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Abstract

A new finite element method for the efficient discretization of elliptic homogenization prob-
lems is proposed. These problems, characterized by data varying over a wide range of scales
cannot be easily solved by classical numerical methods that need mesh resolution down to
the finest scales and multiscale methods capable of capturing the large scale components of
the solution on macroscopic meshes are needed. Recently, the finite element heterogeneous
multiscale method (FE-HMM) has been proposed for such problems, based on a macro-
scopic solver with effective data recovered from the solution of micro problems on sampling
domains at quadrature points of a macroscopic mesh. Departing from the approach used in
the FE-HMM, we show that interpolation techniques based on the reduced basis method-
ology (an offline-online strategy) allow one to design an efficient numerical method relying
only on a small number of accurately computed micro solutions. This new method, called
the reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) is signif-
icantly more efficient than the FE-HMM for high order macroscopic discretizations and for
three-dimensional problems, when the repeated computation of micro problems over the
whole computational domain is expensive. A priori error estimates of the RB-FE-HMM
are derived. Numerical computations for two and three dimensional problems illustrate the
applicability and efficiency of the numerical method.

Keywords: heterogeneous multiscale method, reduced basis method, high order finite
element method, homogenization problems
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1. Introduction

The characterization of effective properties of physical processes in heterogeneous media
is a basic problem for many applications. We mention for example the study of thermal
diffusion or elastic properties in composite materials. As the heterogeneities of the material
occur at microscopic scales, usually much smaller than the scale of interest, it is computa-
tionally difficult if not impossible to use a standard numerical method (e.g., as the finite
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element method (FEM), the finite volume method (FVM) or the finite difference method
(FDM)) to discretize the physical domain of the composite material going down to the finest
scales. A successful theoretical approach for such problems modeled by partial differential
equations (PDEs) uses homogenization theory. In this framework, one aims at deriving an
effective equation (the homogenized equation) for the PDE under study, where the fine scales
have been averaged out [1, 2]. However such a strategy cannot be used directly for numer-
ical computations, as the effective parameters are rarely known in explicit form. This has
triggered the development of multiscale methods capable of capturing the coarse behavior of
the problem without resolving the full fine scale details on the whole computational domain.
Among the huge literature available we mention [3, 4, 5, 6, 7] and references therein.

Here we focus on the finite element heterogeneous multiscale method (FE-HMM), a nu-
merical homogenization method developed in the framework of the heterogeneous multiscale
method (HMM) proposed in [8]. In a nutshell, these methods rely on a macro partition of
the computational domain with effective (homogenized) coefficients recovered (on the fly)
from micro problems defined on sampling domains located at quadrature points within each
element of the macro partition (see [9] for a recent review of the FE-HMM). As macro and
micro meshes have to be refined simultaneously for optimal convergence rates –as shown
by the fully discrete error analysis [10]– such methods require a large number of repeated
micro computations. This is a common feature shared by any numerical homogenization
method. For higher order macro methods (where more sampling domains are required)
or three-dimensional problems, these methods can become computationally very expensive
(even though order of magnitude cheaper than a full fine scale approach). Attempts to reduce
the computational cost have been pursued in [11], where fast micro solvers have been coupled
with standard FEM. By selecting a special quadrature formula with integration points on
the interfaces of the macro partition, one can also in some situations reduce the computa-
tional cost (this does however only reduce the constant in front of the computational cost
for the FE-HMM, e.g., a reduction factor of one half is reported in [12] for two dimensional
problems with first or second order macro solvers). Finally, by using adaptive strategies, it
has been shown in [13, 14] that substantial computational savings can be achieved as new
micro computations are only required in elements marked for refinement.

In this paper we depart from the classical approach of the FE-HMM which consists in
solving a micro problem on a sampling domain at each quadrature point of a macro FEM
with numerical integration. In our new approach, a small number of sampling domains lo-
cated anywhere in the computational domain are computed accurately in an offline stage,
following the methodology of reduced basis (RB). A suitable interpolation of these precom-
puted microsolutions is used in an online stage to compute the macro solution in a cheap
and efficient way. We demonstrate that such a strategy allows to design efficient

• numerical homogenization methods with high order macro solvers;

• numerical homogenization methods for three-dimensonal problems.

RB techniques for model reduction, pioneered in [15, 16, 17], have seen recently a renewed
interest thanks to the development of new sampling techniques and rigorous a posteriori er-
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ror bounds for outputs of interest [18] (see also [19, 20] for additional references on the recent
literature). In the context of numerical homogenization, the use of RB was first proposed
in [21, 22]. We also note that in [23], the RB techniques were used in combination with the
multiscale finite element method [3]. While the emphasis in [21, 22] was on parametrizing
various configurations of cell problems (e.g. inclusion with various shapes, etc.), here, build-
ing on [21, 22], we focus on integrating the RB methodology in a micro macro FEM such as
the FE-HMM. As in the FE-HMM, we compute a macro FEM based on quadrature formula
(QF), but do not solve micro FE problems around every integration point of the QF in each
macro element. Instead, we select by a greedy procedure a number of representative sampling
domains on which we solve accurate micro problems. Their corresponding solutions span the
RB space. This procedure is called the offline stage, in the RB terminology, and is usually
only done once, as a pre-processing step. In a so-called online stage, the effective solution
is obtained from the macro solver of the FE-HMM with effective coefficients recovered from
micro problems solved in the RB space. The required data at the macro integration points
are now obtained from the solutions of small dimensional linear problems involving suitable
interpolations of the precomputed RB space. Unlike the FE-HMM, in the RB-FE-HMM the
dimension of the micro linear systems solved in the online stage is independent of the macro
resolution (e.g., macro meshsize). In turn, there is no need in the RB-FE-HMM to refine si-
multaneously macro and micro meshes to obtain optimal convergence rates. Thus, expensive
micro FE computations as required by the FE-HMM are avoided. High order macroscopic
methods can be designed with the same set of RB as used for linear macro FE. As illustrated
in numerical experiments, the RB-FE-HMM is particularly suited for high order macro FEM
or high dimensional problems for which the cost of the standard FE-HMM justifies (even
when a single macroscopic output is required) the overhead of the offline work in the RB
methodology.

A priori error analysis including macro error, micro error, resonance error and error com-
ing from the use of the RB is derived. We also show how RB can be used to reconstruct fine
scale information on the whole computational domain to approximate the fine scale solution.
Such a reconstruction is simpler than the similar procedure for the FE-HMM. Indeed, we
do not need to store micro solutions in each sampling domains, nor to implement a peri-
odic extension of the micro solutions in each macro elements, which might be cumbersome,
specially for three dimensional problems with simplicial elements.

Our paper is organized as follows. In section 2, we introduce the homogenization problem
and give a short description of the FE-HMM. Section 3 is devoted to our multiscale method,
the RB-FE-HMM. The a priori error analysis of the method is presented in Section 4. Finally,
various numerical examples in two and three dimensions are presented in Section 5, to
illustrate the behavior and the efficiency of the proposed method.

Notations Let Ω ⊂ Rd be an open set, and Y = (−1
2
, 1

2
)d. Denote the standard Sobolev

Space by W `,p(Ω). For p = 2, we sometimes use the notation W `,p(Ω) = H`(Ω). H1
0(Ω)

denotes the closure of C∞0 (Ω) inH1(Ω). We defineH1
per(Y ) := {g ∈ H1(Y )| g periodic in Y }.

We also have the property that H1
per(Y ) = C∞per(Y ), where C∞per(Y ) is a subspace of C∞(Rd)

of periodic functions in the cube Y . The Frobenius norm of a matrix, denoted by ‖ · ‖F , is
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defined as ‖A‖F =
√

trace(ATA).

2. Model problem, homogenization and FE-HMM

Let Ω be a bounded polyhedron in Rd with d ≤ 3. We consider a second-order elliptic
problems of the form

−∇ · (aε(x)∇uε(x)) = f, in Ω

uε(x) = 0, on ∂Ω, (2.1)

where f ∈ H−1(Ω). Here, we choose a zero Dirichlet boundary condition for simplicity. We
emphasize that the numerical method presented below can be readily generalized to other
boundary conditions, e.g.,

uε(x) = gD(x), on ∂ΩD

n · (aε(x)∇uε(x)) = gN(x), on ∂ΩN ,

where ∂Ω = ∂ΩD ∪ ∂ΩN , with ∂ΩD having non-zero measure, and gD ∈ H
1
2 (∂ΩD), gN ∈

H− 1
2 (∂ΩN). The d× d tensor aε(x) is assumed to be uniformly elliptic and bounded, i.e.,

λ|ξ|2 ≤ aε(x)ξ · ξ, |aε(x)ξ| ≤ Λ|ξ|, ∀ξ ∈ Rd,∀ε > 0, (2.2)

for a.e x ∈ Ω. The tensor is allowed to vary on a small spatial scale denoted by ε. The
behavior of aε makes a standard numerical approximation such as FEM, FVM or FDM very
costly if not impossible. Therefore, an upscaling procedure is required. The theoretical
foundation of this procedure usually relies on homogenization theory that we briefly review
for completeness. For simplicity of the presentation, we will assume that the tensor aε is
symmetric. We emphasize that both the FE-HMM and the RB-FE-HMM can be extended
to non-symmetric problems (for the RB-FE-HMM, this requires the introduction of a dual
problem for the approximation space).

2.1. Homogenization

Mathematical homogenization is concerned with the study of PDEs with rapidly os-
cillating coefficients varying over multiple spatial or temporal scales and aims at describ-
ing ”averaged” (i.e., homogenized) solutions of the original PDEs. In the periodic case,
i.e., when aε(x) = a(x/ε) = a(y) is Y−periodic in y, a formal approach relies on the
multiple scale expansion. For a function φ(x, y), where x ∈ Ω is called the slow vari-
able and y = x/ε ∈ Y (the domain of periodicity, e.g., Y = (−1

2
, 1

2
)d) is called the

fast variable, we consider φ(x, x/ε). We then look for a solution uε of (2.1) in the form
uε(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + . . .. Upon inserting this expression in (2.1)
and identifying the power of ε, one obtains (formally) that u0(x, x/ε) = u0(x), where u0(x)
is a solution of the following ”homogenized equation” [1]

−∇ · (a0∇u0(x)) = f(x) in Ω.

u0(x) = 0 on ∂Ω. (2.3)
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In the above situation, the homogenized tensor a0 is constant and is given by a suitable
average of d solutions of a boundary value problem in the domain Y (with d different right
hand-side). This boundary value problem is usually called the cell problem. It can be shown
that a0 it is again elliptic. These formal computations do not provide a converge result of
uε towards u0. Using Tartar’s method of oscillating test functions [24] (see also [1]) it is
possible to show that uε ⇀ u0 weakly in H1

0(Ω), aε∇uε ⇀ a0∇u0 weakly in (L2(Ω))d, where
u0 is the solution of (2.3).

The problem gets more involved if aε is not periodic. On the theoretical side, one can rely
on H−convergence [24] which ensures the existence of a subsequence of the matrices aε and a
homogenized tensor a0 (again uniformly elliptic and bounded) such that for the corresponding
subsequence, uε and aε∇uε enjoy the same convergence properties as described above for the
periodic case. However for non-periodic oscillating tensors, the homogenized tensors are
in general not constant, i.e., a0 = a0(x) and usually unknown (in an explicit analytical
form). For numerical homogenization one usually assumes scale separation between fast
and slow variables and relies on local problems to compute the homogenized tensor for
a given value of x ∈ Ω. A typical example is when the tensor is locally periodic, i.e.,
aε(x) = a(x, x/ε) = a(x, y) is Y periodic in the y variable. Even in such a simplified
situation, we have an infinite number of cell problems (for each x ∈ Ω), whose solutions
must usually be computed numerically. The task in numerical homogenization is thus to
design an algorithm capable of computing an approximation of the homogenized solution
u0(x), relying on a finite number of cell problems chosen in such a way that the overall
computation is efficient and reliable.

2.2. The FE-HMM

The FE-HMM belongs to the class of numerical homogenization methods described in the
previous subsection. It is based on a macroscopic FEM with QF defined on a macroscopic
partition of the domain Ω. As a0(x) is usually unknown, the method is supplemented
by microscopic FEMs defined on sampling domains centred at the macroscopic quadrature
points of the QF, relying only on the data given in (2.1). A suitable averaging of the solutions
of the microscopic FEMs allows to recover the missing macroscopic tensor at the macroscopic
quadrature points.

The method is applicable to general problems and does not rely on a specific structure
of the oscillating tensor such as periodicity. We however assume that there is a well defined
homogenized problem with certain smoothness properties and a scale separation between
fast and slow variables, which we will make precise in the following. The FE-HMM is based
on a macro finite element (FE) space

S`0(Ω, TH) = {vH ∈ H1
0(Ω); vH |K ∈ R`(K), ∀K ∈ TH},

where TH is a family of (macro) partition of Ω in simplicial or quadrilateral elements K of
diameter HK , and R`(K) is the space P`(K) of polynomials on K of total degree at most
` if K is a simplicial FE, or the space Q`(K) of polynomials on K of degree at most ` in
each variable if K is a quadrilateral FE. For a given macro partition, we define as usual
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H := maxK∈TH HK . We note that H in our discretization is allowed to be much larger than
ε.

Defining a QF {x̂j, ω̂j}Jj=1 on a reference element K̂, we equip each element K with a
corresponding QF {xKj , ωKj}Jj=1 by using a C1-diffeomorphism. We will make the following
assumptions on the quadrature formula (similar to the requirement for standard FEM with
numerical quadrature [25])

(Q1) ω̂j > 0, j = 1, . . . , J ,
∑J

j=1 ω̂j|∇p̂(x̂j)|2 ≥ λ̂‖∇p̂‖2
L2(K̂)

, ∀p̂(x̂) ∈ R`(K̂), with λ̂ > 0;

(Q2)
∫
K̂
p̂(x̂)dx̂ =

∑
j∈J ω̂j p̂(x̂j), ∀p̂(x̂) ∈ Rσ(K̂), where σ = max(2` − 2, `) if K̂ is a

simplicial FE, or σ = max(2`− 1, `+ 1) if K̂ is a rectangular FE.

For each macro element K ∈ TH and each integration point xKj ∈ K, j = 1, . . . , J, we
define the sampling domains Kδj = xKj + (−δ/2, δ/2)d, (δ ≥ ε). For a sampling domain
Kδj , we then define a micro FE space Sq(Kδj , Th) ⊂ W (Kδj) with simplicial or quadrilateral
FEs and piecewise polynomial of degree q (Th is a conformal and shape regular family of
triangulation). The space W (Kδj) is either the Sobolev space

W (Kδj) =W1
per(Kδj) = {z ∈ H1

per(Kδj);

∫
Kδj

zdx = 0} (2.4)

for a periodic coupling or

W (Kδj) = H1
0(Kδj) (2.5)

for a coupling with Dirichlet boundary conditions.

FE-HMM. At the macroscopic level, the numerical method is defined as follows: find
uH ∈ S`0(Ω, TH) such that

BH(uH , vH) =

∫
Ω

fvHdx, ∀vH ∈ S`0(Ω, TH), (2.6)

where

BH(vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj
|Kδj |

∫
Kδj

aε(x)∇vhKj(x) · ∇whKj(x)dx. (2.7)

In (2.7) vhKj (respectively whKj) denotes the solution of the following micro problem: find vhKj
such that vhKj − v

H
lin,j(x) ∈ Sq(Kδj , Th) and∫
Kδj

aε(x)∇vhKj(x) · ∇zh(x)dx = 0 ∀zh ∈ Sq(Kδj , Th), (2.8)

where we used the notation vHlin,j(x) := vH(xKj) + (x− xKj) · ∇vH(xKj).
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A priori estimates. Coercivity and boundedness of BH(·, ·) can be shown provided el-
lipticity and boundedness of aε 1 . The following convergence results have been derived in
[10, 26]

‖u0 − uH‖H1(Ω) ≤ C
(
H` + rHMM

)
, ‖u0 − uH‖L2(Ω) ≤ C

(
H`+1 + rHMM

)
, (2.9)

where we assume the regularity u0 ∈ H`+1(Ω). Notice that the constants C in the above
estimates are independent of H, h, ε. Optimal convergence rates for the macro FEM can
be observed in the above error bounds. The term rHMM can be further decomposed into
two parts, rHMM = rMOD + rMIC . The term rMOD (called modeling error) quantifies the
error induced by artificial micro boundary conditions or non-optimal sampling of the micro
structure. It does not depend on the macro or micro meshsizes and can be analyzed for
locally periodic tensor [26, 27, 12]. The term rMIC (called micro error) quantifies the error
due to the micro FEM. Assuming appropriate regularity and bounds on aε, rMIC can be
bounded in terms of the micro meshize as

rMIC ≤ C

(
h

ε

)2q

. (2.10)

Notice that in the estimate (2.10), Hq+1 regularity of the exact solution of the cell problem
(2.8) has been assumed. For q = 1, the estimate of the micro error rMIC was first presented
in [10], generalized to high order in [28, Corollary 10] (see also [9, Lemma 10] and [29]).

Remark 2.1. If aε|K ∈ W 1,∞(K), ∀K ∈ TH and |aεij|W 1,∞(K) ≤ CKε
−1 for i, j = 1, . . . d,

then (2.10) holds for q = 1 for arbitrary Kδj if W (Kδj) = H1
0(Kδj). If aε = a(x, x/ε) =

a(x, y) is Y−periodic with respect to the y variable (locally periodic tensor) and if Kδj cov-
ers an integer number of periods, then (2.10) holds for higher order q provided W (Kδj) =
W1

per(Kδj) and aε = a(·, y) is smooth enough (see [28, Remark 5.1 and Corollary 10] or [29,
Remark 4] for details).

Complexity and optimal macro-micro refinement. Taking Nmic elements in each space
dimension for the discretization of the sampling domain Kδj , we have h = δ/Nmic and thus

ĥ = (δ/ε) · (1/Nmic). Since δ scales with ε, typically δ = Cε (where C is a constant of
moderate size), we obtain ĥ = (C/Nmic), independent of ε.

We denote by Mmic = O(ĥ−d) the number of degrees of freedom (DOF) for the micro
FEM and by Mmac, the number of DOF of the macro FEM. For quasi-uniform macro meshes,
the macro meshsize H and the micro meshsize ĥ are related to Mmac and Mmic as

H = O(M−1/d
mac ), ĥ = O(M

−1/d
mic ).

In view of (2.9) and (2.10), optimal macroscopic convergence rates (up to a modeling error
rMOD independ of H, h) are obtained for quasi-uniform microscopic meshsizes given by

ĥ ' H
`
2q for the H1 norm, ĥ ' H

`+1
2q for the L2 norm.

1Notice that the regularity ‖v‖H2(Ω) ≤ C‖L∗v‖L2(Ω), ∀v ∈ H2(Ω) ∩ H1
0(Ω), where L∗ is the adjoint

operator of L = −∇ · (a0(x)∇ ), is needed for optimal L2 estimates [25] .
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The corresponding complexity in term of macro DOF reads

H−d︸︷︷︸
Mmac

·H
−d`
2q︸ ︷︷ ︸

Mmic

·ns = (Mmac)
1+ `

2q · ns for the H1 norm,

H−d︸︷︷︸
Mmac

·H
−d(`+1)

2q︸ ︷︷ ︸
Mmic

·ns = (Mmac)
1+ `+1

2q · ns for the L2 norm,

where ns denotes the number of sampling domains per macro element K ∈ TH . As can be
seen above and as first noticed in [10] the overall complexity of the method is a function of
Mmac andMmic and in general superlinear with respect to the macro DOF. For example, using
piecewise linear polynomials on simplicial FEs, assuming quasi-uniform macro and micro
meshes and that the complexity is proportional to the total DOF we obtain a cost ofO(M

3/2
mac)

(H1 norm) and O(M2
mac) (L2 norm). 2 In contrast, the memory demand is proportional to

Mmac+Mmic only as the micro problem, being independent of one another, can be solved one
at a time. Finally we note that by using spectral methods or p−FEM for the micro solvers
can reduce the complexity of the overall FE-HMM (up to log-linear complexity). This was
investigated in [11]. Such an approach requires however high regularity in the oscillating
tensor aε which may not hold for some applications as for example in material science.

3. Reduced Basis FE-HMM (RB-FE-HMM)

As can be seen from the discussion in the previous section, the main cost of the FE-HMM
comes from the computation of the cell problems, whose number and DOF increase as we
refine the macro mesh for an appropriate approximation of the homogenized solution. In
this section we explain how RB can be coupled to the FE-HMM to drastically reduce the
cost of solving repeatedly a large number of cell problems.

3.1. Parametrized micro problems and numerical homogenized tensor

In what follows, it will be convenient to denote the micro FE space by Sq(Kδj ,N ) instead
of Sq(Kδj , Th) to emphasize on the dimension N of the micro FE space. Likewise, the micro
function vhKj , the solution of problem (2.8) will be denoted by vN ,Kj . We first notice that
vN ,Kj can be decomposed as

vN ,Kj(x) = vHlin,j(x) +
d∑
i=1

χiN ,Kj(x)
∂vHlin,j
∂xi

. (3.11)

where χiN ,Kj(x), i = 1, . . . , d are solutions of∫
Kδj

aε(x)∇χiN ,Kj(x)·∇zN (x)dx = −
∫
Kδj

aε(x)ei ·∇zN (x)dx ∀zN ∈ Sq(Kδj ,N ). (3.12)

2 Notice that as the micro problems are solved independently, the method is well suited for parallel
implementation which can reduce significantly the complexity of the FE-HMM.
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In the above formula, the vector ei, i = 1 . . . d denote the canonical basis of Rd. We now
map a sampling domain Kδj in the reference domain Y through x = GxKj

(y) = xKj + δy

and consider χ̂iN ,Kj the solution of

b(χ̂iN ,Kj , ẑN ) :=

∫
Y

axKj (y)∇χ̂iN ,Kj(y) · ∇ẑN (y)dy

= −
∫
Y

axKj (y)ei · ∇ẑN (y)dy =: li(ẑN ) ∀ẑN ∈ Sq(Y,N ), (3.13)

where we note that aε(GxKj
(y)) can be parametrized by xKj ∈ Ω and we therefore use

the notation axKj (y) := aε(GxKj
(y)). The FE space Sq(Y,N ) has a triangulation Tĥ with

N = O(ĥ−d) denoting its degrees of freedom. Functions in Sq(Y,N ) will have a subscript
N (e.g., ẑN ). It is easily seen that

vN ,Kj = vHlin,j(x) + δ
d∑
i=1

χ̂iN ,Kj(G
−1
xKj

(x))
∂vHlin,j
∂xi

. (3.14)

The following reformulation of the FE-HMM makes a link between the micro problems and
the effective tensor obtained by the above micro-macro procedure. We have [28, Lemma
5.4],[29]

1

|Kδj |

∫
Kδj

aε(x)∇vN ,Kj(x) · ∇wN ,Kj(x)dx = a0
N (xKj)∇vH(xKj) · ∇wH(xKj). (3.15)

Inserting (3.15) in (2.7) we obtain

BH(vH , wH) :=
∑
K∈TH

J∑
j=1

ωKja
0
N (xKj)∇vHlin,j(xKj) · ∇wH(xKj), (3.16)

where

(a0
N (xKj))ik =

∫
Y

axKj (y)
(
∇χ̂iN ,Kj(y) + ei

)
·
(
∇χ̂kN ,Kj(y) + ek

)
dy. (3.17)

and χ̂iN ,Kj , χ̂
k
N ,Kj are the solutions of (3.13).

Remark 3.1. Similar to (3.16), we have the following bilinear form

BH(vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj ā
0(xKj)∇vH(xKj) · ∇wH(xKj), (3.18)

where ā0 is obtained from (3.17), assuming the solutions of problem (3.12) are computed
exactly. For the analysis in Section 4 (also for (2.9)) we also need the auxiliary problem
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corresponding to the FE discretization with numerical quadrature of the homogenized problem
(2.3), i.e., the solution u0,H of the following problem

B0,H(u0,H , vH) =

∫
Ω

fvHdx, ∀vH ∈ S`0(Ω, TH), (3.19)

where for vH , wH ∈ S`0(Ω, TH)

B0,H(vH , wH) :=
∑
K∈TH

J∑
j=1

ωKja
0(xKj)∇vH(xKj) · ∇wH(xKj), (3.20)

and a0(xKj) is the homogenized tensor of problem (2.3) evalutaed at the quadrature point
xKj .

3.2. Model reduction

Inspired by the parametrization of the solutions of the micro problems (3.13) in the
reference domain, we now describe a model reduction strategy for micro functions used in
the FE-HMM. The overall idea is the following. Instead of computing micro functions in
each macro elements at the quadrature points, we identify a small number N of carefully
precomputed micro functions (to construct the RB space), whose supports can be chosen in
the whole computational domain as sketched in Fig.1 (offline stage).

 

 

K 

H 

 δ 

e2 

e1 

𝐾𝛿  

Fig. 1: The supports of the RB functions.

In the online stage, the solution of cell problems at the given quadrature points of the
macro elements are then computed in the RB space. No mesh, neither stiffness matrix
assembly is needed for these later problems which require only the solution of small linear
systems of size N×N . Let Tδ = xτ +(−δ/2, δ/2)d be a sampling domain centered at xτ ∈ Ω,
chosen such that Tδ ⊂ Ω. For {(Tδ, eη);Tδ ⊂ Ω, η = 1, . . . , d}, we introduce the space of ”cell
solutions”,

MN (Y ) := {ξ̂ηN ,Tδ ;Tδ ⊂ Ω, η = 1, . . . , d}, (3.21)
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where ξ̂ηN ,Tδ(·) : Y → R are the solutions of (3.13) associated with the mapping Gxτ , i.e.,

with a tensor axτ (y) = aε(Gxτ (y)) and with right-hand side lη(·). The functions ξ̂ηN ,Tδ are
computed very accurately. The DOF N of the FE space Sq(Y,N ) is thus assumed to be
large.

Affine representation of the tensor. A suitable representation of the tensor axτ (y) is
crucial for the efficiency of the RB method (more precisely, we look for an affine parametriza-
tion). The simplest case is when axτ (y) is directly available in an affine form

axτ (y) =

Q∑
q=1

Θq(xτ )aq(y), ∀y ∈ Y. (3.22)

                    

 

𝑃1(𝑦) 

𝑃2(𝑦) 𝑃4(𝑦) 

𝑃5(𝑦) 

 𝑃6(𝑦) 

 𝑃7(𝑦) 

 𝑃8(𝑦) 

Ω 

Y 
𝑦𝑚 

𝑃3(𝑦) 

Fig. 2: The EIM basis functions {Pq(y)}8q=1 and the interpolation points {ym}8m=1 on the reference sampling
domain Y .

If a representation as (3.22) is not available, a greedy algorithm, called the empirical
interpolation method (EIM) [30], can be applied to obtain an affine approximation of axτ (y)
in the form

aMxτ (y) =
M∑
q=1

ϕq(xτ )pq(y). (3.23)

The idea is to approximate the function aMxτ (y) by linear combination of “snapshot” {pxτ1 (y), . . . ,
pxτM (y)}. For an arbitrary xτ the linear combination to approximate aMxτ (y) will be based
on interpolation points y1, . . . , yM in Y (see Figure 2). The space of snapshots, called
SEIMM = span{pq(y), q = 1, · · · ,M} and the interpolation points {ym}Mm=1 are computed
in an offline stage with the help of a greedy algorithm controlled by available a posteriori
error estimates. In the online stage for a given axτ (y) compute (3.23) as follows

• evaluate axτ (ym) at the interpolation points {ym}Mm=1;

11



• solve the interpolation problem (a M ×M linear system)

M∑
q=1

pq(ym)ϕq(xτ ) = axτ (ym), m = 1, . . . ,M. (3.24)

to find ϕq(xτ )
M
q=1.

Details of the above procedure can be found in [30, 31]. We refer to Section 5 for numerical
computations with affine and nonaffine multiscale tensors.

A posteriori error estimator. Crucial for the selection of the reduced basis functions
is an appropriate a posteriori error estimator. For a given sampling domain Tδ ⊂ Ω let
ξiN ,Tδ , ξ

k
N ,Tδ ∈ Sq(Y,N ) be the solutions of (3.13) with right-hand side li(·), lk(·), respec-

tively, as described above. Assume next that Sl(Y ) is an l-dimensional linear subspace of
Sq(Y,N ) and consider ξil,Tδ , ξ

k
l,Tδ

the solution of (3.13) in Sl(Y ) with right-hand side li(·), lk(·),
respectively. Define the following two numerical homogenized tensors

(a0
N ,Tδ(xτ ))ik =

∫
Y

axτ (y)
(
∇ξ̂iN ,Tδ(y) + ei

)
·
(
∇ξ̂kN ,Tδ(y) + ek

)
dy, (3.25)

(a0
l,Tδ

(xτ ))ik =

∫
Y

axτ (y)
(
∇ξ̂il,Tδ(y) + ei

)
·
(
∇ξ̂kl,Tδ(y) + ek

)
dy. (3.26)

We first need the following lemma (see [10, Lemma 3.3]).

Lemma 3.2. Consider the tensors a0
N ,Tδ(xτ ), a

0
l,Tδ

(xτ ) defined in (3.25), (3.26), respectively.
Then

|(a0
N ,Tδ(xτ ))ik − (a0

l,Tδ
(xτ ))ik| =

|
∫
Y

axτ (y)
(
∇ξ̂il,Tδ(y)−∇ξ̂iN ,Tδ(y)

)
·
(
∇ξ̂kl,Tδ(y)−∇ξ̂kN ,Tδ(y))

)
dy.| (3.27)

Proof. The proof follows the line of [10, Lemma 3.3]. We sketch it for completeness. As
Sl(Y ) ⊂ Sq(Y,N ) we have

|(a0
N ,Tδ(xτ ))ik − (a0

l,Tδ
(xτ ))ik|

= |
∫
Y

axτ (y)
(
∇ξ̂il,Tδ(y)−∇ξ̂iN ,Tδ(y)

)
· ekdy|

= |
∫
Y

axτ (y)
(
∇ξ̂il,Tδ(y)−∇ξ̂iN ,Tδ(y)

)
·
(
ek +∇ξ̂kl,Tδ(y)−∇ξ̂kN ,Tδ(y)

)
dy|

= |
∫
Y

axτ (y)
(
∇ξ̂il,Tδ(y)−∇ξ̂iN ,Tδ(y)

)
·
(
−∇ξ̂kN ,Tδ(y)

)
dy|

and the proof follows easily by further adding and subtracting the quantity ∇ξ̂kl,Tδ(y). �
Notice that we have used the symmetry in the above proof. This proof is however valid

without symmetry (following ideas in [12] or [32, Lemma 4.6],[33]). Next we derive an a
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posteriori estimator, which allows to control the accuracy of our output of interest (the
numerically homogenized tensor). The procedure, which follows standard residual based
estimates, is crucial for RB and has been extensively discussed (see [18] and [21] for a
discussion in the homogenization context). Define

êil,Tδ = ξ̂il,Tδ − ξ̂
i
N ,Tδ . (3.28)

Using (3.13) we see that

b(êil,Tδ , ẑN ) = b(ξ̂il,Tδ , ẑN )− li(ẑN ), ∀ẑN ∈ Sq(Y,N ). (3.29)

The right-hand side defines a linear form on Sq(Y,N ). Hence by the Riesz theorem, there
exists a unique ēil,Tδ ∈ S

q(Y,N ) such that

b(êil,Tδ , ẑN ) = (ēil,Tδ , ẑN )W , (3.30)

where (·, ·)W , defined as (v, w)W =
∫
Y
∇v · ∇wdy, denotes the scalar product in the space

W (Y ) defined in (2.4) or (2.5). We notice that ēil,Tδ can be computed numerically in an
efficient way thanks to the affine representation of the tensor axτ (y). This leads to define
the residual of the a posteriori error estimator as

∆i
l,Tδ

:=
‖ēil,Tδ‖W√

λLB
. (3.31)

Here λLB is an approximation of the coercivity constant λ described in (2.2). To compute
∆i
l,Tδ

, one needs to solve (3.30), which is parameter dependent. Thanks to the affine repre-
sentation of the tensor, (3.30) can be decomposed into several parameter independent FE
problems that can be precomputed. Hence, the residual (3.31) is cheap to compute which is
crucial to get the efficiency of the a posteriori control in the greedy algorithm (see [19, 20]
for details). The next lemma gives the bound of the error in quantities of interest (e.g., the
numerical homogenized tensors or the cell solutions) in terms of the residual (3.31).

Lemma 3.3. Let ξ̂il,Tδ , ξ̂
i
N ,Tδ be the solutions of problem (3.13) in Sl(Y ) and Sq(Y,N ), re-

spectively, and ēil,Tδ ,∆
i
l,Tδ
, a0
N ,Tδ(xτ ), a

0
l,Tδ

(xτ ) be the quantities defined above. Assume that
the approximation λLB of the coercivity constant (2.2) satisfies 0 < λLB ≤ λ. Then we have

‖ξ̂il,Tδ − ξ̂
i
N ,Tδ‖E,Kj ≤ ∆i

l,Tδ
, (3.32)

‖ξ̂il,Tδ − ξ̂
i
N ,Tδ‖W ≤

∆i
l,Tδ√
λLB

, (3.33)(
λLB
Λ

∆i
l,Tδ

)2

≤ |(a0
N ,Tδ(xτ )))ii − (a0

l,Tδ
(xτ )))ii| ≤ (∆i

l,Tδ
)2, (3.34)

where Λ is the continuity constant defined in (2.2) and ‖ · ‖E,Tδ is the energy norm defined
by

‖v‖E,Tδ = (b(v, v))1/2 :=

(∫
Y

axτ (y)∇v(y) · ∇v(y)dy

)1/2

. (3.35)
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Proof. The proof is standard. Plugging ẑN = êil,Tδ in (3.30) we get ‖êil,Tδ‖
2
E,Kj = (ēil,Tδ , ê

i
l,Tδ

)W .
On one hand, from the coercivity of (3.30) and the assumption on λLB we get

‖êil,Tδ‖W ≤
‖ēil,Tδ‖W√

λLB
,

hence (3.33). On the other hand, using the inequality
√
λLB‖êil,Tδ‖W ≤ ‖ê

i
l,Tδ
‖E,Tδ easily

leads to (3.32). The inequality (3.34) then follows from (3.27), (3.32) and the inequality
‖ēil,Tδ‖W ≤ Λ‖êil,Tδ‖W . �

Remark 3.4. From (3.34), we can see that the stability factor λLB plays an important role
in the efficiency of the a posteriori estimator. There are two efficient methods proposed in
[34, 20, 19] to compute λLB. We simply mention them here (notice that for both methods, the
affine representation (3.22) of the tensor is required). The simplest method is the ”min Θ”
method, where λLB(xτ ) is estimated by

λLB(xτ ) = ( min
q∈{1,··· ,Q}

Θq(xτ )

Θq(x̄τ )
)λ(x̄τ ), (3.36)

where x̄τ is a randomly chosen point in Ω. The ”min Θ” method, however, requires that
the tensor (3.22) satisfies the following properties: (i) Θq(x) > 0, q = 1, · · · , Q,∀x ∈ Ω;
(ii) aq(y)ξ · ξ ≥ 0,∀ξ ∈ Rd, y ∈ Y . The above conditions might be restrictive for some
applications. A more general but more involved method is the successive constraint method
(SCM). This method is based on an offline-online strategy. The SCM offline stage relies on
a greedy procedure and is costly, but the online procedure is very efficient. The advantage
of this method is that it is a robust and general method which works for all kinds of affine
tensors (we refer to [34, 20] for details).

Offline stage. We select by a greedy algorithm N couple (Tδn , ηn), where Tδn ⊂ Ω is a
sampling domain and ηn corresponds to the unit vector eηn belonging to the set canonical
basis of Rd, where ηn ∈ {1, . . . , d}. Corresponding to the N couple (Tδn , ηn), we compute
ξ̂ηnN ,Tδn (·), the solution of (3.13) with a tensor given by axτn (y) (xτn is the barycenter of

Tδn) and a right-hand side given by lηn(·). The following greedy algorithm to determine

successively {(Tδn , ηn, ξ̂
ηn
N ,Tδn

), n = 1, . . . , N} is based on the usual procedure of the RB

methodology (see [18, 20]).

Algorithm 3.5 (Greedy procedure). Denote by ‖ · ‖W the norm associated to the space
W (Y ) (defined by (2.5) or (2.4)). Given two parameters, NRB the maximum basis number,
and tolRB a stopping tolerance:

1. Choose randomly (by a Monte Carlo method) Ntrain sampling domains Tδn in such a way
that Tδn ⊂ Ω. Define the ”training set” ΞRB = {(Tδn , ηn); 1 ≤ ηn ≤ d, 1 ≤ n ≤ Ntrain} 3.

3 Ntrain should be large enough to ensure that the results of the greedy algorithm are stable with respect
to other choices of training sets.
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2. Select randomly (Tδ1 , η1) ∈ ΞRB and compute ξ̂η1

N ,Tδ1
, the solution of (3.13) with right-hand

side lη1(·) in Sq(Y,N ), corresponding to the selected parameters (Tδ1, η1). Set l = 1 and

define ξ̂1,N (y) =
ξ̂
η1
N ,Tδ1

(y)

‖ξ̂η1N ,Tδ1
‖W

, and the corresponding RB space S1(Y ) = span{ξ̂1,N}.

3. For l = 2, . . . , NRB

a. Compute for each (Tδ, η) ∈ ΞRB the solution ξ̂ηl−1,Tδ
of (3.13) with right-hand side lη(·)

in Sl−1(Y ) and the residual ∆η
l−1,Tδ

defined in (3.31).

b. Select the next reduced basis by choosing

(Tδl , ηl) = argmax(Tδ,η)∈ΞRB ∆η
l−1,Tδ

,

provided that max(Tδ,η)∈ΞRB(∆η
l−1,Tδ

)2 > tolRB
4, otherwise the algorithm ends.

c. Compute ξ̂ηlN ,Tδl
the solution of (3.13) in Sq(Y,N ) corresponding to the selected param-

eters (Tδl , ηl). Set ξ̂l,N (y) = Rl(y)
‖Rl(y)‖W

the l−th RB basis function, where

Rl(y) = ξ̂ηlN ,Tδl
(y)−

l−1∑
m=1

(ξ̂ηlN ,Tδl
, ξ̂m,N )ξ̂m,N

Define the RB space Sl(Y ) = span{ξ̂1,N , . . . , ξ̂l,N}. Set l = l + 1 and go back to a.

We emphasize that while constructing Sl(Y ), with ξ̂l,N (y) being a linear combination of
the solutions of (3.13), our output of interest is (3.17) that can be computed using the RB
(see Lemma 3.2). From Lemma 3.3, we know that the the square of the residual ∆η

l,Tδ
gives

an a posteriori error estimate for the output of interest, hence, (∆η
l,Tδ

)2 is the quantity that
needs to be controlled in the above algorithm. We note that even though (3.13) has to be
solved for each parameter in ΞRB in the step 3.a., this procedure is moderately expensive as
(3.13) is solved in the RB space Sl−1(Y ) of small dimension l − 1 ≤ N . A similar remark
holds for the residuals ∆η

l,Tδ
that need to be computed for each parameter in ΞRB, but only

rely for these computations on precomputed quantities (computed once for the whole offline
procedure) and small linear problems involving the current RB space Sl−1(Y ) (we again refer
to [19, 20] for details).
Output of the offline procedure. The output of the above procedure is the RB space

SN(Y ) = span{ξ̂n,N (y), n = 1, .., N}. (3.37)

Rather than storing the reduced basis functions, using the affine representation (3.22) (or
(3.23)) described above, the output consists of the following matrices and vectors

(Aq)nm :=

∫
Y

aq(y)∇ξ̂n,N (y) · ∇ξ̂m,Ndy, (F i
q)m =

∫
Y

aq(y)ei∇ξ̂m,N (y)dy. (3.38)

4Notice that the error of the outputs of interest scale like the square of the error of the cell functions as
can be seen in Lemma 3.2 and 3.3.
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3.3. Online procedure and the RB-FE-HMM

We define a macro method similar to the FE-HMM, with micro functions computed in
the RB space. The method reads: find uH,RB ∈ S`0(Ω, TH) such that

BH,RB(uH,RB, vH) =

∫
Ω

fvHdx, ∀vH ∈ S`0(Ω, TH), (3.39)

with a bilinear form given by

BH,RB(vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj
|Kδj |

∫
Kδj

aε(x)∇vN,Kj(x) · ∇wN,Kj(x)dx, (3.40)

where vN,Kj(x) (respectively wN,Kj(x)) is such that vN,Kj − vHlin,j(x) ∈ SN(Kδj) and∫
Kδj

aε(x)∇vN,Kj(x) · ∇zN(x)dx = 0, ∀zN ∈ SN(Kδj). (3.41)

The space SN(Kδj) is defined through the mapping GxKj
: Y → Kδj as

SN(Kδj) = span{δξ̂n,N (G−1
xKj

(x)) =: ξn,Kj(x), n = 1, .., N}. (3.42)

The well-posedness of problem (3.39) is proved in the following lemma.

Lemma 3.6. Assume that (2.2) and that (Q1) hold. Then problem (3.39) has a unique
solution.

Proof. Similarly as in [10],[9, Sect. 3.3.1] we can show that

‖∇vHlin‖L2(Kδ) ≤ ‖∇vN,Kj‖L2(Kδ) ≤
√

Λ

λ
‖∇vHlin‖L2(Kδ). (3.43)

Using (2.2) and (Q1) we then obtain

C1‖∇vH‖2
L2(Ω) ≤ BH,RB(vH , vH), BH,RB(vH , wH) ≤ C2‖∇vH‖L2(Ω)‖∇wH‖L2(Ω).

The Poincaré inequality and the Lax-Milgram theorem give the stated result (see again
[10],[9, Sect. 3.3.1] for details). �
Fast solution of micro-problems. Owing to the affine form (3.22) of the tensor aε, the
problem (3.41) amounts to solving an N ×N linear system (recall N is small). Indeed, we
observe that by writing vN,Kj − vHlin,j(x) =

∑N
n=1 αnξn,Kj(x) (3.41) reads

N∑
n=1

αn

∫
Kδj

aε(x)∇ξn,Kj(x)·∇ξm,Kj(x)dx = −
d∑
i=1

∫
Kδj

aε(x)ei·∇ξm,Kj(x)dx
∂vHlin,j
∂xi

, (3.44)
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for all m = 1, . . . N. Next, again thanks to the affine representation of the tensor (here we
are assuming the representation (3.22) for simplicity), (3.44) can be written as

N∑
n=1

αn

Q∑
q=1

Θq(xKj)

∫
Y

aq(y)∇ξ̂n,N (y) · ∇ξ̂m,N (y)dy

= −
d∑
i=1

Q∑
q=1

Θq(xKj)

∫
Y

aq(y)ei · ∇ξ̂m,N (y)dy
∂vHlin,j
∂xi

, (3.45)

or equivalently (
Q∑
q=1

Θq(xKj)Aq

)
α = −

d∑
i=1

(
Q∑
q=1

Θq(xKj)F
i
q

)
∂vHlin,j
∂xi

, (3.46)

where the N × N matrices Aq, q = 1, . . . , Q and the vectors F i
q ∈ RN , q = 1, . . . , Q, i =

1, . . . , d are defined by (3.38).
We emphasize that the matrices Aq and the vectors F i

q are assembled and stored in the
offline stage, thus (3.46) amounts just in building the linear combination by evaluating Θq(·)
at the desired integration points xKj (or computing the interpolation problem (3.23) when
we rely on the approximation (3.23) for the tensor axτ (y)) and solving the N × N system
(3.46) for each micro function at the quadrature points needed to assemble (2.7).
Reformulation of the RB-FE-HMM. Similar to the reformulation (3.16) for the FE-
HMM, we have

BH,RB(vH , wH) :=
∑
K∈TH

J∑
j=1

ωKja
0
N(xKj)∇vHlin,j(xKj) · ∇wHlin,j(xKj), (3.47)

where

(a0
N(xKj))ik =

∫
Y

axKj (y)
(
∇χ̂iN,Kj(y) + ei

)
·
(
∇χ̂kN,Kj(y) + ek

)
dy. (3.48)

which is easily seen by noting that vN,Kj(x), the solution of (3.41), can be written as

vN,Kj(x) = vHlin,j(x) + δ

d∑
i=1

χ̂iN,Kj(G
−1
xKj

(x))
∂vHlin,j
∂xi

, (3.49)

where χ̂iN,Kj(y) is the solution of (3.13) in the RB space (3.37).

3.4. Reconstruction of the micro solution

We briefly explain a procedure to obtain an approximation to the fine scale solution uε

of problem (2.1). While an error estimates ‖uε − uH,RB‖ can be obtained in the L2 norm
for locally periodic tensor (see Section 4), one cannot expect convergence between ∇uε and
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∇uH,RB, as uH,RB does not capture the fine scale oscillations of the solution (we do not
have strong convergence of ∇uε towards ∇u0 in general). Inspired by the correctors in
homogenization theory [2], a numerical corrector for the FE-HMM has been introduced in
[10, 26]. A numerical corrector, computed in a post-processing step can also be defined for
the RB-FE-HMM. Here we present two approaches for such reconstruction.

For the first approach, which follows the procedure for the FE-HMM, we assume piecewise
linear macro solver. For any K ∈ TH , we consider the function uN,K − uH,RB known in the
sampling domain Kε (see (3.41)). We then consider its periodic extension in K denoted by
(uN,K − uH,RB)|PK and define a corrector in every macro element K as

up(x)|K = uH,RB + (uN,K − uH,RB)|PK . (3.50)

An error estimate for this procedure is available for the FE-HMM in [10, Thm. 3.11] Also
simple, this procedure requires to store the micro solutions in the sampling domains, and
the periodic extension might be cumbersome, specially for three dimensional problems with
simplicial elements. However, thanks to the precomputed RB space, the computational cost
to solve a micro cell problem in the present framework is largely reduced. This allows to
consider a second approach for the construction of numerical correctors. For a sampling
domain of size ε, given x ∈ K ∈ TH , we can evaluate the reconstructed solution at this
particular point by using

uεp,RB(x)|K = uH,RB(x) + ε
d∑
i=1

χ̂iN,Tε(G
−1
x (x))

∂uH,RBlin (x)

∂xi
, (3.51)

where Tε = x + (−ε/2, ε/2)d and χ̂iN,Tε(G
−1
x (x)) can be computed by solving (3.13) in the

reduced basis space SN(Tε). We note that the second reconstruction procedure (3.51) allows
to use higher order macro FEMs, whereas for the first procedure (3.50), it would require an
interpolation procedure.

4. A priori error analysis

In this section, we derive an a priori error estimate for the RB-FE-HMM. While a com-
ponent of the error (relying on the approximation property of the greedy algorithm) relies on
assumptions difficult to check in practice, by providing the analysis proposed here, describing
the various contributions to the global error is nevertheless of interest.

Following [9], an error estimate similar to (2.9) can be derived for the RB-FE-HMM.

Theorem 4.1. Let u0, uH,RB be the solutions of (2.3) and (3.39), respectively, and that
assume that u0 ∈ Hl+1(Ω). Assume further that (Q1), (Q2) and (2.2) hold and that the
tensor a0(x) appearing in (2.3) is sufficiently regular. Then

‖u0 − uH,RB‖H1(Ω) ≤ C(H l + rHMM), (4.52)

‖u0 − uH,RB‖L2(Ω) ≤ C(H l+1 + rHMM), (4.53)
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where

rHMM = sup
KH∈TH ,xKj∈KH

‖a0(xKj)− a0
N(xKj)‖F , (4.54)

and where the tensor a0
N is defined in (3.48) and a0(xK) is the tensor of the homogenized

problem (2.3) evaluated at the quadrature point xK. The constant C is independent of H,
N,N or ε.

Proof. Decompose the error into (‖ · ‖ stands for the L2 or H1 norm)

‖u0 − uH,RB‖ ≤ ‖u0 − u0,H‖+ ‖u0,H − uH,RB‖,

where u0,H is the solution of (3.19).
Following [25], we obtain ‖u0 − u0,H‖H1(Ω) ≤ CH l and ‖u0 − u0,H‖L2(Ω) ≤ CH l+1 for

sufficiently regular tensor a0. We then have

‖u0,H − uH,RB‖H1(Ω) ≤ C sup
wH∈S`0(Ω,TH)

|B0,H(u0,H , wH)−BH,RB(uH,RB, wH)|
‖wH‖H1(Ω)

.

Using the expressions (3.20) and (3.47) for B0,H and BH,RB, respectively, together with (Q2),
we can bound the right-hand side of the above inequality by C supKH∈TH supxK∈KH ‖a

0(xK)−
a0
N(xK)‖F‖u0,H‖H1(Ω). Using the a priori bound ‖u0,H‖H1(Ω) ≤ C‖f‖H−1(Ω) completes the

proof. �
We further decompose

rHMM ≤ rMOD + rMIC + rRB,

with

rMOD := sup
KH∈TH ,xKj∈KH

‖a0(xKj)− ā0(xKj)‖F ,

rMIC := sup
KH∈TH ,xKj∈KH

‖ā0(xKj)− a0
N (xKj)‖F ,

rRB := sup
KH∈TH ,xKj∈KH

‖a0
N (xKj)− a0

N(xKj)‖F ,

where a0
N (xKj) is defined in (3.17) and ā0(xKj) is the tensor appearing in (3.18). Error

bounds for the micro error rMIC were first presented in [10] for linear elliptic problems and
generalized to high order in [9] (see also [29, Lemma 6]). Error bounds for the modeling
error were first presented in [26] (see also [27] for a situation where rMOD vanishes). The
aforementioned error estimates can directly be used for the RB-FE-HMM. It remains to
estimate rRB. Consider the space MN (Y ) as defined in (3.21). We want to quantify how
well MN (Y ) can be approximated by the linear space SN(Y ) of dimension N . Such a
quantification relies on the notion Kolmogorov N-width.
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Definition 4.2. Let F be a subset of W (Y ). We denote the distance of F to any generic
N−dimensional subspace WN(Y ) of W by

E(F ;WN) = sup
x∈F

inf
y∈WN

‖x− y‖W .

The minimal error E(F ;WN(Y )) is given by the Kolmogorov n-width of F in W

dN(F,W (Y )) = inf{E(F ;WN(Y )) : WN(Y ) a N−dimensional subspace of W (Y )}.

It is difficult in general to quantify the Kolmogorov n-width of a given subset of W (Y ).
Invoking regularity of the set MN (Y ) with respect to the parameters one expects usually
a fast (e.g. exponential) decay of dN . Assuming such a decay, it is not obvious that the
particular N−dimensional subspace of W (Y ) constructed with the greedy algorithm enjoys
such an approximation property. This has been proved in [35, 36]. More precisely the
application of [36, Corollary 3] shows the following result. Assume that the parametrized cell
solution space MN has an exponentially small Komogorov n-width dN(MN ,W ) ≤ ce−rN ,
with r satisfying

r > log(1 + (Λ/λLB)
√

Λ/λ), (4.55)

where λ,Λ are the coercivity and continuity bounds (2.2) and λLB is the approximation of
the coercivity constant used in the greedy algorithm (see Section 3.2). Then the reduced
basis method converges exponentially in the sense that there exists a constant s > 0 such
that

‖χ̂kN,Kj(y)− χ̂kN ,Kj(y)‖W ≤ Ce−sN , (4.56)

for all KH ∈ TH and all xKj ∈ KH .

Theorem 4.3. In addition to the assumption of the Theorem 4.1, assume that the parametrized
cell solution spaceMN has an exponentially small Komogorov n-width dN(MN ,W ) ≤ ce−rN ,
where r satisfies (4.55). Then,

‖u0 − uH,RB‖H1(Ω) ≤ C(H l + e−2sN + rMIC + rMOD), (4.57)

‖u0 − uH,RB‖L2(Ω) ≤ C(H l+1 + e−2sN + rMIC + rMOD). (4.58)

If in addition χi, i = 1, . . . , d, the solutions (3.12) in W (Y ) (see (2.5) (2.4)) satisfy

|χi|Hq+1(Kδj ) ≤ Cε−q
√
|Kδj |, (4.59)

with C independent of ε, the quadrature point xKj , then

‖u0 − uH,RB‖H1(Ω) ≤ C(H l + e−2sN +
(h
ε

)2q

+ rMOD), (4.60)

‖u0 − uH,RB‖L2(Ω) ≤ C(H l+1 + e−2sN +
(h
ε

)2q

+ rMOD), (4.61)
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where ĥ = h
ε

is the microscopic meshsize for the micro problems of the offline stage, i.e.,

ĥ = O(N−1/d).
If in addition aε(x) = aε(x, x/ε) = a(x, y) is Y -periodic in y, and aij(x, y) ∈ C

(
Ω̄;W1,∞

per (Y )
)

for all i, j = 1, . . . , d, then

rMOD = 0 if W (Kδj) =W1
per(Kδj) and δ/ε ∈ N, (4.62)

rMOD ≤ C(δ +
ε

δ
) if W (Kδj) = H1

0(Kδj) (δ > ε). (4.63)

Proof. The estimates (4.57),(4.58) follow from Theorem 4.1, (4.56) and Lemma 3.2. The
estimates (4.60),(4.61) follow from Theorem 4.1, the estimates for the fully discrete error
in [10] [28, Corollary 10] (see also [9, Lemma 10] and [29]). The estimate (4.63) has been
proved in [26] and the estimate (4.62) in [27]. �

We notice that using the estimate ‖uε − u0‖L2(Ω) ≤ Cε valid for locally periodic tensor
[2, Chap. 1] we can obtain an error estimate

‖uε − uH,RB‖L2(Ω) ≤ C(H l+1 + e−2sN +
(h
ε

)2q

+ ε+ rMOD),

measuring the approximation of uH,RB to the fine scale solution in the L2 norm. In Theorem
4.3, various aspects of the convergence behavior of the RB-FE-HMM are described. The
overall goal of the RB-FE-HMM is to obtain an approximation of the effective solution u0.
If the effective tensor would be available, then, rates of convergence such as H` or H`+1 for
the H1 or L2 norm could be obtained, provided adequate regularity of the effective solution
u0. For effective solution with singularities, appropriate adaptive mesh refinement techniques
could be used. In both case, the rate of convergence is described by classical FE analysis.
To obtain similar convergence rates in terms of the macroscopic meshsize with the RB-FE-
HMM, we need to control the errors arising from the multiscale methodology and the use of
micro solvers to recover the unknown effective data. These various errors are

• the microscopic error
(
h
ε

)2q

, where ĥ = h
ε

= O(N−1/d) is the microscopic meshsize and

q the order of the FEM used for the micro problems in the offline stage. In the RB
framework, we use a very accurate meshsize for this offline problems, i.e., micro solvers
with large value N of DOF. This effort is compensated by the fact that we solve micro
problems only for a fixed (usually small number) of sampling domains distributed in
the macroscopic physical computational, compared to the classical FE-HMM, where
micro problems with DOF proportional to the macro DOF have to be solved in every
macro elements (notice that in this case, not only the microscopic DOF but also the
number of sampling domains increase while refining the macro mesh);

• the a priori RB error e−2sN , which quantifies how well the infinite dimensional man-
ifold of solutions of micro problems can be approximated by a low dimensional linear
subspace, explaining why a small number of micro problems usually suffice in the offline
stage. In applications, however, the RB a priori estimate is not used (and usually not
known), but this a priori error can be bounded (on both sides) by the RB a posteriori
estimate which is computed during the RB procedure;
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• the modeling error, which indicates the influence of the micro solutions on the sampling
domain sizes and and micro boundary conditions. In general, this is a delicate question
already for the FE-HMM (without RB) and still a subject of investigation (see the
discussion and references in the reviews [9, 29]). In particular cases, for example for
locally periodic tensors with period ε, if we set the cell domain size ε and choose
the center of the cells at the quadrature points, then modeling error vanishes, i.e.,
rMOD = 0.

5. Numerical examples

In this section we apply the RB-FE-HMM to four test problems. The first three examples
are 2D problems with an affine tensor, a discontinuous affine tensor and a nonaffine tensor,
respectively. The fourth example is a 3D problem, representing heat transfer in a microchip
first described in [37] for the FE-HMM. In the offline stage, the micro functions are computed
in the reference domain Y using a uniform mesh. We also use a uniform macroscopic mesh for
the online procedure to compute the RB-FE-HMM solution. Notice that nonuniform meshes
could be similarly used. For the 3D problem, we use the software CUBIT version 11.1 [38] to
generate the macroscopic tetrahedral mesh for the discretization of the considered domain.
Numerical evaluation of the errors. Let uH be the numerical solution and uref be a
reference solution (for the problem (2.3)) computed on a fine triangulation Th. The error
uref − uH in the H1 and L2 norms are estimated by

eL2 := ‖uh‖−1
L2(Ω)(

∑
K∈Th

J∑
j=1

wj,K |uH − uref |(xKj))−1/2,

eH1 := ‖uh‖−1
H1(Ω)(

∑
K∈Th

J∑
j=1

wj,K |uH − uref |(xKj))−1/2,

where we will use ‖u‖H1(Ω) ∼ (
∑

K∈TH ‖∇u‖
2
L2(K))

1/2. Here {xKj , wj,K} are quadrature points
on the fine triangulation Th chosen such that the quadrature formula is exact for the degree
of the piecewise polynomials used to compute uref .
Stability factor computation for the a posteriori error estimates. As explained in
Remark (3.4), an estimation of the stability factor λLB is crucial to control the accuracy of
the outputs of the greedy algorithm. In the numerical experiments below, we will use the
“min Θ” method when it can be applied (see Remark (3.4)), namely for the 2D and 3D affine
examples, and the SCM otherwise (for the 2D discontinuous and nonaffine examples).

5.1. 2-dimensional problems.

Let Ω = [0, 1]2. We consider the following problem

−∇ · (aε(x)∇uε(x)) = 1, in Ω,

uε(x) = 0, on ∂ΩD,

n · (aε(x)∇uε(x)) = 0, on ∂ΩN , (5.64)
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where for x = (x1, x2), ∂ΩD = {x1 = 0}∪{x1 = 1} and ∂ΩN = {x2 = 0}∪{x2 = 1}. We will
choose various oscillating tensors aε for the above problem. The tensors are chosen so that
the homogenized tensors can be easily computed to be able to perform careful numerical test
on the behavior of the experimental convergence of the RB-FE-HMM. We emphasize that
our numerical method can be applied to more general problems, when an explicit form of
the homogenized tensor is not available (e.g., non-periodic or random tensors).
2D affine multiscale tensor. We consider

a
(
x,
x

ε

)
=

(
x2

1 + 0.2 + (x2 + 1)(sin(2π x1

ε
) + 2) 0

0 x2
2 + 0.05 + (x1x2 + 1)(sin(2π x2

ε
) + 2)

)
,

with a corresponding homogenized tensor given by

a0(x) =

(
(
∫ 1

0
1

x2
1+0.2+(x2+1)(sin(2πy1)+2)

dy1)−1 0

0 (
∫ 1

0
1

x2
2+0.05+(x1x2+1)(sin(2πy2)+2)

dy2)−1

)
.(5.65)

In the offline stage, we use the P1-FEM and the P2-FEM respectively, to compute the
RB for the micro problems, that is, we take the FE space Sq(Y,N ) with q = 1, 2, with a
large number of DOF (as usual in the RB methodology). Periodic coupling is used (i.e.,
Sq(Y,N ) is chosen to be a subspace of (2.4)). We also choose sampling domains that match
the length of the period of aε. To make a fair comparison, we take the same initial sample
set ΞRB for the computations with the P1 and the P2 FEM. In both cases, the tolerance, set

Table 1: Parameters for the offline stage (affine tensor).

Offline stage P1-FEM P2-FEM
Meshsize for the micro reference domain Y 1500× 1500 1200× 1200
Initial sample points number ΞRB ⊂ Ω 800 800
Tolerance for the offline stage tolRB 5e-11 5e-11
Stability factor method min Θ min Θ
RB number 10 10
Final a posteriori error 1.7059e-12 2.7682e-11
Offline CPU time(s) 5330 42724

to tolRB = 5e-11, is reached by the a posteriori estimator after the selection of 10 reduced
basis. The CPU time in second is reported for our MATLAB computations. We see that the
P2 FEM is approximately 8 times more expensive than the P1 FEM for the offline stage. In
Fig. 3, we report the decay of the a posteriori error (∆η

l,Tδ
)2 that is fast, as expected.

With these precomputed RB spaces of micro solutions (obtained with P1 and P2 FEM),
we now perform online computation and compute the macro solution uH,RB with the RB-
FE-HMM. We use P1, P2 and P3 macro FEMs to compute uH,RB. The macro meshsize is
chosen as 2−n, n = 3, . . . , 8. A reference solution uref is computed by solving (2.3) with a
tensor given by (5.65) using a FEM with a 1024× 1024 mesh and piecewise polynomials of
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total degree 3. The behavior of the error of the RB-FE-HMM is shown in Fig. 4. In view
of the estimates of Theorem 4.3, we can make the following observations. First, we notice
that rMOD = 0 as we have periodic boundary conditions for the RB-FE-HMM and sampling
domains of size ε. According to the a priori estimates (4.61), (4.60), the micro error rMIC
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Fig. 3: Affine tensor a posteriori error max(Tδ,η)∈ΞRB (∆η
l,Tδ

)2.

should be of the order of 10−7, 10−13 for the P1, P2 offline computation, respectively, while
the macro error should be of the order 2−n·(P+1), 2−n·P for the L2 and H1 errors, respectively,
where P is the order of the macro FEM and n = 3, . . . 8. For the computations with P1
polynomials in the offline stage, the results are in accordance with the theoretical results.
Whenever the macro error reaches 10−7, we lose the expected convergence rates which may
indicate that micro errors are of the same order of accuracy (this can be seen in Fig. 4
(a)-(b)).

For the computation with P2 polynomials in the offline stage, one would expect the effect
of micro errors appearing for macro errors around 10−13, but we see in Fig. 4 (c) that the
expected convergence rates are lost for errors around 10−11. Here we think that what is seen
is the rRB error term, i.e., the accuracy of the reduced basis procedure. Indeed, according
to the a posteriori error estimator (controlling this latter error), the accuracy reached for P2
polynomials in the offline procedure with the given mesh is around 10−11 (see Table (1)).

How does the RB-FE-HMM compare with the FE-HMM? We next show some compar-
isons with uH,RB computed with P1 offline and online polynomials.

We choose two different offline meshes, namely 350 × 350 and 500 × 500 and obtain 10
RB (as previously). For the FE-HMM solution uH , we use P1-FEM for both the macro
and micro solvers, where simultaneous refinement is needed according to estimates (2.9),
(2.10). The errors in the L2 norm and the computation time are reported in Tables 2 (error)
and 3 (computation time). In Table 2, we see that the offline mesh of size 350 × 350 is
fine enough to get the optimal (quadratic) convergence rate. The simultaneous refinement
for the FE-HMM, i.e., H ' (h/ε) ' 2−n, n = 3, . . . 8, also gives the optimal (quadratic)
convergence rate. The errors for both methods are similar. Now we compare in Table 3
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10
0

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

NMacro

A
ffi

ne
 L

2   E
rr

or

 

 

Off−P2−On−P1
Off−P2−On−P2
Off−P2−On−P3

(c) Offline P2-FEM L2 Error
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(d) Offline P2-FEM H1 Error

Fig. 4: Affine tensor example ‖uH,RB − uref‖. The offline and RB space info is in Table 1. Online solver
is P1-FEM, P2-FEM, P3-FEM respectively. The dashed lines are the reference lines with slopes 2,3,4 for
(a)-(c) and slopes 1,2,3 for (b)-(d).

Table 2: Comparison between RB-FE-HMM (P1-FEM as offline and online solver) and FE-HMM (P1-FEM
as micro and macro solver) for the L2 error.

RB-FE-HMM RB-FE-HMM FE-HMM
offline mesh 350× 350 offline mesh 500× 500

Mesh L2 Error L2 Error L2 Error
8× 8 0.0161 0.0161 0.0176

16× 16 0.0040 0.0040 0.0044
32× 32 0.0010 0.0010 0.0011
64× 64 2.5347e-04 2.5306e-04 2.7702e-04

128× 128 6.3969e-05 6.3561e-05 6.9259e-05
256× 256 1.6599e-05 1.6184e-05 1.7315e-05

the computation time. Taking into account the offline stage, we see that the total cost is
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Table 3: Comparison of CPU time between the RB-FE-HMM (P1-FEM as the offline and online solver)
and the FE-HMM (P1-FEM as the micro and macro solver). The offline CPU time is 193s with meshsize
350× 350 and 424s with meshsize 500× 500.

RB-FE-HMM FE-HMM
Online CPU Time (s) CPU Time (s)

Mesh with 1 processor with 1 processor
8× 8 0.03 0.14

16× 16 0.10 0.98
32× 32 0.28 109
64× 64 1.21 1760

128× 128 4.92 27504
256× 256 20.33 332410

an order of magnitude smaller for the RB-FE-HMM except for very coarse macro meshes,
where overhead given by the cost of the offline computation for the RB-FE-HMM dominates
the cost for the FE-HMM. As can be seen from these computations, for errors smaller than
10−4, the RB-FE-HMM is always more efficient than the FE-HMM.

Notice that in our comparisons between the FE-HMM and the RB-FE-HMM we only used
P1 online macro FEMs. Because of the increasing number of cell problems that need to be
solved for the FE-HMM when using higher order macro polynomials (due to the increasing
number of quadrature points and related sampling domains), this method becomes very
expensive. In contrast, only the macro assembly is affected in the RB-FE-HMM (similarly
as for standard FEM) when using higher order macro solver. Thus for the RB-FE-HMM the
cost of increasing the degree of the macro polynomials is proportional to the macro DOFs
only and is similar to the cost of increasing the polynomials degree in standard FEM.
2D affine multiscale discontinuous tensor. In this example, we test the RB-FE-HMM
on a problem with an oscillating tensor discontinuous on the sampling domains. Such tensors
prevent the use of fast microsolvers (e.g., based on pseudo-spectral methods as proposed
in [11]). This is why we distinguish in our experiments continuous versus discontinuous
affine tensors. We assume that the reference domain is divided into three subdomains Y =
YA ∪ YB ∪ YC with different tensors in the different domains, discontinuous at the interfaces.
The tensor is defined by

a(x,
x

ε
) = aA(x,

x

ε
)IA + aB(x,

x

ε
)IB + aC(x,

x

ε
)IC ,

where IA, IB, IC are the indicator functions of the domains YA, YB, YC and aA(x, x
ε
), aB(x, x

ε
),
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aC(x, x
ε
) are diagonal tensors with entries given by

aA,ii(x,
x

ε
) =

{
x2

1 + 0.2 + (x2 + 1)(sin(2π x1

ε
) + 2), i = 1

x2
2 + 0.05 + (x1x2 + 1)(sin(2π x2

ε
) + 2), i = 2

aB,ii(x,
x

ε
) =

{
3x1 + x2

2 + 0.5, i = 1
e(−x1−x2)(cos(2π x1

ε
) + 2), i = 2

aC,ii(x,
x

ε
) = x1 + x2 + 1, i = 1, 2.

Notice that the above tensor could model a material having different phases with different
conductivity properties in each phase. The discontinuities over the phases are illustrated in
Fig. 5 (b)-(c). Table 4 provides information of the offline stage.

Table 4: Parameters for RB-FE-HMM offline stage (discontinuous tensor).

Meshsize for the micro reference domain Y 901× 901
Initial sample points number ΞRB ⊂ Ω 800

Tolerance of the offline stage tolRB 1e-07
Offline solver P1-FEM

Method used to compute the stability factor SCM
RB number 40

For this example, we use the FE-HMM solution with fine micro and macro meshes to
compute a reference solution (we choose a grid of 512×512 for the micro and macro meshes,
respectively). We display in Fig. 6 (a) the RB-FE-HMM solution with macro mesh 128×128.
In Fig. 6 (b) we report the L2 and H1 convergence rates (as we refine the macro mesh for the
RB-FE-HMM). As can be seen, we obtain optimal convergence rates for this example. This
shows the efficiency of the RB strategy in situations (discontinuous tensors) that prevent the
use of fast micro solvers taking advantage of the smoothness of the micro solution.
2D nonaffine multiscale tensor. For the last 2-dimensional example, we consider a tensor
that is not in affine form. As mentioned in Section 3.2, we have to apply the EIM to obtain
an affine representation of the tensor to implement the RB methodology. We take a tensor
of the form

a(x,
x

ε
)11 =

(√
(x2

1 + sin(2π
x1

ε
) + 1.2)(x1x2 + sin(4π

x1

ε
) + 1.5)

)−1

a(x,
x

ε
)22 =

(
(x1x2 + sin(5π

x2

ε
) + 1.2)(x2

2 cos(2π
x2

ε
) + x1 + 1.5)

)−1

a(x,
x

ε
)12 = a(x,

x

ε
)21 = 0

chosen in such a way that the homogenized tensor can be computed easily for numerical
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(a) The substructure of the micro reference domain.

(b) Upper diagonal term of a(x, xε ) = a(x, y)
with (x1, x2) = (0.5, 0.5).

(c) Lower diagonal term of a(x, xε ) = a(x, y)
with (x1, x2) = (0.5, 0.5)

Fig. 5: Domain and tensor.
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(a) uH,RB
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(b) ‖uH,RB − uref‖

Fig. 6: RB-FE-HMM for discontinuous tensor. (a). RB-FE-HMM solution computed with a 128 × 128
online macro mesh. (b). The error ‖uH,RB − uref‖ is displayed, where 40 reduced bases are used for uH,RB .
The online solver is a P1-FEM. The reference solution uref is computed by the FE-HMM with 512 × 512
micro and macro meshes. The dashed lines are the reference lines with the slope 1, 2, respectively.

comparison purpose. It is given by

a0
11 =

(∫ 1

0

√
(x2

1 + sin(2πy1) + 1.2)(x1x2 + sin(4πy1) + 1.5)dy1

)−1

a0
22 =

(∫ 1

0

(x1x2 + sin(5πy2) + 1.2)(x2
2 cos(2πy2) + x1 + 1.5)dy2

)−1

a0
12 = a0

21 = 0

In Table 5 we report the parameters of the EIM offline stage. We obtained 19 affine
terms for the first diagonal entry of a(x, x

ε
), and 26 terms for the second diagonal entry.

Table 5: Parameters for EIM offline stage.

Initial sample points number ΞEIM ⊂ Ω 600
Tolerance of the EIM tolEIM 1e-06
Number affine terms for (a(x, x

ε
))11 19

Number affine terms for (a(x, x
ε
))22 26

EIM CPU time(s) 5461

Next, we report the parameters of the RB-FE-HMM offline stage in Table 6. Since the
error from the EIM process also influences the output accuracy of the offline stage, we choose
a lower accuracy requirement for the offline stage and fix tolRB to be 10−8. This tolerance is
met by the the a posteriori error estimator of the greedy procedure after the selection of 13

29



Table 6: Parameters for the RB-FE-HMM offline stage.

Meshsize for the micro reference domain Y 1200× 1200
Initial sample points number ΞRB ⊂ Ω 800
Tolerance of the offline stage tolRB 1e-08
Offline solver P1 FEM
Method used to compute the stability factor SCM
RB number 13
Offline CPU time (s) 57354
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(a) L2 Error
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Fig. 7: Problem with nonaffine tensor. The error ‖uH,RB − uref‖ is displayed, where 13 reduced bases
are used for computing uH,RB . The offline parameters are reported in Table 6. For the online macro solver
P1-FEM, P2-FEM, P3-FEM are used. The dashed lines are the reference lines with slope equal to 2,3,4 in
Fig. (a) and 1,2,3 in Fig. (b). The homogenized FE solution uref is computed with a P3-FEM on a fine
mesh of size 1024× 1024.

bases. As we fix the tolerance at 10−8, we do not expect to get optimal convergence rates
when the error is smaller than this threshold. Observe that here, an additional error term
should appear in the rHMM error described in Theorem 4.1, namely the approximation error
due to the EIM. Experimentally we observe a plateau when the error reaches 10−7. Until
this threshold, we observe in Fig. 7 optimal convergence for the RB-FE-HMM (with P1, P2
or P3 macro FEMs). Let us mention that the tensor chosen here is continuous and that the
performance of the EIM may decrease when the coefficients vary discontinuously within a
sampling domain (see [22, Chapter 5]).

5.2. Three-dimensional test problem.

The FE-HMM, as any numerical homogenization methods, can be costly for three-
dimensional problems, due to the repeated computations of micro problems on sampling
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domains, each of them involving an increasing number of DOF as the mesh on the com-
putational domain is refined (remember that this requires the micro mesh on the sampling
domain to be refined simultaneously to the macro mesh).

The problem considered here is the heat transfer in a microchip (see Fig.8), as described
in [37]. The volume of the smallest box containing the microchip is 12.2 × 12.2 × 1 mm3.
The macro domain Ω is composed of three parts, Ω = Ωchip∪Ωleadframe∪Ωresin, the domains

Mold resin
IC Chip Lead frame

Fig. 8: 3D Macro domain structure [37].

of the chip, the leadframe and the package, respectively (see Fig. 8). The model equation is
given by

−∇ · (aε∇uε) = f in Ω,

n · (aεuε) + αuε = gR on ∂Ω, (5.66)

where gR = 5863[ W
m2 ] and α = 20 and

f =

{
1.87× 108[ W

m3 ] x ∈ Ωchip,
0 otherwise.

Here gR represents the heat flux entering the domain and the heat exchange with the ambient
temperature and f is a heat source representing the power of the chip. We take different
conductivity tensors for each component. All the tensors are diagonal and given by

aεii,chip = 140,

aεii,leadframe = 400e20(x2
1+x2

2)
1
2 + 400(cos(x3π) + 1.5)(cos(2πxi/ε) + 1.1),

aεii,resin =


1

sin(6πx2)+1.6
+ 3(cos(πx3) + 1.5x2

1 + 1.1)(sin(4πx1/ε) + 1.1) i = 1,
1

sin(6πx2)+1.6
+ 3(cos(πx3) + 1.5x2

1 + 1.1)(cos(πx2/ε) + 1.2) i = 2,
2

sin(6πx2)+1.6
+ 3(cos(πx3) + 1.5x2

1 + 1.1)(cos(6πx3/ε) + 1.2) i = 3.

We notice that aεchip is constant and we do not need to solve any cell problem on the
domain Ωchip. We thus apply the RB-FE-HMM strategy on Ωleadframe and Ωresin respectively.

31



Table 7: 3D RB-FE-HMM offline parameters.

Domain Initial sample points number Offline mesh tolRB RB number
Ωleadframe 400 220× 220× 220 1e-10 11

Ωresin 600 220× 220× 220 1e-10 9

Fig. 9: 3D RB-FE-HMM solution uH,RB . The offline parameters are reported in Table 7. Online DOF:
37011.
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Table 7 displays the RB offline parameters. We see that 20 reduced bases are needed for this
problem.

A solution of problem (5.66) computed with the RB-FE-HMM is shown in Fig. 9. For
this computation a macro mesh with 37011 DOF is used. In Table 8, we show error estimates
when comparing the RB-FE-HMM solution uH,RB with a numerically computed reference
solution uref for the homogenized problem. For 3D problems, it is not a trivial task to
compute an accurate reference solution. The reference solution is computed as follows. As
aεleadframe and aεresin are diagonal tensors, the corresponding homogenized tensors a0

ii,leadframe

and a0
ii,resin are the harmonic averages of the fine scale tensors. These harmonic averages

(involving 1D integrals) are further evaluated by using an accurate numerical integration
scheme.

Because of the difficulty to obtain an accurate reference solution, we only display the
accuracy of the RB-FE-HMM for one refinement step. A refinement step (corresponding
roughly to a meshsize divided by two), starting with the initial mesh with 37 011 DOF
(corresponding to 190 081 tetrahedra), leads to 278 123 DOF (corresponding to 1 520 648
tetrahedra). The reference solution is computed with a mesh with 2 108 977 DOF (corre-
sponding to 12 165 184 tetrahedra). We display in Table 8 the error in various norms, when
we refine the macro mesh. We see that the H1 and the L2 errors have the expected decay
rate.

Table 8: Error estimates for problem (5.66). The solution uref is computed with 2108977 DOF, ‖uref‖A =
24.2616.

Online mesh DOF ‖uH,RB‖A ‖uH,RB − uref‖L2(Ω) ‖uH,RB − uref‖H1(Ω)
‖uH,RB−uref‖L∞(Ω)

‖uref‖L∞(Ω)

37011 24.2465 0.0001665 0.0214941 0.0002173
278123 24.2604 5.6277e-05 0.0081573 7.9756e-05

We emphasize that once the reduced 20 bases are computed in the offline stage, the online
stage is quite inexpensive. In contrast, computations with the FE-HMM would require to
solve a very large number of cell problems on sampling domains (about 1.5 million for the
mesh with 278 123 DOF), with a meshsize adapted to the rate of decay of the macro meshsize.
For a macro mesh that is not overly coarse (this is already required to properly represent the
geometry of the microchip), a computation with the FE-HMM is much more costly than with
the RB-FE-HMM, even for a single computation when taking into account the offline and
the online costs for this latter method. For such 3D problems it is thus very advantageous to
use the RB-FE-HMM even for computation with low order (piecewise linear) macro FEMs.
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Conclusion. We have presented an efficient FEM for high order discretizations of elliptic
homogenization problems based on micro-macro solvers combined with a RB strategy. In
our new method, the RB-FE-HMM, repeated FEM computations of micro problems (at
quadrature points of a macro mesh) are avoided. These repeated micro computations are
the main computational overhead of a numerical homogenization method such as the FE-
HMM, when accurate macro solutions need to be computed. In turn, the RB-FE-HMM is not
only more efficient for high order macroscopic disretizations, but also for three-dimensional
problems, already for low order macroscopic discretizations when even a single micro problem
in each element of the macroscopic mesh is expensive to compute. Using interpolation
techniques following the reduced basis methodology, we showed that an efficient numerical
method can be designed, relying only on a small number of accurately computed micro
solutions. An a posteriori error estimate for the selection of representative micro solutions
has been discussed. We have derived an a priori error analysis which allows to describe
the decay rate of the various discretization errors involved in our numerical approach. The
efficiency of the RB-FE-HMM strategy has been illustrated by several numerical examples
and comparisons with the classical FE-HMM have shown significant improvements.
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