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Tomography-Based Analysis of
Radiative Transfer in Reacting
Packed Beds Undergoing a
Solid-Gas Thermochemical
Transformation
A reacting packed-bed undergoing a high-temperature thermochemical solid-gas trans-
formation is considered. The steam- and dry-gasification of carbonaceous materials to
syngas is selected as the model reaction. The exact 3D digital geometrical representation
of the packed-bed is obtained by computer tomography and used in direct pore-level
simulations to characterize its morphological and radiative transport properties as a
function of the reaction extent. Two-point correlation functions and mathematical mor-
phology operations are applied to calculate porosities, specific surfaces, particle-size
distributions, and representative elementary volumes. The collision-based Monte Carlo
method is applied to determine the probability distribution of attenuation path length and
direction of incidence at the solid-fluid boundary, which are linked to the extinction
coefficient, scattering phase function, and scattering albedo. These effective properties
can be then incorporated in continuum models of the reacting packed-bed.
�DOI: 10.1115/1.4000749�
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Introduction

Morphological and effective heat/mass transfer properties of
omplex porous media are needed for the engineering design, op-
imization, and scale-up of thermochemical reactors and processes
n particular for packed beds. Their complex solid-gas structures
an be incorporated in direct pore-level simulations for determin-
ng their morphological-dependent effective transport properties
or continuum domain. This approach has been successfully ap-
lied for the geometrical characterization of packed beds and
oams �1–5� and for the determination of the effective radiative
eat transfer properties of opaque and semitransparent packed
eds �3,6–8� and foams �5,9,10�, of the effective conductivity of
acked beds and foams �11–14�, of convective heat transfer prop-
rties �13,15�, and of the effective fluid flow properties �15,16�
hrough foams. These pore-level computations allow for more in-
epth investigations vis-à-vis classical empirical models for radia-
ive �17,18�, conductive �19�, convective �20�, and fluid flow
19,21,22� properties.

In this study, computer tomography �CT� is employed to obtain
he exact 3D digital geometrical representation of a packed-bed of
arbonaceous materials undergoing high-temperature gasification.
hus, the numerically calculated effective properties are based on

he exact morphology of the reacting packed-bed, which varies
ith time and process parameters �e.g., temperature, gasifying

gent, partial pressure, and feedstock size� as the reaction
rogresses. These effective properties can then be applied for the
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accurate derivation of the reaction kinetics and for the design and
optimization of packed-bed reactors.

2 Gasification Experiments
A packed-bed of tire shreds is selected as the model reactor.

The gasification of this waste carbonaceous material into high-
quality synthesis gas �syngas, mainly H2 and CO, used for power
generation in efficient combined-cycles and fuel cells or further
processed to Fischer–Tropsch liquid fuels� is investigated in a
packed-bed reactor using concentrated solar energy as the source
of high-temperature process heat �23�. In this study, a laboratory
packed-bed reactor, schematically shown in Fig. 1, is used to con-
duct the gasification reaction at controlled conditions and to pro-
duce sample materials at different reaction extents. These samples
are then scanned by tomography. Their BET specific surface area
is measured by N2 adsorption �Micromeritics TriStar 3000� and
their particle-size distribution is measured by laser scattering
�HORIBA LA-950 analyzer�. Outlet gas composition is monitored
by mass spectrometry �MS, Pfeiffer Vacuum OmniStar GSD 301
O1� and gas chromatography �GC, Varian CP-4900 Micro GC�.

Proximity analysis of the tire shreds indicates 63 wt % vola-
tiles, 29 wt % fixed carbon, 7 wt % ash and 1 wt % moisture.
Elemental analysis indicates 82 wt % C, 7 wt % H, 3 wt % O,
2 wt % S, and heavy metal impurities. Energy dispersive X-ray
spectrometer analysis shows that the main components in the ash
are Si, Zn, and Fe based oxides. Samples are first pyrolyzed to
release volatiles. Approximately 3 g of pyrolyzed material is
loaded in a 2.6 cm inside diameter quartz tube, rapidly heated by
a radiative source, and gasified either by steam or CO2 diluted by
Ar. Once the reaction reaches a desired carbon conversion, the
quartz tube is removed from the furnace and rapidly cooled. The
partially reacted sample is extracted. The carbon conversion �or

reaction extent� is defined by
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XC = 1 −
nC

nC,0
=

�
0

t

ṅArxAr
−1�xCO2

+ xCO + xCH4
�dt

�
0

�

ṅArxAr
−1�xCO2

+ xCO + xCH4
�dt

�1�

he process parameters are listed in Table 1: furnace temperature,
ype of gasifying agent, partial pressure of gasifying agent, and
ype of feedstock. Carbon conversions are shown in Fig. 2 as a
unction of reaction time for the five different experimental runs.
amples at XC=0 �after pyrolysis�, 0.3, 0.7, and 1 �ash� obtained

n each of the five experiments are selected for the subsequent
nalysis.

Computer Tomography

3.1 CT Scans. Low- and high-resolution computer tomogra-
hy techniques are employed in this study. Low-resolution tomog-
aphic scans of the samples are obtained by exposing them to an
nfiltered X-ray beam generated by electrons incident on a wol-
ram target. The generator is operated at 40–50 keV and a current
f 0.2–0.3 mA. A Hamamatsu flat panel C7942 CA-02 protected
y a paper filter is used to detect the transmitted X-rays. The
amples are scanned at 1800 angles �projections�. Each projection
onsists of an average over six scans at 1.2 s exposure time. The
cans are performed for voxel sizes of 10 �m �at XC=0,0.3,0.7�
nd 5 �m �at XC=1�. The fields of view investigated are 11.2

ig. 1 Schematic of the tubular packed-bed reactor setup
sed for the gasification of carbonaceous materials

Table 1 Process parameters for the five experimental runs

ase
T

�K�
Gasifying

agent
pga

�bar�
Feedstock

�mm�

eference 1273 H2O 0.8 Granular, dm=1
owder 1273 H2O 0.8 Powder, dm=0.5

1173 H2O 0.8 Granular, dm=1
educed pH2O 1273 H2O 0.4 Granular, dm=1
O2 1273 CO2 0.8 Granular, dm=1
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�11.2�12 mm3 and 5.6�5.6�6 mm3, respectively. In addi-
tion, high-resolution tomography scans �voxel size of 0.37 �m
and field of view 0.76�0.76�0.62 mm3� are obtained with syn-
chrotron radiation on the TOMCAT beamline at the Swiss Light
Source �SLS� �24�. The scans are obtained for 10 keV photon
energy, 0.4 mA beam current, 100 �m thick Al filter, 20 times
geometrical magnification, 1.5 s exposure time, and 1501 projec-
tions. Figure 3 shows tomograms obtained with the low-resolution
scans for the reference case sample at XC=0, 0.3, 0.7, and 1 �Fig.
3�a�� and with the high-resolution scans for a single particle of the
reference case sample at XC=0.3 �Fig. 3�b��. The latter scan was
performed to examine the amount of pores below 5 �m.

3.2 Image Processing and Digitalization. The data obtained
by tomography consist of 2 byte �0–65535� optical density values,
��x�, arranged on a 3D Cartesian grid. The data is digitally im-
proved by brightness and contrast adjustment, and by intensity
transformation, obtained via a two-step gamma correction:

f���� = ��c�1−1��1/�1 for � � c

� �2b − 1��2 − c�2

�2b − 1� − c
�� − c� + c�2�1/�2

for � � c 	 �2�

where b is the number of bits of the image �16�, �1 and �2 are the
gamma correction factors, and c denotes the absorption value
where the two transformations interchange. For example, for XC
=0, c=0.4�2b−1�. When appropriate, median filtering is ap-
plied to reduce the noise.

The detailed mathematical methodology to obtain the continu-
ous representation of the optical density values is described in
detail elsewhere �9�. A short summary is given here. The discrete
values obtained by CT and subsequent image processing are lin-
early interpolated in three dimensions. The iso-surface describing
the phase interface is obtained when the continuous density value
equals the threshold value for phase segmentation �0�x�. Due to
the highly heterogeneous material containing optically thin
carbon-containing compounds and optically thick heavy metal im-
purities, phase segmentation is complicated. Local multistep
threshold segmentation, implemented in MATLAB, is used to allow
for more accurate phase detection. A representative rendered 3D
geometry is shown in Fig. 4. The pore-space indicator function
��x� is defined as

��x� = 
1 if ��x� � �0�x�
0 if ��x� � �0�x� � �3�

The distance of a random point in the sample to the phase bound-
ary is found by following a generic ray in small steps �searching

Fig. 2 Carbon extent XC as a function of reaction time for five
different sets of process parameters, as described in Table 1
for the root�. Afterward, the bisection method is used to find the
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xact value. The normal unit vector at the interface is determined
y computing the gradient of the gray values at the specific posi-
ion.

Morphological Characterization

4.1 Experimental. Porosity is determined by weight mea-
urements, assuming the approximate intrinsic density to increase
inearly with decreasing carbon content, and is given by 	
	ashXC+	C�1−XC� with 	C=1700 kg m−3 and 	ash
2500 kg m−3. 	tire of the initial tire shreds �before pyrolysis� is
easured by He pycnometry �AccuPyc 1330� to be 1200 kg m−3.
is shown in Fig. 5 as a function of the carbon conversion for the
ve experimental runs listed in Table 1. The porosity peaks at
C=0.55 as a result of growing pores and break-up of fragile
articles �25�. The measured values correspond to a loosely
acked-bed of randomly oriented and located non-spherical par-
icles having uniform size and sphericity �fraction of surface area
f volume-equivalent sphere to surface area of particle� smaller
han 0.25 �26�, indicating highly porous particles. The measured
orosity is fitted to a second order polynomial function �RMS
0.04�.

Fig. 3 Tomograms of the referen
size=10 and 5 �m… at XC=0, 0.3,
„voxel size=0.37 �m… of a particle

ig. 4 A 3D rendered geometry of the reference case at XC

0 with cube length of 1.5 cm

ournal of Heat Transfer
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ex�XC� = − 0.243XC
2 + 0.269XC + 0.856 �4�

The porosity of the unreacted packed-bed of tire shreds is deter-
mined to be 
ex=0.60�0.05, which corresponds to a packed-bed
of non-spherical particles of uniform size and with sphericity of
0.55 �26�.

The BET specific surface area and the corresponding fraction
resulting from nanopores �dp�2 nm� is shown Fig. 6 as a func-
tion of the carbon conversion for the five experimental runs listed
in Table 1. Before pyrolysis, BET surface area is 0.6 m2 g−1 for
the granular and 1.6 m2 g−1 for the powder feedstock, and no
nanopores are detected. During pyrolysis, it increases to
70 m2 g−1 of which a small fraction ��5%� is associated to nano-
pores. During gasification, the BET specific surface area increases
up to �700 m2 g−1 for XC=0.7 and decreases for the residual ash
�XC=1�, which is consistent with the variation in porosity in Fig.
5. The fraction of nanopores increases and peaks at 60% for XC
=0.3. No nanopores are detected in the ash. The different values
obtained for H2O and CO2 gasifying agents are presumable the
result of different mechanisms as CO2 mainly reacts at the exter-
nal surface while H2O diffuses to the particle core �27�. In gen-
eral, the variation in the reaction temperature, partial pressure,
gasifying agent, and particle-size �as described in Table 1� do not
significantly affect the morphology of the sample at the same

case sample for: „a… scans „voxel
, and 1, and „b… submicron scans
XC=0.3

fit
powder
pH2O

CO2

T
reference

XC

ε

10.80.60.40.20

1

0.9

0.8

0.7

0.6

0.5

0.4

Fig. 5 Experimentally determined porosity for the packed-bed
of tire shred as a function of carbon conversion for the five
ce
0.7
at
experimental runs listed in Table 1
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arbon conversion.
The experimentally measured particle-size distribution is shown

n Fig. 7 for the reference case at XC=0,0.3,0.7,1. As expected,
he main peak shifts to the left as particles shrink, and the small
eaks—associated with smaller particles resulting from particle
reak-up—increase during the reaction. Note that these distribu-
ions are qualitative as particles are not spherical.

4.2 Numerical. The two-point correlation function

s2�r� =

�
V
�

4�

��r���r + rŝ�d
 dV

4�V
�5�

s applied to calculate the porosity and specific surface area of the
ample since s2�0�=
 and ds /dr 
r=0=−A0 /4 �1�. The particle-size
istribution is calculated by an opening; a morphology operation
onsisting of an erosion followed by a dilation with the same
tructuring element �28�. A sphere is used as the structuring ele-
ent. The determined opening porosity is related to the size dis-

ribution by

f�d� =
d

dd
�1 −


op


0
� �6�

he calculated porosity of the unreacted packed-bed of 0.61 com-
ares well to the experimentally determined one of 0.60�0.05.
igure 8 shows the experimentally measured and numerically cal-
ulated porosity as a function of the carbon conversion during
asification for the reference case. The failure in predicting the
orosity and its increase with increasing XC is related to the res-
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ig. 6 Experimentally determined specific surface area „a… and
he corresponding fraction resulting from micropores „b… as a
unction of carbon conversion for the five experimental runs
isted in Table 1

XC=1
XC=0.7
XC=0.3
XC=0

d (mm)

f
(d

)

10110010−110−210−3

1.8

1.35

0.9

0.45

0

ig. 7 Experimentally measured size distribution of the par-
icles for the reference case at various carbon conversions

C=0,0.3,0.7,1

61201-4 / Vol. 132, JUNE 2010

ded 25 Mar 2010 to 129.132.208.52. Redistribution subject to ASM
olution of the tomographic scans, which is limited by the tomog-
raphic setup, the subsequent image processing �especially filter-
ing� and the relative increase in optically thick material, which
distorts the tomographic image. The impact of the insufficient
scanning resolution and subsequent image processing is roughly
calculated to be �1−
�
sub�0.1, where 
sub ��0.2 for XC=0.3� is
the porosity of the particle only detectable by the high-resolution
tomography. Nanopores are not detectable but obviously present
as indicated by the BET measurements. Calculated specific sur-
face shows an increase up to XC=0.7 but the experimentally ob-
served decrease for the ash is not elucidated.

The numerically calculated particle-size distributions, shown in
Fig. 9 for the reference case at XC=0,0.3,0.7,1, are based on the
largest sphere that fits inside the particle. Therefore, for non-
spherical, complex, porous and fractal-like particles, these distri-
butions deviate from those experimentally measured. The calcula-
tions are limited by the voxel size of the CT scans �dmin
=4·voxel size�. Since the particle-size distribution is calculated
based on the solid phase, the limited resolution of the CT scans
leads to an over prediction of the particle-size due to virtual par-
ticle agglomeration. The measurements show �see Fig. 7� that the
amount of particles in the 10 �m range is small compared with
that in the 100 �m range. Therefore the influence of this distor-
tion is assumed negligible on the particle-size distribution in the

calculated
experiment

XC

ε

10.80.60.40.20

1

0.9

0.8

0.7

0.6

0.5

0.4

Fig. 8 Experimentally measured and numerically calculated
porosity as a function of the carbon conversion for the refer-
ence case

XC=1
XC=0.7
XC=0.3
XC=0

d (mm)

f
(d
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10110010−110−210−3

25

20

15

10

5

0

Fig. 9 Numerically calculated particle-size distribution for the

reference case at various carbon conversions XC=0,0.3,0.7,1
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ange of 60–100 �m. Indeed, an increase in small particles due
o shrinkage and breakup of the initial ones during the reaction is
bserved.

The representative elementary volume �REV�—the smallest
olume that can be considered as continuum—is determined by
alculating the porosity of a subsequently growing subsample un-
il its variation is within a tolerance band of �0.05 �3�. The edge
ength of the REV, lREV, was found to be equal to 5 mm, indepen-
ent of the process parameters.

Radiative Heat Transfer Characterization
The packed-bed of the carbonaceous material is assumed to be

paque for visible and near-infrared radiation, which is the spec-
ral range encountered in the solar-driven reactor �23�. The fluid
hase is assumed to be radiatively non-participating. Hence, the
ariation in the radiative intensity in continuum models is de-
cribed by a single equation of radiative transfer �RTE� �29,30�.
ion „markers… and its fit „solid line… given by Eq. „11…

ournal of Heat Transfer
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dI��s, ŝ�
ds

+ ��I��s, ŝ� = ��I�,b�s, ŝ� +
�s,�

4�
�

4�

I��s, ŝin����ŝ, ŝin�d
in

�7�
Since the smallest pores or particles detected by CT and conse-
quently employed in the analysis are larger than the voxel sizes of
the low-resolution scans, geometric optics can be assumed for
radiation wavelengths smaller than 1 �m �17�. Collision-based
Monte Carlo �MC� method is applied to compute the cumulative
distribution functions of the radiation mean free path Ge�s� and of
the cosine of incidence at the solid wall F�in

��in� defined as

Ge�s� =�
0

s
1

Nr
�
j=1

Nr

��s� − sj��ds� �8�

F�in
��in� =

1

Ne
�
j=1

Ne

���in − �in,j� �9�

G �s� and F �� � are related to � and � �2,5,8� by
e �in in � �
Ge�s� � 1 − exp�− ��s� �10�

���s� =

2�
�in=0

1 �
�d=0

� �
�r=0

1

���s − ��1 − �in
2 ��1 − �r

2� cos �d − �in�r�	���in,�r,�d�F�in
�rd�rd�dd�in

�
�in=0

1 �
�d=0

� �
�r=0

1

	���in,�r,�d�F�in
�rd�rd�dd�in

�11�
he absorption characteristics of the samples and the contribution
f dependent scattering vary with the reaction extent since ash is
ess absorbing than coal �	r,sp,C=0.273, 	r,d,C=0.1, 	r,sp,ash
0.092, and 	r,d,ash=0.75 �31,32��. Gas, packed-sphere, liquid,
nd modified liquid models are used to estimate the corresponding
eviations of the scattering and absorption coefficients from the
orresponding values obtained by assuming independent scatter-
ng �33�. For a packed-bed with dm=0.4 and 1 mm �dm of particle-
ize distribution shown in Fig. 7 at XC=1 and 0, respectively�, the
aximum deviation of the scattering efficiency �appearing at the

argest radiation wavelength in our spectral range of interest
�m� is 5% and 23% for 
ex=0.88 and 0.86, respectively, �mea-

ig. 10 Extinction coefficient as a function of carbon conver-
sured and depicted in Fig. 5 at XC=1 and 0, respectively�. Con-
sequently, dependent scattering effects are neglected in the radia-
tive transfer analysis.

The cumulative distribution function of the cosine of incidence
at the solid wall and the scattering phase function are computed
for two limiting cases: a specular and a diffuse solid-gas interface.
For tire shreds, a combination of these two cases is anticipated to
be valid. The specular directional-hemispherical reflectivity is cal-
culated using Fresnel’s equations for the complex refractive index
of the carbon-ash mixture m= �1−XC�mC+XCmash, where mC

XC=1
XC=0.7
XC=0.3
XC=0

specular

diffuse

µs

Φ

10.50-0.5-1

6

4

2

0

Fig. 11 Scattering phase function for the reference case at
various carbon conversions XC=0,0.3,0.7,1 for diffusely and

specularly reflecting particles
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2.2−1.12i is the complex refractive index of carbon and mash
1.5−0.02i is the complex refractive index of ash �17,34�. Note

hat the cumulative distribution function of radiation mean free
ath, and consequently, the extinction coefficient are independent
f the interface reflection type in the geometrical optics range.

The extinction coefficient � and scattering phase function � are
hown in Figs. 10 and 11, respectively, for the reference case at
C=0,0.3,0.7,1. � increases with XC as particles shrink and
horten the attenuation path length. An empirical correlation of the
xtinction coefficient inversely proportional to the characteristic
iameter supports this trend �18�. The extinction coefficient is
tted to an exponential function �RMS /�XC=0=0.09�:

�MC�XC� = 4024 + 32.14 exp�5.93XC� �12�
he scattering phase function is independent of the reaction extent

or the assumed diffusely reflecting interface. This result is con-
istent with the small differences obtained between the phase
unctions for diffuse reflecting identical overlapping transparent
pheres and for diffuse reflecting identical overlapping opaque
pheres �3,6,9�, although largely differing in morphology. � is
escribed by a second order polynomial function �RMS=0.01�.

�d = 0.565�s
2 − 1.394�s + 0.812 �13�

n contrast, the scattering phase function for specularly reflecting
articles exhibits a large forward scattering peak. This peak is
nhanced with increasing XC due to the decrease in the real part of
he refractive index of the carbon-ash particle. The coefficients of
he exponential fit, described by Eq. �14�, are listed in Table 2.

�sp = a + b exp�c�s� �14�

he scattering albedo ��s /�� can be approximately calculated as

�s

�
= �1 − XC�	r,C + XC	r,ash �15�

or the specular solid-gas interface, �s /�=0.273 and 0.092 at
C=0 and 1, respectively. For the diffuse solid-gas interface
s /�=0.1 and 0.75, respectively, �31,32�.

Conclusions
CT-based computational techniques were used to characterize

he morphology �porosity, specific surface, particle-size distribu-
ion, and the REV for continuum domain� and the effective radia-
ive heat transfer properties �extinction coefficient, scattering
hase function, albedo� of a packed-bed undergoing a thermo-
hemical reaction. The study was performed for the gasification of
arbonaceous waste materials �tire shreds� to produce high-quality
yngas. The variation in the morphology of the packed-bed was
nvestigated at discrete carbon conversion steps �XC=0, 0.3, 0.7,
nd 1� and for different process parameters �feedstock size, fur-
ace temperature, gasifying agent, and partial pressure of gasify-
ng agent�. The CT scans were digitally improved to allow for

ore accurate phase segmentation. Numerical calculated and ex-
erimentally measured porosity �by weight�, BET surface �by
2-adsorption�, and particle-size distribution �by laser scattering�
ere compared. Discrepancies were due to limitations in the CT

able 2 Coefficients of the exponential fit to the scattering
hase function for specularly reflecting solid-gas interface as a
unction of XC

XC A b c RMS

0 0.986 5.031�10−7 13.55 0.017
0.3 0.899 1.415�10−2 4.057 0.001
0.7 0.750 3.622�10−2 4.017 0.009
1 0.614 6.377�10−3 6.697 0.124
can resolutions and to image distortions around optically thick

61201-6 / Vol. 132, JUNE 2010
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heavy metal impurities. The morphological results can be used for
the determination of structural parameters �25� needed in kinetic
models. The extinction coefficient increased as particles shrank
and shortened the attenuation path length. For diffuse reflecting
particles, the scattering phase function was found to be indepen-
dent of the reaction extent. For specularly reflecting particles, the
scattering phase function exhibited a strong forward peak and de-
pendency on the refractive index and therefore XC.

Further studies are directed to the determination of the effective
properties for conduction heat transfer �thermal conductivity�,
convection heat transfer �interfacial heat transfer coefficient�, and
for fluid flow �permeability and Dupuit–Forchheimer coefficient�.
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Nomenclature
A0 � specific surface, m−1

b � bit number of image
c � constant, indicating gamma correction regime

change
d � particle diameter, m
F � probability density function
f � size distribution function, m−1

f� � two-step gamma correction function
Ge � cumulative distribution function of extinction

length
I � radiative intensity, W m−3 sr−1

m � complex refractive index
Nr � number of rays
Ne � number of extincted rays

n � number of moles
ṅ � molar flow rate
p � �partial� pressure, bar
r � distance between two points in the sample, m
r � position vector for spatial coordinates in the

sample
s � path length, m

s2 � two-point correlation function
ŝ � unit vector of path direction
T � temperature, K
t � time, s

V � total sample volume, m3

XC � carbon conversion
x � molar fraction
x � spatial location vector, m

Greek
� � density value of tomographic scans

�0 � threshold density value for phase segmentation
� � extinction coefficient, m−1

� � Dirac delta function

 � porosity

�i � gamma constant
� � absorption coefficient, m−1

� � radiation wavelength, m
� � directional cosine
	 � intrinsic density, kg m−3

	r � hemispherical reflectance
�s � scattering coefficient, m−1

�d � difference between azimutal angle of incidence
and reflection, rad
� � scattering phase function
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R

J

Downloa
� � pore-space indicator function

 � solid angle, sr

ubscripts
b � blackbody
C � carbon
d � diffuse

ex � experimental
ga � gasifying agent
in � incidence
m � mean

min � minimal
op � opening

r � reflection
s � scattering

sp � specular
sub � submicron

0 � initial
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