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ABSTRACT
We consider the effect of galaxyintrinsic alignments (IAs) on dark energy constraints from
weak gravitational lensing. We summarize the latest version of the linear alignment model of
IAs, following a brief note of Hirata & Seljak and further interpretation by Laszlo et al. We
show the cosmological bias on the dark energy equation of state parameters w0 and wa that
would occur if IAs were ignored. We find that w0 and wa are both catastrophically biased,
by an absolute value of just greater than unity under the Fisher matrix approximation. This
contrasts with a bias several times larger for the earlier IA implementation. Therefore, there is
no doubt that IAs must be taken into account for future stage III experiments and beyond. We
use a flexible grid of IA and galaxy bias parameters as used in previous work and investigate
what would happen if the Universe is described by used the latest IA model, but we assumed
the earlier version. We find that despite the large difference between the two IA models, the
grid flexibility is sufficient to remove cosmological bias and recover the correct dark energy
equation of state. In an appendix, we compare observed shear power spectra to those from a
popular previous implementation and explain the differences.
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1 I N T RO D U C T I O N

The gravitational lensing of distant galaxy images has the potential
to be a powerful cosmological tool. The lensing effect directly
probes the matter distribution as a function of redshift, and thus
tells us about the expansion history and growth of structure in the
Universe. In this way it allows us to constrain the dark energy
equation of state, or whatever is causing the apparent accelerated
expansion.

Weak gravitational lensing (WGL) poses a number of tough tech-
nical challenges if its true potential is to be exploited. The typical
cosmic shear induced on galaxies of interest is of the order of
1 per cent, which is significantly smaller than the intrinsic elliptic-
ity of the galaxies themselves. Of course we, as observers, have no
access to the unlensed galaxy images so we must treat a popula-
tion of galaxies statistically to recover the cosmological information
contained in the cosmic shear signal. The correlation function of
galaxy shapes as a measure of gravitational lensing was first pro-
posed by Kaiser (1992) and first observed by Bacon, Refregier
& Ellis (2000), Kaiser, Wilson & Luppino (2000), Wittman et al.
(2000) and van Waerbeke et al. (2000). For reviews see Bartelmann
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& Schneider (2001), Munshi et al. (2008), Refregier (2003) and
Hoekstra & Jain (2008).

A naive approach to cosmic shear assumes that the intrinsic dis-
tribution of galaxy ellipticities is random across the sky. If this was
the case, observed ellipticities on a certain patch of sky could be
averaged to recover the cosmic shear, because the intrinsic elliptic-
ity would average to zero. However, it was soon pointed out that
this assumption of the random intrinsic ellipticity distribution is
unjustified (Croft & Metzler 2000; Heavens, Refregier & Heymans
2000; Catelan, Kamionkowski & Blandford 2001; Crittenden et al.
2001).

In fact galaxies may be expected to align with the large-scale
gravitational potentials in which they form so we expect physi-
cally close galaxies to be preferentially aligned with each other
(known as the intrinsic–intrinsic (II) correlation). Hirata & Seljak
(2004) noted an additional negative correlation between foreground
galaxies shaped by a particular gravitational potential and back-
ground galaxies which are lensed by the same potential [known as
the gravitational–intrinsic (GI) correlation] which can be of greater
magnitude than the II term.

After the alignment of galaxy ellipticities from linear response
to the gravitational potential was proposed as an effect by Catelan
et al. (2001) the study was put on a firm analytic footing by the
introduction of the linear alignment (LA) model by Hirata & Seljak
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(2004, hereafter HS04). This approach, in which the orientation of
galaxies responds linearly to the large-scale gravitational potential
in which they form, has become the standard model when including
the effects of intrinsic alignments (IAs).

Correlated shears of galaxies have been observed at low redshift,
where they can be attributed to IAs, by Brown et al. (2002), and
have been measured in galaxies selected to be physically close in
Mandelbaum et al. (2006), Hirata et al. (2007), Okumura, Jing &
Li (2009), Brainerd et al. (2009) and Mandelbaum et al. (2006).
Number density–shear correlations are easier to observe since the
random galaxy ellipticity only enters the calculation once, and this
has been constrained in Mandelbaum et al. (2006), Hirata et al.
(2007), Okumura & Jing (2009), Mandelbaum et al. (2011) and
Joachimi et al. (2011).

Hirata et al. (2007) noted that the scale dependence of the sig-
nal they measured was better matched to theory if the non-linear
matter power spectrum was used in the LA instead of the linear
power spectrum implied in HS04. Bridle & King (2007) then used
the non-linear matter power spectrum in their cosmological fore-
cast calculations. This approach has been called the non-linear
alignment (NLA) ansatz. Schneider & Bridle (2010) attempted a
more motivated solution for assigning power to the IA model at
small scales through the use of the halo model of galaxy cluster-
ing. By design their halo model reproduced the LA model at large
scales.

The II contribution to IAs can be taken into account in cosmolog-
ical analyses by removing galaxies with small physical separation
from the analysis e.g. King & Schneider (2002), King & Schneider
(2003), Heymans & Heavens (2003) and Takada & White (2004).
This was attempted in a real analysis of COSMic evOlution Survey
(COSMOS) data in Schrabback et al. (2009) by removing the au-
tocorrelation tomographic bin. An extension of this method for GI
was suggested in King (2005) and developed to a sophisticated level
in Joachimi & Schneider (2008, 2009). Alternatively, a model may
be assumed for all the IA contributions, and the free parameters can
be marginalized over, as demonstrated at the Fisher matrix (FM)
level in Bridle & King (2007), Bernstein (2009), Joachimi & Bridle
(2010), Laszlo et al. (2011) and Kirk et al. (2011), and demonstrated
on real data in Kirk, Bridle & Schneider (2010).

The redshift evolution of the IA contributions in the LA model
was found to be incorrect due to a mistake in HS04 in the conversion
between the primordial potential and the matter power spectrum.
This was corrected in a new version of HS04, issued as Hirata &
Seljak (2010, hereafter HS10). In addition there is an ambiguity
in HS04 as to which cosmological epoch is responsible for the
‘imprinting’ of galaxy IAs. Most starkly the question is, are IAs
frozen in at some redshift of formation or do they evolve with
the growth of structure, particularly non-linear clustering on small
scales? Blazek, McQuinn & Seljak (2011) note this as an issue in
the HS04 approach and estimate its effect on the GI amplitude as of
the order of 20 per cent. Laszlo et al. (2011) and Kirk et al. (2011)
implement one physically motivated solution to this question (as
well as including the redshift evolution correction of HS10) which
we adopt in this work.

The result of this evolution in the treatment of IAs is that much
useful theoretical and observational work has been conducted using
an incorrect implementation of the LA model, using often unjus-
tified treatments of the small-scale seeding of galaxy IAs. In this
work our aim is to present basic results for the most up to date im-
plementation of the LA model for IAs. We present angular power
spectra for components of the shear–shear (εε), position–position
(nn) and position–shear (nε) observables as well as the reduction

in constraining power in measuring dark energy caused by a robust
treatment of IAs and the biasing of cosmological parameters that
results from ignoring IAs or treating them using an old model. Many
of these results reproduce previous work in the literature which was
conducted using an old implementation of the LA model. Specifi-
cally, we reproduce Fig. 1 from Joachimi & Bridle (2010) for the
new implementation of the LA model which we hope will act as a
reference for those wishing to apply it in the future. Furthermore, we
investigate the ability of a flexible parametrization of IAs to com-
pensate for using the old LA model compared to the latest version
we summarize here.

This paper is organized as follows. In Section 2 we describe
the most up to date implementation of the LA model of IAs, de-
tailing our formalism for shear–shear (εε), position–position (nn)
and position–shear (nε) correlations. Section 3 presents the bias
on cosmological parameter estimation caused by mistreatment of
IAs for the latest model, the old model and an intermediate model;
we then conclude in Section 4. In Appendix A, we summarize
the history of the LA model and present the major differences
between the latest implementation and the previous widely used
version.

2 T H E L I N E A R A L I G N M E N T M O D E L

In this section we summarize the latest LA model interpretation and
its contribution to (i) shear–shear correlation, (ii) position–position
correlation and (iii) position–shear cross-correlation.

2.1 Shear–shear correlations, εε

The LA model for galaxy intrinsic ellipticities was suggested by
Catelan et al. (2001) and applied quantitatively by HS04, see Sec-
tion A below for a more complete history. It assumes that, under
gravitational collapse, dark matter forms into tri-axial haloes whose
major axis is aligned with the maximum curvature of the large-scale
gravitational potential. Elliptical galaxies are expected to trace the
ellipticity of their parent haloes, meaning that the ellipticity distri-
bution of a population of elliptical galaxies will be linearly related
to the curvature of the gravitational potential, φ, via

ε+ = C
(
∂2

y − ∂2
x

)
φ (1)

ε× = 2C∂y∂xφ, (2)

where C is an unknown constant, fixed for our formalism by a
normalization given below.

In WGL we are interested in IAs as systematic effects which
contaminate a measured cosmic shear signal, specifically the shear–
shear power spectrum. The LA model motivates the amplitude of
two separate terms which affect our ability to accurately measure
cosmic shear. The first II term arises when galaxies are physi-
cally close. These galaxies form in the same gravitational potential;
hence, their intrinsic ellipticities are preferentially aligned. This pro-
duces a spurious positive correlation which adds to the measured
cosmic shear signal.

The second GI term becomes important when treating galaxies
which are close on the sky but separated in redshift. In this case
foreground galaxies will align to a foreground gravitational poten-
tial which will itself contribute to the gravitational lensing of the
background galaxies. This produces an anticorrelation in observed
ellipticities and subtracts from the expected cosmic shear signal.

In terms of projected angular power spectra we can write the mea-
sured ellipticity power spectrum, Cεε

l , as a sum of the gravitational
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Figure 1. Fiducial power spectra for all correlations considered. The upper-right panels depict the contributions to the εε (in black) and nn (in magenta)
correlations. The lower-left panels show the contributions to correlations between number density fluctuations and ellipticity. Since we show only correlations
C

ij
αβ (l) with i ≤ j, we make in this plot a distinction between nε (in red; number density contribution in the foreground, e.g., gG) and εn (in blue; number

density contribution in the background, e.g. Gg) correlations. In each subpanel a different tomographic redshift bin correlation is shown. For concision only
odd bins are displayed. In the upper-right panels the usual cosmic shear signal (GG) is shown as black solid lines; the IA GI term is shown by black dashed
lines; the IA II term is shown by dotted black lines; the usual galaxy clustering signal (gg) is shown by magenta solid lines; the cross-correlation between
galaxy clustering and lensing magnification (gm) is shown by magenta dashed lines and the lensing magnification correlation functions (mm) are shown by
magenta dotted lines. In the lower-left panels the solid blue lines show the correlation between lensing shear and galaxy clustering (Gg); the blue dashed lines
show the correlation between lensing shear and lensing magnification (gm); the blue dot–dashed lines show the correlation between IA and galaxy clustering
(Ig or equivalently gI); the red solid lines show the correlation between galaxy clustering and lensing shear (gG), which is equivalent to the blue solid lines
with redshift bin indices i and j reversed; similarly, the red dashed lines show the correlation between lensing magnification and lensing shear (mG), for cases
where the magnification occurs at lower redshift than the shear (i < j); finally, the dotted lines show the correlation between lensing magnification and IA (mI).

lensing shear power spectrum and two IA terms:

Cεε(l) = CGG(l) + CII(l) + CGI(l). (3)

The cosmic shear power spectrum, CGG
ij (l), under the Limber

approximation is written as the integrated product of the matter

power spectrum, Pδδ(k, χ ), and the lensing weight function, Wi(χ )
(Hu 1999),

CGG
ij (l) =

∫ χhor

0

dχ

χ2
Wi(χ )Wj (χ )Pδδ(k, χ ), (4)
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where Pδδ(k, χ ) ≡ Pδδ( l
fK (χ ) , χ ), χ is the comoving distance along

the line of sight, f K(χ ) is the comoving angular diameter distance,
i, j denote a tomographic redshift bin pair and

Wi(χ ) = 3

2

H 2
0 	m

c2

χ

a

∫ χhor

χ

dχ ′ni(χ
′)

χ ′ − χ

χ ′ , (5)

with H0 being the Hubble parameter today, 	m the dimensionless
matter energy density, c the speed of light, a the dimensionless scale
factor and ni(χ ′) the galaxy redshift distribution for a particular bin
i.

Similarly, the projected angular power spectra for the IA terms
are (HS04)

CII
ij (l) =

∫ χhor

0

dχ

χ2
ni(χ )nj (χ )PII(k, χ ) (6)

CGI
ij (l) =

∫ χhor

0

dχ

χ2
Wi(χ )nj (χ )PGI(k, χ ), (7)

where, unsurprisingly, the II correlation depends only on the galaxy
redshift distribution, n(χ ), while GI depends on the product of the
galaxy redshift distribution and the lensing weight function.

The IA ‘power spectra’, PII(k, χ ) and PGI(k, χ ), are unknown
functions of scale and cosmic epoch. In the case of the LA model
they become

PII(k, χ ) = (−C1ρ(χ = 0))2 P lin
δδ (k, χ = 0) (8)

PGI(k, χ ) = −C1ρ(χ = 0)
√

P lin
δδ (k, χ = 0)

√
Pδδ(k, χ )

D(z)
, (9)

where Pδδ is the matter power spectrum, ρ(χ = 0) is the matter
density today and D(z) is the linear growth factor as a function
of the redshift z, where it is implicitly meant that z = z(χ ). C1

is the normalization of the IA contribution and we use a fiducial
value of 5 × 10−14(h2 M� Mpc−3)−1, following Bridle & King
(2007) who match to the power spectra in HS04 which are based
on SuperCOSMOS data from Brown et al. (2002).

The II term is related to the linear matter power spectrum, P lin
δδ ,

because we assume that galaxy intrinsic ellipticity is imprinted at
the (early) epoch of galaxy formation and subsequently ‘frozen in’.
As such the power spectrum of its distribution does not undergo
the non-linear evolution that the distribution of matter clustering
does at late times. The factor of

√
P lin

δδ (k, χ = 0)Pδδ(k, χ )/D(z) in
the GI term reflects the dependence on both the intrinsic ellipticity
distribution and the full, late time, mass distribution via gravita-
tional lensing. The exact relation between intrinsic ellipticity, the
epoch of galaxy formation and the evolution of galaxy clustering is
a vexed and disputed one. A more detailed discussion of the history
of the treatment of this relationship can be found in Appendix A,
below. We believe that our approach best reflects the physical un-
derstanding of the LA model as proposed by HS04 who related
the intrinsic ellipticity distribution to the Newtonian potential at the
time of galaxy formation.

2.2 Position–position correlations, nn

Any cosmic shear survey provides not only a catalogue of measured
galaxy ellipticities but also a record of galaxy positions through their
location on the sky and an estimate of their redshift. Analogously to
the cosmic shear power spectrum we may define the galaxy position
density power spectrum, Cnn(l), the Fourier transform of the galaxy
position two-point correlation function. It is conceptually useful to

divide the contributions up as follows:

Cnn(l) = Cgg(l) + Cmm(l) + Cgm(l). (10)

Here we have separated the contribution from galaxy clustering it-
self, gg, from the contribution due to lensing magnification, mm,
and the cross-correlation of the two, gm. The lensing contribution
manifests because a galaxy may increase (or decrease) in size as a
result of the image distortion. The application of Liouville’s theo-
rem tells us that the process of WGL conserves surface brightness
density; hence, a larger (smaller) galaxy will appear brighter (dim-
mer) due to the lensing effect. For a magnitude limited survey this
can affect the statistics of galaxy clustering as otherwise too faint
galaxies are promoted into the survey by magnification and vice
versa. As the nn correlation is effectively just a counting of galaxies
and their relative positions, there is no ellipticity contribution and
we can ignore IAs.

The equation for the pure galaxy clustering term is relatively
straightforward in the Limber approximation,

C
gg
ij (l) =

∫ χhor

0

dχ

χ2
ni(χ )nj (χ )b2

g(k, z)Pδδ(k, χ ), (11)

where the window function is the galaxy redshift distribution as we
would expect and we have introduced the galaxy bias term, bg, to
reflect our understanding that galaxies are a biased tracer of the un-
derlying matter distribution. As before, Pδδ(k, χ ) ≡ Pδδ( l

fK (χ ) , χ ).
In general bg is an unknown function of scale and cosmic epoch.
The details of the galaxy bias formalism we assume in this paper,
along with other bias terms, are explained in Section 3 below.

The magnification power spectrum and galaxy clustering-
magnification cross-term can be written as

Cmm
ij (l) = 4(αi − 1)(αj − 1)CGG

ij (l) (12)

C
gm
ij (l) = 2(αj − 1)CgG

ij (l), (13)

where αi is defined as the slope of the luminosity function, eval-
uated at the median redshift of the bin i, and CgG(l) is defined
in Section 2.3. In this approach, we are following Joachimi &
Bridle (2010). We treat each of the αi terms as a free parameter in the
model and take fiducial parameters from equations 32, 33 and table 2
of Joachimi & Bridle (2010); see Appendix A of that paper for more
details.

2.3 Position–shear correlations, nε

As well as εε and nn correlations themselves, we can cross-
correlate the two fields to form the galaxy position–shear, nε,
cross-correlation functions as first proposed by Hu & Jain (2004)
in the context of dark energy. This is often referred to as galaxy–
galaxy lensing, in which the mass of a foreground galaxy distorts the
shape of a background galaxy. Here we consider the general cross-
correlation which includes contributions from larger dark matter
structures, from magnification and also from IAs if the correlated
galaxies are physically close. We can write the contributions to the
full nε term as

Cnε(l) = CgG(l) + CgI(l) + CmG(l) + CmI(l) (14)

(Joachimi & Bridle 2010).
The individual expressions for the terms in the Cnε(l) expansion

contain combinations of quantities already considered,

C
gG
ij (l) =

∫ χhor

0

dχ

χ2
ni(χ )Wj (χ )

bg(k, z)rg(k, z)Pδδ(k, χ ) (15)

C© 2012 The Authors, MNRAS 424, 1647–1657
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



Impact of intrinsic alignment model choice 1651

C
gI
ij (l) =

∫ χhor

0

dχ

χ2
ni(χ )nj (χ )

bg(k, z)rg(k, z)bI(k, z)rI(k, z)PGI(k, χ ) (16)

CmG
ij (l) = 2(αi − 1)CGG

ij (l) (17)

CmI
ij (l) = 2(αi − 1)CGI

ij (l), (18)

where we have introduced the additional free functions rg and rI

which appear due to the possible stochastic relation between the
galaxy and dark matter distributions (Dekel & Lahav 1999) as dis-
cussed in Section 3 below. As before Pδδ(k, χ ) ≡ Pδδ( l

fK (χ ) , χ ). We

note that PGI(k, χ ) appears in the C
gI
ij (l) term because it describes

how the dark matter distribution relates to the IAs, and we assume
that the relation between the galaxy distribution and the dark matter
distribution can be accounted for by the product bgrg.

2.4 Summary of observables and fields

The observables considered in this paper and the different fields
which contribute to each observable are summarized in Table 1.
In Fig. 1 we plot the angular power spectra of all the considered
components for a fiducial stage IV lensing survey. For our fiducial
model, in this paper, we use the following survey specification:
20 000 deg2 with a galaxy number density of 35 arcmin−2 and a
redshift distribution given by the Smail-type n(z),

n(z) = zα exp

(
−

(
z

z0

)β
)

, (19)

with α = 2, β = 1.5 and z0 = 0.9/
√

2, divided into 10 tomo-
graphic bins with equal number density out to redshift 3 and nor-
malized so that

∫
n(z) dz = 1. A Gaussian photometric redshift

error of σ z = 0.05(1 + z) is assumed with no catastrophic out-
liers in redshift. We constrain the set of cosmological parameters
{	m, w0, wa, h, σ8, 	b, ns} which take the values 	m = 0.25, w0 =
−1, wa = 0, h = 0.7, σ 8 = 0.8, 	b = 0.05 and ns = 1. All results
assume a flat, � cold dark matter cosmology. The linear matter
power spectrum is calculated using the Eisenstein & Hu (1998)
fitting function and non-linear corrections are applied where appro-
priate using the Smith et al. (2003) formalism.

Fig. 1 is presented and formatted in the same way as fig. 3 in
Joachimi & Bridle (2010). The purpose is to supply a new reference
plot using the most up to date implementation of the LA model for
IAs. All lines which do not include an ‘I’term will be identical in
both versions of the plot. However, as Joachimi & Bridle (2010) use
the original HS04 implementation, from before the publication of

Table 1. Summary of observables
considered in this paper and differ-
ent fields which contribute to each
observable.

Observables
εε Shear–shear
nn Position–position
nε Position–shear

Fields
G Gravitational lensing
I IA
g Galaxy clustering
m Cosmic magnification

the erratum incorporated into HS10, and present lines for the NLA
ansatz, there are differences in any lines containing an I contribution.
The NLA version of HS04 is the most widely used in the literature
to date; we refer to it subsequently as HS04NL. Note that we are
employing the NLA prescription in HS04NL even though this was
not explicitly discussed in the original HS04 paper. See Appendix A
for a more detailed explanation of the evolution of the LA model
and the differences between various implementations.

The upper triangle of Fig. 1 shows the contributions to the shear–
shear correlation function in black for every other tomographic
bin pairing. As usual the lensing contribution is the largest on all
angular scales, but is most dominant in the autocorrelations at high
redshift. The II IA term is most important in the autocorrelations
and negligible for widely spaced bins. The GI contribution is largest
for separated bins (shown as IG for compactness – see the caption).
The IA contributions are typically 1 to 10 per cent of the lensing
signal.

The contributions to the position–position correlation function
are shown in pink in the upper triangle, and as expected, the autocor-
relations are dominated by the intrinsic clustering of galaxies. The
cross-correlations of separated bins can be dominated by the cross-
correlation of galaxy clustering and magnification. As expected,
the magnification-only term is most important at high redshift, al-
though it never exceeds the other terms for the redshift ranges we
consider.

The lower triangle shows the various contributions to the
position–shear cross-correlation function and the effect of reversing
the tomographic bin order where relevant (see the caption). The cor-
relation between lensing shear and galaxy clustering is the strongest
of these contributions and is largest when the tomographic bins are
separated with the galaxies in the foreground. This is the usual
galaxy–galaxy lensing contribution. Interestingly, it is still large in
the autocorrelations which is due to the galaxies in the nearest part
of the redshift bin lensing the galaxies in the farthest part. There is
a non-negligible contribution in some of the cross-terms from the
lensing of galaxies in a nearer tomographic bin by galaxies in a
farther tomographic bin, due to the overlap in redshift distributions
(solid blue lines). At highest redshifts the magnification terms start
to dominate. The cross-correlation between magnification and IA
is mostly one of the smallest terms.

3 B I A S I N G O F C O S M O L O G I C A L
PA R A M E T E R S

The LA model is currently our best description of galaxy IA over
a range of cosmologies. It has been shown that ignoring IAs in
an analysis can significantly bias the measurement of fundamental
cosmological parameters (Bridle & King 2007). In this section we
quantify this bias and examine the effect of moving from the old
standard LA implementation to the new one. We also explore the
bias produced by using the old implementation rather than the new.

A naive approach to cosmic shear measurements would ignore
IAs and measure values for cosmological parameters which are sys-
tematically biased. By employing a flexible IA model and marginal-
izing over a set of nuisance parameters we lose precision but hope
to produce unbiased cosmological measurements. In this section
we quantify the cosmological bias which results from ignoring IAs
and also the cosmological bias which results from employing the
HS04NL LA model rather than the current LA model.

To this end we employ the cosmological bias formalism of
Huterer et al. (2006, see also Amara & Refregier 2007 and
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appendix A of Joachimi et al. 2011),

δpα = F−1
αβ

∑
l

Cij

(
Cov

[
Cij (l), Cmn(l)

])−1 ∂Cmn(l)

∂pβ

, (20)

where δpα is the cosmological bias on each parameter considered,
Cij are the projected angular power spectra, ∂Cmn(l)

∂pβ
are the deriva-

tives of these power spectra with respect to the cosmological pa-
rameters, Cov

[
Cij (l), Cmn(l)

]
is the covariance matrix of the power

spectra, calculated according to equation 39 in Joachimi & Bridle
(2010), and F −1

αβ is the inverse of the FM for our set of cosmological
parameters, calculated as

Fαβ =
lmax∑

l=lmin

∑
(i,j ),(m,n)

∂Cij (l)

∂pα

Cov−1
[
Cij (l), Cmn(l)

] ∂Cmn(l)

∂pβ

.

Each of the FM terms is calculated using the assumed IA model.
Cij is the difference between the data vector calculated using the
assumed model and the true model,

Cij = Cassumed
ij (l) − C true

ij (l). (21)

Fig. 2 shows the cosmological bias on the dark energy equation
of state parameters if IAs are assumed not to exist but they are truly
present according to one of the following: the HS04NL implemen-
tation; the new model; or an intermediate between the two, called
HS10NL. The bias is the distance between the centre of the ‘true’
contour [−1,0] and the centre of the contours which assume no IAs.

Note that the bias parametrization used is based on the FM for-
malism which assumes purely Gaussian errors in the parameters and
observables which respond linearly with respect to the parameters

Figure 2. 95 per cent confidence limits on the dark energy parameters w0

and wa for the IA implementation from this work (blue contour) and the
biased constraints if it is assumed that IAs do not exist but in fact the
new implementation (black contour), the HS10NL implementation (green
contour) or the HS04NL implementation (off plot, direction indicated by
red arrow) is true. The cosmological bias is given by the offset between each
displaced contour and the fiducial values of (−1, 0) (black cross). Results
are presented for an observable data vector of shear–shear (εε) correlations
only. It is assumed that we enjoy perfect knowledge of the IA contribution
for each implementation.

in question. The parametrization is very likely to break down for
parameter values more than ∼2−3σ away from the fiducial cos-
mology. As such the more extreme bias values seen in Figs 2 and 3
should not be read as exact. What they can tell us is rough relative
bias between different scenarios and it is clear that any scenario
producing an absolute bias on w0 of order unity or above can be
considered to be ‘catastrophically biased’. For clarity we use the
notation σ FM when quoting the size of biases on parameters with
respect to the errors on the unbiased constraints to remind the reader
that they are calculated assuming that the FM formalism is valid.

The intermediate model (HS10NL) is introduced to disentan-
gle the two effects which change between HS04NL and the new
LA implementation. It includes the correct factors of a, introduced
by HS10 and shown in equation (A5), but it always applies the
non-linear matter power spectrum, P lin

δδ (k, z), to the IA terms, fol-
lowing the Bridle & King (2007) interpretation of HS04NL. So this
HS10NL model applies the correct redshift evolution to IAs but
assumes that the effects of non-linear clustering are always present,
even in the II term, by adopting the NLA ansatz.

Ignoring IAs causes strong biasing on the dark energy param-
eters, no matter which IA model is assumed to be true. The new
implementation is the least biased at ∼8σ FM away from the true
model. However, ignoring IAs appears to still bias w0 by of the
order of ∼1.5. The HS10NL model is more biased at ∼20σ FM.
The HS04NL implementation produces the strongest cosmological
bias, with the contour far outside the plotted area. At a point this

Figure 3. 95 per cent confidence limits on the dark energy parameters w0

and wa for the IA implementation from this work (blue contours) and the
biased constraints if the old HS04NL implementation is assumed (red con-
tours). The cosmological bias is given by the offset between the displaced
contour and the fiducial values of (−1, 0) (black dotted lines). Results are
presented for an observable data vector of shear–shear (εε) correlations alone
(left-hand panels) and the full combination of shear–shear, shear–position
and position–position (εε + nε + nn) correlations (right-hand panels). Each
probe combination is shown for the case of perfect knowledge of IAs and
galaxy bias (top panels) and for the case where our ignorance is accounted
for by marginalization over the nuisance parameter grid with Nk = Nz = 7
(bottom panels).
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far away from the fiducial parameter values the Gaussian assump-
tions of the FM and bias formalisms certainly break down and it
would be wrong to put much faith in the exact direction/distance of
the predicted bias. What is clear however is that the effect is very
strong. This finding is what we would expect given that the move
from HS04NL to the new implementation has reduced the impact
of IAs, not only through changes to their redshift evolution, but also
through the removal of IA power on small scales.

The general biasing trend is the same when we calculate for a
stage III type survey, like the Dark Energy Survey, with biases of
∼4σ FM for the latest model, ∼8σ FM for the HS10NL implementa-
tion and ∼30σ FM for the HS04NL model.

So far we have not taken into account any uncertainty in the
IA model, but assumed that they are zero in the parameter fitting,
whichever model we employ to describe them in the true model. In
reality, we are aware that our knowledge of IAs from simulations and
observations is still developing and relatively uncertain. The case
is similar for galaxy bias, introduced in Section 2.2 and employed
below. To parametrize our ignorance of both effects and their cross-
correlations we use a grid of nuisance parameters

X = AXQX(k, z), (22)

where AX is a constant amplitude parameter, free to vary about
a fiducial value of 1, and QX(k, z) is a grid of Nk × Nz nodes
logarithmically spaced in k/z space, each of which is allowed to
vary independently around a fiducial value of 1. A final smooth grid
is created by spline interpolation over the values of the grid nodes.
For more details of this nuisance parameter grid see Joachimi &
Bridle (2010), Laszlo et al. (2011) and Kirk et al. (2011). This was
inspired by the marginalization of Bernstein (2009) which led to
the grid implementation in Joachimi & Bridle (2010).

We define four sets of nuisance parameters which each take the
form of this grid,

bI(k, z) = AbIQbI (k.z) (23)

bg(k, z) = AbgQbg (k.z) (24)

rI(k, z) = ArIQrI (k.z) (25)

rg(k, z) = ArgQrg (k.z). (26)

The ‘b’ terms can be understood as bias terms between the power
spectrum of a field X and the matter power spectrum, i.e.

PXX(k, z)

Pδδ(k, z)
= b2

X(k, z), (27)

and the ‘r’ terms are biasing terms which arise in cross-correlations,
i.e.

PXY (k, z)

Pδδ(k, z)
= bX(k, z)rX(k, z)bY (k, z)rY (k, z). (28)

The ‘b’ and ‘r’ terms are both functions of the clustering and
stochastic bias as described in Dekel & Lahav (1999).

These sets of nuisance parameters then appear, in different com-
binations, in each angular power spectrum integral where galaxy
clustering, g, or the IA term, I, appear:

CII
ij (l) =

∫
dχ

χ2
ni(χ )nj (χ )b2

I (k, z)PII(k, χ ) (29)

CGI
ij (l) =

∫
dχ

χ2
Wi(χ )nj (χ )bI(k, z)rI(k, z)PGI(k, χ ) (30)

C
gg
ij (l) =

∫
dχ

χ2
ni(χ )nj (χ )b2

g(k, z)Pδδ(k, χ ) (31)

C
gG
ij (l) =

∫
dχ

χ2
ni(χ )Wj (χ )bg(k, z)rg(k, z)PδG(k, χ ) (32)

C
gI
ij (l) =

∫
dχ

χ2
ni(χ )nj (χ )bI(k, z)rI(k, z)

bg(k, z)rg(k, z)PδI(k, χ ), (33)

while nuisance parameters appear in C
gm
ij

(l) and CmI
ij

(l) due to their
dependence on C

gG
ij

(l) and CGI
ij

(l), respectively. In general this means
that, for the full suite of observables εε + nε + nn, we marginal-
ize over a total of 4(1 + Nk × Nz) nuisance parameters, plus 30
that parametrize the magnification effects. As before Pδδ(k, χ ) ≡
Pδδ( l

fK (χ ) , χ ). When we employ the nuisance grid in this work we
set Nk = Nz = 7, giving a total of 230 nuisance parameters. This fol-
lows the practice used in Joachimi & Bridle (2010) for the purposes
of comparison (see their table 2). We also restrict the information
used in the galaxy field to linear scales as in Rassat et al. (2008).

This current paper presents the most advanced interpretation of
the LA model. However, most of the work on IAs in the literature has
been conducted using a non-linear version of the original interpreta-
tion presented in HS04. In Fig. 3 we quantify the bias introduced on
the dark energy parameters from the use of this HS04NL approach
rather than the latest implementation introduced in this work. When
the IA signals (whether from the old or new models) are assumed to
be known perfectly there is a very strong biasing effect which would
result in a very worrying systematic mismeasurement of cosmology.

In the case where εε correlations alone are considered, the bias is
∼25σ FM of the constraining power of the cosmic shear signal given
the true IA contribution. When the full set of correlations including
position information, εε + nε + nn, are considered this biasing
increases to ∼65σ FM. As previously discussed, when the effect is
this strong the exact position/direction of the biasing is likely to
be well outside the competence of the FM-based formalism but the
fact that there is a very significant effect should not be doubted.

When we employ the robust parametrization of both IA and
galaxy bias uncertainties via the grid of nuisance parameters de-
scribed above we see a striking change in the results. As we would
expect the constraining power of either probe combination decreases
as we have marginalized over 130 free parameters which represent
our ignorance of the exact details of IAs (and another 100 for galaxy
bias). What is also clear is that the biasing of our cosmological es-
timates has decreased to well within the 1σ error of the respective
probes.

The constraints on w0 and wa from the full εε + nε + nn combi-
nation after marginalization over 230 nuisance parameters are only
reduced by a factor of 2 compared to the naive (and heavily biased
if the wrong IA model is used) constraints from εε alone when it is
assumed that IAs are perfectly known. This corresponds to a factor
of 2.6 reduction in DETF figure of merit (Albrecht et al. 2006).

4 C O N C L U S I O N S

Galaxy IAs are the most important astrophysical systematic in the
study of cosmic shear. As increasing volumes of data become avail-
able from WGL surveys more interest is being paid to their correct
treatment. Much of this work has been dominated by the LA model,
originally introduced in HS04 (and the NLA extension which we
refer to as HS04NL). This original implementation was subse-
quently corrected in HS10 and detailed attention paid to the
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treatment of non-linear clustering in Laszlo et al. (2011) and Kirk
et al. (2011).

However, much of the existing literature has been produced using
the uncorrected HS04NL model. In this paper we have provided
a brief explanation of the evolution of, and context surrounding,
the LA model for IAs, highlighting the most important differences
between the HS04NL model and the latest implementation.

We have calculated the angular power spectra of the cosmic shear
observables, correcting the implicit mistake of Joachimi & Bridle
(2010), which was based on HS04, which we hope will act as a new
reference for those interested in applying IAs to their cosmic shear
analysis.

The main motivation for the study of IAs is the measurement
of unbiased constraints of key cosmological parameters. We show
that the new LA implementation significantly reduces the impact of
IAs, and hence the bias, but that the effect is still very significant,
producing a bias at the tens of σ level when we assume perfect
knowledge of IAs.

If we did know the IA signal perfectly then we could produce
unbiased measurements by simply subtracting the IA signal from
our measured cosmic shear. In practice, it is useful to parametrize
our ignorance of the true IA signal through a set of nuisance param-
eters which are marginalized over to produce weaker but hopefully
unbiased cosmological estimates. We show that a robust grid of
130 nuisance parameters for IAs and magnification uncertainties,
allowed to vary in scale and redshift, effectively removes the bias
due to assuming an incorrect IA model.

The same effect holds when our observables are extended to
include shear–shear, position–position and shear–position correla-
tions. The extra observables increase constraining power so that we
are able to produce unbiased constraints on εε + nε + nn which
recover 40 per cent of the constraining power of the highly biased
constraint from εε alone when the wrong IA model is assumed.

The LA model has allowed a firm foothold on the study of IAs to
develop over the last decade. We have detailed an updated imple-
mentation of the most used IA model and its physical motivation,
showing a reduction in biasing of cosmological constraints. In addi-
tion, we reiterate that a robust nuisance parameter model can control
the biasing due to IAs for either the old or new implementations.
Together, these results should give us confidence that the IA effect
is under control as we begin to analyse the first data from large
cosmic shear surveys.

However, our somewhat pessimistic approach carries the cost of
reduced constraining power. Future work, focused on accurate sim-
ulation and measurement of IAs, is sure to provide more detail on
the physical mechanisms responsible for the initial intrinsic elliptic-
ity distribution and its evolution. This better knowledge of IAs will
improve our ability to model them and reduce our dependence on
brute-force marginalization over nuisance parameters. As such the
marginalized constraints which we present in Fig. 3 may be a worst-
case scenario. With better knowledge of IAs, better constraints on
cosmology will be possible.
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A P P E N D I X A : H I S TO RY O F T H E L A M O D E L

The history of galaxy IA studies goes back to Buergers and van
de Hulst (1951) and Sciama (1955) who discussed that galaxies
may acquire angular momentum through tidal torquing, in which
anisotropic shear flows distort the protogalaxy and lead to a local
rotation. The theory was further developed analytically by Peebles
(1969), Doroshkevich (1970) and White (1984), and first simulated
by Heavens & Peacock (1988). If galaxy orientations are correlated
with their angular momenta, then we may expect neighbouring
galaxies to be aligned (e.g. van den Bosch et al. 2002). Heavens
et al. (2000), Croft & Metzler (2000) and Catelan et al. (2001)
simultaneously pointed out that this could lead to a contaminat-
ing term in WGL, and this was investigated further in Crittenden
et al. (2001), Mackey, White & Kamionkowski (2002), Jing (2002),
Heymans et al. (2004), Hirata et al. (2004) and Bridle & King
(2007). See Schaefer (2008) for a more recent review.

Ciotti & Dutta (1994) described a second ansatz to motivate the
IAs of elliptical galaxies, based on tidal stretching of the host halo by
the surrounding large-scale structure. Catelan et al. (2001) showed
that the correlation function of the IAs should be proportional to that
of the tidal field and thus be significant even on large scales. This
contrasts with the correlation function expected from tidal torque
theory which has a higher order dependence on the tidal field and
thus decays more rapidly.

Heavens et al. (2000) and Croft & Metzler (2000) used the shapes
of dark matter haloes in N-body simulations as a proxy for ellip-
tical galaxy shapes and estimated the possible contamination to
the (then) recent cosmic shear detections. They found the contam-
ination to be a fraction of the measured signal but Heavens et al.
(2000) commented that low-redshift surveys would be strongly af-
fected and Croft & Metzler (2000) point out that future tomographic
measurements will also be significantly affected.

HS04 discussed both models and used the term ‘linear alignment
model’ to describe the alignment of the galaxy halo with the tidal
stretch of the local gravitational potential. Previous to HS04 the
cosmic shear contamination was believed to come from physically
close galaxies due to both galaxies forming in the same large-scale
structure. HS04 identified a second term due to the IA of one galaxy
near to a large mass which would correlate with the gravitational
alignment of a distant galaxy lensed by the same mass. The first of
these two was labelled ‘intrinsic-intrinsic’ (II) correlation and the
second ‘gravitational-intrinsic’ (GI) correlation.

Following the approach of Catelan et al. (2001), HS04 assume
that galaxy intrinsic ellipticity follows the linear relation

γ I = − C1

4πG

(
2

x − 2
y, 2xy

)S[�P ], (A1)

where �P is the Newtonian potential at the time of galaxy formation,
smoothed by some filter S that cuts off fluctuations on galactic

scales, G is the Newtonian gravitational constant,  is a comoving
derivative and C1 is a normalization constant.

After relating the primordial potential to the linear matter power
spectrum, HS04 calculate the II and GI power spectra

P HS04
II (k, χ ) =

(−C1ρ̄(z)

D̄(z)

)2

P lin
δδ (k, χ ) (A2)

P HS04
GI (k, χ ) = −C1ρ̄(z)

D̄(z)
P lin

δδ (k, χ ) (A3)

in terms of the linear theory matter power spectrum at comoving
distance χ corresponding to the redshift z, P lin

δδ (k, χ ). Here ρ̄(z) is
the mean density of the Universe and D̄(z) = (1 + z)D(z) is the
rescaled growth factor D(z).

Note that HS04 actually present the power spectra for γ̃I, the
density weighted intrinsic shear (and δ, γ̃I for the GI term). This is
because galaxies are not randomly positioned, but are expected to
form preferentially in regions of higher matter density. This leads
to higher order terms in the IA power spectra which are usually
ignored because they are about an order of magnitude smaller than
the leading term in the above equations (Bridle & King 2007).

These equations were used in several publications until the dis-
covery of missing factors of a2 which arose in the conversion factor
between the density perturbation and the primordial potential. These
were corrected in an erratum of HS10. In the updated version, equa-
tions (A2) and (A3) become

P HS10
II (k, χ ) =

(−C1ρ̄(z)

D̄(z)
a2

)2

P lin
δδ (k, χ ) (A4)

P HS10
GI (k, χ ) = −C1ρ̄(z)

D̄(z)
a2P lin

δδ (k, χ ). (A5)

Originally HS04 related their PII and PGI to the linear matter
power spectrum P lin

δδ . It was subsequently indicated by Hirata et al.
(2007) that more power at small scales may fit the data better and
Bridle & King (2007) proposed that the non-linear matter power
spectrum be substituted for the linear in what became known and
the NLA model, which was then applied in Bridle & King (2007),
Schneider & Bridle (2010), Mandelbaum et al. (2011), Joachimi
et al. (2011), Kirk et al. (2010), Laszlo et al. (2011) and Kirk et al.
(2011). It is this common NLA approach which we describe as
HS04NL,

P HS04NL
II (k, χ ) =

(−C1ρ̄(z)

D̄(z)

)2

Pδδ(k, χ ) (A6)

P HS04NL
GI (k, χ ) = −C1ρ̄(z)

D̄(z)
Pδδ(k, χ ); (A7)

the non-linear matter power spectrum is used in both equations.
In this work we employ a more physically motivated approach

based on the idea that galaxy IAs are seeded at some early epoch
of galaxy formation and do not evolve with redshift. This was the
original intent of the LA model in Catelan et al. (2001) and HS04.
This principle is apparent from the original HS04 equations by the
presence of the 1/D(z) terms which divide out the growth. Therefore,
we relate our II term directly to P lin

δδ but the GI term picks up some
contribution from the later (linear and non-linear) growth of large-
scale structure via its dependence on cosmic shear. This is included
in the formalism by the geometric mean of the linear and non-
linear matter power spectra in equation (9). This was proposed and
discussed further in Laszlo et al. (2011) and Kirk et al. (2011).
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Figure A1. Integrand of the GG angular power spectrum at a multipole
of l = 2000 (2πGρ(z)a2c−2Wi (χ )

√
Pδδ(k, χ )) (blue dotted) and the II

integrand for the original HS04 LA model (C1ρ(z)ani (χ )
√

Pδδ(k, χ )) (red

dotted) and the LA model given in this work (C1ρ(z = 0)ni (χ )
√

P lin
δδ (k, χ ))

(red solid), both shown for l = 2000. We present integrands without (upper
panel) and with the appropriate matter power spectrum term (lower panel).
Each angular power spectrum is plotted for the first and tenth tomographic
redshift bins of our fiducial survey; these appear to the left and right hand of
each plot, respectively. Here the term P(k) corresponds to either the linear
or non-linear matter power spectrum depending on the term (G or I) and on
the implementation used (HS04NL or this work).

Note that equations (A6) and (A7) are the same as our expressions
in equations (8) and (9) with the pre-factor in brackets simplified,
and there is a different treatment of the linear/non-linear matter
power spectra.

An improvement on the contributions at non-linear scales was
developed by Schneider & Bridle (2010) by developing a halo model
of IAs. We do not use it here as it does not contain full flexibility of
the cosmological model.

In this paper we discuss and illustrate the difference between the
models, summarized in Fig. A1. The changes can be divided into
two types: (i) the correct use of the a2 terms as included in HS10
and (ii) the consistent use of the linear matter power spectrum for
the II correlation but the square root product of the linear and non-

linear power spectra for the GI correlation (see equation 9). The
upper panel of Fig. A1 includes only the first change by plotting the
square root of the Cl integrand without the contribution from the
matter power spectrum. The terms plotted for bins i = 1, 10 are

GG:
2πGρ(z)a2

c2
Wi(χ ) (A8)

IIHS04 : C1ρ(z)ani(χ ) (A9)

IIthis work : C1ρ(z = 0)ni(χ ). (A10)

The lower panel includes the square root of the matter power spec-
trum contribution, plotting

GG:
2πGρ(z)a2

c2
Wi(χ )

√
Pδδ(k, χ ) (A11)

IIHS04NL : C1ρ(z)ani(χ )
√

Pδδ(k, χ ) (A12)

IIthis work : C1ρ(z = 0)ni(χ )
√

P lin
δδ (k, χ ). (A13)

Correct inclusion of the a2 terms produces an IA signal which
is constant with redshift, rather than the one which increases with
redshift in the HS04NL prescription. IAs are normalized against
a C1 value measured at low redshift, which means that the new
II term is comparable to the HS04NL term at low redshift (if it
were possible to show the II terms at z = 0 on the top panel of
Fig. A1 they would be identical) but increasingly diverges at higher
redshifts. This is why the II kernel for the 10th (high-z) redshift
bin is reduced more as we move from HS04NL to the new model
than the equivalent lines for the first (low-z) bin. The shear–shear
term is unaffected by our treatment of IAs, which means that IAs
make a less significant contribution to the total shear signal at higher
redshift than in the HS04NL approach.

The impact of moving from the common NLA approach to our
motivated treatment of non-linear clustering and IAs is to weaken
the contribution of IAs relative to cosmic shear because we discard
all non-linear clustering power for the IA terms. This means we lose
all power due to non-linear clustering in the II term and half the non-
linear power from the GI term where the I contribution is linear but
the G contribution remains dependent on the fully non-linear matter
power spectrum. The impact is felt at all redshifts but the effect is
strongest at low z where non-linear clustering is strongest. Fig. A2
shows the projected angular power spectra for those components
which are affected by the change from the HS04NL model (as used
in Joachimi & Bridle 2010) to the latest implementation described
in this work. The format of the plot is the same as Fig. 1; lines
corresponding to the latest LA implementation are thick versions
of the same line style as their HS04NL equivalents. The shear–
shear (GG) angular power spectra are, of course, unaffected by the
change; they are shown in the upper triangle for comparison.
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Figure A2. Projected angular power spectra which contain IA contributions. Computed for our fiducial survey and displayed for a variety of tomographic
redshift bin combinations as in Fig. 1. Power spectra are computed using the HS04NL approach (narrow lines) and the new approach described in this work
(thick lines). The GG (solid black narrow) power spectrum is shown for comparison.
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