
1996 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 7, JULY 2012

OFDM Channel Estimation Based on
Impulse Response Decimation:
Analysis and Novel Algorithms

Stefano Rosati, Member, IEEE, Giovanni E. Corazza, Senior Member, IEEE, and
Alessandro Vanelli-Coralli, Senior Member, IEEE

Abstract—In this paper, OFDM data-aided channel estimation
based on the decimation of the Channel Impulse Response (CIR)
through the selection of the Most Significant Samples (MSS) is
addressed. Our aim is to approach the Minimum Mean Square
Error (MMSE) channel estimation performance, while avoiding
the need for a-priori knowledge of channel statistics (KCS). The
optimal set of samples is defined in the instantaneous and average
senses. We derive lower bounds on the estimation mean-square
error (MSE) performance for any MSS selection strategy. We
show how MSS-based channel estimation can approach these
MSE lower bounds. We introduce novel MSS strategies oriented
towards instantaneous decimation (Instantaneous Energy Selec-
tion - IES), and windowed decimation (Average Energy Selection
- AES). We also consider decimation via Threshold Crossing
Selection (TCS), which we characterize analytically, to derive
the optimum threshold in the minimum MSE sense. We also
propose a sub-optimal method for threshold setting that does
not require KCS. Finally, we provide numerical results in terms
of both MSE estimation performance and Bit Error Rate (BER)
of a coded OFDM system using the proposed channel estimators,
to show that they indeed approach MMSE performance.

Index Terms—OFDM, channel estimation, minimum mean
square error (MMSE), impulse response, pilot tone, DVB, thresh-
old selection.

I. INTRODUCTION

ORTHOGONAL Frequency Division Multiplexing
(OFDM) [1] [2] has recently become the most attractive

modulation scheme in broadband wireless systems for
its flexibility and ability to cope with strongly dispersive
channels using low-complexity equalizers, with a single
tap per subcarrier. This is due to the fact that propagation
channels which are frequency selective over the entire OFDM
bandwidth may appear non-selective on each narrowband
subcarrier. In particular, this is crucial for the case of
OFDM single-frequency networks, where in order to achieve
seamless radio coverage, identical signals are transmitted
from widely separated sites. In this case, signal replicas may
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come with very large differential delays, giving rise to very
sparse channel profiles.

Clearly, the equalizer will perform successfully if and only
if accurate estimation of the Channel Transfer Function (CTF),
or equivalently of the Channel Impulse Response (CIR), is
performed at the receiver. In other words, channel estimation
becomes the critical function which largely determines the
overall receiver performance. For this reason, OFDM channel
estimation is normally Data-Aided (DA) whereby known
pilots are multiplexed into OFDM symbols, usually drawing a
regular pattern of known subcarriers with constant inter-pilot
frequency spacing. Using these pilots, channel estimation is
performed in two steps: first, the CTF is punctually estimated
on pilot subcarriers; then, channel estimates are interpolated
over data subcarriers. These steps can be followed by averag-
ing over several OFDM symbols, if useful.

In general, DA channel estimation methods differ in the
way they interpolate or filter punctual DA Least Squares
(DA-LS) channel estimates over data subcarriers. This can
be accomplished using two-dimensional (2D) time-frequency
Wiener Filtering (WF) [3], which is optimal in the Minimum
Mean Square Error (MMSE) sense. Unfortunately, 2D-WF
requires perfect knowledge of the channel statistics (KCS) and
is burdened by large complexity. Complexity can be reduced
if one abandons two-dimensional estimation in favor of a
separate time and frequency approach. In [4], Hoeher et al.
showed that by applying one-dimensional Wiener filters over
time and frequency it is possible to reduce complexity and
achieve good performance, if KCS is available. On the other
hand, channel estimation can be accomplished by elaborating
raw estimates in the time-domain using a Discrete Fourier
Transform (DFT) based scheme. In [5], the MMSE channel
estimator working in the time domain, which also requires
complete KCS, has been proposed. In order to reduce com-
putational complexity, using the singular value decomposition,
several low-rank approximations to the MMSE estimator have
been proposed in [6], [7]. On a more pragmatic basis, methods
which require the minimum possible KCS and are applicable
to any kind of Power Delay Profile (PDP) and in particular to
sparse channels are appealing. In [8], Morelli and Mengali
compared the MMSE approach with Maximum Likelihood
(ML) channel estimation where complete KCS is not required,
but only the PDP domain. This latter approach works well with
dense multipath channels and quasi-uniform profiles. KCS
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agnostic channel estimation can be achieved by interpolating
the punctual DA-LS estimates using a DFT-based scheme
without any elaboration in the time domain. Unfortunately,
simplicity here goes along with mediocre performance [7],
and much research work is being devoted to improving this
approach without increasing complexity in any significant way.

The main idea to achieve this goal is the following: after the
Inverse DFT (IDFT), not all the CIR samples are significant,
because many may correspond to delays where no propagation
channel paths are actually present. Therefore, if one can devise
a technique to decimate the CIR and retain only the significant
samples, performance can be improved without complexity
increase. With this aim, Minn et al. [9] proposed to select only
the J strongest samples, identified here as the Most Significant
Samples (MSSs) of the CIR estimate, J being obviously a
crucial design parameter. It is shown here that in the ideal
case where J equals the actual number of non-zero channel
taps, Nt, very good performance can be achieved; but when
J differs from Nt, performance degrades rapidly. Instead of
pre-determining a-priori the total MSS number, Kang et al.
[10] proposed to select those samples for which the square
module is above a threshold. We refer to this approach as
Threshold Crossing Selection (TCS). In this way, a dynamic
number of MSSs is selected per OFDM symbol. It is clear that
the threshold value is critical to the algorithm performance.
While in [10] the threshold was set according to heuristics,
in [11] a genie-aided approach was followed, based again on
ideal TCS.

The purpose of this paper is threefold. First, by defining
the optimal set of selected samples, which minimizes the
MSE, in both instantaneous and average senses, we derive
lower bounds on the MSE performance for any MSS selection
strategy. Comparing the obtained lower bounds with MMSE
channel estimation performance, we conclude that MSS-based
channel estimation has the potential to reach comparable
performance with respect to the optimum MMSE approach, in
particular when the number of pilots is significantly larger than
the number of non-zero channel taps (as customary). Second,
we analytically derive the optimum threshold value for TCS in
the minimum MSE sense. We show that, by using the optimum
threshold, TCS can tightly approach MMSE at high signal-to-
noise ratio (SNR) values. Unfortunately, the optimal threshold
depends on the actual channel PDP. For this reason, we
propose a sub-optimal approach for threshold setting, which
we show to yield comparable performance to the optimal
threshold case with robustness against PDP variations. Third,
we propose two novel MSS selection strategies, identified
as Instantaneous Energy Selection (IES) and Average Energy
Selection (AES), which do not require KCS, but only estima-
tion of the received SNR. In particular, IES, as well as TCS,
aims to decimate CIR estimate samples considering only their
instantaneous energy, hence both IES and TCS are oriented
towards instantaneous selection of MSSs. On the other hand,
AES, which is oriented towards a windowed selection of
MSSs, extends the observation window over several OFDM
symbols, and, as a consequence of noise reduction, it closely
approaches the MMSE performance, even for low SNR.

The remaining Sections are organized as follows. In Section
II, the system model, the punctual DA estimation and the DFT

interpolation, which are common to all proposed methods,
are illustrated. The MSS MSE lower bounds are derived in
Section III. In Section IV, TCS is discussed, in particular in
IV-A the MSE analytical expression is derived, while the Sub-
Optimal Threshold (SOT) method is proposed in Section IV-B.
In Section V, the novel selection strategies, IES and AES, are
presented. Numerical results are reported in Section VI; and,
finally, conclusions are drawn in Section VII.

II. SYSTEM MODEL AND DA CHANNEL ESTIMATION

We consider an OFDM signal using N subcarriers, where
the �-th OFDM symbol, s̄� = (s0,�, . . . , sN−1,�), is obtained
as the N -point IDFT of the vector of complex symbols x̄� =
(x0,�, . . . , xN−1,�), as follows

si,� =
1√
N

N−1∑
k=0

xk,� ej 2πki/N i = 0, . . . , N − 1 (1)

As discussed in the Introduction, the complex symbols xk,�

carry either data information, ak,�, or pilot reference symbols,
pk,�, used for DA channel estimation and synchronization. We
assume to have uniformly scattered pilot tones in each OFDM
symbol 1 (constant pilot frequency spacing), with periodic
position shifts from symbol to symbol to improve coverage
of the entire frequency comb [12]. Note that, to improve
channel estimation performance, pilots can be transmitted with
an energy boost factor β2 with respect to data symbols (i.e.
E[p2k,�] = β2Es, where E[a2k,�] = Es). Let P (�) be the set of
pilot subcarrier indices in the �-th OFDM symbol, identified
as pilot pattern, of size Np. We can write

xk,� =

{
pk,� if k ∈ P (�)

ak,� if k /∈ P (�)
(2)

In order to avoid intersymbol interference and maintain
subcarrier orthogonality even in multipath, a cyclic prefix of
length Ng samples is inserted at the beginning of each OFDM
symbol [13]. This is followed by digital to analog (D/A)
conversion at sample rate R = 1/T , and using an appropriate
analog transmission filter, gT (τ), so that the time continuous
signal can be written as

s(t) =
1√
Tu

∞∑
�=−∞

N−1∑
k=0

rect

(
t

TS
− 1

2
− �

)

xk,�e
j 2π 1

Tu
k(t−Tg) ∗ gT (τ) (3)

where ∗ denotes convolution, rect (t) represents the rectangu-
lar function2, Tu = NT and Tg = NgT represent respectively

1In many commercial OFDM systems, due to the insertion of null carriers at
the edge of the OFDM spectrum, the assumption of uniformly scattered pilots
does not hold strictly. However, it is worthwhile to use such an assumption
(as also in [5]–[7], [9]–[11]) for two reasons: first, because it is the best pilot
arrangement in terms of channel estimation minimum MSE for a given number
of pilots and fixed energy [12]; second, because it allows a mathematical
analysis which leads to algorithms which are proved by simulation to perform
well even when the assumption does not hold strictly (i.e. considering the
insertion of null carriers as guard bands). In fact in Section VI it is shown that,
the proposed channel estimation schemes, which have been derived from a
model assuming uniformly scattered pilot tones, perform well also considering
commercial systems having non-uniformly scattered pilot tones.

2 rect (t) = 1 if |t| ≤ 1
2
, 0 otherwise
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the OFDM useful symbol duration, and the guard interval
which is associated to the cyclic prefix. Therefore TS =
Tu + Tg is the total OFDM symbol duration, and fu = 1/Tu

is the subcarrier spacing. Notably, the normalization factor
1√
Tu

= 1√
N

· 1√
T

accounts for both the IDFT and the D/A
normalization factors.

The OFDM signal is transmitted over a time-varying fre-
quency selective fading channel, under the assumption that the
channel coherence time exceeds TS , which is necessary for
correct OFDM operations. The baseband equivalent channel
response can be modelled as a tapped delay line, while the
received signal will be immersed in Additive White Gaussian
Noise (AWGN). Assuming that the receiver filter gR(t) does
not introduce linear distortion, and sampling the received
signal every T seconds, yields

r(uT ) =

L−1∑
i=0

hi(uT ) s(uT − iT ) + n′(uT ) (4)

where n′(uT ) is the complex Gaussian noise sample with zero
mean and N0 variance, hi(t) represents the i-th channel tap
complex gain, which comprises both channel propagation and
filtering effects, and L is the length of the channel tapped delay
line. In Rayleigh fading conditions, at any time instant hi(uT )
can be modelled as a zero-mean complex Gaussian random
variable. The total average channel energy is normalized to
unity, i.e.,

∑
iE[hi(uT )

2] = 1. Removing the guard interval
and re-arranging the vector at the input of the DFT, the
samples belonging to the �-th OFDM symbol can be collected
into a vector r̄� with components:

ri,� = r(((� − 1)(N +Ng) +Ng + i)T )

i = |u|N+Ng
−Ng � = �u/(N +Ng)� (5)

where �·� indicates the smallest integer larger than the argu-
ment. Having assumed that the maximum delay is smaller than
the guard interval duration, (again, this is always verified in
normal OFDM operation [14]), the observed samples at the
output of the DFT are:

yk,� =
1√
N

N−1∑
i=0

ri,� e−j 2πki/N = xk,�Hk,� + nk,� (6)

k = 0, . . . , N − 1 (7)

where nk,� is the complex AWGN sample in the frequency
domain, which still has zero-mean and variance N0, and Hk,�

is the CTF sample at the k-th subcarrier, in the �-th symbol.
The latter can be expressed as:

Hk,� =

L−1∑
i=0

hi,� e−j 2πki/N k = 0, . . . , N − 1 (8)

Since we have assumed that the channel coherence time
exceeds TS , the channel taps remain constant over an entire
OFDM symbol duration, thus we define hi,� = hi(�TS) as the
complex gain of the i-th channel tap during the �-th OFDM
symbol. The collection of the channel taps is identified as
the Channel Impulse Response (CIR), having length L, but
containing only Nt non-zero channel taps. As a consequence
of filtering, propagation paths energy will be spread over
several channel taps, which are therefore correlated. In the

following, we will introduce the assumption of uncorrelated
channel taps as a working hypothesis to derive the TCS
SOT algorithm, and we will drop the assumption in the
numerical results Section, to prove functionality under realistic
conditions.

Considering a generic pilot tone positioned at the k-th
subcarrier in the �-th OFDM symbol, the punctual LS estimate
is given by:

ĤLS
k,� =

yk,�
pk,�

= Hk,� +
nk,�

pk,�
k ∈ P (�) (9)

As discussed previously, DA channel estimation methods dif-
fer in the way they interpolate the punctual observations, ĤLS

k,� ,
over data subcarriers. We consider here the DFT interpolation
approach, which would be optimal in the absence of noise and
with sufficient pilot density3. Under the assumption that pilot
symbols are present in all OFDM symbols, time interpolation
is not strictly necessary, but it can always be added if useful.
Here we focus on the always necessary frequency-domain
interpolation, which is performed in three steps. First, an IDFT
is applied to the vector of punctual estimates to produce a CIR
estimate sample, ĥi,�, as follows

ĥi,� =
1

Np

Np−1∑
k′=0

ĤLS
k(k′),� e−j 2πk′i/Np i = 0, . . . , Np − 1

(10)
where k(k′) is an indexing function which points to the Np

positions of the scattered pilots within the OFDM symbol.
This function has been introduced to point out the fact that
only the Np CTF estimates are considered in the sum. Then,
assuming that Np > L, CTF estimation over the entire
frequency comb can be obtained by zero padding the CIR
over the entire OFDM symbol duration:

ˆ̄hZP
� = {ĥ0,�, . . . , ĥNp−1,�︸ ︷︷ ︸

Np

0, . . . , 0︸ ︷︷ ︸
N−Np

} (11)

and finally by applying a DFT:

ˆ̄HLS
� =DFT {ˆ̄hZP

� } (12)

As will be shown in the following, it is possible to compute
the MSE associated to this DA estimation/DTF interpolation
method in closed form. More importantly, it is possible to
improve the resulting MSE by adopting a suitable sample
selection strategy.

III. MOST SIGNIFICANT SAMPLES SELECTION: MSE
LOWER BOUND

As anticipated in the Introduction, not all CIR estimate
samples are significant; in fact, many samples may correspond
to delays where no channel taps are actually present, and
consequently they only contain noise. Therefore, it is possible
to reduce drastically the noise presence, especially when the

3As consequence of the Nyquist-Shannon sampling theorem, in the absence
of noise and with sufficient pilot density, the DFT interpolation exactly
reconstructs the vector Hk,�.
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Fig. 1. Block diagram of Channel Estimator based on Most Significant
Sample selection.

CIR is very sparse, by decimating the impulse response into
the subset S(�) of most significant samples after the IDFT:

ĥMSS
i,� =

{
ĥi,� if i ∈ S(�)
0 if i /∈ S(�) (13)

The complete block diagram is shown in Fig. 1. Obviously, the
critical aspect of this method is the strategy used in forming
S(�), upon which the MSE is completely dependent. It is
both interesting and essential to obtain a lower bound on the
MSE for DA channel estimation based on MSS selection. The
first step towards the achievement of this goal is to model
statistically the CIR estimate samples, ĥi,�. Substituting (9) in
(10), we obtain

ĥi,� =
1

Np

⎛
⎝Np−1∑

k′=0

Hk(k′),� e−j 2πk′i/Np+

+

Np−1∑
k′=0

nk(k′),�

pk(k′),�
e−j 2πk′i/Np

⎞
⎠ i = 0, . . . , Np − 1

(14)

Thus, we can write the CIR estimate as the sum of the correct
value, hi,�, and a noise component, νi,�:

ĥi,� = hi,� + νi,� (15)

where:

νi,� =
1

Np

Np−1∑
k′=0

nk(k′),�

pk(k′),�
e−j 2πk′i/Np (16)

Due to the statistical independence of the nk,� samples,
the noise components are distributed as zero-mean complex
Gaussian random variables with variance 1/ρNp:

νi,� ∼ Nc

(
0,

1

ρNp

)
(17)

where ρ = β2Es/N0 represents the pilot energy to noise ratio,
and Nc

(
μ, σ2

)
represents the probability density function

of a complex Gaussian random variable with mean μ and
variance σ2. Therefore, the CIR estimate samples, ĥi,�, are
also complex Gaussian random variables distributed as:

ĥi,� ∼
⎧⎨
⎩Nc

(
0, 1

ρNp
+ γ2

i

)
if i ∈ C

Nc

(
0, 1

ρNp

)
if i /∈ C

i = 0, . . . , Np − 1

(18)

where γ2
i represents the average energy of the i-th channel tap

and C is the set of indices corresponding to the Nt samples
where the channel tap energy is greater than zero, i.e. i ∈
C iff γ2

i �= 0.
In selecting or rejecting any CIR estimate sample, four

events are possible:
Noise Excision (NE): A CIR estimate sample, correspond-

ing to a delay where no channel tap energy is present, is
correctly rejected. This corresponds to the very reason at the
heart of MSS, and occurs with probability PNE.

Noise Holding (NH): A CIR estimate sample, correspond-
ing to a delay where no channel tap energy is present, is
reckoned as significant. This case contributes to the MSE with
the noise component contained in the CIR estimate, and occurs
with probability PNH = 1− PNE.

Tap Excision (TE): A CIR estimate sample, corresponding
to a delay where channel tap energy is present, is rejected. This
case contributes to the MSE with the neglected tap energy, and
occurs with probability P TE.

Tap Holding (TH): A CIR estimate sample, corresponding
to a delay where channel tap energy is present, is reckoned as
significant. This case contributes to the MSE with the noise
component contained in the CIR estimate, and occurs with
probability P TH = 1− P TE.

Considering (13) and (15), the estimation square errors
|εi,�|2 = |hi,� − ĥMSS

i,� |2 corresponding to the four events are
given by:

|εi,�|2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if i /∈ C ∧ i /∈ S(�) Noise Excision

|νi,�|2 if i /∈ C ∧ i ∈ S(�) Noise Holding

|hi,�|2 if i ∈ C ∧ i /∈ S(�) Tap Excision

|νi,�|2 if i ∈ C ∧ i ∈ S(�) Tap Holding
(19)

The overall Square Error (SE) for the �-th OFDM symbol can
therefore be written as the sum of three contributions from,
respectively, noise holding, tap excision, and tap holding:

SE(�) =

Np−1∑
i=0

|εi,�|2 =
∑

i∈S(�)\C
|νi,�|2+

+
∑

i∈C\S(�)

|hi,�|2 +
∑

i∈S(�)∩C
|νi,�|2 (20)

where B \ A represents the relative complement of A in B
(i.e. B \ A = {x ∈ B |x /∈ A}). Now we want define the
optimal set of samples, Sopt(�), which minimizes the SE of
the �-th OFDM symbol, SE(�). Note that, if S(�) is a subset
of C, S(�) ⊆ C, then NH is always avoided. However, the
latter is necessary but not sufficient for the optimality of S(�)
in the minimum SE sense. In fact, it is interesting to note that
Sopt(�) can be strictly smaller than C. Intuitively, if a sample
contains an actual CIR tap, but this is overcome by noise,
it pays off to decimated it out of the estimation comb. The
necessary and sufficient condition on the optimality of S(�)
is that i ∈ S(�) iff |hi,�|2 > |νi,�|2, therefore

Sopt(�) ≡
{
i : |hi,�|2 > |νi,�|2, i = 0, . . . , Np − 1

}
(21)

Proof: SE(�) is the sum of Np non-negative terms,
SE(�) =

∑Np−1
i=0 |εi,�|2. For each i we can actually have two
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cases, obtained by grouping holding and excision4 events:

|εi,�|2=
{
|νi,�|2 if i ∈ S(�) Holding

|hi,�|2 if i /∈ S(�) Excision
∀ i = 0, . . . , Np−1

(22)
Therefore, the minimum SE(�) is obtained by minimizing each
term of the above sum separately:

SEmin(�) = min SE(�) =

Np−1∑
i=0

min
{|νi,�|2, |hi,�|2

}
(23)

Hence, if and only if |hi,�|2 > |νi,�|2 for all i ∈ S(�), and
|hi,�|2 < |νi,�|2 for all i /∈ S(�), then SE(�) = SEmin(�).
Considering that both |hi,�|2 and |νi,�|2 are continuous random
variables, and thus, the probability to have |hi,�|2 = |νi,�|2 is
null, the above conditions can be can expressed as in (21).

Although it is clear that only a genie-aided receiver could
find the Sopt(�) as defined above, this is still a very useful
objective even for practical receivers, as discussed in Sections
IV and V. Here, it is important to derive the performance
limits that correspond to the use of Sopt(�). In this case, the
SE for the �-th OFDM symbol reduces to

SEmin(�) =
∑

i∈C\Sopt(�)

|hi,�|2 +
∑

i∈Sopt(�)

|νi,�|2 (24)

By averaging over the channel and noise statistics, it can be
shown that the resulting lower bound on MSE, achievable by
using instantaneously the optimum set of samples Sopt(�), and
identified as MSE(opt), is given by:

MSE(opt) = E[SEmin(�)] =
∑
i∈C

γ2
i

1 + ρNpγ2
i

(25)

The analytical derivation is provided in Appendix A. It is very
interesting to note that the result coincides with the MMSE
expression derived in [7], [8].

It is hard to presume a-priori that the average performance
associated to instantaneous optimal selection, MSE(opt), cor-
responds to the MMSE, since they come from very different
assumptions: the MMSE approach requires ideal KCS, while
the instantaneous optimal selection requires the knowledge on
the specific realizations of the channel response and thermal
noise. This does not mean that MSE(opt) requires complete
knowledge of the channel and the noise realizations, which
could lead to infer that MSE(opt) < MMSE. Indeed, instan-
taneous optimal selection needs just a minimum information (a
binary information) on the specific realizations. It is sufficient
to know whether |hi,�| is greater or smaller than |νi,�|. On the
contrary, the MMSE approach requires full and ideal KCS.

However, since finding the exact Sopt(�) requires aid from
a genie, we investigate also an alternative approach. The idea
is to make decisions based on average rather than instanta-
neous quantities, the advantage being that estimation becomes
possible. Assuming wide-sense stationarity, which eliminates
the dependence on �, we define the optimal set in the average
sense, Savg , as:

Savg ≡ {
i : E

[|hi|2
]
> E

[|νi|2] , i = 0, . . . , Np − 1
}
(26)

4Note that in case i /∈ C it holds |hi,�|2 = 0

The above is general and can be applied to any channel
conditions. Specifying it for our channel model, it becomes

i ∈ Savg ⇐⇒ γ2
i >

1

ρNp
(27)

Therefore, the MSE(avg), corresponding to the use of Savg

can be written as:

MSE(avg) =
∑

i∈C\Savg

E
[|hi|2

]
+

∑
i∈Savg

E
[|νi|2] = (28)

=
∑

i∈C\Savg

γ2
i +

∑
i∈Savg

1

ρNp
(29)

As a particular case, when ρNp is large enough to ensure that
(ρNp)

−1 < γ2
i , ∀i ∈ C, then Savg ≡ C, and it holds:

MSE(avg) =
∑
i∈C

E
[
|νi|2

]
=

Nt

ρNp
(30)

It is interesting to compare the MSE(avg) to LS and
MMSE performance. Following lines similar to [7], the MSE
expression for LS, MSE(LS), is given by:

MSE(LS) =

Np−1∑
i=0

E
[
|hi − ĥi|2

]
=

Np−1∑
i=0

E
[
|νi|2

]
=

1

ρ

(31)

We observe that, for Savg ≡ C, MSE(avg) improves over
MSE(LS) by a factor equal to Nt

Np
< 1. In practice, Nt is

much smaller than Np, yielding a much lower MSE value.
Regarding MMSE estimation, as anticipated previously, under
the assumption of uniformly scattered pilots the MMSE is
given by:

MMSE =
∑
i∈C

γ2
i

1 + ρNpγ2
i

(32)

Assuming a uniform power delay profile, where all the Nt

taps have equal energy:

γ2
i =

{
1
Nt

i ∈ C
0 i /∈ C (33)

the MMSE becomes:

MMSE =
1

1 +
ρNp

Nt

=
1

1 + 1
MSE(avg)

(34)

We observe that lim ρNp
Nt

→∞ MMSE = MSE(avg), which

confirms that the average approach is asymptotically opti-
mum. In practice, MSE(avg) approaches MMSE performance
rapidly. As an example, Fig. 2 shows the ratio between
MSE(avg) and MMSE in the case of uniform power delay
profile, for several values of SNR, and of the ratio between
number of pilots over number of taps. In the end, MMSE is the
ultimate performance limit for both instantaneous and average
strategies.

Our purpose is now to investigate selection strategies which
can nearly achieve the MMSE performance without KCS. As
anticipated in the Introduction, in this paper we deal with
three different strategies: Threshold Crossing Selection (TCS),
Instantaneous Energy Selection (IES), and Average Energy
Selection (AES). TCS and IES, which decimate CIR samples
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Fig. 2. MSE(avg) normalized to the MMSE as a function of the ratio
between number of pilots over number of taps, for several values of SNR.
Using uniform channel and β2 = 1.

without using memory from previous OFDM symbols, are
oriented towards the use of Sopt(�). On the other hand, AES,
which decimates CIR samples by extending the observation
window over several OFDM symbols, is oriented towards the
use of Savg .

IV. THRESHOLD CROSSING SELECTION

The TCS strategy for identifying the MSS set, which has
been treated in [9], [10], [11], [15], [16], is based on the
concept that only those samples which overcome a threshold
ξ in absolute value are retained:

STCS(�) ≡
{
i : |ĥi,�| > ξ, i = 0, . . . , Np − 1

}
(35)

In [10, eq. (21)] the threshold ξ has been empirically set equal
to the square root of twice the noise level (which should be
estimated):

ξ =

√
2

ρNp
(36)

In [11, eq. (6)], a criterion is proposed for establishing a set
of threshold values that requires the knowledge of the entire
CIR power profile:

ξi =

√
1

ρNp
ln (2 + ρNpγ2

i ) i = 0, . . . , Np − 1 (37)

In [15] we proposed a pragmatic approach to set the threshold
without KCS, based on a specification for the overall NH
probability:

ξ =

√
ln (Np/PONH)

ρNp
(38)

where PONH is a design parameter. In [16] the same threshold
setting has been applied to OFDM time-frequency synchro-
nization problems.

These methods are reasonable but based on heuristics.
Here, we find the optimal threshold by deriving the closed
form expression for the TCS MSE performance, and then by
minimizing it with respect to ξ.

A. TCS MSE: Analytical Expression

Adopting TCS with a threshold ξ, and considering (18) and
(35), we can write the TH probability in the i-th sample, as:

P TH
i = Prob

[
|ĥi| > ξ

∣∣ i ∈ C
]
= e

− ρNpξ2

1+γ2
i
ρNp ∀ i ∈ C (39)

Similarly, the NH probability is given by:

PNH
i = Prob

[
|ĥi| > ξ

∣∣ i /∈ C
]
= e−ρNpξ

2 ∀ i /∈ C (40)

Notably the NH probability does not depend on i, hence we
will refer to it as PNH. In summary, adopting TCS, the MSE
can be found to be [15]:

MSETCS =

Np−1∑
i=0

E
[|εi|2] =

=
∑
i∈C

(
P TH
i E

[|νi|2|TH
]
+ P TE

i E
[|hi|2|TE

])
+

+
∑
i/∈C

PNHE
[|νi|2|NH

]
=

=
∑
i∈C

⎡
⎢⎣e

− ρNpξ2

1+γ2
i
ρNp

ρNp
+

(
1− e

− ρNpξ2

1+γ2
i
ρNp

)
(
γ2
i − ξ2

eξ
2/γ2

i − 1

)]
+

+ (Np −Nt)
e−ρNpξ

2 (
1 + ρNpξ

2
)

ρNp
(41)

Our aim here is to derive analytically the optimal threshold
ξopt which minimizes the MSE:

ξopt = arg min
ξ

MSETCS(ξ) (42)

A necessary condition is obtained by setting the first derivative
of (41) to zero:

∑
i∈C

2ξ

⎧⎪⎨
⎪⎩ e

− ρNpξ2

1+γ2
i
ρNp

1 + γ2
i ρNp

⎡
⎣ρNp

⎛
⎝γ2

i − ξ2

e
ξ2

γ2
i − 1

⎞
⎠ − 1

⎤
⎦+

+
1 + e

ξ2

γ2
i

(
ξ2

γ2
i
− 1

)
(
e

ξ2

γ2
i − 1

)2

(
1− e

− ρNpξ2

1+γ2
i
ρNp

)⎫⎪⎪⎪⎬
⎪⎪⎪⎭+

− 2ρNpξ
3e−ρNpξ

2

(Np −Nt) = 0 (43)

Equation (43) is in an implicit form, and can only be solved
numerically, with knowledge of the channel tap power profile
γ2
i , i ∈ C, and pilot energy to noise ratio ρ. We therefore

proceed as follows.

B. Sub-Optimal Threshold (SOT)

In order to achieve an explicit solution, as well as to avoid
the required KCS, let’s introduce a few assumptions and
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approximations. First, we assume a uniform channel tap power
profile as in (33), so that (43) becomes:

2Ntξ

⎧⎨
⎩e

− ρNtNpξ2

Nt+ρNp Nt

Nt + ρNp

[
ρNp

(
1

Nt
− ξ2

eNtξ2 − 1

)
−1

]
+

+
1+eNtξ

2(
Ntξ

2−1
)

(
eNtξ2 − 1

)2
(
1−e−

ρNtNpξ2

Nt+ρNp

)}
+

− 2ρNpξ
3e−ρNpξ

2

(Np −Nt) = 0 (44)

Second, note that Nt + ρNp ≈ ρNp, which is justified
even in low SNR regions, since the number of pilots Np is
typically large enough to ensure that ρNp >> Nt. Using this
approximation, after considerable algebra, we obtain:

e(ρNp−Nt)ξ
2

=
Np −Nt

ρNpξ2 − 1

(
ρNpξ

Nt

)2

(45)

Finally, exploiting the fact that ρNpξ
2 >> 1, we have

Np −Nt

ρNpξ2 − 1

(
ρNpξ

Nt

)2

≈ (Np −Nt)ρNp

N2
t

(46)

and we can find the following explicit solution for the sub-
optimal threshold:

ξso =

√√√√ ln
(

(Np−N̂t)ρNp

N̂2
t

)
ρNp − N̂t

(47)

where N̂t is a parameter estimating the number of non-zero
taps of the CIR. Of course, the best performance is obtained
in case of N̂t = Nt, however, as shown in the numerical
results, the SOT approach is robust even in the case of a
mismatch between Nt and N̂t. Furthermore, the SOT values
obtained using expression (47), and those obtained by solving
numerically (44) are very close for all SNR values, and thus
the approximations are justified and practically useful.

V. ENERGY-BASED MSS SELECTION STRATEGIES

We now discuss two approaches based on received energy.
The first, IES, pursues instantaneous decimation and therefore
seeks to approach Sopt(�). The second, AES, averages over a
window of several OFDM symbols, and thus goes after Savg .
Neither of two methods require KCS, but only the estimation
of the received SNR.

A. Instantaneous Energy Selection

The idea is to orderly select the strongest CIR estimate
samples until the collected energy reaches the estimate of
the total received useful power. The selection is performed in
each OFDM symbol, independently. We identify this strategy
as Instantaneous Energy Selection (IES). Firstly, we sort
the vector of CIR estimate samples in descending order of
absolute values:

|ĥi(0),�| ≥ |ĥi(1),�| ≥ . . . ≥ |ĥi(j),�| ≥ . . . ≥ |ĥi(Np−1),�|
(48)

where i(j) is an indexing function introduced to represent
the sorting function applied to the CIR estimates samples, in

descending order. Then, we keep accumulating the MSS as
long as the total energy remains below the target T :

SIES(�) ≡
{
i(j) :

j−1∑
v=0

|ĥi(v),�|2 ≤ T, j = 0, . . . , Np − 1

}
(49)

The target T corresponds to the estimate of the total received
useful power:

T =

Np−1∑
i=0

|ĥi|2 −
Np−1∑
i=0

E[|νi|2] =
Np−1∑
i=0

|ĥi|2 − 1

ρ
(50)

B. Average Energy Selection

All selection strategies described so far were pointing
at finding Sopt(�). Unfortunately, their instantaneous nature
makes them vulnerable to noise sparks which are erroneously
reckoned as channel taps. As an alternative, it may be more
efficient to point at Savg by extending the observation window
over several OFDM symbols, which allows filtering. As a
consequence, higher reliability of the MSS selection and there-
fore better estimation performance are expected, especially
in low SNR conditions. In particular, we select as MSSs
those samples whose CIR estimate sample energy, measured
in an observation window of W OFDM symbols, overcomes
a threshold, ζ:

SAES(�) ≡
{
i : Êi,� > ζ, i = 0, . . . , Np − 1

}
(51)

where:

Êi,� =
1

W

�∑
v=�−W+1

|ĥi,v|2 (52)

The observation window length, W , is an important parameter
upon which estimation performance is strongly dependent. In
the case of wide-sense stationary channels, the larger W the
more accurate the energy estimation, but this increases latency
and required memory at the receiver. Also, in the case of non-
stationary channels, it is necessary to limit W in order to track
time varying channel statistics.

We derive the noise and tap holding probabilities. Since for
i /∈ C the samples ĥi,� are mutually statistically independent
complex Gaussian variables, with zero mean and variance
(2ρNp)

−1 per branch, PNH for AES with observation window
length W and threshold ζ is given by:

PNH =Prob
[
Êi,� > ζ

∣∣ i /∈ C
]
= (53)

=e−WρNpζ
W−1∑
v=0

(WρNpζ)
v

v!
∀i /∈ C (54)

The analytical derivation is provided in Appendix B.
On the other hand, considering the case i ∈ C, the samples

ĥi,� are statistically correlated. In particular, time correlation
depends on the ratio between the channel coherence time,
which depends on the terminal speed, and the OFDM symbol
duration. In the following, we analyze two extreme cases,
considering a very rapid and very slow channel respectively.
In the first case, we assume that the Doppler spread is large
enough to break the time correlation of the CIR estimate
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samples, belonging to different received OFDM symbols5.
The corresponding ĥi,� samples in successive OFDM sym-
bols result to be mutually statistically independent complex
Gaussian variables, with zero mean and branch variance
γ2
i /2 + (2ρNp)

−1. Consequently, the TH probability is given
by:

P TH
i =Prob

[
Êi,� > ζ

∣∣ i ∈ C
]
=

=e
− WρNpζ

1+γ2
i
ρNp

W−1∑
v=0

1

v!

(
WρNpζ

1 + γ2
i ρNp

)v

∀ i ∈ C (55)

In the second case, we assume that the Doppler spread is small
enough to guarantee a quasi-static channel within the observa-
tion window length; therefore, the CIR sample estimates, ĥi,�,
can be seen as the sum of a static channel complex coefficient
6 h̃i = hi,�, and noise. The corresponding ĥi,� in successive
OFDM symbols are again mutually statistically independent
complex Gaussian variables (because noise is white), with
mean h̃i and variance per branch (ρNp)

−1. In this case, Êi

is distributed as a non-central chi-square distribution with
non-centrality parameter λi = |h̃i|2. The corresponding TH
probability is given by:

P TH
i = Prob

[
Êi,� > ζ

]
= 1− (ρNp)

W

γ2
i Γ(W )∫ ζ

0

∫ ∞

0

xW−1e−(λiγ
2
i +ρNp(x+Wλi))

0F1

(
W ; (ρNp)

2Wλix
)
dλi dx (56)

The analytical derivation is provided in Appendix B.
Similarly to the TCS case, the appropriate ζ setting depends

on channel statistics, as well as on W . Since the analytical
derivation of the optimal threshold ζ in this case is unfeasible,
due to the fact that several integral forms are involved, we
propose an alternative strategy which, as we show in the
following, achieves performance very close to the MSE(avg)
lower bound. Assuming that W is large enough to eliminate
noise holding events, we can set the threshold ζ according to
the definition Savg , here re-written in terms of Ei:

i ∈ Savg ⇐⇒ Ei >
2

Npρ
= ζ (57)

Substituting (57) into (53), we obtain a very simple and
intuitive expression:

PNH = e−2W
W−1∑
v=0

(2W )v

v!
(58)

It is interesting to note that, in this case, the noise holding
probability depends only on the observation window length.
The performance of this method is very good for large W, as
can be expected, while it reduces to TCS for W = 1, in which
case other threshold setting strategies are more appropriate.

VI. NUMERICAL RESULTS AND DISCUSSION

The purpose of this Section is twofold: first, we assess pure
channel estimation performance in terms of MSE and validate

5Since we assumed that hj(t) is constant over a single OFDM symbol,
this corresponds to a block fading channel model.

6here we can drop the index � because in quasi-static channel the channel
taps are assumed to be constant over the entire observation windows

TABLE I
NORMALIZED POWER DELAY PROFILE OF THE CONSIDERED MULTIPATH

CHANNELS

Taps #1 #2 #3 #4 #5 #6
Uniform Delay[μs] 0.0 1.05 2.1 3.15 4.2 5.25
Channel Power[dB] -7.78 -7.78 -7.78 -7.78 -7.78 -7.78
ITU Delay[μs] 0.0 0.2 0.5 1.6 2.3 5.0
TU6 Power[dB] -7.22 -4.22 -6.22 -10.22 -12.22 -14.22
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Fig. 3. Comparison between analytical, obtained from eq. (41), and simulated
performance of several TCS selection strategies with uniform channel with
Nt = 6.

our analytical models; second, we evaluate the impact of using
the proposed channel estimators in terms of BER at the output
of the channel decoder. In order to have practically significant
results, we consider the standardized coded OFDM system,
DVB-SH [17]. DVB-SH foresees the 3GPP2 turbo code and a
convolutional interleaver. In order to set the system dynamics,
we assume that the DVB-SH system is operating in S-band
(2 GHz) with 5 MHz of bandwidth, and the terminal speed is
50 km/h. We used Monte Carlo simulations to evaluate both
MSE and BER. Two different channel models are used: a 6-
taps uniform channel and the ITU-TU6 channel, the power
delay profiles of which are reported in Table I. As outlined
in Section II, in the analysis we have assumed a uniformly
scattered pilot pattern over the entire frequency comb, which,
as shown in [12], is the best pilot arrangement in terms of
channel estimation MMSE. However, DVB-SH, as well as
other standards, does not provide a perfectly uniform scattered
pilot pattern because of the insertion of guardbands. In fact
this standard uses N = 1024 carriers, with Np = 71 scattered
pilots distributed over the first Na = 852 active subcarriers.
As a consequence, the resulting pilot pattern is not optimal in
terms of MSE, and the CIR taps become correlated [8]. To
the end of assessing the impact on the performance of our
proposed algorithms we also report simulation results in the
presence of CIR correlation.

A. MSE performance

Our intent here is first to validate our analytical models
through numerical results obtained by simulation and second
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Fig. 4. Comparison between the performance of several threshold based
MSS selection strategies with TU6 and uniform channel.
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Fig. 5. Comparison between TCS with Sub-Optimal threshold, TCS [15],
and the method proposed in [9] using TU6 channel (Nt = 6). Different
mismatch levels between the actual and the assumed number of taps.

to assess the performance and robustness of the proposed
MSS algorithms against channels with different power delay
profiles, and non-uniform pilot pattern.

In Fig. 3, we report the results for the proposed TCS
algorithms (with optimal and sub-optimal thresholds) and for
the state-of-art alternatives over the uniform channel using
a uniformly scattered pilot patterns. We observe that the
MSETCS computed with (41) and the appropriate threshold
value, is in perfect agreement with the numerical performance
of all TCS algorithms. Comparing TCS methods, SOT reaches
the best results among the practical algorithms, and is also very
close to the optimum threshold results. At MSE = 10−2 the
gain is larger than 10 dB and 6 dB with respect to the LS and
TCS [10] methods, respectively. Even the criterion proposed
in [11], which takes advantage of the KCS, is outperformed
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Fig. 6. Comparison between the proposed MMS selection strategies based
on energy estimation, using TU6, 50 km/h.

by SOT. Moreover, SOT is also close to MMSE at high SNR.
Clearly the uniform channel is the best match for our SOT

strategy. Therefore, it is important to verify the performance
in non-uniform channels. In Fig. 4, the numerical results
using both uniform and ITU-TU6 channels are illustrated. It
is important to note that the SOT performance for the ITU-
TU6 channel is only slightly worse than the a uniform channel
case. Furthermore, comparing TCS methods, SOT has the best
performance for both considered channels, and for high SNR
it approaches MMSE.

In Fig. 5, we report the comparison between SOT and
the MSS-J selection strategy proposed in [9] using the ITU-
TU6 channel and uniform pilot pattern. Since both methods
require the knowledge of the number of the channel taps, Nt,
we tested the robustness to a mismatch on this parameter.
Even in the case of no mismatch, SOT outperforms MSS-J.
When J differs from Nt, MSS-J performance degrades rapidly.
On the other hand, SOT has good performance even in the
case of a large mismatch. Furthermore, in Fig. 5, we also
report the comparison between SOT and TCS proposed in
[15] considering two indicated values of the parameter PONH.
SOT outperforms TCS proposed in [15], even in the case of
a mismatch.

Fig. 6 shows the numerical results considering the ITU-TU6
channel, for the proposed IES and AES strategies. Regarding
the AES method, the threshold ζ has been set according to
(57). Numerical results show that, by using an observation
window equal or greater than 10 OFDM symbols (W ≥ 10),
AES approaches very closely MMSE outperforming all other
considered methods (not reported in this Figure). Even in the
case of W = 5, AES outperforms the other selection strategies
in the low SNR region. Using smaller W , AES performance
degrades.

As discussed before, it is necessary to verify the estimation
performance of the proposed algorithms when the condition of
uncorrelated CIR taps is violated. In Figs. 7 and 8, we compare
the proposed schemes (SOT, IES and AES) with the state-
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Fig. 7. Channel estimation performance of the proposed algorithms, SOT and
AES with W = 10, compared with the state-of-art alternatives, considering
both the cases of uniform and non-uniform pilot pattern with the same number
of pilots, Np = 71.

of-art alternatives using both uniform and non-uniform pilot
patterns (as standardized by DVB-SH), with the same number
of pilots, Np = 71. As a consequence of correlation among
CIR estimates, MSE performance deteriorates with respect to
uniform pilot pattern case. Nevertheless, the proposed SOT
and AES with W ≥ 10 are still the best solutions among the
practical channel estimation methods.

Summarizing, numerical results show that AES with W ≥
10 outperforms all other methods, especially in the low SNR
region, closely approaching MMSE. This holds true even
when the condition of uncorrelated CIR estimated samples
is not verified, due to non-uniform pilot pattern. On the other
hand, SOT is a strong alternative, especially in the high SNR
region, considering its lower latency. Concerning the IES
strategy, numerical results show that this method achieves
good performance, even if it is outperformed by SOT and
AES.

B. BER performance

Here we consider the impact of using different channel
estimation methods on the DVB-SH BER. In Figs. 9 and 10,
we report BER for QPSK modulation and turbo code rate
1/4 and 1/2 respectively, and in Fig. 11 we report BER for
16QAM modulation and turbo code rate 1/2. we consider TU6
channel and with terminal speed equal to 50 km/h. In order to
make a complete comparison we present the results for both
uniform and non-uniform pilot patterns. In the uniform pilot
pattern case, the numerical results confirm the trend observed
in MSE performance assessments: BER using AES is very
close to the case of using MMSE channel estimation for all
the considered modulations and coding rates. Using SOT for
QPSK and coding rate 1/4, we observe performance gaps of
0.5 dB with respect to MMSE, and 1 dB with respect to
ideal channel estimation. These gaps become smaller when
using QPSK and 16QAM with coding rate 1/2. In particular,
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Fig. 8. Channel estimation performance of the proposed algorithms, IES
and AES with several values of W , considering both the cases of uniform
and non-uniform pilot pattern with the same number of pilots, Np = 71.
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Fig. 9. Coded DVB-SH BER performance, QPSK,turbo code rate 1/4,
considering both the cases of uniform and non-uniform pilot pattern with
the same number of pilots, TU6, 50 km/h.

considering 16QAM, both AES and SOT methods converge
to the MMSE case, and are close to ideal channel estimation
performance.

In the non-uniform pilot pattern case, a BER increase can
be observed performance decreases because of the correlation
between CIR taps. In particular, with respect to Wiener
Filtering case at BER = 10−3 we observe performance gaps
of: 0.3 dB for AES, and 1 dB for SOT, using QPSK and
coding rate 1/4; 0.9 dB for AES, and 1.4 dB for SOT, using
QPSK and coding rate 1/2; and finally, 2 dB for AES, and of
2.4 dB for SOT, using 16QAM and coding rate 1/2.

Summarizing, comparing the ideal and real channel estima-
tion cases, using a uniform pilot pattern, the performance loss
due to the estimation error is smaller for higher modulation
order and coding rate. In fact, in this case, the SNR working
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Fig. 10. Coded DVB-SH BER performance, QPSK,turbo code rate 1/2,
considering both the cases of uniform and non-uniform pilot pattern with the
same number of pilots, using TU6 , 50 km/h.
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Fig. 11. Coded DVB-SH BER performance, 16QAM, turbo code rate 1/2,
considering both the cases of uniform and non-uniform pilot pattern with the
same number of pilots, using TU6, 50 km/h.

point is higher, thus the channel estimation MSE lowers. On
the other hand, using a non-uniform pilot pattern, the perfor-
mance loss is greater for higher modulation order and coding
rate. In fact, in this case, the required channel estimation
quality is higher but as a consequence of the MSE error floor
due to the CIR estimates correlation, channel estimation MSE
is bounded.

In conclusion, numerical results confirm that the proposed
algorithms based on MSS selection of the CIR estimate
guarantee a significant gain even in those practical cases where
correlation among CIR estimate samples occurs. Moreover,
using lower modulation order and coding rate, the proposed
algorithms approach the MMSE case in terms of BER perfor-
mance.

VII. CONCLUSIONS

In this paper, we have addressed the problem of OFDM
data-aided channel estimation, giving emphasis on the fact that
KCS is hardly available at the receiver; therefore the MMSE
approach is hardly applicable in practice. Our aim has been to
improve over LS channel estimation by selecting the MSSs of
the CIR, achieving good MSE performance, while avoiding
the need for a-priori KCS. Starting from the definition of
the optimal set of samples in the instantaneous and average
senses, we derived lower bounds on the estimation MSE for
any MSS selection strategy, showing that the MSS approach
has the potential to reach the optimum MMSE performance.
We have considered three practical MSS selection strategies:
TCS and IES which pursue instantaneous decimation, and
AES which is oriented towards windowed selection. Regarding
TCS, we have provided a novel analytical characterization,
through which we derived the closed form for the MSE,
and consequently, the optimum threshold in the minimum
MSE sense and a sub-optimal but practical version. Numerical
results confirm that these three novel solutions (SOT, IES,
AES) outperform previous methods, for both uncorrelated and
correlated CIR samples, with AES being the best when the
observation window size is sufficiently large.

APPENDIX A
MSE USING Sopt(�)

Let’s consider the Rayleigh random variables αhi = |hi,�|
and ανi = |νi,�|. The MSE achievable by using the optimum
set of samples Sopt(�), after considerable algebra, can be
expressed by:

MSE(opt) = E [SEmin(�)] =

=
∑
i∈C

{∫ ∞

0

(∫ ανi

0

α2
hi
pαhi

(αhi) dαhi

)
pανi

(ανi ) dανi +

+

∫ ∞

0

(∫ αhi

0

α2
νipανi

(ανi) dανi

)
pαhi

(αhi) dαhi

}
(59)

where the corresponding p.d.f. of which are given by:

pαhi
(αhi) =

2αhi

γ2
i

e
−

α2
hi
γ2
i (60)

pανi
(ανi ) = 2ρNpανie

−ρNpα
2
νi (61)

Substituting (60) and (61) in (59), and, after considerable
algebra, it can be found that:

MSE(opt) =
∑
i∈C

[
γ2
i

(1 + γ2
i ρNp)2

+
γ4
i ρNp

(1 + γ2
i ρNp)2

]
= x

=
∑
i∈C

γ2
i

1 + ρNpγ2
i

(62)

APPENDIX B
TAP AND NOISE HOLDING PROBABILITIES

Let’s consider the vector hi =
{hi,�−W+1, hi,�−W+2, . . . , hi,�} containing the W complex
Gaussian random variables representing the complex tap gains
at the �-th OFDM symbol for a given delay i. According to
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the Rayleigh fading assumption, vector hi can be modelled
as a W-variate zero mean complex Gaussian variable with
covariance matrix Σ, i.e. hi ∼ NcW (0,Σ). The measured CIR
sample energy Êi,� reported in (52), conditioned on hi, can
be modelled as a non-central chi-square distribution, χ2

2W (λ),
with 2W degrees of freedom, non-centrality parameter
λ = 1

W

∑�
v=�−W+1 |hi,v|2, and σ2 = (2ρNpW )−1,

pÊi,�|hi
(x|hi) =

xW−1

(2σ2)WΓ(W )
e−

x+λ

2σ2
0F1

(
W ;

λx

(2σ2)2

)
(63)

where Γ(W ) = (W − 1)! and 0F1(b; z) is a par-
ticular case of the generalized hypergeometric function
mFn(a1, . . . am; b1, . . . bn; z) [18]. We start from the non-
central chi-square definition based on the hypergeometric
function in order to treat in the following the central chi-square
as a particular case of non-central case [19, Appendix I].

A. Noise Holding Case: i /∈ C
Let’s consider the case where i /∈ C. In this case hi = 0̄ with

probability 1, and consequently λ = 0. Therefore, Êi,� can be
modelled as a central chi-square random variable χ2

2W (0) with
σ2 = (2ρNpW )−1:

pÊi,�
(x) =

xW−1(ρNpW )W

Γ(W )
e−xρNpW ∀i /∈ C (64)

Thus PNH is given by:

PNH =Prob
[
Êi,� > ζ

∣∣ i /∈ C
]
=

=e−WρNpζ
W−1∑
v=0

(WρNpζ)
v

v!
∀i /∈ C (65)

Setting ζ according to (57), it follows:

PNH = e−2W
W−1∑
v=0

(2W )v

v!
∀i /∈ C (66)

B. Tap Holding with Uncorrelated Fading: i ∈ C and Σ =
Diag(γ2

i )

Let’s consider the particular case where i ∈ C, and the
elements of hi are zero-mean complex Gaussian variables i.i.d.
with variance γ2

i (i.e. the covariance matrix Σ is diagonal).
In this case Êi,� can be modelled as a central chi-square
random variable χ2

2W (0) with σ2 = (γ2
i /2 + 1/(2ρNp))/W .

Therefore, similarly to the previous case, P TH
i is given by:

P TH
i =Prob

[
Êi,� > ζ

∣∣ i ∈ C
]
=

=e
− WρNpζ

1+γ2
i
ρNp

W−1∑
v=0

1

v!

(
WρNpζ

1 + γ2
i ρNp

)v

∀ i ∈ C (67)

C. Tap Holding with Perfectly Correlated Fading: i ∈ C and
hi = h̃i

Let’s consider the particular case where i ∈ C, and all
the elements of hi are equal to h̃i. In this case, Êi,� can

be modelled as a non-central χ2
2W (λi), with non-centrality

parameter λi = |h̃i|2, and σ2 = (2ρNpW )−1:

pÊi,�
(x|λi) =

xW−1(ρNpW )W

Γ(W )
e−ρNpW

2(x+λi)

0F1

(
W ; (ρNpW )2λix

)
(68)

The non-centrality parameter λi is itself distributed as a
χ2
2(0) with branch variance equal to γ2

i /2. After removing
the conditioning on λi the tap holding probability is given by:

P TH
i =

2(ρNpW )W

γ2
i Γ(W )

∫ ∞

ζ

∫ ∞

0

λix
W−1e−(λi/γ

2
i +ρNpW (x+λi))

0F1

(
W ; (ρNpW )2λix

)
dλi dx ∀ i ∈ C (69)
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