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Redox transitions of uranium [fromU(VI) to U(IV)] in low-temperature
sediments govern the mobility of uranium in the environment
and the accumulation of uranium in ore bodies, and inform our
understanding of Earth’s geochemical history. The molecular-scale
mechanistic pathways of these transitions determine the U(IV)
products formed, thus influencing uranium isotope fractionation,
reoxidation, and transport in sediments. Studies that improve our
understanding of these pathways have the potential to substan-
tially advance process understanding across a number of earth
sciences disciplines. Detailed mechanistic information regarding
uranium redox transitions in field sediments is largely nonexistent,
owing to the difficulty of directly observing molecular-scale pro-
cesses in the subsurface and the compositional/physical complex-
ity of subsurface systems. Here, we present results from an in situ
study of uranium redox transitions occurring in aquifer sediments
under sulfate-reducing conditions. Based on molecular-scale spec-
troscopic, pore-scale geochemical, and macroscale aqueous evi-
dence, we propose a biotic–abiotic transition pathway in which
biomass-hosted mackinawite (FeS) is an electron source to reduce
U(VI) to U(IV), which subsequently reacts with biomass to produce
monomeric U(IV) species. A species resembling nanoscale uraninite
is also present, implying the operation of at least two redox transition
pathways. The presence of multiple pathways in low-temperature
sediments unifies apparently contrasting prior observations and
helps to explain sustained uranium reduction under disparate bio-
geochemical conditions. These findings have direct implications for
our understanding of uranium bioremediation, ore formation, and
global geochemical processes.
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Uranium redox transitions [from U(VI) to U(IV)] in low-
temperature sediments control the mobility of uranium in

suboxic and reduced aquifers (1), mediate uranium accumulation
in ores (2), and govern 238U/235U fractionation in seawater, of
interest as a paleo-redox proxy (3, 4). Distinguishing the nature
of the reaction pathway responsible for reducing U(VI) in field
sediments remains a central challenge to advancing mechanistic
understanding of these important transitions. The inaccessibility
of the subsurface and the dilute concentrations of uranium in
natural sediments, typically <1 mg/kg, have effectively prevented
direct observation of pathways at the critical molecular to grain
scales at which these reactions occur. Important parameters for
which information is needed in bona fide field sediments include
the number of reduction pathways operating, the reactants, es-
pecially the electron donor, and the products. In the absence of
such information, biogeochemical models have invoked simplified
pathways (5, 6), typically involving a single type of reducing agent
and assuming uraninite (UO2) as the U(IV) product. Recent
laboratory studies report that bioreduced U(IV) occurs as ura-
ninite and less stable (7) monomeric forms of U(IV) coordinated
to phosphate or carbonate groups on biological surfaces or in

amorphous or nanocrystalline precipitates (8–14). Monomeric
U(IV) also has been reported in reduced field sediments (15, 16).
The presence of less stable forms of U(IV) raises important
questions for uranium biogeochemistry and uranium redox tran-
sition pathways in natural sediments. However, no study has
linked U(IV) molecular structure to pore-scale sediment geo-
chemistry to deduce reduction pathways.
Both biological and abiotic reducing agents are available in

sediments and coexist at the scale of sediment pores and grain
coatings (nanometers to tens of micrometers). Sulfate-reducing
bacteria (SRB) are important in the mineralization of FeS2 in
low-temperature sandstone-type ores, sustained by transfer of
electrons from organic carbon [hydrocarbons (17–20), plant
materials (21, 22), or their fermentative products] to sulfate (17,
21). SRB along with metal-reducing bacteria (MRB) (23, 24)
also are capable of enzymatically reducing U(VI) to U(IV). In-
deed, indirect evidence suggests that enzymatic pathways domi-
nate under conditions of subsurface biostimulation, particularly
under conditions dominated by MRB (5, 6, 25–27). Moreover,
recent evidence from genomic (28) and petrologic (18, 19)
studies suggests that direct enzymatic reduction of U(VI) con-
tributes to the mineralization of U(IV) in low-temperature
sandstone-type uranium ores. Abiotic reducing agents in ore
deposits, shallow contaminated aquifers, and marine sediments
include pyrite, aqueous bisulfide (22, 29–33), mackinawite (FeS)
(34), magnetite (Fe3O4) (35–37), green rust (38), Fe2+ adsorbed
on Fe oxides (39), and structural Fe2+ in clays (40). The presence
of so many potential reducing agents makes it difficult to deduce
the nature of redox transition pathways. Studies that link molec-
ular-scale U(IV) speciation to pore-scale mineralogy and mac-
roscale behavior over defined time intervals are needed to better
understand redox transition mechanisms and the biogeochemical
processes they control.
In the present study, we have connected uranium specia-

tion, sediment geochemistry, and time to obtain unprecedented
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molecular- to pore-scale information about biogeochemical
pathways leading to the formation of specific U(IV) species in
field sediments under sulfate-reducing conditions. To obtain
such information over a defined time interval, we deployed in
situ sediment reactors in wells in the alluvial aquifer at Rifle,
Colorado, during acetate amendment of the aquifer. This ap-
proach hydrologically and biogeochemically connects the sedi-
ments to groundwater and enables easy retrieval for subsequent
analysis. Harvested sediments were characterized by X-ray and
electron microscopy, synchrotron-based X-ray absorption spec-
troscopy, and bulk extraction and digestion techniques. These
measurements show that U(VI) was reduced to monomeric
U(IV) species (complexes or nanoscale precipitates) likely as-
sociated with biomass and to an ordered species resembling
uraninite. The presence of multiple products suggests multiple
redox transition pathways were operational. The reduction of
U(VI) by mackinawite (FeS), coupled to binding of U(IV) by
biopolymers, is proposed. The presence of multiple redox tran-
sition pathways unifies previous observations and has important
implications for uranium biogeochemistry in reduced sediments.

Results
In situ reactors containing fresh field sediments were installed
into neighboring wells P-101 and P-102 at the Rifle Integrated
Field Research Challenge (IFRC) site in Rifle, Colorado, before
a field acetate amendment experiment (41). The wells exhibit
similar groundwater composition and microbial ecology (27, 41).
Comparing results from the two wells provides an estimate of the
overall variability in the experiment. Groundwater was continu-
ously eluted through the columns to hydrologically connect them
to aquifer biogeochemical dynamics. Millimolar concentrations
of acetate and ≤20 μM uranyl were added to column influents to
obtain sediment uranium concentrations adequate for spectro-
scopic and microscopic analysis. Effluent and groundwater data
(SI Text and Fig. S1) show that uranium reduction was minor
during the initial, brief (∼10 d) iron-reducing stage in the aqui-
fer. The majority of U(IV) accumulated under subsequent sul-
fate-reducing conditions, obtaining concentrations ≤485 mg/kg
(Table 1). Removal of U(VI) during sulfate reduction has been
demonstrated in laboratory column studies (42). The present
study demonstrates this behavior in an aquifer and is consistent
with biogeochemical results from multiple field-scale acetate
amendment experiments (27).

Microbial Communities Present During in Situ Bioreduction. Sedi-
ment microbial communities were initially relatively diverse and
included Proteobacteria such as the metal-reducing bacterium
Shewanella spp. and the sulfate-reducing bacterium Desulfobacter
spp. In addition, Firmicutes and Acidobacteria were also pres-
ent in significant numbers (Fig. S2). After acetate amendment,
in situ column sediment communities were dominated by SRB

Desulfobacterales, confirming sulfate-reducing conditions. Addi-
tionally, Clostridiales, an order of primarily fermentative bacteria,
increased in abundance, suggesting a role for fermenters in the
breakdown of biomass. Among the phyla stimulated by acetate
amendment, only Deltaproteobacteria and Firmicutes have mem-
bers well known to be capable of enzymatic U(VI) reduction.

Microscale/Nanoscale Distribution of Uranium, Iron, and Sulfur in
Bioreduced Sediments. X-ray microprobe (XRM), scanning elec-
tron microscopy (SEM), and transmission electron microscopy
(TEM) analyses were used to characterize column sediments.
XRM measurements show that preamendment sediments exhibi-
ted Fe-rich coatings devoid of detectableU. SEM shows them to be
of submicrometer dimension and containing clays and Fe oxides
but not S (Fig. S3). After the experiment, sediment grains exhibited
extensive Fe-rich coatings and mineralized cracks, in some cases
exceeding 10-μm thicknesses (Fig. 1). X-ray energy-dispersive
spectra (EDS) showed good to excellent correlation of Fe and S
atomic percentages, implying the presence of a ferrous sulfide or
bisulfide phase. This correlation was observed in 12 of 18 coatings
examined with SEM (Table S1 and Figs. S4–S6). Selected area
electron diffraction (SAED) showed mackinawite (FeS) to be
abundant in the coatings (Figs. S5 and S6). FeS2, not observed in
TEM measurements, is not expected given its sluggish formation
kinetics (43). The other six coatings exhibited poor Fe:S corre-
lations. These coatings contained Fe and O at higher abundances
than S, and contained little or no detectable Si and Al, indicating
that FeS and/or Fe-rich clays were minor. Fe oxide phases likely
were themost abundant at these locations. These observations are
illustrated in Fig. 2, which shows the presence of two dominant Fe
species around a single grain. Micro–X-ray absorption near-edge
structure (μ-XANES) spectra from the sulfidic portions resemble
mackinawite, consistent with electron microscopy results.
XANES from the oxide region resemble ferrihydrite, a poorly
crystalline ferric oxy-hydroxide that also serves as a proxy for
goethite and hematite and indicates the presence of Fe3+.
HS−(aq) produced during sulfate reduction (27) chemically
reduces Fe(III) oxides, producing S0 and Fe2+ (5, 27, 44). The
latter reacts with HS−(aq) to precipitate mackinawite. The coas-
sociation of FeS with Fe(III) oxides in the coatings is therefore
consistent with sulfate-reducing conditions, and implies that S0 is
present. Indeed, S:Fe ratios >1, common in the sulfidic coatings
(Table S1 and Figs. S4–S6), are consistent with excess S being
present as S0.
At the scale of whole-sediment clasts, U was associated with the

sulfidic coatings and not with Fe oxides (Fig. 2). U is distributed
throughout the coatings, indicating that U(IV) and mackinawite
formed concurrently, consistent with sulfate-reducing conditions.
An additional example of this behavior is provided in Fig. S7. The
apparent correlation between U and FeS, however, does not hold
up at micrometer and submicrometer scales. As shown in Fig. 1,

Table 1. Uranium extracted from sediment samples in milligrams of U per kilograms of dry sediment

Sample 1 M HCO3 extraction, mg/kg Aqua regia digestion, mg/kg Total U concentration, mg/kg

P-101
Preamendment NA 0.8 (0.13) 0.8 (0.13)
Top NA 229 (2)* 229 (2)*
Bot NA 190 (12) 190 (12)

P-102
Preamendment NA 0.5 (0.10) 0.5 (0.10)
Top preaging 364 (25)* 121 (8)* 485 (33)*
Bot postaging 123 (8)* 131 (9)* 254 (17)*

“Top” and “bot” indicate effluent and influent ends of columns, respectively. Estimated SDs (ESDs) based on replicates and in-
strumental error are listed in parentheses. Total U is the sum of HCO3 and aqua regia-extracted U (SI Text).
*ESDs for this data point are based on instrumental errors because a sufficient quantity of sediment was unavailable for replicates.
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large variations in U:Fe ratios within small portions of individual
coatings led to poor or no U:Fe correlations within coatings. This
behavior was also observed in most of the other locations exam-
ined (Figs. S4–S6).

Bulk Spectroscopic Characterization and Chemical Extractions. U LII
XANES spectra show that the sediments predominantly have
U(IV) (Fig. S8). Fourier transforms (FTs) of U LII extended X-ray
absorption fine structure (EXAFS) spectra (Fig. 3) show the
presence of a U-O pair correlation at ∼1.9 Å, indicating oxo-
coordination of U(IV). [This value is phase-shifted by dR; the
corresponding U-O interatomic distance (D) is ∼2.35 Å.] All FTs
also display a frequency at ∼2.9 Å, which can be attributed to
bidentate P ligands; it is at a different position than observed in
biological U(IV)-carbonate precipitates (12). Frequencies at this
position have been reported for biologically reduced U(VI)
bound to P/C-containing groups associated with biomass (8–13).
Coordination to phosphoryl and/or carboxyl functional groups
on cells and extracellular polysaccharides (9) and precipitation of
amorphous or nanocrystalline inorganicU(IV)-phosphates (9, 12)
are plausible. Although U(IV) has been described as “mono-
meric” or “mononuclear” (i.e., implying coordination complexes)

(8–13), phosphate also occurs as polymeric networks in U(IV)-
phosphates. Consequently, U(IV) bound to phosphate polymers
[i.e., U(IV) coordination polymers] also must be considered.
U EXAFS cannot distinguish the degree of phosphate polymeri-
zation. For clarity, we explicitly define our use of “monomeric
U(VI)” to include monomeric complexes and coordination poly-
mers. SEM-EDS measurements show that P was present in the
coatings at most locations where U was located (Table S1). The
presence of P can be used as an indicator for biomass because
the Old Rifle aquifer is deficient in dissolved phosphate and phos-
phate minerals (16, 45). Consequently, fits to the EXAFS were
performed using U(IV)-P shells [or U(IV)-C shells] at interatomic
distances observed in biomass (∼3.15 and 3.6 Å) (9). These fits
provide good reproductions of the spectra (Fig. 3, Fig. S8, and
Table S2). Similar products were observed in sulfidic Old Rifle
sediments reduced by natural organic carbon (16), suggesting that
the present results are representative of native aquifer processes.
A third pair correlation at ∼3.6 Å is present in the FTs. This

feature can be fit with a shell of U atoms at ∼3.8 Å and suggests
the presence of polymerized U(IV) complexes or a phase such as
uraninite (UO2) or coffinite (USiO4). U(IV) generally was not
associated with silicate in the samples. However, uraninite is
a plausible phase and frequently has been observed in laboratory
U(VI) bioreduction experiments (7).
Bicarbonate extractions (7) were performed to quantify pools

of recalcitrant (UO2) and less stable (monomeric) forms of
U(IV) (SI Text). As shown in Table 1, 75 ± 7% of U(IV) in the
sediments was extractable at the end of the initial 90-d experi-
ment. Uraninite is inferred to be present at lower but significant
concentrations (i.e., 25 ± 2.4%). These results indicate that
monomeric U(IV) was the dominant uranium species (7), cor-
roborating the EXAFS-derived conclusions. After correcting for
losses of monomeric U(IV) during the final flushing step of the
subsequent 1-y in-well aging experiment, uraninite abundance is
estimated at 26 ± 2.4% (SI Text). Thus, uraninite relative
abundance did not significantly increase during a year of aging in
the aquifer. These results do not support a monomeric U(IV) →
uraninite transformation. The presence of two distinct U(IV)
products implies that at least two redox transition pathways were
operative during uranium reduction (12).

Discussion
The presence of multiple redox transition pathways allows for dif-
ferent U(IV) products to be formed under variable biogeochemical

Fig. 1. Sulfidic coatings on grain “t10 p16a/b.” (A
and B) Backscattered electron micrographs. The
image in B is a high-magnification detail of the
central region in A. EDS analysis areas are as in-
dicated in the white boxes. Values indicated on SEM
image are EDS-derived atomic U:Fe ratios. (C–E)
Scatter plots showing EDS-derived atomic percen-
tages of U, Fe, and S. Data from additional grains
are provided in Table S1 and Figs. S4–S6.

Fig. 2. (A) Tricolor XRM image grain “3_Jan2010” from P-101 displaying
results of principal component analysis based on 58 separate K-edge
μ-XANES spectra. Red shows locations where XANES are characteristic of Fe
(III) oxides, green areas are characteristic of Fe(II) sulfides, and blue corre-
sponds to Fe-bearing clays. (B) Same color scheme as A, except blue has been
reassigned to show U fluorescence. Note that U is colocated with Fe sulfides.
(C) Fe K-edge XANES spectra (black) from locations marked A and B in A and
B. The red spectrum is ferrihydrite, and the green spectrum is a linear
combination of 93% mackinawite and 7% ferrihydrite.
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conditions. For example, monomeric U(IV) complexes were
observed in ethanol-stimulated field sediments at the Oak Ridge,
Tennessee, site (15), whereas the same sediments yielded UO2
when reduction occurred in the laboratory (13, 15). The presence
of multiple pathways also is consistent with reductive uranium
immobilization under both iron- and sulfate-reducing conditions
(42, 46).

Mackinawite Mineralization. Surface-associated sulfidic minerals
occur as coatings that are contiguous for tens of micrometers
around grains continuing into cracks that are deeply and com-
pletely filled with the coating material (e.g., Fig. 1 and Figs. S4
and S5), suggesting that the coatings formed in place and not
from adventitious association of fine-grained materials during
sample processing. MRB physiology changes from planktonic
to surface-attached at the onset of sulfate reduction (26), and
SRB also are expected to be surface-attached. Attachment is
facilitated by the production of extracellular polymeric (organic)
substances (EPS) (47) (Fig. 4), which provides abundant nucle-
ation sites for kinetically facile precipitation of FeS (48, 49). HS−

and Fe2+ are present in groundwater and also are supplied lo-
cally by sulfate reduction and subsequent reaction of HS− with
Fe(III) oxides. Thus, development of extensive FeS coatings in
the aquifer sediments can be explained via a mixed biotic–abiotic
reaction sequence, involving attachment of biopolymers to mineral
surfaces followed by precipitation of mackinawite. 32S-enriched
HS− is produced by biological sulfate reduction (50). If in-
corporated into precipitating mackinawite and retained during
transformation to FeS2 (48), this reaction sequence could pro-
duce biological enrichment of 32S in pyrite similar to that ob-
served in uranium ores (17–21).

U(VI) Reduction Pathways Under Sulfate-Reducing Conditions. The
apparent grain-scale spatial association between U(IV) and
mackinawite implies that the mackinawite pool is of central im-
portance to uranium redox transitions, likely as a reducing agent
for U(VI). HS−(aq) is expected to be insignificant as a reductant
for U(VI) in Old Rifle groundwater (51). However, direct abiotic
reduction of U(VI) by mackinawite (34), as well as by other fer-
rous sulfides and oxides (29, 30, 35–38), produces uraninite when
dissolved phosphate is low or deficient, as is the case in Rifle

groundwater (≤0.1 μM) (45). Thus, a simple reaction mechanism
in which U(VI) is reduced on mackinawite surfaces can account
for the presence of uraninite in the samples. However, it cannot
explain the abundance of monomeric U(IV) species, nor the
lack of correlation between U and Fe at the micrometer and
submicrometer scales. An additional reaction step is needed to
reconcile an “abiotic” redox pathway with these observations.
Such a step can exist in the presence of biologically produced
phosphate. Binding to phosphate groups in biomass, on mineral
surfaces, or aqueous solution stabilizes monomeric U(IV) (as
complexes or possibly amorphous/nanocrystalline precipitates)
and suppresses uraninite formation (12, 37). The posited biomass
and EPS enshrouding mackinawite (Fig. 4) would provide a source
of high-affinity U(IV)-binding phosphate sites (52). Phosphate is
also released from cell lysis and can precipitate with uranium (14,
53). The intimate association of biomass and mackinawite (Fig. 4)
thus provides a mechanical juxtaposition of reactants capable of
producing phosphate-U(IV) complexes, polymers, or solids. The
latter pathway has not previously been proposed. If biomass were
absent, we would expect uraninite precipitation (34). Enzymatic
U(VI) reduction products include monomeric U(IV) (9–12) and
uraninite (9, 54), both present in these samples. Consequently,
U(VI) reduction by bacteria associated with mackinawite and not
with Fe oxides also is consistent with our results. Because mono-
meric U(IV) and uraninite can be produced by multiple routes, it is
not possible to definitively attribute specific products to specific
pathways at this time.
Acetate amendment of the Old Rifle aquifer results in pref-

erential accumulation of 238U in reduced uranium products (55),
also observed in sandstone-type uranium ore deposits and
pelagic sediments (3, 4, 56). The present study associates this
behavior with monomeric U(IV) species, raising the possibility
of a molecular-scale link between these species and isotope
fractionation processes.

Implications for Uranium Bioremediation and Reactive Transport
Modeling. U(VI) concentrations in this study are consistent
with contaminated Colorado River basin sites (<54 μM) (45).
Throughout this region, aqueous uranium is dominated by uranyl-
calcium-carbonate complexes. The present findings are thus re-
gionally relevant.
The participation of sulfides in U(VI) reduction may help to

explain sustained removal of U(VI) in biostimulated aquifers
after cessation of acetate amendments (27). Moreover, the in-
timate dissemination of U(IV) within a matrix of iron sulfides
provides physical and chemical barriers to reoxidation (57, 58).
Counteracting these effects, the relative abundance of mono-
meric U(IV) suggests that a large pool of bioreduced uranium

Fig. 3. Fourier transforms of U LII EXAFS spectra (lines) from in situ columns.
EXAFS data are provided in Fig. S8. The dashed lines are fits to spectra.

Fig. 4. Conceptual model for uranium bioreduction in sediments under
sulfate-reducing conditions. FeS nucleates and grows at cell surfaces and
throughout EPS matrix. Process A: U(VI) is reduced dominantly via a mixed
abiotic–biotic pathway involving mackinawite (FeS) as an electron donor and
biomass as a U(IV) binding agent. It is also likely that biological reduction of
U(VI) (Process B) occurs concurrent with Process A.
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may be susceptible to rapid mobilization if challenged by oxidants.
Consequently, the behavior of U(IV) will depend on a complex
interplay between chemical, hydrological, and physical con-
ditions occurring in the matrix. These results underscore the
need for reactive transport models that can describe the behavior
of nonuraninite forms of U(IV) in biostimulated aquifers.

Implications for Uranium Ore Genesis. Several types of uranium
deposits, including sandstone ores, exhibit abundant organic
material (17–22, 59–63), sulfate/sulfide (17, 22), dissolved organic
carbon (DOC) up to 50 mg/L (59), and uranium up to micromolar
concentrations (59, 61, 64–66). Although acetate was the domi-
nant DOC in the present investigation, monomeric U(IV) and
uraninite are both produced in the presence of a wide variety of
electron donors (7–9, 12, 14). U(IV) occurs as uraninite and
coffinite in sandstone-type deposits (67). U(IV)-phosphates are
reported in other ore types (68). Monomeric U(IV) species
generally do not diffract X-rays, and their presence in ores may
have been widely overlooked. More work is required to address
the potential roles of these easily remobilized species (7) in ore
genesis and in situ uranium recovery from subsurface deposits.
In comparison with ores, the higher U(VI) (5-20 μM) and

DOC (75–300 mg/L) concentrations in this study are expected to
facilitate somewhat faster biological and abiotic U(VI) reduction
(6, 69). It is likely that rates of competing reduction pathways
[e.g., precipitation of uraninite vs. monomeric U(IV)] differ in
response to U(VI) and DOC concentrations, leading to variable
U(IV) product assemblages. Further research is needed to un-
derstand the roles of dissolved uranium concentrations and
biomass–mineral–uranium interactions as controls over U(VI)
reduction rates and U(IV) products in ores.

Materials and Methods
Field Experiments. Fresh sediments were cored from the Rifle IFRC experi-
mental plot C, sieved moist to <2 mm under N2, packed into PVC columns (25
mm diameter, 150 mm long), and reinstalled into neighboring wells P-101
and P-102 in plot C on the same day to 5 m below ground surface (∼1.5 m
below the water table). Columns were eluted with groundwater (0.2 mL/min
flow rate) for 6 d to recondition sediments in the aquifer. Coinciding with
the start of a 3 mM acetate field amendment (41) on July 22, 2009, con-
tinuous additions of acetate and U(VI) in groundwater were introduced to
influents to obtain concentrations of 5 mM and 20 μM, respectively. Acetate
additions to the columns ensured that U(VI) reduction would occur even if
the field acetate plume did not reach the experiment. On day 16, effluent
flow rates were increased to 0.4 mL/min to obtain a more stable flow,
resulting in reduced in-column acetate and U(VI) influent concentrations (2.5
mM and 10 μM). U(VI) amendment was halted between days 60 and 68 to
assess elution of uranium during groundwater flushing. On day 83, influent
acetate and uranium inflows were decreased to obtain 1.25 mM and 5 μM,
respectively, to extend the life of the influent reservoir during a period
of infrequent site visits. U amendment was ceased on day 90. Columns
were flushed with groundwater for 9 d (P-101) and 4 d (P-102) to desorb
U(VI) to minimize its interference in spectra and then removed from the
wells. The P-102 column was subsampled at the effluent end, backfilled
with clean borosilicate glass beads, and reinstalled to examine changes in

U(IV) speciation after aging. After 385 d, it was flushed with groundwater
(14 d) and harvested. Additional sample handling is described in SI Text.

Thin-Section Preparation. Sediments were dried and embedded in degassed
epoxy (EpoTek 301) under 5% H2/95% N2. Petrographic thin sections were
prepared (Spectrum Petrographics). XRM analyses were done in air, but thin
sections were otherwise stored anaerobically.

Electron Microscopy. SEM and EDS were measured (INCA system) at 10 kV
accelerating voltage (XL30F Sirion; FEI) from carbon-coated thin sections. TEM
samples were prepared using a focused ion beam [Zeiss NVision 40 focused
ion beam (FIB), Zeiss; and FEI Strata 235DB dual-beam FIB/SEM]. Bright/dark-
field and scanning transmission electronmicroscopy (BF/DF TEM, STEM), high-
resolution TEM, and SAED were performed at 300 kV (FEI CM300UT/FEG;
FEI). Images and SAED patterns (Gatan 797 slow scan CCD camera and Digital
Micrograph software; Gatan) were calculated using the Java Electron Mi-
croscopy Software (JEMS) (70).

16s rRNA Gene-Based Community Analysis. Sediment from wells and columns
was stored at −80 °C until DNA was extracted (71), amplified, and sequenced
as described in SI Text. Operational taxonomic units (OTUs) were defined by
the UCLUST algorithm, based on a similarity threshold of 97% (72). OTUs
were aligned with PyNAST, which works from a Greengenes template file
containing prealigned 16S rRNA sequences (73). The phylogenetic assign-
ment was carried out by the RDP classifier (74).

X-Ray Microscopy. The full petrographic thin sections were initially mapped at
the Stanford Synchrotron Radiation Lightsource (SSRL) beam line 10-2 (25-μm
spot). X-ray microprobe images and micro–X-ray absorption spectroscopy
(μ-XAS) spectra were collected at beam line 2-3 (2-μm spot; Vortex fluores-
cence detector) at 17,200 eV, and 17,100 eV. Difference maps [MicroAnalysis
Toolkit (75)] were calculated to isolate U Lα signal.

XAS. Fluorescence-yield uranium XAS spectra were measured at SSRL beam
line 11-2 [77K, double-crystal Si(220) monochromator detuned 20%, 30-
element germanium detector array]. Energy calibration was monitored
using a Y foil. EXAFS data were extracted and fit (76, 77) using calculated
phase and amplitude functions [FEFF8.4 (78)].

Chemical Extractions. Bicarbonate extractions were performed to assess the
distribution of U(IV) between uraninite and more labile noncrystalline forms
of U(IV) (7). Remaining U was subsequently extracted by digesting the
remaining solids in aqua regia (SI Text).
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