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Abstract. With a few exceptions, phase-field simulations of dendritic growth in cubic
materials have been modeled using simple expressions for the interfacial energy anisotropy
and with strong anisotropy. However, recent experimental results show that the Dendrite
Orientation Transition (DOT) observed in Al-Zn alloys by Gonzales and Rappaz [Met. Mat.
Trans. A37 (2006) 2797] occurs at weak anisotropy, and modeling these results requires at least
two anisotropy parameters. In the present work, we solve the corresponding phase-field model
on an adaptive grid, after measuring and compensating for the grid anisotropy. A systematic
scan of equiaxed growth simulations was performed in the range of the anisotropy parameter
space where the transition is expected. We find separate domains of existence of 〈100〉 and
〈110〉 dendrites, similar to those previously reported by Haxhimali et al. [Nat. Mat. 5 (2006)
660] for pure materials. In the so-called hyperbranched regime, lying between the 〈100〉 and
〈110〉 regions, we observe a competition between 〈100〉 and 〈110〉 growth directions, but no
seaweed structures. Directional solidification simulations showed the stabilizing effect of the
thermal gradient on the twofold splitting of 〈110〉 dendrites, and the importance of the choice
of anisotropy parameters. We also found a strong dependence between the orientation of the
crystal axes with respect to the thermal gradient and the actual growth direction. Finally,
3-dimensional seaweed microstructures were modeled for the first time, demonstrating that this
pattern is a result of not only the values of anisotropy parameters, but also a consequence of
directional solidification.

1. Introduction
It is commonly taught that dendrites in cubic metals grow along 〈100〉 directions, since these
directions correspond to maxima of γs`. Although this is indeed the case in many systems, such
as steel, Ni- base superalloys, and Cu-base alloys, aluminum alloys display a wider variety of
dendrite orientations and morphologies [1–6]. In particular, it has been shown recently that
Al-Zn alloys experienced a Dendrite Orientation Transition (DOT) from 〈100〉 to 〈110〉 when
the zinc composition is increased [7, 8]. This was attributed to a modification of the weak
anisotropy of the solid-liquid interfacial energy of aluminum by the strongly anisotropic zinc
solute element [9]. In this work, we use phase-field simulations to further explore the role of
interfacial energy anisotropy on the selection of dendrite orientation.

We express the interfacial energy γs` as an expansion in cubic harmonics [10], given by

γs` (~n) = γ0s`

[
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where ~n is the vector normal to the interface, γ0s` is the orientation-averaged part of the interfacial
energy, and the cubic harmonics Q and S are defined in terms of the Cartesian components of
~n as

Q = n4x + n4y + n4z ; S = n2xn
2
yn

2
z (2)

Note that if the series is truncated at the first term, only 〈100〉 dendrites can appear. We will
show that the observed growth behavior in the Al- Zn system, including the transition between
〈100〉 and 〈110〉 growth, can be reproduced in simulations when the first two terms in the series
are included.

1.1. Phase-field modeling
In principle, one could solve the so-called sharp interface problem, in which the interface between
the solid and liquid phases evolves through diffusion of heat and solute in the respective phases,
and the solid liquid interface satisfies the conditions of local equilibrium of a curved surface. In
practice, however, the shape that evolves is too complex to be tracked accurately, especially in
3-D. We use instead the phase-field formalism for binary alloys introduced by Karma [11], and
later extended by Echebarria et al. [12]. The model is strictly applicable to the case where the
solid diffusivity Ds is negligible compared to the liquid diffusivity D`. We also adopt the “frozen
temperature” approximation, in which the temperature field is assumed to be known a priori,
which is applicable when the thermal diffusivities in both phases αs,` � D`.
The phase-field ψ ∈ [−1, 1] is defined such that ψ = +1 corresponds to the solid, ψ = −1 to the
liquid, and intermediate values are associated with the solid-liquid interface. The concentration
c is represented via Ũ , the local dimensionless supersaturation with respect to the reference
point c0` , measured in units of the equilibrium concentration gap at that point,

Ũ =
1

1− k0

(
c

c0`
− 1

)
(3)

In isothermal solidification, c0` = (TM − T0)/m` is the equilibrium concentration of the liquid
at a temperature T0, TM is the melting point of the pure substance, and m` and k0 are the
(constant) liquidus slope and partition coefficient, respectively. The evolution equations for ψ
and Ũ are given by[

1− (1− k0)Θ̃
]
η2(~n)

∂ψ

∂τ
= ∇

[
η2(~n)∇ψ

]
+∇
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(5)

Eqs. (4) and (5) have been scaled in terms of the nominal interface width W0 and relaxation
time scale τ0. The scaled diffusivity D̃` = D`τ0/W

2
0 . Θ̃ = x̃− ṽP τ/l̃T is used to couple the

phase-field to the frozen temperature field in directional solidification, where the sample is
pulled through a fixed temperature gradient G at velocity vP . The dimensionless position along
the growth axis x̃ = x/W0 is thus reduced by vP τ0/W0 and scaled by the “thermal length”
l̃T = lT /W0 = m`(k0 − 1)c0`/GW0. η(~n) represents the anisotropic part of the interfacial energy

(Eq. 1). Eq. (5) includes an “anti-trapping” current ~j, introduced in order to cancel artificial
trapping of solute due to the diffuse interface, given by

~j =
1

2
√

2

[
1 + (1− k0)Ũ

] ∂ψ
∂τ

∇ψ
|∇ψ|

(6)
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where ∇ψ/|∇ψ| expresses the normal vector to the interface.
The chemical capillary length d0 = Γs`/(|m`|(1 − k0)c0` ), where Γs` is the Gibbs-Thomson

coefficient, and the interface attachment coefficient β are related to the phase-field parameters
via

d0 = α1W0/λ ; β = α1
τ

λW0

[
1− α2

λW 2
0

τ0D

]
(7)

where α1 = 0.8839 and α2 = 0.6267 are chosen to ensure that the phase-field model converges to
the sharp interface model. See Echebarria et al. [12] for further details. Finally, the anisotropy
of the interfacial energy is included in the model by defining the interface width W = W0η(~n)
and the relaxation time τ = τ0η

2(~n). We note that in this model, one cannot guarantee that
the kinetic coefficient vanishes, in contrast to the “two-sided” model, where Ds = D`.

The length scales of the grid spacing (∆x ≈ W0 to resolve the interface) and the simulation
domain (Lx,y,z � D`/v to avoid interaction between the solute field and the boundaries) are
widely different. We therefore solve these equations on an adaptive finite element grid [13–18].
Local error estimators are used to refine or coarsen the mesh where needed, allowing the tracking
of the interface as well as the resolution of gradients in the solute fields. Please see the original
papers for the details about the adaptive techniques [13]. For the simulations of directional
solidification, where initial transients can be very long, we solve the equations in a moving
Lagrangian frame that translates at the pulling speed, and the time derivatives in Eqs. (4) and
(5) are appropriately augmented with advective terms.

1.2. Parameter selection
Unlike the experiments reported in [7, 8] where the DOT is observed by changing the Zn
composition, the simulations presented here focus on a single alloy of Al-10 wt pct Zn which
presents a relatively short freezing range, hence a rapid development of the structure upon
cooling. The anisotropy parameters a1 and a2 will be varied for this alloy while the other
properties are given in Table 1. The diffusion coefficients were purposely lowered by a factor
approximately 2 to allow larger time steps to be used in the explicit solution scheme.

Table 1. Material properties chosen for the phase-field simulations and values found in literature
for the composition and temperature considered.

Property Value in simulation Literature Units
c0 0.1 - wt fraction Zn
m` -170 -170 [19] K
k0 0.45 0.45 [19] -
TM 660 660 [19] ◦C
D` 1.2× 10−9 2.75× 10−9 [20] m2/s
Ds 1.2× 10−12 2.7× 10−12 [20] m2/s
Γs` 1.05× 10−7 1.05× 10−7 [21, 22] K m
ρLf 1× 109 1.07× 109 [22] J/m3

ρcp 3× 106 2.93× 106 [23] J/m3 K

Echebarria et al. [12] showed that mesh-converged results can be obtained with W0/d0
as large as 50. With the properties above and the assumption that c0` = c∞/k0 = c0/k0,
we have d0 ≈ 5× 10−9 m. The smallest expected tip radius is around 1× 10−6 m, and
using the rule that the tip radius should be at least ten times the interface width, we have
Rtip/W0 = 10, W0 = 1× 10−7 m, and thus W0/d0 = 20. We then obtain D̃` = 5.5, which
implies that τ0 = 4.6× 10−5 s. All other physical values, such as the thermal length, the pulling
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velocity and the simulation box size are then non-dimensionalized with these values of W0 and
τ0.

Since our study is focused on the role of anisotropy, it is essential that we measure and correct
for grid anisotropy. To do this, we grew dendrites whose crystallographic axes were rotated by
various angles with respect to the Cartesian grid. We then measured the difference in growth
speed in the different directions, and adjusted the grid anisotropy in order to eliminate the
differences. The amount of grid anisotropy depends on the grid spacing. In the calculations

given in Section 2, we use dxmin = 0.75W0, and grid correction agrid1 = −0.019. The time step
in the explicit scheme was 0.05τ0.

2. Results and Discussion
2.1. Equiaxed Growth
Our survey of the anisotropy parameter space for equiaxed growth was performed in one octant of
a cubic domain, with all faces having zero-flux boundary conditions. The 〈100〉 crystallographic
axes were aligned with the Cartesian directions of the grid and an initial one-eighth spherical
seed of radius 5 − 10 ×W0 was set at one corner. The far-field supersaturation, defined as an
input parameter, was either Ω = 0.4 or Ω = 0.25 in the results presented below. The initial
concentration field was then defined as:

c =

{
koc0 r < R0

c0
(
1 + Ω(1− k0)

(
R0
r − 1

))
r ≥ R0

(8)

The computational domain was 7683 with dxmin = 0.75W0. In a uniform grid, this would
represent 4.5×108 grid points, whereas in our simulations, the grid typically started with about
5000 nodes, and at the end of the simulations, there were 1 − 4 × 106 nodes. The calculations
were run on both 2.93 and 3.30 GHz Intel Xeon CPUs. Run times to generate fully developed
microstructures at Ω = 0.4 (12 000 time steps) were less than one day.

Haxihmali et al. [9,24] examined the DOT in pure materials using phase-field methods. They
performed line scans at several fixed values of a2 = (−0.005,−0.01,−0.02). At low values
of a1, 〈110〉 dendrites were found, while at high values of a1, 〈100〉 dominated, and in the
intermediate region, mixed structures which they termed “hyperbranched” were obtained. We
surveyed the anisotropy parameter space using a similar approach, i.e., using line scans. Since
all of the available experimental and MD data [25] show that these parameters are in the range
0 ≤ a1 ≤ 0.12 and −0.01 ≤ a2 ≤ 0, the (a1,a2) couples were chosen as indicated by Fig. 1, along
with a sampling of the observed structures.

We find similar results to those reported by Haxhimali et al., with respect to the transitions
between the three types of microstructures. Looking first at the line scan a2 = −0.01, we see
in Fig. 1 that 〈110〉 dendrites form when a1 = 0. Notice that the tip has an elliptic rather than
circular shape in a transverse section, reflecting the underlying symmetry of the 〈110〉 direction.
As a1 increases, the strength of the anisotropy along 〈100〉 increases, as a result, the 〈110〉 tips
become more elliptic in (100) planes and are slowed down. If a1 is further increased, the tips
become sufficiently flat that they split along the 〈110〉 axis (see the case a1 = 0.04, a2 = −0.01
in Fig. 1). These tips continue to grow, and eventually produce hyperbranched structures. As
a1 increases along this line scan, the tips split earlier and thus grow larger (cf. a1 = 0.06),
and then as one approaches the boundary between the hyperbranched and 〈100〉 dendrites, the
dendrites present four tips split along the 〈100〉 axis, until finally they unite into a single tip
oriented along the 〈100〉.

We note that although the tip growth velocity has converged for the extreme cases with clear
〈100〉 and 〈110〉 dendrites, the speed of the double and quadruple tips are still in the initial
transient at the end of the simulation time considered here. Thus, our simulations should be
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Figure 1. Equiaxed growth phase-field results for varying anisotropy parameters, with Ω = 0.4.
The scale and orientation of all dendrites is identical. The solid lines in the center graph represent
the limits between the domains 〈100〉, hyperbranched and 〈110〉 structures reported by Haxhimali
et al. [9]. The present calculations show very similar results for the locations of the boundaries.

performed for longer times to verify that those structures persist further on and are stable along
the found directions at steady state.

Although the locations of the boundaries between the different morphologies are remarkably
similar to those reported by Haxhimali et al. for thermal dendrites, the details of the dendritic
structures in the hyperbranched region are somewhat different. Haxhimali et al. observed less
branching in the off-axis directions. We attribute this difference to the fact that the simulations
presented here correspond to solutal dendrites growing at large supersaturation (Ω = 0.4),
whereas Haxhimali et al. considered a pure material at very low undercooling, ∆ = 0.05.
Figure 2 compares equiaxed dendrites computed for the parameter set a1 = 0.08, a2 = −0.01,
using two different supersaturation values, Ω = 0.4 and Ω = 0.25. Although the envelopes of
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the two dendrites are similar, the amount of “activity” in the 〈110〉 directions is significantly
less at lower supersaturation. We note that the computations become increasingly expensive
as the supersaturation decreases, because the dendrites grow much more slowly, and thus the
simulations must be run for a longer time, as noted in the figure caption.

(a) Ω = 0.4, t = 14 000 (b) Ω = 0.25, t = 45 000

Figure 2. Comparison of computed equiaxed dendrites with a1 = 0.08, a2 = −0.01, at two
different supersaturations Ω. The times were chosen from the two simulations such that the
dendrite tips were at approximately the same distance from the center.

We would like to be able to present a mechanistic explanation for dendrite orientation
selection based on these results. Haxhimali et al. [9] suggested that the dendrites would grow
along the direction of minimum interfacial stiffness, which corresponds to the line given by
a1 = −20a2/3. Another possible criterion, suggested by Eq. (1), is that there should be transition
between 〈100〉 and 〈110〉 dendrites on opposite sides of the line a1 = −3a2, because along this
line the coefficient of Q in Eq. (1) is zero. Thus, below this line, the coefficient of Q is negative,
which favors 〈110〉 dendrites, and above it the coefficient is positive, favoring 〈100〉 growth.
Both criteria are shown in Fig. 3, superimposed on the tableau of the phase-field results. One
can see that although the proposed criteria are suggestive of the selection, clearly they are not
predictive.

Figure 3. Dendrite growth direction selection criteria based on minimum of the interfacial
stiffness (upper dashed line) and maximum of the interfacial energy, Eq. 1 (lower dashed line),
superimposed on the results of the phase-field calculations for Ω = 0.4, from Fig. 1.
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2.2. Columnar Growth
Directional solidification (DS) simulations were performed in order to obtain a better comparison
with the experimental results [7, 26] , in particular to see if seaweed-type morphologies can
be modeled at intermediate zinc compositions (i.e., for anisotropy parameters producing
hyperbranched equiaxed dendrites). The parameters used for these simulations are listed in
Table 2. These simulations were performed in a rectilinear domain, extended in the pulling
direction, which is aligned with the x−axis. The x− z faces were periodic, and the x− y faces
had symmetry boundary conditions. For cases where we expected to see 〈100〉 dendrites, the
computational domain in the y−z plane was 192×96 dxmin, whereas for cases where we expected
to see 〈110〉, the computational domain in the y−z plane was 168×48 dxmin. These dimensions
permit a crystal of the corresponding crystalline orientation to grow periodically without being
overly constrained by the boundaries.

Table 2. Dimensionless parameters used in the DS simulations, along with their dimensional
equivalents. All parameters that are not specifically mentioned here are the same as the values
used in the equiaxed growth simulations. ṽF is the velocity of the reference frame.

Dimensionless Value Dimensional Units
parameter equivalent

l̃T 1× 104 G = 20 777 K/m
ṽP 0.25 vP = 543 µm/s
ṽF 0.25 vF = 543 µm/s
Ωb 0.45 - -

In DS, the tip speed is controlled by the pulling velocity. However, as the simulation domain
follows the dendrite tip during its growth, we can define a supersaturation Ωb of the bottom
boundary of the domain (or equivalently its temperature). If Ωb = 1, and providing the box is
long enough along the x-direction, the whole mushy zone will be simulated. In order to strike
a balance between having enough of the dendrite in the domain to be interesting, and higher
computational cost, we chose Ωb = 0.45 for the results presented below. We again started with
a small spherical seed, this time placed at (x, y, z) = (0, ymax/2, 0), i.e., along one edge of the
base of the domain. Most of the simulations were run in a fixed reference frame (ṽF = 0) for
an initial period to allow the seed to develop, then the simulation was restarted from that point
with ṽF = ṽP .

If the preferred crystallographic growth direction, determined from the simulations of
equiaxed growth, was aligned exactly with the pulling direction, the expected dendritic growth
patterns appeared. It is more interesting to consider cases where the crystallographic axes are
rotated by an angle θ about the z−axis, such that neither the 〈100〉 nor the 〈110〉 direction is
parallel to a coordinate axis. In this way, we can observe the interaction of the preferred growth
direction with the constraint imposed by the thermal gradient.

Figures 4 and 5 present results for three cases, with parameter values chosen from values along
the diagonal scan in Fig. 1. Each figure shows two fully developed dendrites and two outlined
boxes, side-by-side. One of the dendrites is colored by the surface concentration to enhance
contrast, whereas the other is simply a reflecting surface. The simulations were performed in
just half of one of those boxes, with the results repeated across the periodic face, and reflected
across the back face for clarity. Note that this is consistent with the applied periodic and
symmetry conditions on the respective faces.

The first case corresponds to the parameter set a1 = 0.064, a2 = −0.002, θ = 5◦. From
the results from our study of equiaxed growth, we would expect to find 〈100〉 dendrites. Figure
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(a) a1 = 0.064, a2 = −0.002, θ = 5 (b) a1 = 0.016, a2 = −0.008, θ = 40

Figure 4. Computed DS dendrites for parameter sets that produce (a) 〈100〉, or (b) 〈110〉
dendrites in equiaxed growth. Note the difference in the size of the computational domain for
the two cases.

4(a) shows that the dendrite is indeed of 〈100〉 type, but its growth direction is slightly biased

towards the direction of the gradient, i.e. between 〈100〉 and ~G. Note that the combination of the
growth non-parallel to the pulling direction and the imposed moving frame causes the dendrite to
translate along the y−axis, where it re-enters the domain upon reaching the periodic boundary.
Figure 4(b) shows the results of simulation with a1 = 0.016, a2 = −0.008, θ = 40◦. This
parameter set produced 〈110〉 dendrites in equiaxed growth (see Fig. 1). As for the preceding
case, this simulation produces the expected orientation, a 〈110〉-type dendrite, growing at an
intermediate angle between the 〈110〉 and the pulling direction, as we saw previously for the
〈100〉 dendrite in Fig. 4(a).

(a) a1 = 0.04, a2 = −0.005, θ = 40 (b) X-ray tomography (100) section

Figure 5. (a) Computed DS dendrites for a parameter set that produces a hyperbranched
structure in equiaxed growth. (b) X-ray micro-tomographic section (parallel to a (100) plane)
of a directionally solidified Al-50 wt pct Zn alloy.

The most interesting case, shown in Fig. 5(a), corresponds to the parameter set a1 = 0.040,
a2 = −0.005, θ = 40◦, which lies in the middle of the hyperbranched region in equiaxed growth.
The resulting growth pattern produces a primary trunk that tries to follow 〈110〉, but continually
splits and produces a branch that returns toward the pulling direction. This structure looks
remarkably similar to the microstructure obtained from X-ray tomographic measurements on a
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directionally solidified Al-50 wt pct Zn alloy, shown in Fig. 5(b) [26].

3. Conclusion
We have presented phase-field calculations for both equiaxed and directional solidification to
investigate the role of interfacial energy anisotropy in the selection of dendrite orientation.
Working in the range of parameters consistent with experimental measurements, we find
distinct regions with 〈100〉 and 〈110〉 primary dendrites, and an intermediate region where both
characters are observed, resulting in hyperbranched dendrites. We show that the hyperbranched
structures result from tip splitting of the 〈100〉 or 〈110〉 primary directions due to the influence of
the competing 〈110〉 or 〈100〉 character, respectively. In directional solidification, the constraints
of the imposed thermal gradient and growth direction have a strong effect, especially in the
hyperbranched region where neither character is dominant. In particular, in the region of
anisotropy parameter space where hyperbranched dendrites are found in equiaxed growth, under
DS conditions we observe alternating sidebranches, consistent with experimentally observed
microstructures in Al-Zn alloys.
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