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a b s t r a c t

This paper develops a model-free method to estimate the dynamics of free-flying objects. We take a
realistic perspective to the problem and investigate tracking accurately and very rapidly the trajectory
and orientation of an object so as to catch it in flight. We consider the dynamics of complex objects where
the grasping point is not located at the center of mass.

To achieve this, a density estimate of the translational and rotational velocity is built based on the
trajectories of various examples. We contrast the performance of six non-linear regression methods
(Support Vector Regression (SVR) with Radial Basis Function (RBF) kernel, SVR with polynomial kernel,
Gaussian Mixture Regression (GMR), Echo State Network (ESN), Genetic Programming (GP) and Locally
Weighted Projection Regression (LWPR)) in terms of precision of recall, computational cost and sensitivity
to choice of hyper-parameters. We validate the approach for real-time motion tracking of 5 daily life
objects with complex dynamics (a ball, a fully-filled bottle, a half-filled bottle, a hammer and a pingpong
racket). To enable real-time tracking, the estimated model of the object’s dynamics is coupled with an
Extended Kalman Filter for robustness against noisy sensing.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Catching rapidly moving targets remains a challenging task for
a robot. To catch a moving object effectively, one must predict its
trajectory ahead of time. This requires both accurate sensing and
accurate modeling of the object’s trajectory. A complex object is
particularly challenging to track correctly as one canneither rely on
a predetermined model of the dynamics nor expect to be provided
with sufficiently accurate sensing to detect the object precisely.
However, despite these difficulties, tracking and catching objects
rapidly is a competence that will be expected from robots which
work with humans in a real-world setting.

Humans are particularly skilled at performing fast catching
motion, even though the speed at which they process visual
information and move their limbs is often an order of magnitude
smaller than the speed at which robot can perform both tasks. For
instance, Cesqui et al. [1] reported a preparation time before onset
of arm motion of for ball catching is 0.12 s. Brener and Smeets [2]
showed that it takes about 0.11 s for visual information to influence
the movement of the human hand. In this work, we seek to exceed
human’s ability to catch fast flying object and target a speed of
visual processing of the order of a few milliseconds.

While robots are very powerful, they remain limited in the
maximal velocity, acceleration and joint torque they can achieve.
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For instance, the WAM robot in our lab, which is the fast machine
at our disposal, needs about 0.48 s. to catch a target a meter away
(when starting with zero velocity and stopping at the target).1
Hence, in order to reach the catching position in time, the robot
should start moving at least 0.48 s before impact. Prediction of the
displacement of the target will be strongly affected by noise in the
sensing device. This will further delay the catching motion, as the
arm has to be redirected toward the new estimated location on
the fly. We hence seek a system that can make a rough trajectory
estimate to be followed by the object in a few milliseconds after
detection of the object, so as to initiate the movement in the right
direction as soon as possible. The system will then continuously
refine its estimate of the object’s trajectory, as it receives more
precise sensing information. This very fast re-computation of the
object’s motion can then be used to servo the arm to the right
location.

In this paper, we ignore the problem of controlling the robot’s
body to catch the object and focus on the problem of accurately
predicting the grasping point (point of interest). The grasping point
is usually not located at the center of mass of the object, hence
we tackle the problem of tracking an arbitrary point on the object,
hereafter referred to as the grasping point. Note that we do not
address the problem of recognizing the object in a video image and

1 The WAM robot is made by Barrett technology inc. It manipulates in 3.5 m3

work volume; The peak end-effector velocity is 3 m/s and maximum acceleration
is 20 m/s2 with 1 kg load; The repeatability of the robot is 2 mm.
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hence assume that the grasping point has already been determined
or is tagged.

We investigate successfully grasping five objects (a ball, a
fully-filled and half-filled bottle, a hammer and a ping–pong
racket) fairly common in human environments (see Fig. 3). These
objects have asymmetric moment of inertia matrices, which
result in highly non-linear translational and rotational motions
of the grasping point. As we cannot rely on a known analytical
model of the motion of the grasping point, we approach the
problem of learning the dynamics of motion of the grasping
point through demonstrations. To this end, we gather data from a
human throwing each object several times (see Fig. 3). In recent
years, machine learning has led to the development of various
techniques for non-linear regression and prediction of complex
time series. There is no definitive way to determine which non-
linear regression technique would be most appropriate to learn
an estimate of the non-linear dynamics of our objects in flight.
Therefore, we chose to do a comparative analysis across the
six most appropriate techniques, namely SVR with RBF kernel,
SVR with polynomial kernel, GMR, ESN, GP and LWPR, according
to three criteria: precision of recall, computational cost and
sensitivity to choice of hyper-parameters.

2. Related work

2.1. Robotic catching

A body of work has been devoted to autonomous control of
fast movements such as catching [3–10], dynamic re-grasping
(throwing an object up and catching it) [11], hitting flying
objects [12,13] and juggling [14–16]. Most approaches assumed
a known model of the dynamics of motion and considered solely
modeling the translational object motion. For instance, Hong and
Slotine [4] and Riley and Atkeson [7] model the trajectories of a
flying ball as a parabola, and subsequently recursively estimate the
ball’s trajectory through least squares optimization. Frese et al. [6],
Bauml et al. [10] and Park et al. [9] also assume a parabolic
form for the ball trajectories which they use in conjunction
with an Extended Kalman filter [17] for on-line re-estimation.
Ribnick et al. [18] and Herrejon et al. [19] estimate 3D trajectories
directly from monocular image sequences based on the ballistic
ball movement equation.

A few works consider modeling of the rotational motion of the
object for robot catching. Furukawa et al. [11] performed adynamic
regrasping experiment (throwing an object up and catching it)
with a known axially symmetric object, a cylinder (with known
radius and length and uniform mass distribution). Further, they
assume that the center of mass (COM) of the cylinder follows a
parabolic trajectory and set the rotational velocity to a constant.
These assumptions are very effective and allowed them to perform
an impressive demonstration of extremely fast grasping using a
multi-fingered hand robot.

Such approaches are accurate at estimating the trajectories
of fast-flying objects. However, they rely on an analytical model
for the object. In addition, the majority of these works assume a
ballistic translational trajectory and focus on tracking the object’s
center of mass. However, to catch a complex object such as a
hammer or a ping–pong racket, one needs to estimate the complete
pose of the object so as to determine the precise location of the
grasping posture. This grasping posture is usually not located
on the object’s center of mass.2 When the object is undergoing

2 In our experiments, the grasping point will be represented by a constant
transformation from the center-of-mass (COM) frame andmay not lie on the object
itself.
complex rotational motion, the dynamics of an arbitrary point
not located on the COM follows very complex and arbitrary
dynamics. Given this complexity, we examine existing approaches
to estimating such complex non-linear dynamics when using a
known (or good approximation) model of the dynamics.

2.2. Modeling a dynamical system

While there is a great interest in endowing a robot with the
ability to catch objects in flight, the estimation of an unknown
object’s dynamics has been primarily the focus of applications in
aerospace engineering for which estimating a spacecraft’s orbit in
real-time is a common issue. One of the methods to estimate a
spacecraft’s orbit is using precise known physical models of the
forces acting on the spacecraft (e.g. earth gravity, atmospheric
drag, lunisolar gravity, solar radiation pressure, etc.) [20–23].
However, precise modeling of all forces acting on each spacecraft
is a very complicated process, and it still contains modeling errors.
To reduce orbit errors caused by the mismodeling of spacecraft
forces, the deterministic dynamics model of the spacecraft is
complemented by empirical forces which are estimated by
least-squares estimation or Kalman filtering with measurement
geometric information [24,25]. However, a precise dynamic model
is still required to produce a satisfactory orbit. Besides, such a
model estimates solely the translational motion of the spacecraft.

System identification refers to a vast field in which the complex
dynamics of a system is being estimated. This usually assumes a
knownmodel of the dynamics and only the open parameters of the
model are estimated. Several approaches are applied for estimating
parameters of a linear or nonlinear dynamical model, using the
recursive least squares method [26], maximum likelihood [27],
neural networks [28] or similar. These identifications of a
dynamicalmodel are extended to a linear parameter varyingmodel
(LPV). Each state space parameter of the LPV system is not a
constant; instead, it is a function of the exogenous parameter
which is predefined, measured or estimated upon operation of
the system [29]. To identify the model, a Gauss–Newton type of
gradient search method [30], hybrid linear/nonlinear procedure
(where a model is divided into two parts, the nonlinear part
is identified through neural network and the linear parametric
part through an LS algorithm), recursive least-squares (RLS)
algorithm [31] etc. are proposed. These methods very accurately
model very complex systems. However, the type and structure of
the system should be given ahead of time.

2.3. Machine learning techniques for modeling robotic tasks

Machine learning techniques have been applied in a variety
of robotic tasks that require estimations of non-linear regressive
models. Support Vector Regression (SVR) is used to model an
inverse-dynamics of a robot [32], and to obtain an acceptable
model of a chaotic system to be controlled [33]. Genetic
Programming (GP) [34], a special class of genetic algorithm (GA),
is used to model the optimum gait generation for a quadruped
robot [35], and to establish an error correction (calibration) model
of ill-conditioned inverse kinematics for a robot [36]. An Echo State
Network (ESN) is used for nonlinear dynamical modeling [37], and
modeling the localization capability and the navigation skill for
a mobile robot. [38]. The Hidden Markov model (HMM) is used
for recognition and regeneration of human motion across various
demonstrations [39,40], and to teach a robot to perform assembly
tasks [41]. Locally Weighted Projection Regression (LWPR) is used
to approximate the dynamic model of a robot arm for computed
torque control [42,32], for teaching a robot to perform basic soccer
skills [43], and is also applied for real-time motion learning for
a humanoid robot [32]. Statistical approaches that find a locally
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optimalmodel to represent the demonstrations bymaximizing the
likelihood, are also possible. They transform the demonstrations
into a single or mixed distribution. To approximate the dynamic
model of a robot arm for computed torque control [42,44],
Gaussian Process Regression (GPR) is used. Additionally, Gaussian
Mixture Regression (GMR) is used to model a robot motion from a
set of human demonstrations, as a time-dependent model [45] or
time-independent dynamical system [46].

The currentworkswhose approachesmost closely approximate
our own at this time are approaches in image processing that
track and predict the motion of an object using dynamical systems
modeling. For instance, North et al. [47] model the deformation of
the contour of an object as a 2nd order dynamical system (DS). The
parameters of the dynamics are estimated through Expectation
Maximization. However, this dynamics learning method is limited
to simple ballistic motion. In a consecutive publication, North
et al. [48] explore multi-class dynamics learning to model the
motion of a juggler’s ball. The motion is segmented with several
dynamical systems, and each dynamical system is modeled as
an Auto-Regressive Process (AR) [49]. AR is a simple linear time-
series process, shape of high-order linear dynamical system; the
future state is expressed as a linear combination of the past states.
The model can be trained using the Yule–Walker Equation [49].
Pavlovic et al. [50] proposed using amixed-state dynamic Bayesian
network framework to model human gesture trajectories. Under
this method, a hidden Markov model of discrete states is coupled
with a first-order linear dynamical system of continuous trajectory
motion. These methods assume that each discrete state of a target
motion has a different level of thrust by its operator. In other
words, they assume the target motion is a combination of different
dynamics. However, to predict the whole trajectory along the
different dynamics states, a smooth transition procedure between
the discrete states is required.

2.4. Our approaches and contributions

As we reviewed above, several methods have been proposed to
model the non-linear dynamics of objects in flight. Most of these
methods rely on prior knowledge of the system aswell as precisely
known physical properties or analytic descriptions of the object
model. This limits the application of these methods to a relatively
narrow range of objects. In this work, we offer an approach to
learn the dynamics of motion of an arbitrary point on an arbitrarily
shaped object. We make no assumptions about the position of the
center of mass nor do we use a closed form description of the
dynamics and shape of the object.

In our previouswork [51],we addressed the problemof learning
and predicting the motion of a flying ball in order to catch it in-
flight using a humanoid robot. There, the dynamic model of the
ball motionwas learned using the GaussianMixtureModel (GMM)
based dynamical system estimator. Only the translational velocity
of the center of mass of the ball was estimated. In this paper,
we extend our previous work in two ways: we consider more
complex objects with complex distribution of mass (resulting in
asymmetrical inertia matrices) and we no longer assume that the
grasping point is located at the center of mass of the object. We
encode the demonstrations using 2nd order DS which provides
an efficient way to model the dynamics of a moving object solely
by observing examples of the object’s motion in space. Note that
this does not require prior information on the physical properties
of the object such as its mass, density, etc. To model a DS from
observations, we use machine learning techniques for non-linear
regression estimation. As reviewed in Section 2.3, there are a
variety of techniques for non-linear regression. Here we focus our
comparative analysis across the six most appropriate techniques,
namely SVR–RBF, SVR–Poly, GMR, ESN, GP and LWPR. We do
not consider GPR and HMM for two different reasons. Since GPR
relies on storing all data points for testing, it is deemed too
computationally intensive.3 HMM, on the other hand, requires
some interpolation methods to regenerate an estimate of the
trajectory (in between two points generated by the observations
associated to each state) during recall. Typically, one would
use a spline technique for the interpolation. This however can
significantly deteriorate the predictive value of the model. We
hence prefer to use methods that directly estimate the non-linear
dynamics of the system and do not rely on secondary methods for
regenerating this dynamics.

The rest of this paper is divided as follows. In Section 3,
we present the formalization of our method. We show that
SVR, GMR, ESN, GP and LWPR yield an analytical form for the
estimated dynamics which can be used in conjunction with
extended Kalman filter for real-time tracking of the grasping
point. In Section 4, we present a set of experiments in which we
contrast the six regression methods in terms of precision of recall,
computational cost and, most importantly, sensitivity to choice of
hyper parameters. Section 5 concludes and Section 6 looks out on
remaining issues that will be tackled in future work.

3. Predicting the trajectory of a free-flying object

3.1. Learning the dynamics of a moving object

In its most generic form, the dynamics of a free-flying object
follows a 2nd order autonomous dynamical system:

ξ̈ = f

ξ, ξ̇


(1)

where, ξ ∈ RD denotes the state of the object (position and
orientation vector of the grasping point attached on the object, see
Fig. 3.); ξ̇ ∈ RD and ξ̈ ∈ RD denote the first and second derivative
of ξ ; A total of N training trajectories with T data points are
used tomodel the dynamics,


ξt,n, ξ̇t,n, ξ̈t,n


t=1..T


n=1..N

. We used
Quaternions to represent orientations. Quaternion representation
avoids the gimbal lock problem and numerical drift compared to
Euler angles, and allows for more compact representation than
rotational matrices.

In this paper, we evaluate four different machine learning tech-
niques to model unknown function f (·). These are Support Vector
Regression (SVR) [54], Gaussian Mixture Regression (GMR) [55],
Echo State Network [56], Genetic Programming [34] and Locally
Weighted Projection Regression [32]. Each of these algorithms are
briefly described next. For clarity of notation in the rest of the docu-
ment, we regroup the state variable in a single variable: ζ =


ξ

ξ̇


∈

R2D.

3.1.1. Support Vector Regression (SVR)
SVR [54] performs non-linear regression from a multidimen-

sional input ζ to a unidimensional output. Since our output is mul-
tidimensional, we here train D SVR models, denoted dfSVR, d =

1 . . .D. After training, we obtain a regression estimate given by:

ξ̈ = fSVR (ζ ) =
dfSVR (ζ )


d=1...D (2)

dfSVR (ζ ) =

M
m=1

dαmK

ζ , dζm


+

db. (3)

3 Recent efforts at developing spare methods for alleviating this cost have
produced promising results [52,53]. The computation remains however at best
linear in the number of data points and there is no unique way to determine the
subset of training points.
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Fig. 1. The basic network architecture of echo state network [56].

Only the subset of data points, ζm ∈ R2D,m = 1 . . .M,M ≤

(N × T ) are used in the regression. These are called the support
vectors, and have associated coefficient αm ≠ 0, |αm| < C

M . C
is a regularized constant that determines a trade-off between the
empirical risk and the regularization. In this paper, the optimal
value of C is determined through a grid search, see Section 4.2.
The kernel function K : RD

× RD
→ R is a non-linear metric

of distance across data points. It is key to so-called kernel
machines such as SVR and allows to extract features across data
points that would not be visible through Euclidian metrics, such
as norm 2. The choice of kernel is therefore crucial. In this
study, we use the inhomogeneous order-p polynomial kernel,
K (ζ , ζm) = (ζ · ζm + 1)p, and the radial basis function (RBF)
kernel, K (ζ , ζm) = exp


−γ ∥ζ − ζm∥

2 with radius γ ∈ R and
determine the optimal values for the open parameters of these
kernels through grid search.

3.1.2. Gaussian Mixture Regression (GMR)
GMR [55] is a multivariate nonlinear regression method.

First one learns an estimate of the joint distribution P (ζ , ξ̈ )
using a Gaussian Mixture Model trained through Expecta-
tion–Maximization (EM). Then, one derives an analytical expres-
sion for the regression signal by computing fGMR(ζ ) = E


P (ξ̈ |ζ )


.

Assuming a GMMwith K Gaussian functions, fGMR is given by:

ξ̈ = fGMR (ζ ) =

K
k=1

hk (ζ ) (Akζ + Bk) (4)

Ak = Σ
ξ̈ ,ζ

k


Σ

ζ

k

−1
(5)

Bk = µ
ξ̈

k − Akµ
ζ

k (6)

hk (ζ ) =
N (ζ |µ

ζ

k , Σ
ζ

k )

K
i=1

N

ζ |µ

ζ

i , Σ
ζ

i

 (7)

Σk =


Σ

ζ

k Σ
ξ̈ ,ζ

k

Σ
ξ̈ ,ζ

k Σ
ξ̈

k


(8)

where N (ζ |µk, Σk) is a Gaussian distribution with mean µk and
covariancematrixΣk; hk (ζ ) gives ameasure of the influence of the
kth Gaussian in generating the data point ζ ; see [57] for details.

3.1.3. Echo State Network (ESN)
ESN [56] is a recurrent neural network composed of one hidden

layer with randomly connected and weighted neurons, see Fig. 1.
We used a fully connected ESN with P input nodes for the 2D-

dimensional input, R internal units and L output unit. The weights
Win from input to internal units and W across internal units were
set to random initial values, but the spectral radius of W is ρ < 1
(the optimal value of ρ is determined through a grid search). Only
the output weights from internal units to output units are learned
through linear regression; see [56] for a complete description of
ESN. Eq. (9) gives the expression for fESN, the estimate of f using
ESN.

ξ̈ = fESN (ζ ) = g

Woutxx + Woutuζ


(9)

ẋ =
1
c


−ax + g


Winζ + Wx + Wfbξ̈


(10)

where x ∈ RR is the state of the internal neurons; c is the time
constant; a is the decay rate; g(.) represents the internal unit’s
output function, and output unit’s output function (in this paper
we used identity function); Win ∈ RR×P is input weight matrix;
W ∈ RR×R is the reservoir weight matrix; Woutx ∈ RL×R is the
output weight matrix connected to internal state x;Woutu ∈ RL×P

is the output weight matrix connected to input; Wfb ∈ RR×L is
output feedback matrix.

3.1.4. Genetic Programming (GP)
GP [34] is a special class of genetic algorithms (GA) where

each individual is a program expressed as a syntax tree. GP
automatically determines both the structure and the parameters of
the program. Each program codes for variables or a set of functions
from a function set. The function-set used in this paper, consists
of the arithmetic operators (+, −, × or/) and the trigonometric
functions (sin(·), cos(·)). Fig. 2 shows an example of a function fGP
yielded by GP. Algorithm 1 shows steps involved in learning a GP
in this study. See [34] for details.

Algorithm 1 Basic Steps for Genetic Programming
1: Initialize the population of programs randomly.
2: repeat
3: Fitness: Calculate fitness (the root mean squared prediction

error on the training data) for each program.
4: Tournament selection: Select one or two program(s) at

random from the population based on the fitness (population
size and maximum depth of program tree are found from grid
search).

5: Recombination and Mutation: Create new programs or
delete existing programs by applying crossover and mutation
(mutation rate: 0.1).

6: until Termination: Terminate once the fitness is below a given
threshold (0.001 in our experiments) or when more than 200
generations have been done.

7: Return the best program found.

3.1.5. Locally Weighted Projection Regression (LWPR)
LWPR [32] is a nonlinear function approximation algorithm.

The LWPR function is constructed by combining weighted local
linear models. LWPR is able to incrementally update the number
of local models and regression parameters of a local model online
as suggested in [58]. We hence obtain a D-dimensional estimate
given by:

ξ̈ = fLWPR (ζ ) =
dfLWPR (ζ )


d=1...D (11)

dfLWPR (ζ ) =

S
s=1

wsΨs

S
s=1

ws

(12)

ws = exp


−
1
2

(ζ − cs)T Ds (ζ − cs)


. (13)
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Fig. 2. A program trained through a open-source software GPTIPs [34] for a dynamic model of a flying hammer at the experiment Section 4.3.
Here, Ψs = βs
T (ζ − cs) + bs is the sth linear local model.

Each local linear regressive model is described by its regression
parameter βs ∈ R2D and its intercept bs. The weight ws measures
the influence of the sth local model given a query point ζ . cs ∈ R2D

is the center of the local model and Ds ∈ R2D×2D is the distance
metric of the Gaussian kernel which determines the local influence
of each linear regressive model. The number of local models S is
determined during the incremental training. If all weights ws of
existing local models for a new training point are smaller than the
weight activation threshold (0.1 in this study), a new local model
is created. The center of the new local model is set to the current
training point and it is not modified afterwards [58]. The model
parameters βs, bs and Ds are trained through the incremental
gradient descent method with Partial Least Squares regression
(PLS) [59] to minimize prediction errors.

3.2. Dealing with noise

Each of the six algorithms we use to estimate our unknown
object dynamics f yields an analytical expression for f , which is
continuous and continuously differentiable. It can then be used in
conjunctionwith the Extended Kalman Filter (EKF) [17] to ensure a
robust noise filter when re-estimating the object’s motion in flight.
For the EKF, the augmented estimate fAUG of the system dynamics
(estimated using either of the six estimation techniques described
earlier on) and measurement model are given by:

ζ̇ (t) = fAUG (ζ (t)) + w(t) (14)
z(t) = [eye(D) zeros(D)] ζ (t) + v(t) (15)

fAUG (ζ (t)) =


ξ̇ (t)
f (ζ (t))


(16)

where z(t) is the measurement of the state at time t , the process
noise w and measurement noise v are assumed to be multi-
variate zero mean Gaussian with covariance Qs = E


wwT


and

Rs = E

vvT


respectively. zeros(D) and eye(D) are D × D zero and

identity matrix.
For the EKF prediction, we initialize the state of our system

ζ (t0) = E [ζ (t0)] and the error covariance P(t0) = Var [ζ (t0)]. EKF
determines at each time step an estimate of the time derivatives
of our systems ˙̂

ζ (t) and error covariance matrix ˙̂P(t) using the
following equation:

˙̂
ζ (t) = fAUG (ζ (t)) (17)
˙̂P(t) = F(t)P(t) + P(t)F(t)T + Q(t) (18)

F(t) =
∂ fAUG
∂ζ


ζ (t)

=

zeros(D) eye(D)
∂ f
∂ζ


ζ (t)

 . (19)

Here, F(t) is the Jacobian of the dynamics model, and Q(t) is
the process covariance matrix at time step t . Since the selection
of Q(t) does have a significant influence on the performance of
EKF, we determine Q(t) using a fundamental matrix Φ(t) as seen
below [60]:

Q (t) =

 1t

0
Φ (τ )QsΦ (τ )T dt (20)

Φ(t) ≈ I + F(t)1t. (21)
By integrating Eqs. (17) and (18) through time by 1t , we find
the state estimate ζ̂ (t + 1t) and the error covariance estimate
P̂ (t + 1t). After this predictive step, we calculate a posteriori state
ζ (t + 1t) and error covariance P (t + 1t), by correcting the state
and covariance using the following equations.

K(t) = P̂ (t + 1t)HT

HP̂(t + 1t)HT

+ Rs


(22)

ζ (t + 1t) = ζ̂ (t + 1t) + K(t)

z(t) − Hζ̂ (t + 1t)


(23)

P (t + 1t) = (I − K(t)H) P̂ (t + 1t) (24)
H = [eye(D) zeros(D)] (25)
where K(t) is the Kalman gain, H is the Jacobian of measurement
model.

To ensure the report’s comprehensiveness, we provide the
analytical expression of the derivatives of the functions ∂ f

∂ζ
used

for the prediction step (Eq. (19)) in Table 1.

4. Empirical validation

4.1. Experimental setup

4.1.1. Objects selection
To demonstrate the accuracy of the trajectory estimation

methods and the performance with different machine learning
techniques, we used five objects varying in complexity: a ball,
a bottle fully-filled with water, a bottle half-filled with water, a
hammer and a pingpong racket. Each of these objects are shown
in Fig. 3. The Ball is the simplest object to catch due to its three
axes of symmetry. One needs only to determine the position of
the object, as the orientation is irrelevant. In contrast, to properly
catch the bottle requires a determination of both the location and
orientation of the bottle. When the bottle is half-filled with water,
its moment of inertia changes as it rotates in flight, adding strong
non-linearities to the dynamics. For a hammer, the measuring
point which is typically at the center of the handle, is noticeably
removed from the center of mass. Hence, the motion of the
measuring point is highly oscillatory in nature. For the racket, the
effect of air-drag is more important on the face than along the
handle, which again is a source of considerable non-linearity.

4.1.2. Observing real object movement
The trajectorieswere recorded using the HAWKmotion capture

system, from Motion Analysis. To record both the position and
orientation of the object in flight, we attached 3markers to each of
the objects. Each marker’s position was recorded at 120 Hz. Each
object was thrown 20 times. The recorded row data-sets and the
position trajectories of 3markers are converted to the position and
orientation trajectories of the grasping point. And, each trajectory is
filtered through a Butterworth filter at 25Hz, andwe calculated the
velocity and acceleration using cubic spline interpolation. Finally,
we normalized the linear and angular acceleration trajectories to
be comprised within −0.5 and +0.5. Some of the position and
orientation trajectories captured from motion capture system are
shown in Fig. 3. The mean and standard deviation of the initial
position, velocity, Euler angle and angular velocity of the thrown
objects are shown in Tables 2 and 3. Additionally, their ranges are
shown Table 4. The mean and standard deviation of acceleration
and angular acceleration for the trajectories of the objects are
shown in Table 5.
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Table 1
Analytical expression of the derivatives of the functions ∂ f

∂ζ
.

Derivative of SVR

∂ fSVR(ζ )

∂ζ
=


∂d fSVR(ζ )

∂ζ


d=1...D

(26)

∂d fSVR–POLY(ζ )

∂ζ
= p

M
m=1

dαm
dζm


ζ ·

dζm + 1
p−1

(27)

∂d fSVR–RBF(ζ )

∂ζ
= −2γ

M
m=1

dαm

ζ −

dζm

exp


−γ

ζ −
dζm

2


(28)

where ζm are the support vectors with the associated coefficient αm . p is the degree of polynomial kernel, γ is the radius of RBF kernel.

Derivative of GMR

∂ fGMR(ζ )

∂ζ
=

K
k=1 hk (ζ )


 Ck (ζ )


Ak,1ζ + Bk,1


. . .

Ck (ζ )

Ak,jζ + Bk,j


. . .

 + Ak

 (29)

Ck (ζ ) =


−


Σk

ζ

−1 
ζ − µk

ζ


+

K
i=1


hi (ζ )


Σ i

ζ

−1 
ζ − µi

ζ

T
(30)

where Ak,j is jth row value of Ak; Ak,j ∈ R1×2D
; Bk,j ∈ R.

Derivative of ESN

∂ fESN(ζ )

∂ζ
= Woutx


ẋ1
ζ̇1

· · ·
ẋ1
ζ̇P

.

.

.
. . .

.

.

.
ẋR
ζ̇1

· · ·
ẋR
ζ̇P

 + Woutu (31)

whereWoutx andWoutu are the output weight matrixes connected to R internal units and P input nodes respectively; ẋr is the velocity of rth internal state x.

Derivative of GP

The dynamic model (program) trained through GP is defined as a linear combination of pre-defined set of functions/operators and the input variables. Since each
program always is defined using finite number of individual closed form expressions, it will always possible to find the derivative for any given program of GP.

Derivative of LWPR

After finishing the training, the analytic derivative of the model is given by [58]:

∂ fLWPR(ζ )

∂ζ
=


∂d fLWPR(ζ )

∂ζ


d=1...D

(32)

∂d fLWPR(ζ )

∂ζ
= −

S
s=1(−wsDs(ζ−cs))

S
s=1 wsΨsS

s=1 ws
2 +

S
s=1(−wsDs(ζ−cs)ys+wsβs

T )S
s=1 ws

 . (33)
Table 2
Initial position and velocity for the free-flying objects (mean ± st. dev.)

Initial position (m) Initial velocity (m/s)
x y z x y z

Ball 1.20 ± 0.32 0.71 ± 0.05 1.08 ± 0.36 −3.84 ± 1.26 −0.31 ± 0.24 3.53 ± 0.83
Bottle full 0.84 ± 0.19 0.77 ± 0.03 0.99 ± 0.19 −3.15 ± 0.77 −0.19 ± 0.64 3.88 ± 0.91
Bottle half 0.89 ± 0.13 0.78 ± 0.06 0.95 ± 0.12 −3.56 ± 0.74 −0.33 ± 0.88 3.84 ± 0.60
Hammer 0.85 ± 0.19 0.70 ± 0.05 0.94 ± 0.10 −3.07 ± 0.59 −0.43 ± 0.22 3.26 ± 0.69
Racket 0.90 ± 0.18 0.69 ± 0.08 0.96 ± 0.23 −3.12 ± 0.93 −0.37 ± 0.55 3.47 ± 0.86
Table 3
Initial orientation and angular velocity of the free-flying objects (mean ± st. dev.)

Initial Euler angle (×102 °) Initial angular velocity (×103 °/s)
Roll Pitch Yaw ω1 ω2 ω3

Bottle full 0.27 ± 1.37 −0.05 ± 0.30 0.00 ± 1.23 −0.19 ± 0.36 −0.06 ± 0.50 0.27 ± 0.33
Bottle half −0.14 ± 1.57 −0.03 ± 0.31 0.13 ± 0.64 −0.28 ± 0.21 0.27 ± 0.39 0.24 ± 0.31
Hammer 0.05 ± 1.12 0.03 ± 0.51 −0.36 ± 1.38 −0.56 ± 0.38 0.19 ± 0.28 0.08 ± 0.25
Racket 0.31 ± 1.05 0.07 ± 0.35 −0.13 ± 1.17 −0.43 ± 0.21 0.23 ± 0.34 0.25 ± 0.29
Table 4
Range of the initial values (position, velocity, Euler angle and angular velocity) of the free-flying objects.

Position (m) Velocity (m/s) Angle (×102 °) ω (×103 °/s)
x y z x y z Roll Pitch Yaw ω1 ω2 ω3

Ball 0.90 0.15 0.98 4.16 0.66 2.89
Bottle full 0.69 0.13 0.69 2.78 2.56 3.81 4.63 1.29 5.88 1.53 1.61 1.07
Bottle half 0.51 0.20 0.51 3.49 3.60 2.19 5.10 1.29 3.04 0.74 1.29 1.22
Hammer 0.62 0.17 0.31 2.18 0.82 2.87 3.59 1.48 5.97 1.78 1.24 1.05
Racket 0.74 0.29 1.01 3.75 1.82 3.21 3.12 1.30 3.42 0.74 1.18 0.95
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(a) A ball.

(b) A full-filled bottle.

(c) A half-filled bottle.

(d) A hammer.

(e) A racket.

Fig. 3. Left: Objects used in the experiments. Three markers (M1, M2 and M3) are attached to each of the objects (except the ball) to capture the position and orientation.
Their position (middle) and orientation (right) trajectories are shown. ‘‘+’’ is marked in the graph at each initial position and orientation, and numbers are placed in the
graph to identify each throwing trajectory.
Table 5
Acceleration and angular acceleration for the trajectories of the free-flying objects (mean ± st. dev.)

Acceleration (m/s2) Angular acceleration (×103 °/s2)
x y z α1 α2 α3

Ball 0.42 ± 0.24 0.03 ± 0.08 −9.79 ± 0.09 – – –
Bottle full −0.30 ± 5.41 −0.51 ± 3.66 −8.63 ± 5.36 −1.574 ± 2.462 0.445 ± 2.011 −0.378±2.275
Bottle half −0.96 ± 4.30 −0.18 ± 2.85 −9.95 ± 4.58 −1.384 ± 2.006 −0.570 ± 1.466 0.308±2.100
Hammer −0.39 ± 7.38 −0.37 ± 1.98 −10.40 ± 8.52 1.201 ± 3.037 1.392 ± 1.721 −0.395±2.751
Racket 0.67 ± 7.60 0.38 ± 5.40 −8.15 ± 8.16 −1.140 ± 2.319 −2.015 ± 3.399 0.863±3.613
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Table 6
List and range of values of free-parameters for each method, and its optimum values after grid search.

Method Parameter Min Max Bottle(full) Bottle(half) Hammer Racket

SVR γ 0.01 0.60 0.16 0.12 0.20 0.24
(RBF) C 0.10 3.00 3.00 3.00 3.00 3.00
SVR p 1 6 6 6 6 6
(Poly) C 0.10 3.00 3.00 3.00 3.00 3.00
GMR K 1 12 10 11 12 12
ESN R 20 80 80 80 80 80

ρ 0.1 0.8 0.26 0.41 0.49 0.57
GP Population size 10 150 150 94 94 122

Maximum tree depth 2 5 5 4 5 4
LWPR Initial D 0.1 3 1.4 1.1 1.1 1.4
4.2. Parameter selection

The performance of each technique is largely dependent on
the selection of the model parameters. For SVR with RBF kernel,
we tested the effect of changing the kernel width γ and the
parameter C . γ is a scaling factor on the distance between the
support vectors ζm and the query points ζ . C determines a tradeoff
between increasing accuracy and optimizing for the complexity of
the fit [61]. A small γ , likewise a high C will fit well with local non-
linearities. However, this may lead to over-fitting when these non-
linearities are not representative of the whole data-set. For SVR
with polynomial kernel, we varied the value of C and the degree of
the kernel p, as we expected that the higher p, the better themodel
would fit non-linearities. We varied the number of Gaussians K for
GMR. The more Gaussians, the better the fit. But again, too many
Gaussians would lead to over fitting and hence yield poor results
on the testing set. For the ESN, we varied R, the number of internal
neurons in the reservoir, and ρ, the spectral radius. The optimum
value of R is task-dependent and hence there is no easy way to
determine it off-hand. ρ is the spectral radius (maximum absolute
value of the eigenvalues) of the reservoir weight matrix W and
controls the spread of the weights dispersion in the reservoir. A
large ρ implies that the reservoir stores longer ranges of nonlinear
interaction with input components. In practice, one is advised to
use ρ < 1 to ensure optimal performance of ESN [56]. For GP, we
varied the population size, and depth of tree. A large population
size usually yields better performance but increases computational
cost. A high tree depth better fits local nonlinearities. For LWPR,we
tested the effect of changing the initial distance metric D, of the
Gaussian Kernel (as varying r of D = rI [58]). A small r will lead
to local minima and delay the convergence, while a too large value
for r will lead to over-fitting.

We performed 10-fold cross-validated grid searches, in order to
find the optimal parameters for each technique, and each object.
The range and optimal parameters found from the grid search are
shown on Table 6.

For the ball, all techniques yielded very accurate estimates for a
wide range of parameter choices (the prediction was hence little-
influenced by the choice of parameters), see Fig. 4. As expected,
the ballistics translational movement and the symmetry of the
object along its three axesmake the problemeasy for all considered
techniques.

While we expected the methods to become more sensitive to
the choice of parameters as the complexity of the object dynamics
increased, we found that this is not the case and that similar
optimal values for each set of parameters is found for each of the
four more complex objects, see Table 6. There may be two reasons
for this: first, even though the inherent complexity of the objects’
dynamics increases, this was not perceivable when measuring
only the position, orientation, velocity and angular velocity of the
object (one should have looked at the displacement of water in
the half-filled bottle for instance). Second, the dynamics of all 4
complex objects is far richer than the simple ballistic motion of
the ball and thus the complexity of these objects’ dynamics was
somewhat comparable, requiring the same level of precision from
the regression techniques to model these (observe that the scale
and range of values taken by the input and output of our model
during training are similar for each of the four complex objects,
as seen in the Tables 2–5). Note that while the same range of
optimal parameters is found for each of the four complex objects,
the resulting regressive models differ in each case. Moreover, for
SVR–RBF, SVR–Poly, ESN and LWPR, the region of parameter space
yielding optimal performance is quite large, see Fig. 4. GP is the
most sensitive technique and, as we will see next, it also had the
lowest accuracy scores.

Decreasing the value of γ for RBF Kernel, improves the fit.
As expected, when γ is too small, SVR starts overfitting leading
to poor performance on the testing set. Near the optimal value
of γ , we can see that the estimation accuracy is increased by
increasing the penalty factor C . The SVR with polynomial kernel
is not as sensitive to change in the value of the penalty term
as the RBF kernel. We observed that increasing the order of
polynomial resulted in a more accurate fit. We could not observe
over-fitting as increasing the polynomial order greatly increases
the computational cost and we hence had to restrict ourselves to a
value for p no higher than 6. For GMR, according to the increased
number of Gaussians, the estimation error is decreased and
saturates at the end.4 Note that we limited number of Gaussians
for the same reason as for limiting the power of the polynomial
kernel in SVR. Increasing the number of Gaussians greatly increase
the computational cost (more than 10 min of training time) in
EM, since we had already obtained very good results with a low
number of Gaussians, there was little value to continue the search
from the application standpoint (aside from demonstrating over-
fitting). We hence decided to restrict our search to a number of
Gaussians of no more than 12. For the case of GP, even though
the accuracy is sensitive to parameter modifications, the accuracy
tends to be increased by increasing the population size. For LWPR,
decreasing the value of D improves the fit. As expected, when D is
too small, LWPR starts overfitting leading to poor performance on
the testing set.

4.3. Comparison among different techniques for trajectory prediction

To compare the performance of different machine learning
techniques to predict the object’s trajectory, we proceeded in four

4 Note that people will usually use iterative methods to determine the optimum
number of Gaussians, whereby one incrementally increases the number of
Gaussians and measures the resulting improvement in the likelihood. Criteria
such as Bayesian Information Criterion (BIC) [62] or Aikaike Information Criterion
(AIC) [63] can be used to determine when to stop increasing. These criteria
determine a tradeoff between improving the likelihood and increasing dramatically
the computation costs with the added number of parameters to estimate. Here we
chose to not use these criteria and to perform a grid search on K so as to measure
the sensitivity of GMR to the choice of K .
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ball

bottle
(full)

bottle
(half)

hammer

racket

(a) fSVR–RBF . (b) fSVR–POLY . (c) fGMR .

ball

bottle
(full)

bottle
(half)

hammer

racket

(d) fESN . (e) fGP . (f) fLWPR .

Fig. 4. Grid search on free parameters of each machine learning techniques. Error is calculated by the root mean squared prediction error on the testing output (for a ball,
linear acceleration ∈ R3; for the others, linear and angular acceleration ∈ R6), each dimension of the testing output is normalized in range [−0.5, 0.5]. Note that, there is an
order of magnitude difference in each plot.
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Table 7
Root-mean-square error in estimation of translational acceleration for the testing set. The best methods are highlighted (unit: m/s2).

– Ball Bottle(full) Bottle(half) Hammer Racket

SVR–RBF 0.001 ± 0.000 0.044 ± 0.045 0.099 ± 0.111 0.104 ± 0.106 0.092 ± 0.026
SVR–Poly 0.003 ± 0.001 0.143 ± 0.109 0.221 ± 0.157 0.158 ± 0.157 0.271 ± 0.084
GMR 0.002 ± 0.002 0.158 ± 0.136 0.276 ± 0.232 0.539 ± 0.286 0.266 ± 0.033
ESN 0.004 ± 0.002 0.038 ± 0.045 0.050 ± 0.077 0.099 ± 0.056 0.059 ± 0.017
GP 0.001 ± 0.001 0.089 ± 0.086 0.355 ± 0.301 0.438 ± 0.322 0.422 ± 0.322
LWPR 0.001 ± 0.000 0.059 ± 0.028 0.108 ± 0.122 0.186 ± 0.192 0.203 ± 0.123
steps: First, we compared the accuracy of the different regression
techniques to predict both linear and angular acceleration at all
times. Second,we compared the techniques’ accuracy at predicting
the object’s final position and orientation, by integrating over time
the prediction of each model when provided solely with the initial
position and orientation and their velocity. Third, we measured
performance of the techniqueswhen used in conjunctionwith EKF.
Finally, we compared the calculation time for regression.

Note that, since ESN requires a series of observations (in
contrast to the other methods which require a single initial
position) to regulate the internal state of its reservoir, for each of
the following experiments, we provided ESNwith 0.05 s of data for
the estimation.
Linear and angular acceleration estimation. We performed 10-fold
cross-validation on all the trajectories of the thrown objects, 20
trajectories with 120 Hz capturing rate (1.5 s amount of data
point for each trajectory). Tables 7 and 8 show the root-mean
square error and its standard deviation for estimating acceleration
and angular acceleration respectively. As we expected, all of the
methods estimate the acceleration of the ball verywell when given
velocity, rotation and angular velocity. ESN shows outstanding
performance at estimating acceleration. However, as mentioned
above, ESNhas some calculational advantages as it is providedwith
more information than the other techniques.
Prediction of final position and orientation. We predicted the
future trajectory of the object for a given initial position and
velocity (linear and rotational both), by recursively integrating the
estimated acceleration and angular acceleration for each of the
six models. The predictions were less accurate the further into
the future we projected. To show this, we set the initial value as
1.0–0.1 s ahead of the value from the final value of the testing
trajectory, and integrate without feedback from the demonstrated
trajectory. Note that we partitioned all the trajectories of the
thrown objects by 10 fold randomly, and performed 10-fold
cross-validation (as in the above linear and angular acceleration
estimation comparison). We plot in Fig. 5, the accuracy for
predictions encompassing 1–0.1 s. Typical examples of trajectories
predicted by each technique for each object are shown in Fig. 6.

Furthermore, to see how early the desired precision is achieved,
we performed the same calculations as above but with a more
precise time interval, 0.01 s; The results are in Table 9. Note that
we set the desired precision for prediction as 1 cm in Cartesian
space and 1° in Euler orientation. SVR–RBF could get the desired
precision in both position and orientation around 0.17–0.32 s
ahead. This is the desiderate to compensate lag of execution time
for a robot as mentioned in the Introduction.

For the prediction comparison of 1 s lookahead for position
and orientation, SVR–RBF shows the best performance. GMR and
LWPR’s performance decreases significantly as the time elapsed
in the prediction increases. SVR–Poly, GP and ESN show the worst
performance at tracking the position and orientation of the more
complex objects. Predictions from SVR–RBF are the most accurate
for all tests. ESN was the most accurate method for the first
comparison (estimating the acceleration and angular acceleration
for a given orientation and linear and angular velocity), as seen
at Table 7. When we calculated a complete trajectory for given
Table 8
Root-mean-square error in estimation of rotational acceleration for the testing set.
The best methods are highlighted (unit: °/s2).

– Bottle(full) Bottle(half) Hammer Racket

SVR–RBF 8.0 ± 4.7 10.1 ± 4.6 14.1 ± 5.5 11.9 ± 4.7
SVR–Poly 37.9 ± 26.1 86.0 ± 58.8 80.3 ± 37.2 90.7 ± 52.7
GMR 16.6 ± 14.3 14.4 ± 14.7 20.4 ± 16.6 26.6 ± 14.5
ESN 5.0 ± 5.6 7.4 ± 4.2 8.5 ± 5.3 7.0 ± 4.6
GP 22.3 ± 15.3 40.0 ± 35.3 45.1 ± 36.9 45.5 ± 31.6
LWPR 24.5 ± 15.1 19.9 ± 13.4 23.8 ± 17.6 23.0 ± 13.3

initial values by integrating the dynamics of ESN recursively, ESN
did not yield good predictions of the objects final position and
orientation. The reason is that the reservoir of ESN acts as a
dynamical short-term memory which is influenced by traces of
the past input history. When integrating the dynamics of ESN
recursively, tiny estimation errors can be stored to the reservoir
recursively, and change the dynamics fESN unexpectedly. This leads
to poor prediction of the final position and orientation.
Accuracy when using EKF. For the third comparison, we looked at
how well each method tracked the object trajectories in noisy
measurements in conjunction with EKF. We tested each method
under 120, 60 and 30 Hz sampling rates, to see the robustness
of each method under different sampling rates. Tables 10 and 11
show the RMSerror and its standard deviation of all tracked objects
(fully-filled bottle, half-filled bottle, hammer, racket). Fig. 7 gives a
detailed example by tracking a hammer under the 30 Hz sampling
rate. Note that filtered trajectories with a Butterworth filter at
25 Hz are considered as the rue measurement trajectories.

SVR–RBF and LWPR both show good performance for tracking
when used in conjunction with EKF. SVR–Poly, GMR and GP
continue having a very large tracking error, since their modeling
error was quite big as we have seen in the first comparison. Note
that we left out ESN in this comparison, since ESN in conjunction
with EKF did not chase the measurement trajectory correctly. As
we discussed in the second comparison, ESN dynamics is highly
dependant on the input history. When integrating the dynamics
of ESN, and using EKF to recursively correct the current state, the
dynamics fESN and its derivative are changed unpredictably. This
leads to poor tracking.
Comparison of required computational time. To implement the
whole-trajectory prediction of an object in real-time, computation
time is very important. We simulated the recall of object’s
dynamics by each of the algorithms for estimating 1.0 s trajectory
at 120 Hz. The result of our computational time comparison is in
Table 12. We conducted the simulation on a PC (CPU Dual-Core
3 GHz) withMath-Kernel Library from Intel.

The computational time of all methods for predicting 1 s
duration of position and orientation trajectory is less than 8 ms.
It is therefore acceptable for real-time prediction.

5. Conclusion

In this paper, we compared the performance of six techniques
for non-linear regression and time-series prediction to model the
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(a) Bottle full (position). (b) Bottle full (orientation).

(c) Bottle half (position). (d) Bottle half (orientation).

(e) Hammer (position). (f) Hammer (orientation).

(g) Racket (position). (h) Racket (orientation).

Fig. 5. By integrating the estimated acceleration and angular acceleration for each of the six trained regressive models, we predicted future position and orientation. We
varied the initial value from 1.0 to 0.1 s value in the future from the final measurement of testing trajectories. We can see that SVR with RBF kernel performs the best for the
purpose of modeling free-flying objects.
Table 9
Prediction performance in terms of how early achieve the desired precision (1 cm in position and 1° in orientation) (unit: s).

Bottle(full) Bottle(half) Hammer Racket
Position Orientation Position Orientation Position Orientation Position Orientation

SVR–RBF 0.22 ± 0.01 0.32 ± 0.17 0.21 ± 0.03 0.27 ± 0.19 0.25 ± 0.11 0.17 ± 0.08 0.20 ± 0.05 0.24 ± 0.15
SVR–POLY 0.19 ± 0.03 0.08 ± 0.02 0.24 ± 0.12 0.06 ± 0.04 0.12 ± 0.03 0.06 ± 0.03 0.18 ± 0.09 0.06 ± 0.01
GMR 0.22 ± 0.04 0.21 ± 0.09 0.17 ± 0.05 0.17 ± 0.10 0.23 ± 0.16 0.10 ± 0.06 0.19 ± 0.05 0.12 ± 0.10
ESN 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.08 ± 0.01
GP 0.21 ± 0.03 0.09 ± 0.01 0.09 ± 0.02 0.03 ± 0.02 0.03 ± 0.01 0.07 ± 0.03 0.07 ± 0.03 0.03 ± 0.02
LWPR 0.21 ± 0.03 0.20 ± 0.11 0.24 ± 0.10 0.12 ± 0.03 0.17 ± 0.08 0.14 ± 0.04 0.19 ± 0.05 0.14 ± 0.05
Table 10
The RMS tracking error in position for the last 50 frames. Measurement of RMS error and its standard deviation under 120 Hz sampling rate is 0.0141 ± 0.0412 (unit: cm).

Rate (Hz) SVR–RBF SVR–Poly GMR GP LWPR

120 0.05 ± 0.06 0.13 ± 0.11 0.07 ± 0.07 0.07 ± 0.07 0.05 ± 0.05
60 0.09 ± 0.10 0.25 ± 0.21 0.33 ± 0.43 0.14 ± 0.13 0.09 ± 0.10
30 0.18 ± 0.19 0.47 ± 0.40 0.46 ± 0.75 0.27 ± 0.26 0.19 ± 0.18
Table 11
The RMS tracking error in orientation for last 50 frames. Measurement of RMS error and its standard deviation under 120 Hz sampling rate is 0.2361 ± 0.2730 (unit: °).

Rate (Hz) SVR–RBF SVR–Poly GMR GP LWPR

120 0.25 ± 0.30 1.06 ± 0.91 0.36 ± 0.36 0.91 ± 0.75 0.34 ± 0.36
60 0.37 ± 0.44 1.65 ± 1.39 1.70 ± 2.98 1.45 ± 1.23 0.54 ± 0.54
30 0.57 ± 0.67 2.62 ± 2.21 2.86 ± 5.64 2.40 ± 2.12 0.89 ± 0.87
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(a) A bottle (fully-filled with water).

(b) A bottle (half-filled with water).

(c) A hammer.

(d) A racket.

Fig. 6. Typical trajectories of each object(left). And the predicted trajectories in position (middle) and orientation (right) for given initial values, by the trained dynamics
through the introduced methods.
dynamics of a free-flying object. We compared each method for
positional as well as orientational trajectory prediction. Since the
performance of each of these methods is highly sensitive to the
choice of hyper-parameters and because there is no easy way
to determine the optimal range of parameters beforehand for
any of these techniques, we relied on a systematic grid search
analysis to determine the optimal set of parameters in each case.
We discussed the performance of these techniques in terms of
criteria, which would make these most suitable to the particular
implementation we had in mind. A good technique provides (a)
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Fig. 7. Conjunction with Extended Kalman filter. A trajectory of a racket is tested with a 30 Hz sampling rate.
(a) Schematic overview of our future work. (b) Block diagram for robotic catching. Estimated calculation time is
shown above of each process block.

Fig. 8. Overview of our future work.
Table 12
Calculation time (in 10−3 s) to estimate position and orientation trajectory for one
second duration.

– SVR–RBF SVR–Poly GMR ESN GP LWPR

Max 4.41 2.58 1.123 1.31 0.68 7.52
Mean 4.32 2.51 0.922 0.94 0.59 7.04
Min 4.28 2.47 0.908 0.88 0.53 6.35

low computational cost at retrieval; (b) is not sensitive to choice of
parameters (to ensure good generalization and avoid over-fitting);
(c) and is highly accurate on testing set, when predicting several
time steps ahead of time (which demonstrates good generalization
properties). Among all six regression models, SVR–RBF was found
to be the most accurate and robust method for modeling a free-
flying object’s dynamics.

While the method we proposed may be less accurate at
predicting the dynamics of motion of objects for which an
analytical model of the dynamics exist (and for which other
techniques could be used, see our review in Section 2), it is
advantageous in that it does not require prior knowledge on the
object. Conventional techniques would usually require modeling
all the forces acting on the object and to measure properties of
the object, such as its mass, moment of inertia, shape and size.
Our approach provides a convenient way to model the dynamics
of an unknown object through the observation of a few sample
trajectories.

However, there are still some drawbacks of this study. One is
that we assumed we can extract the position and orientation of
an object in real-time by using a marker based motion capture
system, rather than using video data directly. The other is that
the prediction of all regressive methods is local and may lead to
poor predictions which vary greatly from the demonstrations. The
demonstrationsmust therefore encompass representative samples
of the variety of dynamics the object may display.

6. Future work

Our next step will be to implement this method for a real-time
robotic catching experiment. It requires to consider three closely
related problems: (1) predicting accurately the trajectories of fast
moving objects which is investigated in this paper; (2) predicting
the mid-flight catching configuration (intercept point) and (3) fast
planning of precise trajectories for the robot’s arm to intercept and
catch the object on time. To easily understand our robotic catching
system, a schematic overview our future-work and block diagrams
are shown in Fig. 8.
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As seen in Fig. 8(b), there are two iterating threads; one is the
prediction of best catching posture and catching time based on
object trajectory prediction (top left); the other is robot trajectory
planning (right down). A cycle of the former thread require 9 ms
of calculation time. The thread re-predicts the object’s trajectory
and corrects the best catching posture and catching time iteratively
at 100 Hz with the new measurement of an object. For the other
thread of the robot trajectory planning, we use our previous
works namely Coupled Dynamical System (CDS) [64] and Timing
Controller [51]. CDS enables the robot to reproduce the complete
reach-to-grasp motion in a coordinated fashion, and the timing
controller enables the robot to reach the target at the correct time.

Our robotic platform of choice is the Barrett 7° of freedom
(DOF) WAMTM, with 3 DOF BarrettHandTM. The robot’s workspace
is 3.5 m3 volume; the peak end-effector velocity is 3 m/s and
maximum acceleration is 20m/s2 with 1 kg load; the repeatability
of the robot is 2mm. To catch an object traveling toward the robot,
the robot should need to travel at most 1 m (i.e. move within the
forward part of its workspace). When moving at maximal speed
and acceleration, it would require 0.48 s of execution time to travel
this distance. Hence in order to reach the catching position in time,
the robot should start moving at least 0.48 s before impact.

The system proposed in this paper can at best yield a prediction
in half this time.However,we can compensate for the lag by getting
the robot to move as soon as the object is detected and as soon as
an initial guess of the translational motion is made. As the robot
moves toward the object, the tracking system refines its prediction
of the catching motion (at 100 Hz) which is fed back to the robot
controller to refine the trajectory on-the-fly.

Preliminary trials in the lab indicate that these estimates are
realistic and the speed at which the system predicts the motion of
the flying object is sufficient for realistic implementation.
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