require
the lower boundedness by ψ(‖(e, θ − θ1)T ‖), cf. [5].

Furthermore, the path parameter dynamics (6c) are subject
to the constraints (6h) where the constraint Z is defined as

Z :=
{

[θ0, θ1]× [0,∞]× Rr̂−1
}
⊂ Rr̂+1. (7)

This constraint ensures that θ̄ = z̄1 ∈ [θ0, θ1] and ˙̄θ ≥ 0.
In order to avoid impulsive solutions to the path parameter
dynamics ˙̄z = l(z̄, v̄) the admissible path parameter inputs
v̄ are restricted to a compact set V ⊂ R containing 0 in its
interior.

While at each sampling instance the measured state
x(tk) serves as initial condition for (6b) the initial con-
ditions of the timing law (6c) is the last predicted tra-
jectory evaluated at time tk. In other words, z(tk) =
z̄(tk, tk−1, z̄(tk−1)|v̄k−1(·)). If no initial condition for the
first sampling instance k = 0 is given, we obtain z(t0) via

z̄(t0) = (θ(t0), 0, . . . , 0)T ,

θ(t0) = argmin
θ∈[θ0,θ1]

‖h(x0)− p(θ)‖.

To initialize the scheme a value θ(t0) which (at least
locally) minimizes the distance ‖h(x0) − p(θ)‖ should be
obtained. The solution to the OCP (6) leads to optimal
input trajectories, denoted as ū?(·, x(tk)) and v̄?(·, z(tk)).
Finally, ū?(·, x(tk)) is applied to system (1) such that for all
t ∈ [tk, tk + δ): u(t) = ū?(t, x(tk)).1

Summarizing, the open-loop optimal control problem
is augmented by the virtual path parameter state z =
(θ, θ̇, ..., θ(r̂))T and by the virtual input v. Essentially, v is
used to control the path evolution, i.e., to influence t 7→ θ(t).
Basically, one obtains the real system inputs u(·) as well
as the virtual input v(·) via repeated solutions of the OCP
(6). Thus two problems are tackled at once: the planning of
suitable trajectories t 7→ p ◦ θ(t) inside P , as well as the
computation of inputs u(·) to track the resulting trajectories.
Note that we do not aim at a time-optimal motion along
the path as it is often considered in robotics [15]. Instead
we aim at stabilization of the zero-path-error manifold. We
want to achieve that the system state converges to the path
and moves along it as close as possible. In other words, path
convergence is more important than speed.

Remark 2 (Sufficient convergence conditions):
It is fair to ask for conditions ensuring that the proposed
MPFC scheme solves Problem 1 or guarantees path conver-
gence. As discussed in [5, 7] one can rely on a quasi-infinite
horizon NMPC approach to achieve this. Basically, one can
add an end penalty and a terminal constraint to the OCP
(6). Another approach to convergence conditions for MPFC
is sketched in [6]. It relies on a specific system structure
(exact static feedback linearizability) and on a constrained
controllability assumption. This paper, however, is focused on
the implementation of the MPFC scheme to a real system,
and thus the investigation of stability issues is beyond its
scope.

C. MPFC with Speed Assignment

So far we have put the focus on the constrained output
path-following problem. Subsequently, we briefly sketch
how to modify the MPFC scheme (6) such that also the
speed-assigned constrained path-following problem can be
considered.

Note that if speed-assigned path following (Problem 2) is
considered, one should modify the output (4b). Since speed-
assigned path following implies to track a reference profile

1Usually, in real-time feasible implementations one will merely compute
an approximation of the optimal solution ū?(·, x(tk)), i.e., one will apply
a feasible but suboptimal iterate of a numerical solution scheme.

of the path parameter velocity θ̇ = z2, it is helpful to regard
z2 instead of z1 as an output of (4). Furthermore, the cost
function F appearing in the cost functional (5) should be
modified to F̃ . To tackle Problem 2 we need to ensure that
convergence of F̃ (·) to 0 implies ‖e‖ → 0 and θ̇ → θ̇ref (t).
Thus we assume that F̃ : Rnu × Rnu × R × U × V → R+

0

is bounded from below by a class K function ψ(‖(e, θ̇ −
θ̇ref (t))T ‖). Note that time-varying reference speed profiles
imply time variance of the cost function F̃ . If the velocity
reference does not converge to 0—i.e., limt→∞ ‖θ̇ref‖ 6=
0—the path parameter θ might grow unbounded upon path
convergence. Therefore, the constraints on the path parameter
state (7) have to be modified, i.e., the constraint on θ = z1 ∈
[θ0, θ1] should be dropped.

III. IMPLEMENTATION ON A KUKA LWR IV

In the following we outline that the presented approach
can be used for real-time feasible path following control of
an industrial robot. To this end we sketch the implementation
of the MPFC scheme on a KUKA LWR IV robot arm.
The considered robot has seven actuated revolute joints, cf.
Figure 1, left part. Furthermore, it can be controlled by
an external computer via an Ethernet connection [14]. For
an overview of this robot we refer the reader to [4]. The
control interface allows to superpose control torques on each
joint when operated in the so called joint-specific impedance
control mode. In this mode the torques commanded to the
LWR are composed of torques computed inside the motion
kernel (i.e. gravity terms) and the torques computed by
an external controller and transferred via Ethernet. For the
purpose of a real-time implementation, the MPFC scheme
is implemented on an external computer, i.e, we use a PC
workstation running a Linux operating system and a Intel
Xeon X5675 6-core CPU with 3.07 GHz clock frequency.

For the purpose of this paper we consider that only joints
number 2 and 4 are operated while the other joints are kept
fixed, i.e., we use a configuration known as two-link planar
arm, cf. Figure 1. The Lagrange formulation yields the joint
space dynamic model of the robot

B(q)q̈ + C(q, q̇)q̇ + τF (q̇) + g(q) = τ. (8)

Here, q = (q1, q2)T is the vector of joint angular positions,
where q1 corresponds to joint 2, and q2 to joint 4. The time
derivatives q̇ and q̈, respectively, refer to the angular ve-
locities and angular accelerations. The vector τ = (τ1, τ2)T

denotes the actuation torques applied to the considered joints;
B(q) is the inertia matrix which is symmetric positive def-
inite; C(q, q̇) represents the centrifugal and Coriolis effects.
The vectors τF (q̇) and g(q) describe torques in the joints
due to friction and gravity, respectively. Note that this model
describes the robot moving freely in space, i.e., contact forces
are not explicitly included in (8). In other words, they are
treated as disturbances. The parameters of the model have
been taken from an open-source toolbox, which provides
Python and C implementations of parametrized models of
the KUKA LWR IV in different configurations [3].

Fig. 1. Sketch of the implemented control setup.

As a first step of the controller design we rewrite the model
in a state space representation with x1 = q, x2 = q̇, and
u = τ . This leads to(

ẋ1

ẋ2

)
=

(
x2

B−1(x1) (u− k(x1, x2))

)
(9a)

y = x1 (9b)
yca = hca(x1), (9c)

whereby the term k(x1, x2) = C(x1, x2)x2+g(x1)+τF (x2)
is used for sake of brief notation. The output (9b) refers to
the joint space, while (9c) describes the Cartesian workspace
of the robot. This second output is added since the considered
path-following tasks are usually formulated in the Cartesian
workspace. Specifically, we consider two different paths in
Cartesian coordinates: a circle and a Lissajous curve. Their
parametrizations are as follows

rcirc(θ) = ρ
(
sin θ, cos θ

)T
+ r0

circ, (10a)

rlis(θ) = a
(
sin θ, sin 2θ

)T
+ r0

lis, (10b)

whereby rcirc refers to the parametrization of the circle, and
rlis is the parametrization of the Lissajous curve. Note that
arbitrary paths are possible provided they are sufficiently
often continuously differentiable and can be mapped to the
joint space. The free parameters are a = 0.07 m and ρ =
0.1 m. In order to simplify the computations the reference
paths are mapped from the Cartesian workspace to the joint
space. To this end one solves the inverse kinematics problem.
Although a closed-form solution can be found, there are in
general multiple solutions. This means that a non-unique map
h−1
ca : yca 7→ y = h−1

ca (yca), which is the inverse of the
Cartesian output map (9c), can be stated. The considered
reference paths in the Cartesian workspace are depicted in
Figure 2. The region outside of the reachable space is drawn
in light grey.

In the joint space the reference paths are described as
p(θ)circ,lis = h−1

ca ◦ rcirc,lis(θ). This description in the
joint space is used to obtain the augmented system (4). The
dynamics of the path parameter state z = (θ, θ̇)T are an
integrator chain of length two. This way we ensure that
substitution of (9a-b) into (4) leads to an augmented system
with a vector relative degree of r = (2, 2, 2) for Problem 1
and r = (2, 2, 1) for Problem 2.

Note that the Ethernet interface of the robot allows to
measure only the joint angles x1 but not the joint angular

yca,1[cm]

y
c
a
,2
[c
m
]

20 25 30 35 40 45 50

45

50

55

60

65

reference path

disturbed MPFC solution

MPFC solution

0 30 60 90
0

30

60

90

48 50
50

51

52

53

(a) Circle

yca,1[cm]

y
c
a
,2
[c
m
]

15 20 25 30 35 40
48

53

58

63

68

70

reference path

MPFC solution

0 30 60 90
0

30

60

90

(b) Lissajous curve

Fig. 2. Problem setting and result in Cartesian space. Grey areas depict regions which are not reachable by the arm.

velocities x2. Predictive control schemes, however, rely on
full state information. Thus we need to reconstruct the states
by a suitable state estimator of the dynamics (9a), cf. Figure
1. We use an unscented Kalman filter to estimate x2 con-
sidering all the terms in (8). The state of the path parameter
dynamics z = (θ, θ̇)T is merely an internal variable of the
controller; thus it does not need to be estimated.

Note that the friction term τF (q̇) in (8) includes a sign
function due to Coulomb friction. To simplify the computa-
tions this term is neglected in the model used in the OCP. The
Coriolis and centrifugal forces acting on the KUKA LWR IV
are small in relation to the other terms in (8). Additionally,
we rely on internal functionalities of the robot allowing for
gravity compensation. Thus the terms C(q, q̇)q̇ and g(q) in
(8) are also neglected in the OCP. In other words, the term
k(x1, x2) in (9a) is not present in the prediction model.

For the case of constrained output path following without
velocity assignment—i.e., Problem 1—we employ the cost
function

F (e, ė, θ, u, v) =
∥∥∥(e, ė, θ − θ1)

T
∥∥∥2

Q
+
∥∥(u, v)T

∥∥2

R
,

whereby the weighting matrices Q and R are positive defi-
nite and, respectively, positive semi-definite. Since this task
requires to stop at the end of the path we penalize θ− θ1. If
path following with speed assignment—i.e., Problem 2—is
considered, we use

F̃ (e, ė, θ̇, u, v) =

∥∥∥∥(e, ė, θ̇ − θ̇ref (t)
)T∥∥∥∥2

Q

+
∥∥(u, v)T

∥∥2

R
,

whereby the weighting matrices Q and R are positive definite
and, respectively, positive semi-definite. Here, the cost func-
tion penalizes the velocity error θ̇ − θ̇ref (t). For all consid-
ered cases we use a sampling time δ = 5 ms and a prediction
horizon Tp = 50 ms. The input signals are approximated as
piecewise constant functions with 10 equi-distant intervals.
The input constraints are |τ1,2| ≤ 10 Nm and v ∈ [−15, 0.1]
or v ∈ [−5, 0.5] for circle and Lissajous curve, respectively;
the state constraints are |x2| ≤ 1.7 rad · s−1, and θ̇ ≥ 0
or θ̇ ∈ [0, 0.25]. In the case of Problem 1 we additionally

consider θ ∈ [−2π, 0]. Also note that we consider neither a
terminal penalty nor a terminal region constraint.

Our prototype implementation combines C and MATLAB
code, and runs on a non real-time Linux system. This
introduces undesired computational delays that limit the
lowest sampling period to 5 ms. It is worth mentioning that
the maximum computation time of the optimization is below
1 ms. OCP (6) is solved repeatedly using the automatic code
generation features presented in [9].

IV. EXPERIMENTAL RESULTS

The dashed green and orange lines in Figure 2 depict
the behavior in the Cartesian workspace of the robot. The
left side shows the circular path. It starts at yca,1 = 40 cm,
yca,2 = 65 cm. It can be seen that the robot’s end effector
does not initially lie on the path. The right side of Figure 2
shows the Lissajous curve, the initial path point is the double
point of the curve.

The behavior of the path parameter state z and the virtual
input v is shown in Figure 3. Note that the MPFC starts
at t = 4 s. The state and input constraints are pictured in
light grey. For the case of path following without speed
assignment, depicted in Figure 3(a), the path parameter
reaches its end point θ = θ1 = 0 and remains there (θ̇ = 0).
Whereas in the case with velocity assignment, Figure 3(b),
the path parameter velocity θ̇ converges to a desired value
and the path parameter θ has no upper bound. In the event
of disturbances (orange lines)—which have been manually
applied to the robot arm by pushing the end effector away
from the path—the path velocity slows down in order to
minimize the deviation from the path, see Figure 3(a) at
t = 10.5 s and Figure 3(b) at t = 20 s.

Figure 4 shows the closed-loop trajectories of the joint
positions x1 and the corresponding input u for the circular
path. The input constraints are drawn in light grey, whereas
the state constraints are not depicted, since they lie outside
of the shown area and do not become active. Figure 4(a)
displays the case of an undisturbed circle, whereas Figure
4(b) shows the case of a circle with a disturbance happening
at 10.5 s. The MPFC starts in both cases at t = t0 = 4 s.
During the disturbance as well as when the motion starts,

θ

0 5 10 15 20
−10

−5

0

5

undisturbed

disturbed

θ̇

0 5 10 15 20

0

0.5

1

t[s]

v

0 5 10 15 20
−20

−10

0

10

(a) No speed assignment.

θ

0 10 20 30
−10

−5

0

5

undisturbed

disturbed

θ̇

0 10 20 30

0

0.5

1

t[s]

v

0 10 20 30
−20

−10

0

10

(b) Speed assignment.

Fig. 3. Evolution of the path parameter state z = (θ, θ̇)T

the applied torques are relatively large. The latter case is due
to significant differences between the initial path reference
pcirc(θ(t0)) and the robot initial position x1(t0). As it can be
seen in Figure 4(a) and Figure 4(b), the evolutions of the path
parameter differ from each other due to the disturbance. In
essence, the controller manipulates the path evolution and the
joint torques to reduce the path deviation. Loosely speaking,
the MPFC scheme forces the reference to wait for the system
output to come back to the reference path. The capability to
use the non-fixed reference velocity as a degree of freedom
in the control algorithm to increase the systems performance
is one of the main advantages of the MPFC.

V. CONCLUSIONS

We present results on the design and implementation of
continuous time nonlinear model predictive control schemes
tailored to constrained path-following problems. The design
of the proposed controllers is based on an augmented system
description of path-following problems, it allows for con-
sideration of input and state constraints. Furthermore, we
demonstrate the benefits of our approach by drawing upon an
implementation of the predictive path-following controllers
on a lightweight industrial robot. These results underpin that
the proposed concept allows for good performance while
being real-time feasible.

REFERENCES
[1] A.P. Aguiar, J.P. Hespanha, and P.V. Kokotovic. “Performance limita-

tions in reference tracking and path following for nonlinear systems”.
In: Automatica 44.3 (2008), pp. 598–610.

[2] A. Banaszuk and J. Hauser. “Feedback linearization of transverse
dynamics for periodic orbits”. In: Sys. Contr. Lett. 26.2 (1995),
pp. 95–105.

[3] V. Bargsten, P. Zometa, and R. Findeisen. “Modelling, parameter
identification and model-based control of a robotic manipulator”. In:
Control Applications (CCA), 2013 IEEE International Conference
on. To appear. IEEE. 2013.

0 5 10 15 20

20

40

60

80

x
1
[◦
]

pcirc(θ(t))

q1(t)

q2(t)

τ
1
[N

m
]

0 5 10 15 20

−10

−5

0

5

10

t[s]

τ
2
[N

m
]

0 5 10 15 20

−10

−5

0

5

10

(a) Undisturbed case.

0 5 10 15 20

20

40

60

80

x
1
[◦
]

pcirc(θ(t))

q1(t)

q2(t)

τ
1
[N

m
]

0 5 10 15 20

−10

−5

0

5

10

t[s]

τ
2
[N

m
]

0 5 10 15 20

−10

−5

0

5

10

(b) Disturbed case.

Fig. 4. Time evolution of x1 and τ for circular path (Problem 1).

[4] R. Bischoff et al. “The kuka-dlr lightweight robot arm-a new refer-
ence platform for robotics research and manufacturing”. In: Robotics
(ISR), 2010 41st International Symposium on and 2010 6th German
Conference on Robotics (ROBOTIK). VDE. 2010, pp. 1–8.

[5] T. Faulwasser. Optimization-based solutions to constrained
trajectory-tracking and path-following problems. Shaker, Aachen,
Germany, 2013.

[6] T. Faulwasser and R. Findeisen. “Predictive Path Following without
Terminal Constraints”. In: Proc. of the 20th Int. Symposium on
Mathematical Theory of Networks and Systems (MTNS), Melbourne,
Australia. 2012.

[7] T. Faulwasser, B. Kern, and R. Findeisen. “Model predictive path-
following for constrained nonlinear systems”. In: Proc. 48th IEEE
Conf. on Decision and Control (CDC). 2009, pp. 8642–8647.

[8] F. Fontes. “A General Framework to Design Stabilizing Nonlinear
Model Predictive Controllers”. In: Sys. Contr. Lett. 42(2) (2001),
pp. 127–143.

[9] B. Houska, H.J. Ferreau, and M. Diehl. “An auto-generated real-time
iteration algorithm for nonlinear MPC in the microsecond range”. In:
Automatica 47.10 (2011), pp. 2279–2285.

[10] D. Lam, C. Manzie, and M. Good. “Application of Model Predictive
Contouring Control to an X-Y Table”. In: Proc. of 18th IFAC World
Congress, Milano, Italy. 2011, pp. 10325–10330.

[11] D. Lam, C. Manzie, and M. Good. “Model predictive contouring
control”. In: Proc. 49th IEEE Conf. Decision and Control (CDC).
2010, pp. 6137–6142.

[12] C. Nielsen and M. Maggiore. “On local transverse feedback lineariza-
tion”. In: SIAM Journal on Control and Optimization 47 (2008),
pp. 2227–2250.

[13] C. Nielsen, C. Fulford, and M. Maggiore. “Path following using
transverse feedback linearization: Application to a maglev position-
ing system”. In: Automatica 46.3 (2010), pp. 585–590.

[14] G. Schreiber, A. Stemmer, and R. Bischoff. “The fast research
interface for the KUKA lightweight robot”. In: IEEE Workshop on
Innovative Robot Control Architectures for Demanding (Research)
Applications How to Modify and Enhance Commercial Controllers
(ICRA 2010). 2010.

[15] K. Shin and N. McKay. “Minimum-time control of robotic manip-
ulators with geometric path constraints”. In: IEEE Trans. Automat.
Contr. 30.6 (1985), pp. 531 –541.

[16] R. Skjetne, T. Fossen, and P.V. Kokotovic. “Robust output maneu-
vering for a class of nonlinear systems”. In: Automatica 40.3 (2004),
pp. 373–383.

[17] S. Yu, L. Xiang, C. Hong, and F. Allgöwer. “Nonlinear Model
Predictive Control for Path Following Problems”. In: Proceedings
of the 4th IFAC Nonlinear Model Predictive Control Conference.
2012, pp. 145–150.

