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ABSTRACT
The automatic generation of hardware implementations for a given
algorithm is generally a difficult task, especially when data depen-
dencies span across multiple iterations such as in iterative sten-
cil loops (ISLs). In this paper, we introduce an automatic design
flow to extract parallelism from an ISL algorithm and perform a
design space exploration to identify its best FPGA hardware im-
plementation, in terms of both area and throughput. Experimen-
tal results show that the proposed methodology generates hardware
designs whose performance is comparable to the one of manually-
optimized solutions, and orders of magnitude higher than the im-
plementations generated by commercial high-level synthesis tools.

Categories and Subject Descriptors
B.5.2 [Design Aids]: Automatic synthesis; F.1.2 [Modes of Com-
putation]: Process Management—Parallelism and concurrency

General Terms
Design, Algorithms, Languages

Keywords
High Level Synthesis, Iterative stencil loops, Symbolic Execution,
Performance and Area Estimation

1. INTRODUCTION
A large number of interesting algorithms for scientific computa-

tion and multidimensional signals processing, come in the form of
iterative applications of a given transformation t. That is, starting
from a signal f (a frame), the overall transformation T is defined
as the repeated application of t:

f1 = t( f ), f2 = t( f1), ..., fn = t( fn−1) = T ( f )

Typically, the desired T ( f ) is a fixed point of the single step trans-
formation t : t(T ( f )) = T ( f ). In this case, the ideal output of the
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process is the fixed point to which the transformation converges
starting from the initial frame. This class of algorithms is known
in the literature as iterative stencil loops (ISLs) [6], and it has been
analysed within the compiler community to find good implementa-
tions targeted to CPUs [6] and GPUs [7].

The design of dedicated hardware circuits for ISL algorithms,
on the other hand, still presents unsolved challenges, and no au-
tomatic design flow can guarantee high performance implementa-
tions, mainly because of their complex data dependencies. The
typical state-of-the-art approach for the implementation of generic
iterative algorithms (such as ISLs) on FPGAs consists in employ-
ing two frame buffers [1] [2] [3], A and B, and a logic to compute
t. The initial frame is loaded in one of the buffers, and then the
following iteration is computed and stored in the other buffer ( f
(in A) t→ f1 (in B) t→ f2 (in A), ...). The procedure continues until
the desired number of transformations has been performed. This
architecture shows a substantial shortcoming: the area and on-chip
memory required by the transformation logic is proportional to the
frame size, making it too costly in real-world conditions.

In this work, we propose a high level synthesis (HLS) methodol-
ogy that specifically targets the class of ISL algorithms, as well as
scientific and multimedia algorithms that show similar data depen-
dencies between subsequent iterations. The proposed methodology
stems from this observation: most of these algorithms feature a pe-
culiar form of spatial locality, since the value of each element p at
iteration i+ 1 (pi+1) depends only on a small number of elements
in the neighbourhood of p at iteration i (pi). By exploiting this, the
proposed synthesis methodology automatically generates custom
hardware modules that work on a portion of the frame, and that out-
put a subset of the intermediate results used by the subsequent iter-
ations. Suppose we want to compute a single element p of the final
resulting matrix, obtained after a number n of iterations, and let us
call it pn. The value of pn depends on a set Pn−1 = {p1

n−1, ...p
m
n−1}

of elements computed at iteration n− 1 and, by propagating these
data dependency relations back to the starting input frame, we ob-
tain the domain of the function that computes pn. Since these algo-
rithms are typically translation invariant, such function is uniquely
determined by the number of levels we want to traverse, and we
call it a cone of depth n, such as the one shown in Figure 1. We can
generalise this concept considering cones that compute a set Pn of
elements of the n-th iteration: in this broader definition, a cone is
also characterised by Pn, which we call window.

It is intuitive (but we are showing it formally in Section 3.1) that
it is possible to perform the desired processing by repeatedly ap-
plying a cone to portions of the input matrix. This approach leads
to hardware implementations whose on-chip memory requirements
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Figure 1: A cone of depth 2 and window size 4

are independent from the frame size. Let us call cone architecture a
set of cones that perform the processing. The parameters that define
a cone are the cone window size (let us consider only square win-
dows, for the sake of illustration), the cone depth, and the number
of cones simultaneously present in hardware. Finding the best cone
architecture that satisfies a specified throughput constraint (such
as a frame rate lower bound) is a challenging problem, as there is
a large number of trade-offs at stake that make the space search
complex. Moreover, the estimation of the area and the throughput
of each cone architecture may require a very long synthesis time,
which can reach the order of dozens of hours for realistic values of
the window size and the cone depth.

In this paper, we face the previously described problems by pre-
senting an automatic High Level Synthesis (HLS) flow that, given a
processing algorithm, generates a set of hardware implementations
that are Pareto-optimal with respect to cost and performance (mea-
sured as throughput). In particular, the flow: 1) takes a high level
description (C language) of the algorithm as input, 2) systemati-
cally analyses data dependencies between elements of subsequent
iterations, 3) generates synthesizable VHDL descriptions of all the
cones that are best suited to custom fine-grained programmable de-
vices (e.g., FPGAs), 4) efficiently explores the cone architecture
solution space with a minimum number of synthesis runs.

2. ITERATIVE STENCIL LOOPS
Iterative stencil loops are designed to iteratively apply the same

core operation (the stencil) on an n-dimensional matrix . The num-
ber of iterations can either be known in advance (as, for instance,
in an iterative convolution filter [13], where the amount blur corre-
sponds to a number of filtering steps), or potentially unbounded (as
in fixed point algorithms, where one would ideally iterate until an
equilibrium is reached). Without loss of generality, we assume that
the number of iterations is known a priori, and hence we formally
define a generic ISL algorithm with the following pseudo-code:

Algorithm 1 Generic ISL Algorithm
for i in {1..N (number of iterations)} do

for p in fi+1 do
p=tp( fi) (tp is the function that computes only the ele-
ment p of the target frame)

end for
end for

Many algorithms for multimedia processing follow the pattern
presented in Algorithm 1, such as the ones presented in [13, 14, 15,
16, 18] and [3], as well as algorithms for scientific computation,
such as convolution and the Jacobi iterative algorithm to solve lin-
ear eigenvalue problems [17].

If we analyse the typical structure of the elementary function tp,
we find that it shows two interesting properties: 1) the set of el-
ements required to compute an element at the iteration i+ 1 is a
small subset of the frame fi produced at the i-th iteration, and these
elements are close to element p that has to be computed, and 2)
given two target elements that are separated by a translation, the

corresponding dependency schemas have the same shape, but they
are translated by the same distance as the target element. In this
paper, we will refer to property 1) with the term “domain narrow-
ness”, and to property 2) with “translational invariance”, which
can be observed in all the algorithms we referenced in this section.

2.1 State-of-the-Art Implementations
From a computational point of view, ISL algorithms have tradi-

tionally been a challenging problem for the designers, mainly be-
cause of the complexity of their data dependencies. In the literature,
the problem of designing efficient implementations for this class of
algorithms has been addressed for both CPUs ([5], [6]) and GPG-
PUs ([7], [8]): on such architectures, the main problems that have
been faced are the memory organization and the data transfers.

On the other hand, in the context of configurable devices (e.g.,
FPGAs), no complete design flow has been proposed so far, at best
of our knowledge. In fact, the existing approaches for the hardware
implementation of ISL algorithms either apply generic and ineffec-
tive optimizations, or impose very strict and limiting constraints.
For instance, the work in [9] proposes a methodology to generate a
hardware pipeline that spans across multiple iterations, but it is lim-
ited to only one floating-point operation per iteration, and no design
space exploration is possible as the depth of the pipeline is uniquely
determined. Conversely, generic HLS tools such as Xilinx Vivado
[25] or Synopsys Synphony C Compiler [24] are able to handle
any instance of ISL algorithms, but they perform a set of prede-
fined and general purpose array and loop optimizations (unrolling,
merging, flattering, pipelining, array partitioning, etc.) on the in-
put algorithm, which is described in C. Since these frameworks do
not take into account the peculiarities of the specific algorithm, the
performance of the FPGA implementations they generate are gen-
erally unsatisfying for ISL algorithms, especially when compared
to manually optimized implementations (as shown in Section 4).

Given the lack of support for the automatic generation of hard-
ware designs for ISLs, many ad-hoc implementations have been
proposed for specific ISL algorithms. For example, [4] proposes an
optimized implementation for non-iterative 2D convolutions, and
[19] provides an efficient hardware approach for the Chambolle al-
gorithm [18]. However, since these solutions are manually tailored
for a specific algorithm, they lack of generality and reusability, and
the effort required to adapt one of these solutions to a different
problem (if possible) is generally not negligible, even if the algo-
rithms are structurally similar.

The high level synthesis flow proposed in this paper fills the lack
of automation for the implementation of ISL algorithms on FPGAs.
The flow is based on the abstract methodology presented in [20],
and it addresses issues that are different from the ones faced by
the existing approaches targeting CPUs or GPGPUs. In fact, the
hardware structure (e.g., number and kinds of cores) of the latter
architectures is fixed and cannot be modified or adapted to the char-
acteristics of the input algorithm. On FPGAs, on the other hand, the
definition of an efficient hardware architecture is a crucial aspect,
which must be specifically handled by the synthesis tool.

2.2 Design Challenges for ISLs
In this subsection, we provide an overview of the main design

challenges that arise while implementing a generic ISL algorithm
(like the one shown in Algorithm 1) on a custom hardware de-
vice, such as an FPGA. When performing two subsequent itera-
tions, the intermediate results produced by the first one have to be
stored (typically in an on-chip memory for performance reasons),
since they will be the input to the second iteration. The straightfor-
ward way to implement this iterative structure on a custom hard-
ware platform uses a temporary buffer to store the intermediate



data ([1] [2] [3]). However, if the dependencies of the particu-
lar algorithm are not taken into account, it is necessary to com-
pletely compute an intermediate frame ( fi) before continuing with
the following one ( fi+1). In this case, if the on-chip memory is
not large enough to hold a frame, it is necessary to transfer part
of the intermediate results to the off-chip memory, and to get them
back on-chip as soon as the next iteration starts. In this context,
a memory/performance conflict arises. On the one hand, in order
to keep high hardware performance, it is necessary to employ an
on-chip memory large enough to hold all the intermediate results,
but this typically requires several MBs of memory, which leads to
expensive and power-consuming solutions. On the other hand, if
the on-chip memory size is limited (only a few kBs for most of the
devices used in the multimedia field), the performance is bound by
the memory transfers that take place between the off-chip and the
on-chip memories at each iteration.

The way we propose to handle this conflict exploits the structure
of the dependencies in the algorithms that have to be implemented.
In particular, by taking advantage of the domain narrowness (see
Section 2), it is possible to design a new class of architectures,
where a small portion of the input is processed through all the iter-
ations by modules that we call cones. In this way, all the interme-
diate results can be stored in the on-chip memory and a transfer be-
tween on- and off-chip memories is only necessary when the logic
starts to process a new portion of the initial frame. For instance,
let us consider the case of the Chambolle algorithm [18] for optical
flow estimation. At the best of our knowledge, an implementation
of the algorithm that could sustain a real time frame rate was never
proposed until [19], where the authors introduced an architecture
that avoided computing a whole frame at a time, thus solving the
memory/performance conflict. However, [19] proposes only a spe-
cific architecture, which was designed by hand and by studying the
peculiarities of the algorithm, which requires a considerable effort.
In this paper, we start from the architecture in [19] and, using the
theoretical considerations shown in [20], we extend this approach
by creating a high level synthesis flow that automatically analyzes
the dependencies among iterations, and generates a set of Pareto-
optimal implementations with respect to area and throughput.

3. THE PROPOSED HLS FLOW
The solutions space in which we seek a Pareto-optimal set of

hardware implementations is composed by instantiations of the struc-
tural template we propose in Section 3.1, which allows to achieve
very high performance even with modest on-chip memory require-
ments. The design flow that we use to generate and explore the de-
sign space is shown in Figure 2, and it consists of two main phases,
which are described in the following sections: (1) analysis of the
data dependency of the algorithm; (2) estimation of performance
and area requirements for each architecture and design space ex-
ploration. As described in Section 3.2, the dependency analysis is
performed with a novel combination of symbolic execution and reg-
ister reuse. Then, in Section 3.3 we propose an original method to
estimate the area usage of a generic cone architecture, starting from
a high level representation of its structure, that provides a realistic
estimation even with a low number of synthesis runs.

3.1 Architecture Template
If the input algorithm features domain narrowness (defined in

Section 2), then it is possible to build a computational structure that
is different from the straightforward one-whole-frame-at-a-time ap-
proach. To this end, in the proposed approach, data dependencies
are extracted automatically by using the symbolic execution de-
scribed in the following section, which makes it possible to express
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Figure 3: An example of the cone-based architectural template

the result of the (i+m)-th iteration as a function of (part of) the el-
ements computed at the i-th iteration. As a consequence, given the
data available from the i-th iteration, instead of trying to compute
the whole fi+1, we can focus on a subset of the matrix elements
and directly compute the results of a generic m-th iteration (with
m≥ 1), thus obtaining a subset of fi+m. In accordance to what an-
ticipated in the introduction, we refer to the core that performs such
multi-iteration computation as a cone of depth m.

We define an architectural template by combining multiple lev-
els of cones of different depths, which are able to compute the result
of multiple iterations of the elementary transformation t. The pro-
posed template (an instance of which is shown in Figure 3) works
as follows: a small subset (window) of the input data (stored in the
off-chip memory) is transferred to the on-chip memory to feed the
cones of the first level of the architecture (A, B, C ad D in Figure
3). The output of each level is then used as input for the subsequent
level, until all the necessary iterations are performed. The output of
the last level (Level 3 in Figure 3) is finally sent back to the off-chip
memory and the whole process starts over on a different window of
the input data, until all the matrices has been computed.

The number and the depth of the cones in the actual architecture
has to be tailored to the algorithm to be implemented, since the
dependencies can significantly vary from algorithm to algorithm.
Thus, multiple instances of the template may exist, and each one
is uniquely characterized by: (1) the size of the output window
of each cone; (2) the number of levels in which the computation is
divided or, equivalently, the number of iterations that are performed
at once by each cone.

Figure 3 shows an instance of the template with an output win-
dow of 4× 4 elements and 3 levels of computation: the first one
involves 2 iterations, while the other two levels involve 4 iterations
each. It is worth noting that, since the amount of data exchanged
between two levels x and x+1 (the output of level x is the input of
level x+1) only depends on the size of the output of level x+1 and
on the number of iterations considered by the two levels of compu-
tation, the parameters previously introduced suffice to completely
specify any architecture. The only requirement for an instance to
be feasible is that, if cones of different depths are required, at least
one cone of each depth must be implemented on the device. For in-
stance, the instance in Figure 3 is feasible if the available resources
are sufficient to fit cones A and E because, in this case, the first
level can be implemented by sequentially executing cone A four
times (in order to cover B, C and D as well), and cone E four times
(3 executions are required for level 2, and one for level 3). Many
instances are generally feasible, and the same instance may be im-
plemented in different ways by instantiating different numbers of
cores of different depths, according to the resources availability.
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Figure 2: Schema of the proposed synthesis flow

As a consequence, multiple different trade-offs between area usage
and achievable throughput (the more cones, the better) need to be
evaluated, which is an aspect we address in Section 3.3.

3.2 Dependencies Analysis
In order to generate the cones, it is necessary to express the value

of an element p ∈ fi+m as a function of a set of elements of the
frame produced at the i-th iteration (i.e., fi). This functional rela-
tion is often computed by hand (such as in [19]) but, when different
numbers of levels need to be evaluated during the design space ex-
ploration, an efficient and automatic way to determine the equations
for all the m = 1, ...,N is required.

In the solution proposed here, the algorithm analysis is auto-
mated by running an optimized symbolic execution on a C descrip-
tion of the input algorithm. Symbolic execution is a well-known
technique [21] that has traditionally been employed for testing pur-
poses, which consists in executing the algorithm by propagating
symbolic expressions rather than the actual values of the variables.
Thus, after executing the algorithm from iteration i to i+m, the
output is not the numeric value of fi+m, but a set of equations that
relate each element of fi+m to a subset of elements of fi.

The main problem that arises while performing symbolic execu-
tion in the general case is the exponential growth of the number of
symbols included in the expressions, that makes it impractical for
complex algorithms. In the proposed flow, we overcome this issue
by exploiting the properties defined in Section 2, which enables an
efficient symbolic execution for the targeted class of algorithms.
Firstly, it is not necessary to find an equation for all the elements of
fi+m: if translation invariance holds, the dependencies of the ele-
ments in the frame only differ by a translation, which allows track-
ing only one element in order to get the desired expressions for the
whole fi+m. Secondly, data dependencies between two consecutive
iterations i and i+1 are the same for each value of i∈{1, ...,N−1}.
As a consequence, it suffices to perform symbolic execution for just
one iteration to find the relation between fi+1 and fi, which in turn
can be used as a building block to compute the dependencies be-
tween any pair of fi+m and fi during the VHDL generation.

The equations returned by the symbolic execution are exploited
to automatically generate a synthesizable VHDL description of the
cones. During the equations-to-VHDL translation, the exponen-
tial explosion of the number of symbols is avoided by enforcing
data reuse. In fact, a large number of operations on the same ele-
ments is repeated multiple times to satisfy the data dependencies,
as shown in the example in Figure 4. As we mentioned above, this
redundancy is not detected by the symbolic execution itself, which
would instead introduce a large number of repeated symbols and
operations in the equations. In our flow, we handle it by unrolling
the dependencies between fi+m and fi through m iterations and, for
each operation between two elements, we store the result in a reg-
ister: whenever the operation appears more than once, the register
is reused. This generates a slim VHDL code with a high degree of
resource reuse, which can later handled by any synthesis tool for
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Figure 4: Example of the data-reuse technique

FPGAs that also performs area optimization.

3.3 Performance and Area Estimation
In order to determine the Pareto-optimal architectures to imple-

ment a given algorithm, it is necessary to know the cost and the
throughput of each architecture of the solution space. Unfortu-
nately, a synthesis is generally needed to know the area required
by a cone, which is directly related to the number of cones deploy-
able on the target system, and thus to the performance of the whole
architecture. An obvious way to determine area and performance
would be to synthesize all the cones of every window size and depth
but, for typical problem sizes, the synthesis may take days of CPU
time, making a complete design space exploration unfeasible.

As a consequence, we hereby propose a novel methodology to
quickly estimate the area requirements of a cone architecture. The
proposed evaluation only requires a very small number (as low as
two) of circuit syntheses, and its accuracy is related to the num-
ber of syntheses that the designer is willing to perform (the higher
the number, the more accurate the estimation). Describing the area
requirements in an analytical form presents several challenges, the
main one arising from the non-linear growth of the area with re-
spect to the number of cones in the architecture, which is due to the
optimization and the logic reuse performed by the synthesis tool.
However, we observed that the trend of the area occupation follows
the growth of the number of registers allocated into the cones. We
captured the observed trend with the following relation:

Aest
i = Aest

i−1 +(Regi−Regi−1) ·Sizereg ·α (1)

Where Aest
i is the estimated area requirement for an architecture

whose cones have an output window of size i. Regi is the number of
registers in a cone with an output window of size i, and this quantity
is already known when the VHDL description of the algorithm is
generated and data reuse is enforced. Sizereg represents the average
size of a register on the target architecture. Finally, the α correc-
tion factor takes into account the degree of logic reuse performed
by the synthesis tool, which can be experimentally evaluated by
interpolating two or more initial syntheses (if a higher accuracy is
needed, more initial synthesis need to be performed). The proposed
estimation proves to be very effective in practice (see Section 4).



The estimation of the throughput follows the traditional approach,
i.e., summing the delays of the operations included in each cone,
and counting the number of cones that can run in parallel. This
information is immediately available after the VHDL generation,
when the kind and the number of operations are analyzed.

The precise estimation of the area of each cone makes it possible
in turn to simply evaluate the latency (and thus the throughput) of
any solution. Once the architectures space is completely character-
ized (thus, the area and throughput of each possible implementation
has been estimated) the flow is finally able to extract the Pareto set
by means of an exhaustive search that typically requires the evalu-
ation of a few hundreds of solutions.

4. EXPERIMENTAL RESULTS
We applied the proposed flow on different case studies, of which

we discuss the most significant two for the sake of illustration: an
iterative gaussian filter [13] and the Chambolle algorithm [18]. The
two algorithms are characterized by data dependencies of different
complexities. The aim of the shown experiments is the validation
of the proposed area estimation model, as well as the performance
of the final architecture on two different ISL algortimhs.

4.1 Iterative Gaussian Filter (IGF)
The first case study considered is the blur effect, obtained by

convolving an image f with a Gaussian kernel G. A common ap-
proach to implement gaussian convolutions with large kernels is to
use an iterative gaussian filter (IGF) with a smaller kernel [11]. We
exploit this property to formulate the filter as an iterative convolu-
tion of the frame f with a small kernel g.

The proposed flow performed the dependencies analysis, and
then the area estimation. To verify the precision of our technique
for the latter phase, we performed most of the syntheses, and com-
pared them with our estimations: the results are presented in Figure
5 with respect to the output window size and to the number of it-
erations involved in the optimization. The maximum estimation
error is 6.58%, and the average error is 2.93%, hence the proposed
model provides a very accurate evaluation without requiring a full
synthesis. Let us now analyze the Pareto set of optimal cone archi-
tectures. Figure 6 shows the resulting Pareto curve, with respect to
performance (in this case, the time to process a single fame) and
area requirements (i.e., the number of slices on a FPGA), for the
convolution of a 1024x768 image. The set of Pareto solutions is
reported into the zoomed window.

If the design is targeted to a specific FPGA device, and hence
the amount of resources is know in advance, the synthesis tool
uses all the available area to maximize the throughput, thus obtain-
ing the results shown in Figure 7. This chart shows the degree of
the throughput variation on a Xilinx Virtex-6 XC6VLX760 FPGA
when the size of the output window is varied. It can be observed
that the cores that lead to best performances are those whose depth
is a divider of the number of overall iterations (in the example, 10
iteration are best performed with cores of depth 1, 2 and 5). The
reason why cores of depth 3 and 4 achieve worse performance is
that they are not dividers of 10, hence it is necessary to allocate
an additional specific core (of depth 1 and 2, respectively) in order
to implement the remaining iterations, thus making the exploita-
tion of the available area suboptimal. Even by considering a single
cone depth, the trend reported in Figure 7 is not monotone because,
although larger cones typically lead to better throughputs, it may
happen that smaller cones allow to better fit the device area.

A comparison between our cone-based solutions and the ones
presented in the literature show a significant speed-up when the
amount of resources is comparable. For instance, [16] presents a
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#label total_req_areaspf fps est_throughputarea_limit core_num est_freq est_period est_core_latencymissing_iterationstop_lev_inputsest_exec_timeest_area_efficiencytop_lev_area_efficiencytop_lev_execution_time
blur_4_7to10 259113,378 2,99395052 0,33400686 793166,081 D1 1 97162844,9 1,03ED08 5,15ED08 1 400 5,04ED06 3,06107731 1870,09933 2,57ED07
blur_1_6to10 1134177,57 2,81064743 0,35578991 844894,304 D1 7 97162844,9 1,03ED08 5,15ED08 2 289 1,18ED06 0,74494006 1379,37722 2,06ED07
blur_1_5to10 1583096 2,81064743 0,35578991 844894,304 D1 8 97162844,9 1,03ED08 5,15ED08 0 441 1,18ED06 0,53369745 D1 0
blur_4_9to10 90600 2,59679382 0,38509026 914473,835 D1 6 97162844,9 1,03ED08 5,15ED08 0 484 4,37ED06 10,0935302 D1 0
blur_1_6to10 1255448,57 2,5662433 0,38967467 925360,428 D1 8 97162844,9 1,03ED08 5,15ED08 2 289 1,08ED06 0,73707554 1379,37722 2,06ED07
blur_1_5to10 1780983 2,44404124 0,4091584 971628,449 D1 9 97162844,9 1,03ED08 5,15ED08 0 441 1,03ED06 0,5455574 D1 0
blur_1_6to10 1376719,57 2,32183918 0,43069305 1022766,79 D1 9 97162844,9 1,03ED08 5,15ED08 2 289 9,78ED07 0,74290132 1379,37722 2,06ED07
blur_4_8to10 132516 2,26073815 0,4423334 1050409,13 D1 3 97162844,9 1,03ED08 5,15ED08 0 484 3,81ED06 7,92665893 D1 0
blur_4_9to10 105700 2,23018763 0,44839277 1064798,3 D1 7 97162844,9 1,03ED08 5,15ED08 0 484 3,76ED06 10,0737777 D1 0
blur_1_5to10 1978870 2,19963712 0,45462044 1079587,17 D1 10 97162844,9 1,03ED08 5,15ED08 0 441 9,26ED07 0,5455574 D1 0
blur_1_6to10 1497990,57 2,07743505 0,48136282 1143092,29 D1 10 97162844,9 1,03ED08 5,15ED08 2 289 8,75ED07 0,76308377 1379,37722 2,06ED07
blur_1_5to10 2176757 2,07743505 0,48136282 1143092,29 D1 11 97162844,9 1,03ED08 5,15ED08 0 441 8,75ED07 0,52513546 D1 0
blur_4_9to10 120800 1,95523299 0,511448 1214535,56 D1 8 97162844,9 1,03ED08 5,15ED08 0 484 3,29ED06 10,0541023 D1 0
blur_1_6to10 1619261,57 1,95523299 0,511448 1214535,56 D1 11 97162844,9 1,03ED08 5,15ED08 2 289 8,23ED07 0,7500552 1379,37722 2,06ED07
blur_1_6to10 1740532,57 1,83303093 0,54554453 1295504,6 D1 12 97162844,9 1,03ED08 5,15ED08 2 289 7,72ED07 0,74431506 1379,37722 2,06ED07
blur_1_5to10 2374644 1,83303093 0,54554453 1295504,6 D1 12 97162844,9 1,03ED08 5,15ED08 0 441 7,72ED07 0,5455574 D1 0
blur_4_9to10 135900 1,74137938 0,5742574 1363689,05 D1 9 97162844,9 1,03ED08 5,15ED08 0 484 2,93ED06 10,0345037 D1 0
blur_9_9to10 54656 1,71082887 0,584512 1388040,64 D1 2 97162844,9 1,03ED08 5,15ED08 0 529 6,48ED06 25,3959427 D1 0
blur_1_6to10 1861803,57 1,71082887 0,584512 1388040,64 D1 13 97162844,9 1,03ED08 5,15ED08 2 289 7,20ED07 0,74553549 1379,37722 2,06ED07
blur_1_6to10 1983074,57 1,71082887 0,584512 1388040,64 D1 14 97162844,9 1,03ED08 5,15ED08 2 289 7,20ED07 0,69994375 1379,37722 2,06ED07
blur_1_5to10 2572531 1,71082887 0,584512 1388040,64 D1 13 97162844,9 1,03ED08 5,15ED08 0 441 7,20ED07 0,53956226 D1 0
blur_4_5to10 244504 1,61917732 0,61759758 1466608,98 D1 1 97162844,9 1,03ED08 5,15ED08 0 484 2,73ED06 5,99830261 D1 0
blur_4_7to10 349889,378 1,58862681 0,62947446 1494813 D1 2 97162844,9 1,03ED08 5,15ED08 1 400 2,68ED06 4,27224459 1870,09933 2,57ED07
blur_1_6to10 2104345,57 1,58862681 0,62947446 1494813 D1 15 97162844,9 1,03ED08 5,15ED08 2 289 6,69ED07 0,71034578 1379,37722 2,06ED07
blur_1_6to10 2225616,57 1,58862681 0,62947446 1494813 D1 16 97162844,9 1,03ED08 5,15ED08 2 289 6,69ED07 0,67163995 1379,37722 2,06ED07
blur_1_5to10 2770418 1,58862681 0,62947446 1494813 D1 14 97162844,9 1,03ED08 5,15ED08 0 441 6,69ED07 0,53956226 D1 0
blur_4_9to10 151000 1,55807629 0,6418171 1524123,06 D1 10 97162844,9 1,03ED08 5,15ED08 0 484 2,62ED06 10,0935302 D1 0
blur_9_8to10 62718,8132 1,49358076 0,66953192 1589937,46 D1 1 97162844,9 1,03ED08 5,15ED08 0 529 5,66ED06 25,3502479 D1 0
blur_1_5to10 2968305 1,46642474 0,68193066 1619380,75 D1 15 97162844,9 1,03ED08 5,15ED08 0 441 6,18ED07 0,5455574 D1 0
blur_1_5to10 3166192 1,46642474 0,68193066 1619380,75 D1 16 97162844,9 1,03ED08 5,15ED08 0 441 6,18ED07 0,51146006 D1 0
blur_4_9to10 166100 1,40532371 0,71157982 1689788,61 D1 11 97162844,9 1,03ED08 5,15ED08 0 484 2,37ED06 10,1733209 D1 0
blur_4_8to10 220860 1,34422268 0,74392436 1766597,18 D1 5 97162844,9 1,03ED08 5,15ED08 0 484 2,26ED06 7,99871946 D1 0
blur_4_6to10 442172,572 1,34422268 0,74392436 1766597,18 D1 1 97162844,9 1,03ED08 5,15ED08 2 324 2,26ED06 3,99526631 1379,37722 2,06ED07
blur_4_9to10 181200 1,31367217 0,76122493 1807680,84 D1 12 97162844,9 1,03ED08 5,15ED08 0 484 2,21ED06 9,97616355 D1 0
blur_16_9to10 41037,245 1,22202062 0,8183168 1943256,9 D1 1 97162844,9 1,03ED08 5,15ED08 0 576 8,23ED06 47,3534931 D1 0
blur_4_9to10 196300 1,1914701 0,83929928 1993084 D1 13 97162844,9 1,03ED08 5,15ED08 0 484 2,01ED06 10,1532552 D1 0
blur_9_9to10 81984 1,14055258 0,876768 2082060,96 D1 3 97162844,9 1,03ED08 5,15ED08 0 529 4,32ED06 25,3959427 D1 0
blur_4_9to10 211400 1,13036907 0,88466681 2100818,27 D1 14 97162844,9 1,03ED08 5,15ED08 0 484 1,90ED06 9,93764555 D1 0
blur_4_8to10 265032 1,13036907 0,88466681 2100818,27 D1 6 97162844,9 1,03ED08 5,15ED08 0 484 1,90ED06 7,92665893 D1 0
blur_4_7to10 440665,378 1,09981856 0,90924089 2159174,33 D1 3 97162844,9 1,03ED08 5,15ED08 1 400 1,85ED06 4,8998048 1870,09933 2,57ED07
blur_4_9to10 226500 1,03871753 0,96272564 2286184,59 D1 15 97162844,9 1,03ED08 5,15ED08 0 484 1,75ED06 10,0935302 D1 0
blur_4_9to10 241600 0,9776165 1,022896 2429071,12 D1 16 97162844,9 1,03ED08 5,15ED08 0 484 1,65ED06 10,0541023 D1 0
blur_4_8to10 309204 0,9776165 1,022896 2429071,12 D1 7 97162844,9 1,03ED08 5,15ED08 0 484 1,65ED06 7,85588519 D1 0
blur_4_8to10 353376 0,85541443 1,169024 2776081,28 D1 8 97162844,9 1,03ED08 5,15ED08 0 484 1,44ED06 7,85588519 D1 0
blur_4_5to10 489008 0,82486392 1,21232118 2878899,11 D1 2 97162844,9 1,03ED08 5,15ED08 0 484 1,39ED06 5,88722293 D1 0
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Figure 6: IGF Pareto curve (image size: 1024x768)Estimated)execution)time
E_EXEC_TIME9E_EXEC_TIME8E_EXEC_TIME7E_EXEC_TIME6E_EXEC_TIME5

1 3,09E>07 9,26E>07 1,44E>06 1,60E>06 1,54E>06 )
4 3,60E>07 4,63E>07 8,75E>07 1,18E>06 7,20E>07 )
9 3,09E>07 3,09E>07 8,23E>07 1,18E>06 3,60E>07 )
16 3,09E>07 2,57E>07 8,23E>07 1,24E>06 3,09E>07 )
25 3,09E>07 2,57E>07 8,75E>07 1,34E>06 3,09E>07 )
36 3,09E>07 2,57E>07 9,26E>07 1,39E>06 2,57E>07 )
49 3,60E>07 2,57E>07 9,78E>07 1,49E>06 2,06E>07 )
64 3,60E>07 3,09E>07 1,03E>06 1,65E>06 3,60E>07 )
81 3,60E>07 3,09E>07 1,13E>06 7,20E>07 3,09E>07 )

100

Estimated)throughput
E_THR9 E_THR8 E_THR7 E_THR6 E_THR5 E_THR9 E_THR8 E_THR7 E_THR6

1 3238761,5 1079587,17 694020,321 626857,064 647752,3 1 1,36386133 0,45462044 0,292256 0,26397316
4 11104325,1 8636697,33 4572369,17 3379577,21 5552162,57 4 4,67609598 3,63696354 1,92545129 1,42315965
9 29148853,5 29148853,5 10930820,1 7604048,73 24984731,6 9 12,274752 12,274752 4,60303198 3,20210921
16 51820184 62184220,8 19432569 12955046 51820184 16 21,8217813 26,1861375 8,18316797 5,45544532
25 80969037,4 97162844,9 28577307,3 18685162,5 80969037,4 25 34,0965332 40,9158399 12,0340705 7,86843074
36 116595414 139914497 38865138 25910092 139914497 36 49,0990078 58,9188094 16,3663359 10,9108906
49 136027983 190439176 50115572,6 32834340,7 238048970 49 57,2821758 80,1950461 21,1039595 13,8267321
64 177669202 207280736 62184220,8 38865138 177669202 64 74,8175358 87,287125 26,1861375 16,3663359
81 224862584 262339681 71547185,8 112431292 262339681 81 94,6909437 110,472768 30,1289366 47,3454718
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Figure 7: IGF throughput (image size: 1024x768)

20-iterations convolution with a 3x3 kernel working on a Xilinx
Virtex-II Pro at 13.5fps with 1024x768 images, and at less than 5fps
with Full-HD images, while our architecture achieves, on the same
FPGA, up to 35fps on Full-HD images. With a modern FPGA such
as a Virtex 6, our architecture reaches 110fps on 1024x768 images.

4.2 Chambolle Algorithm
Chambolle ([18], [19]) is an algorithm for total variation mini-

mization, which is used in such fields as de-noising, zooming, and
optical flow computation. As for the gaussian filter, we estimated
the areas of each possible cone architecture for Chambolle, and we
compared them to the actual synthesis results. Figure 8 reports the
results, which are again very accurate, as the maximum area esti-
mation error we observed is 6.36%, and the average one is 2.19%.

Starting from the area estimation, we computed the Pareto curve,
which is illustrated in Figure 9. When a specific FPGA is targeted,
the behavior of the throughput is similar to the one discussed for
the iterative filter. In this example, it can be observed that the best
solution in terms of throughput is not the one with the largest out-
put window (9×9), but rather the solution with 8×8 cones, since
in this case 2 instances of the cone can be deployed simultaneously
on the device (see Figure 10). The performance of the cone-based
architectures detected by our flow are competitive with respect to
state-of-the-art implementations. For example, the architectures in
[3], [22] and [23]), are unable to reach the real-time threshold (i.e.,
30fps) even on small images because of their intrinsic absence of



0!

100!

200!

300!

400!

500!

600!

700!

800!

0! 10! 20! 30! 40! 50! 60! 70! 80! 90!

Th
ou

sa
nd

 o
f s

lic
es

 L
U

T!

Output window area (number of elements)!

5 iterations!

4 iterations!

3 iterations!

2 iterations!

1 iteration!

Actual Estimated
Needed synthesis for the estimation of α

Figure 8: Chambolle area estimation#label total_req_areaspf fps est_throughputarea_limit core_num est_freq est_period est_core_latencymissing_iterations
chamb_81_8to11822815,073 0,01786477 55,9760804 87446560,4 B1 3 97162844,9 1,03EB08 3,09EB07 0
chamb_81_9to111332357,23 0,01786477 55,9760804 87446560,4 B1 7 97162844,9 1,03EB08 3,09EB07 0
chamb_64_8to111114158,21 0,01884175 53,0736169 82912294,3 B1 5 97162844,9 1,03EB08 3,09EB07 0
chamb_64_9to111507889,14 0,01884175 53,0736169 82912294,3 B1 10 97162844,9 1,03EB08 3,09EB07 0
chamb_64_9to111658678,05 0,01884175 53,0736169 82912294,3 B1 11 97162844,9 1,03EB08 3,09EB07 0
chamb_25_5to111837581,48 0,01929396 51,829704 80969037,4 B1 5 97162844,9 1,03EB08 3,09EB07 0
chamb_25_5to112205097,78 0,01929396 51,829704 80969037,4 B1 6 97162844,9 1,03EB08 3,09EB07 0
chamb_25_5to112572614,07 0,01929396 51,829704 80969037,4 B1 7 97162844,9 1,03EB08 3,09EB07 0
chamb_25_5to112940130,37 0,01929396 51,829704 80969037,4 B1 8 97162844,9 1,03EB08 3,09EB07 0
chamb_25_5to113307646,66 0,01929396 51,829704 80969037,4 B1 9 97162844,9 1,03EB08 3,09EB07 0
chamb_49_5to111052163,02 0,01968771 50,79311 79349656,7 B1 2 97162844,9 1,03EB08 3,09EB07 0
chamb_49_8to111238519,04 0,01968771 50,79311 79349656,7 B1 7 97162844,9 1,03EB08 3,09EB07 0
chamb_49_8to111415450,33 0,01968771 50,79311 79349656,7 B1 8 97162844,9 1,03EB08 3,09EB07 0
chamb_49_9to111738172,69 0,01968771 50,79311 79349656,7 B1 15 97162844,9 1,03EB08 3,09EB07 0
chamb_49_9to111854050,87 0,01968771 50,79311 79349656,7 B1 16 97162844,9 1,03EB08 3,09EB07 0
chamb_36_5to111328060,2 0,02009787 49,7565159 77730275,9 B1 3 97162844,9 1,03EB08 3,09EB07 0
chamb_36_8to111502277,02 0,02009787 49,7565159 77730275,9 B1 11 97162844,9 1,03EB08 3,09EB07 0
chamb_36_8to111638847,66 0,02009787 49,7565159 77730275,9 B1 12 97162844,9 1,03EB08 3,09EB07 0
chamb_36_8to111775418,3 0,02009787 49,7565159 77730275,9 B1 13 97162844,9 1,03EB08 3,09EB07 0
chamb_36_8to111911988,94 0,02009787 49,7565159 77730275,9 B1 14 97162844,9 1,03EB08 3,09EB07 0
chamb_36_8to112048559,57 0,02009787 49,7565159 77730275,9 B1 15 97162844,9 1,03EB08 3,09EB07 0
chamb_81_9to111142020,48 0,02084224 47,9794975 74954194,7 B1 6 97162844,9 1,03EB08 3,09EB07 0
chamb_64_5to11617700,624 0,0226101 44,2280141 69093578,6 B1 1 97162844,9 1,03EB08 3,09EB07 0
chamb_64_8to11891326,57 0,0226101 44,2280141 69093578,6 B1 4 97162844,9 1,03EB08 3,09EB07 0
chamb_64_9to111206311,31 0,0226101 44,2280141 69093578,6 B1 8 97162844,9 1,03EB08 3,09EB07 0
chamb_64_9to111357100,22 0,0226101 44,2280141 69093578,6 B1 9 97162844,9 1,03EB08 3,09EB07 0
chamb_81_9to11951683,736 0,0238197 41,9820603 65584920,3 B1 5 97162844,9 1,03EB08 3,09EB07 0
chamb_81_6to112498846,41 0,0238197 41,9820603 65584920,3 B1 4 97162844,9 1,03EB08 3,09EB07 2
chamb_81_6to113054990,09 0,0238197 41,9820603 65584920,3 B1 5 97162844,9 1,03EB08 3,09EB07 2
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#label total_req_areaspf fps est_throughputarea_limit core_num est_freq est_period est_core_latencymissing_iterationstop_lev_inputsest_exec_timeest_area_efficiencytop_lev_area_efficiencytop_lev_execution_time
blur_4_7to10 259113,378 2,99395052 0,33400686 793166,081 D1 1 97162844,9 1,03ED08 5,15ED08 1 400 5,04ED06 3,06107731 1870,09933 2,57ED07
blur_1_6to10 1134177,57 2,81064743 0,35578991 844894,304 D1 7 97162844,9 1,03ED08 5,15ED08 2 289 1,18ED06 0,74494006 1379,37722 2,06ED07
blur_1_5to10 1583096 2,81064743 0,35578991 844894,304 D1 8 97162844,9 1,03ED08 5,15ED08 0 441 1,18ED06 0,53369745 D1 0
blur_4_9to10 90600 2,59679382 0,38509026 914473,835 D1 6 97162844,9 1,03ED08 5,15ED08 0 484 4,37ED06 10,0935302 D1 0
blur_1_6to10 1255448,57 2,5662433 0,38967467 925360,428 D1 8 97162844,9 1,03ED08 5,15ED08 2 289 1,08ED06 0,73707554 1379,37722 2,06ED07
blur_1_5to10 1780983 2,44404124 0,4091584 971628,449 D1 9 97162844,9 1,03ED08 5,15ED08 0 441 1,03ED06 0,5455574 D1 0
blur_1_6to10 1376719,57 2,32183918 0,43069305 1022766,79 D1 9 97162844,9 1,03ED08 5,15ED08 2 289 9,78ED07 0,74290132 1379,37722 2,06ED07
blur_4_8to10 132516 2,26073815 0,4423334 1050409,13 D1 3 97162844,9 1,03ED08 5,15ED08 0 484 3,81ED06 7,92665893 D1 0
blur_4_9to10 105700 2,23018763 0,44839277 1064798,3 D1 7 97162844,9 1,03ED08 5,15ED08 0 484 3,76ED06 10,0737777 D1 0
blur_1_5to10 1978870 2,19963712 0,45462044 1079587,17 D1 10 97162844,9 1,03ED08 5,15ED08 0 441 9,26ED07 0,5455574 D1 0
blur_1_6to10 1497990,57 2,07743505 0,48136282 1143092,29 D1 10 97162844,9 1,03ED08 5,15ED08 2 289 8,75ED07 0,76308377 1379,37722 2,06ED07
blur_1_5to10 2176757 2,07743505 0,48136282 1143092,29 D1 11 97162844,9 1,03ED08 5,15ED08 0 441 8,75ED07 0,52513546 D1 0
blur_4_9to10 120800 1,95523299 0,511448 1214535,56 D1 8 97162844,9 1,03ED08 5,15ED08 0 484 3,29ED06 10,0541023 D1 0
blur_1_6to10 1619261,57 1,95523299 0,511448 1214535,56 D1 11 97162844,9 1,03ED08 5,15ED08 2 289 8,23ED07 0,7500552 1379,37722 2,06ED07
blur_1_6to10 1740532,57 1,83303093 0,54554453 1295504,6 D1 12 97162844,9 1,03ED08 5,15ED08 2 289 7,72ED07 0,74431506 1379,37722 2,06ED07
blur_1_5to10 2374644 1,83303093 0,54554453 1295504,6 D1 12 97162844,9 1,03ED08 5,15ED08 0 441 7,72ED07 0,5455574 D1 0
blur_4_9to10 135900 1,74137938 0,5742574 1363689,05 D1 9 97162844,9 1,03ED08 5,15ED08 0 484 2,93ED06 10,0345037 D1 0
blur_9_9to10 54656 1,71082887 0,584512 1388040,64 D1 2 97162844,9 1,03ED08 5,15ED08 0 529 6,48ED06 25,3959427 D1 0
blur_1_6to10 1861803,57 1,71082887 0,584512 1388040,64 D1 13 97162844,9 1,03ED08 5,15ED08 2 289 7,20ED07 0,74553549 1379,37722 2,06ED07
blur_1_6to10 1983074,57 1,71082887 0,584512 1388040,64 D1 14 97162844,9 1,03ED08 5,15ED08 2 289 7,20ED07 0,69994375 1379,37722 2,06ED07
blur_1_5to10 2572531 1,71082887 0,584512 1388040,64 D1 13 97162844,9 1,03ED08 5,15ED08 0 441 7,20ED07 0,53956226 D1 0
blur_4_5to10 244504 1,61917732 0,61759758 1466608,98 D1 1 97162844,9 1,03ED08 5,15ED08 0 484 2,73ED06 5,99830261 D1 0
blur_4_7to10 349889,378 1,58862681 0,62947446 1494813 D1 2 97162844,9 1,03ED08 5,15ED08 1 400 2,68ED06 4,27224459 1870,09933 2,57ED07
blur_1_6to10 2104345,57 1,58862681 0,62947446 1494813 D1 15 97162844,9 1,03ED08 5,15ED08 2 289 6,69ED07 0,71034578 1379,37722 2,06ED07
blur_1_6to10 2225616,57 1,58862681 0,62947446 1494813 D1 16 97162844,9 1,03ED08 5,15ED08 2 289 6,69ED07 0,67163995 1379,37722 2,06ED07
blur_1_5to10 2770418 1,58862681 0,62947446 1494813 D1 14 97162844,9 1,03ED08 5,15ED08 0 441 6,69ED07 0,53956226 D1 0
blur_4_9to10 151000 1,55807629 0,6418171 1524123,06 D1 10 97162844,9 1,03ED08 5,15ED08 0 484 2,62ED06 10,0935302 D1 0
blur_9_8to10 62718,8132 1,49358076 0,66953192 1589937,46 D1 1 97162844,9 1,03ED08 5,15ED08 0 529 5,66ED06 25,3502479 D1 0
blur_1_5to10 2968305 1,46642474 0,68193066 1619380,75 D1 15 97162844,9 1,03ED08 5,15ED08 0 441 6,18ED07 0,5455574 D1 0
blur_1_5to10 3166192 1,46642474 0,68193066 1619380,75 D1 16 97162844,9 1,03ED08 5,15ED08 0 441 6,18ED07 0,51146006 D1 0
blur_4_9to10 166100 1,40532371 0,71157982 1689788,61 D1 11 97162844,9 1,03ED08 5,15ED08 0 484 2,37ED06 10,1733209 D1 0
blur_4_8to10 220860 1,34422268 0,74392436 1766597,18 D1 5 97162844,9 1,03ED08 5,15ED08 0 484 2,26ED06 7,99871946 D1 0
blur_4_6to10 442172,572 1,34422268 0,74392436 1766597,18 D1 1 97162844,9 1,03ED08 5,15ED08 2 324 2,26ED06 3,99526631 1379,37722 2,06ED07
blur_4_9to10 181200 1,31367217 0,76122493 1807680,84 D1 12 97162844,9 1,03ED08 5,15ED08 0 484 2,21ED06 9,97616355 D1 0
blur_16_9to10 41037,245 1,22202062 0,8183168 1943256,9 D1 1 97162844,9 1,03ED08 5,15ED08 0 576 8,23ED06 47,3534931 D1 0
blur_4_9to10 196300 1,1914701 0,83929928 1993084 D1 13 97162844,9 1,03ED08 5,15ED08 0 484 2,01ED06 10,1532552 D1 0
blur_9_9to10 81984 1,14055258 0,876768 2082060,96 D1 3 97162844,9 1,03ED08 5,15ED08 0 529 4,32ED06 25,3959427 D1 0
blur_4_9to10 211400 1,13036907 0,88466681 2100818,27 D1 14 97162844,9 1,03ED08 5,15ED08 0 484 1,90ED06 9,93764555 D1 0
blur_4_8to10 265032 1,13036907 0,88466681 2100818,27 D1 6 97162844,9 1,03ED08 5,15ED08 0 484 1,90ED06 7,92665893 D1 0
blur_4_7to10 440665,378 1,09981856 0,90924089 2159174,33 D1 3 97162844,9 1,03ED08 5,15ED08 1 400 1,85ED06 4,8998048 1870,09933 2,57ED07
blur_4_9to10 226500 1,03871753 0,96272564 2286184,59 D1 15 97162844,9 1,03ED08 5,15ED08 0 484 1,75ED06 10,0935302 D1 0
blur_4_9to10 241600 0,9776165 1,022896 2429071,12 D1 16 97162844,9 1,03ED08 5,15ED08 0 484 1,65ED06 10,0541023 D1 0
blur_4_8to10 309204 0,9776165 1,022896 2429071,12 D1 7 97162844,9 1,03ED08 5,15ED08 0 484 1,65ED06 7,85588519 D1 0
blur_4_8to10 353376 0,85541443 1,169024 2776081,28 D1 8 97162844,9 1,03ED08 5,15ED08 0 484 1,44ED06 7,85588519 D1 0
blur_4_5to10 489008 0,82486392 1,21232118 2878899,11 D1 2 97162844,9 1,03ED08 5,15ED08 0 484 1,39ED06 5,88722293 D1 0
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Figure 9: Chambolle Pareto curve (image size: 1024x768)
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Figure 10: Chambolle throughput (image size: 1024x768)

parallelism. The architecture in [19], based on a similar locality
exploitation, was designed by hand in several months of work, and
it reaches 38fps on 1024x768 images and 99fps on 512x512 resolu-
tions. With our flow we automatically obtained comparable results:
24fps on 1024x768 images and 72fps on 512x512 images.

4.3 Evaluation of Commercial HLS Tools
As a conclusion, we synthesized the two aforementioned case

studies with two market-leading HLS tools: Synphony C Complier
by Synopsis [24], and Vivado HLS by Xilinx [25]. Both the tools
are able to perform a set of optimizations starting from a C code
(even though Vivado HLS offers more choices than Synphony C
Compiler), including loop unrolling, merging, flattening, pipelin-
ing, array partitioning, and many others. However, even for the
simple iterative gaussian filter, the tools show their limitations in
finding an efficient solution. For instance, by combining the possi-
ble loop manipulations and the array partitioning of Vivado HLS,
the best implementation found by the tool has a throughput of only
0.14fps on a 1024x768 image. When loop merging is enabled, a so-
lution cannot be found because of the data dependencies between
subsequent iterations (which is peculiar of ISL algorithms). Con-
versely, when pipelining and loop flattening are employed, the ex-
ecution cannot be completed because of memory shortage (an out-
of-memory exception is generated even on a powerful Intel i7 with
16GB of RAM), thus showing poor scalability on ISL algorithms.

5. CONCLUDING REMARKS
In this paper, we considered the problematic implementation of

Iterative Stencil Loop algorithms on custom hardware platform (such
as FPGAs) from the high level synthesis perspective. Starting from
the characterization of the family of algorithms, we proposed a
hardware architecture template that overcomes the problem of stor-
ing the intermediate results by exploiting the dependencies between
subsequent iterations. We also designed an automatic synthesis
flow that produces a set of Pareto-optimal solutions with respect
to area and throughput, starting from the C description of the in-
put algorithm. In addition to the advantage of automatic synthesis,
experimental results showed that the performance of the solutions
found by the proposed flow are comparable to (and, in some cases,
significantly better than) state-of-the-art manual implementations.
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