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Abstract

Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of
these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by
comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat
(HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF
feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the
expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-
regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the
putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids,
was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and
4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of
the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators.
In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated
changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that
the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical
validation is warranted. (246 words)
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Introduction

Obesity is one of the most frequently studied non-communica-

ble diseases and excessive energy intake, reduced energy

expenditure or combinations of both are related to its cause.

Obesity is also associated with co-morbidities such as cardiovas-

cular diseases, type 2 diabetes, sleep apnea, arthritis and cancers;

the remission of many of which have been reported in patients

after Roux-en-Y gastric bypass in morbidly obese subjects [1].

Consequently, the reduction of obesity-related morbidities is as

important as the success of weight loss.

Recently, a number of clinical studies have reported rapid

weight loss in obese subjects consuming low-carbohydrate diets

[2,3,4,5,6,7,8,9,10]. Although the macronutrient compositions of

the low-carbohydrate diets were different in each study, a

proportional increase in proteins and fats was commonly found

in these diets [2,5,7]. However, the amount of fats, especially

saturated fats, in the low-carbohydrate diets promoted concerns

about the risk of developing cardiovascular disease. In contrast to

this belief, recent studies have demonstrated improved cholesterol

profiles with HDL cholesterol concentrations being either higher

or less reduced, and triglyceride concentrations being lower in

obese subjects after consuming low-carbohydrate, high-fat, high-

protein diets than after consuming high-carbohydrate, low-fat

diets [5,10]. However, the increase in LDL cholesterol, in spite of

the concurrent elevation of HDL cholesterol, challenges the

overall cardioprotective effect of low-carbohydrate high-fat diets

[4].

In addition to increasing dietary fats, replacement of carbohy-

drates by proteins is another common feature of low-carbohydrate

diets. Proteins have independent effects on plasma cholesterol

concentrations. In humans, replacement of carbohydrates by
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proteins in fat-restricted diets resulted in rapid weight loss,

reduction of plasma triglyceride and elevation of HDL cholesterol

concentrations [11]. In rodents, a high-casein, high-fat diet

compared with a low-casein, high-fat diet increased circulating

HDL cholesterol [12]. Endo et al. reported that 11 hepatic genes

involved in cholesterol metabolism were down-regulated in rats fed

a protein-free diet when compared with rats fed a 12% casein diet

[13]. In the same study, it was also found that a gluten diet

unilaterally increased 15 cholesterol biosynthesis genes when

compared with a diet containing casein [13]. In addition to gluten,

soy proteins have also been demonstrated to have cholesterol-

lowering benefits. Concurrent up-regulation of genes involved in

steroid metabolism and reduction of serum cholesterol by soy

proteins suggests a well-coordinated transcriptional regulation.

Over-abundance of sterol regulatory element-binding protein 2

(SREBP2) [14] and up-regulation of 3-hydroxy-3-methylglutaryl-

coenzyme reductase (HMGCR), a SREBP2 target gene and the

rate-limiting enzyme for cholesterol biosynthesis [15], were

reported in rodents fed a soy protein diet. Thus, available

evidence indicates that both the quantity and the quality of dietary

proteins can regulate the expression of genes involved in hepatic

cholesterol biosynthesis. However, it has not been shown how the

amount of protein in the context of high-fat and low-carbohydrate

diets would affect the expression of hepatic cholesterol biosynthesis

genes. Understanding the metabolic adaptations to a high-fat,

high-protein diet in the liver can reveal insights for assessing the

cardioprotective effects of such a diet.

In the present study, we evaluated the effect of a high-protein

and high-fat diet on cholesterol metabolism by examining plasma

cholesterol concentrations and the expression of cholesterol

biosynthesis genes in the liver of mice fed a high-fat (HF) diet

that had either a high (H) or low (L) protein-to-carbohydrate ratio

(P/C). Many organs can synthesize cholesterol but the liver is the

principal site for cholesterol biosynthesis, which makes it a prime

target for regulating cholesterol homeostasis [16]. In addition, we

measured body weight, food intake and other circulating lipids at 2

days and at 4 weeks after introduction of the dietary treatments.

We expected that the changes in macronutrient composition

would have a broad impact on gene expression in multiple

metabolic pathways in the liver, and selected microarray analyses

to monitor global gene expression to reveal metabolic adaptations

of the liver to the two different high-fat diets.

Results

Effects of P/C ratio in a HF diet on body weight and
energy intake

Forty-eight glucose intolerant diet-induced obese (DIO) mice

were randomized to receive either a background L-P/C-HF diet

or an experimental H-P/C-HF diet. Although it was statistically

insignificant, the initial weights of mice prior to the dietary

intervention were higher in the H-P/C-HF than in the L-P/C-HF

group (Table 1). During the first 2 days of dietary intervention, H-

P/C-HF mice consumed less calories and gained less weight than

L-P/C-HF mice (Table 1). However, at sacrifice, body weight,

liver, epididymal fat pad and gastrocnemius muscle weights were

similar in both groups (Table 1 and S1). The suppressive effect of

H-P/C-HF feeding on body weight gains was also observed after

the 4-wk dietary treatment, and the weight gains were significantly

less in the H-P/C-HF mice than in L-P/C-HF mice (Table 1).

Energy intake was also lower in H-P/C-HF mice than L-P/C-HF

mice, but the difference did not reach statistical significance

(Table 1). Body weight, liver, epididymal fat pad, brown fat pad

and gastrocnemius muscle weights were indistinguishable between

the two groups at the end of the 4-wk treatment period (Table S1).

Effects of exchanging carbohydrate for protein on whole
body glucose tolerance

To assess whether the ratio of dietary protein to carbohydrate

affects insulin sensitivity of DIO mice, an intraperitoneal glucose

tolerance test (IPGTT) was performed after the 4-wk dietary

treatment. As indicated in Table 2, H-P/C-HF feeding did not

affect the peak glucose value or the area under the glucose curve

during the IPGTT. Baseline insulin and peak insulin levels were

also comparable in the two groups (Table 2). The overnight fasting

blood glucose level was the only parameter which showed a trend

to be lower in H-P/C-HF than in L-P/C-HF mice (Table 2).

The Diet high in P/C ratio partially improved dyslipidemia
in DIO mice

The plasma lipid profiles of mice fed two different HF diets were

compared. After 2-d H-P/C-HF feeding, plasma triglyceride (TG)

(Fig. 1A) and plasma free fatty acid (FFA) concentrations (Fig. 1B)

were reduced, whereas total cholesterol (Fig. 1C) and plasma HDL

cholesterol concentrations were unchanged (Fig. 1D). After 4-wk

HF feeding, plasma TG and FFA concentrations increased

regardless of the dietary P/C ratio (Fig. 1A and 1B). In contrast,

plasma total cholesterol was lower in H-P/C-HF mice than in L-

P/C-HF mice (Fig. 1C). Extending the L-P/C-HF feeding

significantly increased plasma total cholesterol (from

127.0167.17 mg/dL after 2-d to 163.96610.60 mg/dL after 4-

wk, p = 0.002), but this trend was not observed in H-P/C-HF mice

(p = 0.28, Fig. 1C). Plasma HDL cholesterol displayed a different

temporal pattern in response to H-P/C-HF feeding. At 2-d, the

diet change had no effect on HDL cholesterol but 4-wk H-P/C-

HF feeding significantly increased HDL cholesterol when com-

pared with L-P/C-HF feeding (Fig. 1D). As a consequence, the

plasma HDL cholesterol to total cholesterol ratio (HDL/total

Chol) was markedly affected by both the dietary P/C ratio and

feeding duration. In the L-P/C-HF group, the HDL/total Chol

ratio was reduced from 53.264.4% after 2-d to 44.562.3% after

4-wk of feeding (p = 0.003), whereas the HDL/total Chol ratio in

Table 1. Body weight gain and energy intake of mice fed different high-fat diets.

Before treatment 2-d after treatment 4-wk after treatment

BW (g) BW (g) BW gain (g) EI (kcal) BW (g) BW gain (g) EI (kcal)

L-P/C-HF 34.261.2 35.061.1 0.7560.10 25.560.8 37.861.2 3.6360.43 249.363.8

H-P/C-HF 35.761.2 35.761.2 0.0160.11* 21.460.7* 37.761.3 1.9860.38* 239.165.1

Data are mean 6 sem, n = 12/group.
*p,0.05 vs. L-P/C-HF group. BW, body weight. EI, energy intake.
doi:10.1371/journal.pone.0049058.t001
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the H-P/C-HF fed mice remained similar (54.763.5% at 2-d vs.

63.865.1% at 4-wk, p = 0.178). At the end of the 4-wk study, the

difference in HDL/tot Chol between the two groups was

statistically significant (63.865.1% in H-P/C-HF group vs.

44.562.3% in L-P/C-HF group p,0.001). In contrast to plasma

cholesterol, the liver total cholesterol concentration was not

affected by the dietary P/C ratio nor by the duration of the

treatment (Fig. 2A). Prolonged L-P/C-HF feeding caused accu-

mulation of liver TG, which was prevented by H-P/C-HF feeding

(Fig. 2B).

Temporal responses of hepatic steroid metabolism genes
to H-P/C-HF feeding

To investigate if the liver was involved in the changes of plasma

cholesterol levels after H-P/C-HF feeding, we performed a global

gene expression analysis using Affymetrix GeneChips. Two days

after the diet switch, 412 transcripts (p,0.001) were found to be

differentially expressed between the H-P/C-HF and L-P/C-HF

groups (Table S2). Pathway analysis of the differentially expressed

genes showed that the biosynthesis of steroids pathway was the

most significant differentially regulated canonical pathway in the

liver of H-P/C-HF mice (Table 3) where all of the differentially

regulated genes in the steroid biosynthesis pathway were down-

regulated (Fig. 3A). To find out which transcription factor might

be responsible for the down-regulation of steroid biosynthesis

genes, we performed upstream regulator analysis with the entire

dataset. Globally, AHR and NR1I3 were predicted ‘‘active’’ and

SREBF2, SREBF1 and CEBPB were predicted ‘‘inhibit’’ (Table

S3). Semantic relationship analysis showed that Sqle (21.73), Fdps

(21.63), Fdft1 (21.28), Mvd (21.22), Lss (21.22), Sc5d (21.34), and

Idi1 (21.58) were direct targets of SREBF1 and 2 (Fig. 3A). In

addition, the expression of Srebf2 was significantly reduced (21.24)

Table 2. Results of intraperitoneal glucose tolerance test (IPGTT) in mice fed the L-P/C-HF or H-P/C-HF diet for 4-wk.

Baseline glucose (mg/dL) Peak glucose (mg/dL) Glucose AUC (mg/dL*min) Baseline insulin (ng/mL) Peak insulin (ng/mL)

L-P/C-HF 104.5611.3 463624.4 3180761577 0.7260.16 1.1960.22

H-P/C-HF 92.565.61 464627.5 2930262047 0.5960.14 0.9560.13

Data are median 6 semedian, n = 12/group.
10.1.p.0.05. Peak blood glucose and peak plasma insulin levels were determined at 15 minutes after the glucose challenge.
doi:10.1371/journal.pone.0049058.t002

Figure 1. Amelioration of dyslipidemia by H-P/C-HF feeding. Plasma triglyceride (TG) (A), free fatty acids (FFA) (B), total cholesterol (C) and
HDL cholesterol (D) concentrations in mice consuming the L-P/C-HF or the H-P/C-HF diet for 2-d and 4-wk. Data are median 6 semedian, n = 12/
group except for H-P/C-HF 2-d, n = 11. * p,0.05 by Wilcoxon test.
doi:10.1371/journal.pone.0049058.g001
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in the H-P/C-HF liver, further suggesting the important role of

SREBF2 in down-regulation of steroid biosynthesis genes.

At 4-wk, 330 transcripts were differentially regulated (p,0.001)

between the two diet groups (Table S4) and the biosynthesis of

steroids pathway was still one of the most differentially regulated

canonical pathways in the H-P/C-HF liver (Table 4). In contrast

with the 2-d results, all differentially regulated steroid biosynthesis

genes (Hmgcr, Idi1, Fdps, Sqle, Dhcr7 and Pmvk), including Hmgcr -

that is the gene encoding the rate limiting enzyme for cholesterol

biosynthesis - were up-regulated at 4-wk..Upstream regulator

analysis indicated that SREBF2, SREBF1, SIRT2, FOXO1,

EGR2, PPARGC1B were predicted ‘‘active’’, whereas PPARA,

CEBPE, HMGA1and WT1 were predicted ‘‘inhibit’’ (Table S5).

Putative transcriptional activities of SREBF1 and 2 coincided with

the up-regulation of many steroid biosynthesis genes, which

suggests the functional importance of both transcription factors in

mediating the changes of steroid biosynthesis after H-P/C-HF

feeding.

Persistent up-regulation of Cyp7a1by H-P/C-HF feeding
In contrast to the temporal expression pattern of steroid

biosynthesis genes, Cyp7a1 expression was persistently up-regulat-

ed in the H-P/C-HF liver regardless of the duration of feeding

(Fig. 4A and 4B). Cyp7a1 belongs to the Cyp450 family and its

function is to add a hydroxyl moiety to the 7a position of

cholesterol. This enzymatic activity is the rate limiting step for

converting cholesterol to bile acids and is important for cholesterol

homeostasis [17]. In the liver, the expression of Cyp7a1 is

Figure 2. Accumulation of lipids in the liver of mice fed the L-P/C-HF or the H-P/C-HF diet. Total cholesterol (A) and triglycerides (TG) (B) in
the liver of mice fed two different high-fat diets for 2-d and 4-wk. Data are median 6 semedian, n = 12/group except for H-P/C-HF 2-d, n = 11. *
p,0.05 by Wilcoxon test.
doi:10.1371/journal.pone.0049058.g002

Figure 3. Effect of H-P/C-HF feeding on the expression of selected SREBF1 and 2 target genes. Upstream regulator analyses were
performed using all of the differentially regulated genes between the two diet groups; only SREBF1 and 2 showed relevant connections to the steroid
biosynthesis genes. Differentially regulated SREBF1 and 2 target genes at either time point were selected for building a relationship network, Down-
regulated genes after 2-d H-P/C-HF feeding are shown in (A), and up-regulated genes after 4-wk H-P/C-HF feeding are shown in (B). Genes and the
steroid biosynthesis pathway are represented as nodes. The red and green colors indicate up- and down-regulation in the H-P/C-HF compared with
the L-P/C-HF group, respectively. Fold change of differentially regulated genes is indicated by the number below the gene name. Red and green lines
connecting from SREBF1 and 2 to different nodes indicate positive and negative contributions, respectively. Red and green border colors of SREBF1
and 2 indicate the putative transcription activity as ‘‘active’’ and ‘‘inhibit’’, respectively. The image was created using Ingenuity Pathways Analysis
software.
doi:10.1371/journal.pone.0049058.g003
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transcriptionally regulated by many factors including FOXO1

[18], LRH-1 [19], LXRa [20], HNF-4a [21], Onecut1 (HNF-6)

[22], NR0B2 [23,24] and others. However, the responsible

transcription regulator(s) that mediate the expression of Cyp7a1

in the present study were not clear. To answer the question, we

selected the transcription regulators that had a statistically

significant relationship (p,0.05) with Cyp7a1 gene expression

from semantic relationship analyses. The transcription regulators

that are known to activate or inhibit Cyp7a1 gene expression were

placed above or below Cyp7a1, respectively. Then, the activity of

each transcription regulator was predicted according to upstream

regulator analysis and the outcomes were overlaid on the existing

relationships with Cyp7a1. Illustrated in Fig. 4A, NR1I3 (LXRa)

and SREBF1 were predicted to control Cyp7a1 gene expression

after 2-d H-P/C-HF feeding, and the state of NR1I3 and SREBF1

was predicted as ‘‘active’’ and ‘‘inhibit’’ according to upstream

regulator analysis, respectively. Because NR1I3 is known to

positively induce Cyp7a1 gene expression, whereas SREBF1c is

known to negatively regulate it [20,25], up-regulation of Cyp7a1

can be explained by a direct activation by NR1I3 and reduced

inhibition by SREBF1. After 4-wk of H-P/C-HF feeding,

FOXO1, Onecut1, NR1I2, NR0B2 and PROX1 were predicted

to have a functional relationship with Cyp7a1 gene expression.

Positive regulators including FOXO1 and Oncecut1 were

predicted to be active and Onecut1 mRNA expression was up-

regulated in the H-P/C-HF liver. The state of negative regulators,

NR1I2 (PXR), NR0B2 (SHP) and PROX1 were predicted as

‘‘inhibit’’. Altogether, bioinformatic analyses indicated that up-

regulation of Cyp7a1 gene expression after 4-wk H-P/C-HF

feeding is connected to the enhanced transcriptional activation by

FOXO1 and Onecut1 and the reduced transcriptional suppression

by NR1I2, NR0B2 and PROX1.

Discussion

In the present study, we investigated the effect of the protein-to-

carbohydrate ratio of HF diets on cholesterol metabolism, body

weight and glucose tolerance in mice. Our results agree with much

of the literature demonstrating that higher amounts of dietary

protein suppresses body weight gain [26,27,28,29]. Also in

agreement with data by Ratnayake et al. [12], our results showed

that 4-wk of H-P/C-HF feeding resulted in lower plasma total

cholesterol and increased HDL cholesterol. Novel findings of the

present study are two folds. First, in response to the increased

dietary protein-to-carbohydrate ratio, genes in the steroid biosyn-

thesis pathway displayed complex time-dependent bi-directional

expression patterns with an initial down-regulation followed by a

later up-regulation. Predicted transcriptional activity of SREBF1

and 2 coincided with the expression levels of all differentially

expressed steroid biosynthesis genes. Second, hepatic Cyp7a1 gene

expression was persistently up-regulated regardless of the duration

of H-P/C-HF feeding, but two unique sets of transcription

regulators were connected to the expression of Cyp7a1 at 2-d and

4-wk of H-P/C-HF feeding. Through the combination of

physiological measurements and bioinformatic analyses of global

gene expression data, our results indicate that both hepatic steroid

and bile acid metabolic pathways were physiological targets of

high-protein feeding. Moreover, the increased bile acid production

is a novel hypothesis that should be further studied when assessing

the risk of negative cardiovascular outcomes with long-term

consumption of high-protein, high-fat diets.

Effect of exchanging carbohydrate for protein on
cholesterol homeostasis

One of the novel and unexpected findings of the present study is

the biphasic expression pattern of steroid biosynthesis genes during

Table 3. Top 5 differentially regulated canonical pathways between H-P/C-HF and L-P/C-HF feeding for 2-d.

Ingenuity Canonical Pathways 2log(p-value) Molecules

Biosynthesis of Steroids 6.86E00 MVD,FDPS,SQLE,FDFT1,IDI1,LSS,SC5DL

Alanine and Aspartate Metabolism 5.05E00 ASS1, GPT, CRAT, GOT1, ASNS, AGXT, ASL

Fatty Acid Metabolism 4.72E00 ALDH1B1, Cyp2b13/Cyp2b9, ACSL3, ACADL, Cyp4a14, CYP2A6 (includes others), CYP1A2,
ACOX1, CYP2B6, SDS, CYP51A1, CYP1B1

LPS/IL-1 Mediated Inhibition of RXR Function 4.52E00 ALDH1B1, ACSL3, FMO2, ACOX1, GSTA5, SLCO1A2, GSTT2/GSTT2B, Cyp4a14, CYP2A6
(includes others), FABP5, SULT1A1, CYP7A1, FABP4, CYP2B6, HMGCS1

Tryptophan Metabolism 4.4E00 AFMID, ALDH1B1, Cyp2b13/Cyp2b9, CYP2A6 (includes others), CYP1A2, CYP2B6, INMT,
SDS, CYP51A1, KYNU, CYP1B1

doi:10.1371/journal.pone.0049058.t003

Table 4. Top 5 differentially regulated canonical pathways between H-P/C-HF and L-P/C-HF feeding for 4-wk.

Ingenuity Canonical Pathways 2log(p-value) Molecules

Biosynthesis of Steroids 5.88E00 FDPS, SQLE, DHCR7, PMVK, IDI1, HMGCR

Complement System 5.11E00 CFD, MBL2, C1QC, C1QA, C1QB, C3AR1

Glycine, Serine and Threonine Metabolism 4.52E00 SRR, GNMT, ELOVL2, ALAS1, GOT1, GNA14, CTH, AGXT

LPS/IL-1 Mediated Inhibition of RXR Function 3.95E00 ALDH1B1, ABCG5, Cyp4a14, NR0B2, NR1I2, ACOX1, GSTA5, CYP7A1, CD14,
ALAS1, FMO5, ACSL1

Fatty Acid Metabolism 3.79E00 ALDH1B1, CYP3A43, CYP1A1 (includes EG:13076), Cyp4a14, CYP4A22, ACOX1,
Cyp2c70, ACSL1, CYP51A1

doi:10.1371/journal.pone.0049058.t004
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the course of H-P/C-HF feeding. In response to acute or chronic

H-P/C-HF feeding, SREBF1 and 2 were predicted to be the key

transcription regulators. SREBFs are helix-loop-helix leucine

zipper transcription factors and bind to specific cis elements of

the target genes of which many of them are important for lipid

metabolism [30]. In mammals, SREBF1 and 2 are encoded in

different genes, and distinctive promoters and alternative splicing

give rise to SREBF1a and SREBF1c from the SREBF1 gene [31].

SREBF1a and 1c preferentially activate the transcription of fatty

acid biosynthesis genes, whereas SREBF2 mainly enhances the

Figure 4. A model of Cyp7a1 regulation by H-P/C-HF feeding. Graphic illustration of a network of transcription regulators and Cyp7a1 in the
H-P/C-HF group compared with the L-P/C/HF group after 2-d (A) and 4-wk (B) of treatment. All transcription regulators that had statistically significant
association with Cyp7a1 in the present datasets were selected to build a network. Genes are represented as nodes and the expression levels of genes
were overlaid on the network of nodes. Node color indicates the direction of regulation, green for down- and red for up-regulation. Fold change of
differentially regulated genes is indicated by the number below gene name. Lines in between genes represent known interactions and the red color
lines indicated the positive contributions. Red and green border colors of nodes indicate the putative transcription activity as ‘‘active’’ and ‘‘inhibit’’,
respectively. The image was created using IPA software.
doi:10.1371/journal.pone.0049058.g004
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expression of cholesterol biosynthesis genes [32]. However, the

target genes of both transcription factors are not mutually

exclusive as SREBF1 and SREBF2 have been reported to regulate

the expression of cholesterol and fatty acid biosynthesis genes

[33,34]. The lack of specificity of these transcription factors to

steroid biosynthesis genes can explain why both SREBF1 and 2

were predicted to mediate the changes in the expression of steroid

biosynthesis genes in the present study.

SREBF2-dependent cholesterol biosynthesis is controlled by

complex cellular regulation, and cholesterol binding to regulatory

proteins and posttranslational modifications of SREBF2 are two

important steps which are required to activate SREBF2 [35].

Upon the demand of de novo cholesterol synthesis, inactive

SREBF2 anchoring at the endoplasmic reticulum (ER) has to be

processed and translocated to the nucleus to activate the

transcription of target genes [36,37]. One of the key steps

governing the activation of SREBF2 is the cholesterol concentra-

tion of ER membranes. When ER cholesterol level falls below 5%

of total polar lipids, the SREBF complex escorted by the SREBP

cleavage-activating protein, SCAP, is transported from the ER to

the Golgi apparatus [38], a key commitment step for activating

SREBF2. In the present study, coordinated SREBF2 transcrip-

tional activities and the time-dependent biphasic expression of

steroid biosynthesis genes suggest that the cholesterol concentra-

tion of the ER is modified by the increased dietary protein-to-

carbohydrate ratio. However, the ER cholesterol concentration

was not determined and future studies are needed to validate this

hypothesis.

In addition to de novo cholesterol biosynthesis, the balance of

cellular cholesterol is regulated by uptake and export mechanisms

in cells. Conversion of cholesterol to bile acids is one of the major

routes for reducing cellular cholesterol concentrations and is

critical for excreting cholesterol from the body [39]. Thus, the

activity of Cyp7a1 that controls the rate-limiting step of bile acid

biosynthesis using cholesterol as a substrate is important for

maintaining whole body cholesterol homeostasis. This argument is

supported by the fact that overexpression of Cyp7a1 in mice

resulted in elevated bile acid production and simultaneous

reductions of plasma VLDL, IDL and LDL cholesterol and

elevations in plasma HDL cholesterol [40]. In the present study,

persistent up-regulation of Cyp7a1 following H-P/C-HF feeding

increased the bile acid concentration and simultaneously depleted

cellular cholesterol which in the long-term could trigger the

SREBF2-dependent up-regulation of cholesterol biosynthesis

genes. Recently, Bortolotti et al. showed that the consumption of

a high-protein, high-fat diet coincided with significant increases in

circulating bile acids in humans [41], an observation that is

relevant to the results of our transcriptomic analyses.

Physiological impact of a high P/C ratio diet on body
weight and glucose tolerance in mice

H-P/C-HF feeding significantly reduced body weight gains, but

body weights at sacrifice were similar in both diet groups. The lack

of difference in body weights is likely due to the following reasons.

First, mice assigned to H-P/C-HF group were slightly heavier than

control mice before feeding started. Second, the feeding duration

was too short to demonstrate the effect of increasing dietary

protein. In a study in which mice were fed experimental diets for

70 days, both body weight and weight gains were greater in mice

fed a high-carbohydrate, high-fat diet than mice fed a low-

carbohydrate, high-fat diet [42]. Third, high-protein feeding

increases muscle protein synthesis [43], which may offset the

weight loss effect of a high-protein diet. A future study aiming to

measure the body composition of the mice after the high-protein

diet feeding will be needed to confirm this hypothesis.

Recently, the effects of dietary protein on insulin sensitivity have

been evaluated. In contrast to the anti-obesity effect, it remains

controversial whether a high-protein diet improves insulin

sensitivity. On one hand, feeding a high-protein diet for 6 months

or longer induces insulin resistance in healthy non-obese

individuals [44] and rats [45] leading to the argument that high-

protein intake causes detrimental effects on glucose homeostasis by

increasing insulin resistance [46], while on the other, eating a

high-fat, high-protein diet for 5 weeks reduced plasma glucose,

insulin, glucagon and triglyceride concentrations in weight stable

type 2 diabetic patients [47]. The latter study is especially

important because the experimental diet was high in fat and

protein, and the data suggest that the levels of protein in such a

diet can overcome the pathogenic nature of dietary fat and reverse

insulin resistance.

In the present study, basal and peak insulin concentrations as

well as plasma glucose clearance during the IPGTT were

comparable in both groups, which indicate that the P/C ratio

had little or no effect on glucose-stimulated insulin secretion and

insulin-stimulated glucose uptake in skeletal muscle and adipose

tissue under our experimental conditions. The only parameter that

showed a trend to be lower after 4-wk H-P/C-HF feeding was

fasting glycemia. The reduced fasting glycemia was associated with

down-regulation of hepatic glucose 6 phosphatase catalytic subunit

(G6pc) (21.266) in the H-P/C-HF liver compared with the L-P/C-

HF liver. G6PC catalyzes the dephosphorylation of glucose-6-

phosphate and is the final step in glycogenolysis and de novo

gluconeogenesis before releasing glucose into the circulation.

Although increased hepatic gluconeogenesis can be independent

of G6Pc expression [48], a high level of G6pc expression is found in

the liver of streptozotocin-treated diabetic rats [49]. Reduced G6pc

expression could indicate reduced hepatic glucose output. Another

important step which regulates gluconeogenesis is phosphoenoyl-

pyruvate carboxykinase (PCK1), however, Pck1 in the liver was not

differentially regulated by the diets in the present study. Hepatic

steatosis is another marker that reflects liver insulin sensitivity. The

amount of fat stored in the liver was significantly lower in H-P/C-

HF mice than in L-P/C-HF mice. Together, our data suggest that

increasing the dietary P/C ratio moderately enhances hepatic

insulin sensitivity without affecting skeletal and adipose tissue

insulin sensitivity, and this hypothesis should be validated using the

hyperinsulinemic euglycemic clamp in a future study.

In summary, we tested whether a high-fat, high-protein diet has

any effect on cholesterol metabolism. Our data demonstrate that

replacement of carbohydrate by protein suppressed high-fat diet-

induced hypercholesterolemia, weight gain and hepatic steatosis.

By using microarray analyses, we showed that the dietary P/C

ratio had time-dependent biphasic effects on the expression of

steroid biosynthesis genes that are connected to the activity of

SREBF1 and 2. We also identified that a high P/C ratio in a high-

fat diet increased Cyp7a1 expression and this effect was possibly

orchestrated by two unique sets of transcription regulators at the

acute and chronic feeding phases. More importantly, our data

suggest that the cholesterol lowering effect of high-protein diets is

due to enhanced bile acid production, a hypothesis that is relevant

to assess the cardiovascular outcomes of high-protein high-fat

feeding and should be confirmed in a long-term human study.
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Materials and Methods

Animal experiment
The ethics of the study protocol was reviewed and approved by

the Nestlé Research Center Animal Studies Committee (No. JC-

05-01) and the experiments were conducted under authorization

No. 1837 issued by the Service de la Consommation et des

Affaires Vétérinaires (SCAV), Vaudois, Switzerland. Sixty-eight

male C57BL/6J mice aged 6–7 weeks were obtained from Charles

River Laboratories. They were housed individually in a room with

a 12-h light-dark cycle with food (3434 Kliba AG, Kaiseraugst,

Switzerland) and water ad libitum for 2-wk.

To induce diet-induced obesity (DIO), mice were given free

access to water and a low-protein to carbohydrate ratio, high-fat

diet (L-P/C-HF) with 55% energy from fat, 30% from carbohy-

drate, and 15% from protein (Table S6) for 10-wk. On Days 70

and 71, an intraperitoneal glucose tolerance test (IPGTT) was

performed after 6-hr fasting starting at 08:00. A 30% glucose

solution was injected into the intraperitoneal cavity at a dose of

2 g/kg body weight. Blood samples were collected from the tail

vein at 0, 30, 60, and 90 minutes after the glucose injection. Blood

glucose was determined by using an Ascensia Elite XL glucometer

(Bayer AG, Zurich, Switzerland) in duplicate. Based on the results,

forty-eight mice with the highest area under the glucose curve

were selected for the diet intervention study on Day 72. Selected

DIO mice were randomized into two groups (n = 24/group). One

group of DIO mice was fed a high protein to carbohydrate ratio

high-fat diet (H-P/C-HF) with 55% energy from fat, 15% from

carbohydrate, and 30% from protein (Table S6). The other group

of DIO mice continued eating the same L-P/C-HF diet. Twelve

mice in each group were sacrificed on Day 74 (2-d feeding) and the

remaining 12 mice were euthanized on Days 100 or 101 (4-wk

feeding). During the diet study, body weight and food intake were

monitored daily except for the weekends. On Days 93 & 94, an

IPGTT was performed after a 15-hr overnight fast. The following

morning, a 30% glucose solution was injected into the intraper-

itoneal cavity at a dose of 2 g/kg body weight. Blood samples were

collected from the tail vein at 0, 15, 30, 60, and 120 minutes after

glucose injection to determine glucose concentrations using the

aforementioned method. Blood samples at 0, 15, and 120 minutes

were also collected from the tail vein for insulin analysis. Plasma

insulin concentrations were determined by Ultra Sensitive Rat

Insulin ELISA Kits with mouse insulin standard (Crystal Chem

Inc., Downers Grove, IL, USA) following instructions from the

manufacturer. Mice were anesthetized by isoflurane (Aerrane,

Baxter, Maurepas, France) before sacrifice, after which the liver,

epididymal fat pads, gastrocnemius muscle, colon, and gut

contents were collected and snap frozen in liquid nitrogen. Blood

samples were collected in EDTA-coated tubes.

Plasma and liver parameters
Plasma free fatty acids (FFA) were determined by an enzymatic

colorimetric test using Wako NEFA C Kit (Wako Chemicals

GmbH, Neuss, Germany) following the instructions provided by

the manufacturer. Plasma triglycerides (TG) were determined

using Triglycéride Enzymatique PAP 150 Kits (BioMérieux SA.

Marcy-l’Etoile, France). Plasma total cholesterol and HDL

cholesterol were measured by Wako total cholesterol and by

Wako HDL cholesterol (Wako Chemicals GmbH, Neuss,

Germany) kits, respectively. For determination of liver triglyceride

and cholesterol concentrations, lipids in 200 mg frozen liver were

extracted according to Folch et al. [50]. Liver total cholesterol

(Roche diagnostics; Basel, Switzerland) and triglyceride (Roche

Diagnostics; Basel; Switzerland) concentrations were quantified

using commercial enzymatic colorimetric kits. For the triglyceride

measurements, lipids were first hydrolyzed in a basic solution of

0.5N KOH in ethanol.

Statistical analysis
Due to the presence of outliers, 2-ways ANOVA with

interaction on the rank of the data was performed, and Wilcoxon

tests were performed to assess the effect of diet and treatment

duration. All data were presented as median 6 semedian except

for Table 1 where data were presented as mean 6 sem. The

semedian was computed based on the robust standard deviation:

Sn of Rousseeuw. Analysis was performed with R 2.6.1: R

Development Core Team (R Foundation for Statistical Comput-

ing, Vienna, Austria 2007. ISBN 3-900051-07-0, URL http://

www.R-project.org).

Microarray analysis
RNA extraction, sample preparation and chip

processing. Liver total RNA was extracted from frozen tissue

using TriPure Isolation Reagent (Roche Applied Science, India-

napolis, IN, USA), following the manufacturer’s instructions. RNA

samples were then purified by NucleoSpin RNA II kit (Macherey-

Nagel AG, Oensingen) following the manufacturer’s instructions.

The quality of RNA samples was checked by using the RNA 6000

Nano Assay on the Agilent 2100 BioAnalyzer (Agilent Technol-

ogies, Inc., Palo Alto, CA, USA). Only samples with a RNA

integrity number (RIN) higher than 7.5 were used for microarray

analysis. For samples that did not meet the requirement, extraction

and purification were repeated. Total RNA samples were stored at

280uC before microarray analysis.

All cRNA targets were synthesized, labeled, and purified

according to the Affymetrix protocol. This method is based on

the Eberwine T7 procedure [51]. Briefly, 5 mg of liver total RNA

were used to produce double-stranded cDNA, followed by in vitro

transcription, and cRNA labelling with biotin before hybridizing

to the Affymetrix GeneChip mouse genome 430 2.0 chips (CA,

USA), and the results were scanned by an Affymetrix GeneChip

scanner 3000 7G.

Microarray data processing and statistical

analysis. Data were normalized using the Robust Multichip

Average (RMA) method. Based on the normal distribution of the

datasets, the parametric Pearson’s product moment correlation

was applied for quality control (Figure S1A). The data matrix was

further clustered in order to identify groups of potential outliers

(Figure S1B). To validate the quality of datasets, a principle

component analysis (PCA) followed by a leave-one-out cross-

validation was applied (Figure S2, Table S7 and S8. Based on the

quality test of microarray datasets, B25 was identified as an outlier,

and the data was subsequently removed from the final analysis.

One-way Analysis of Variance (ANOVA) followed by Global

Error Assessment (GEA) [52] was applied to discriminate the

difference of hepatic gene expressions between H-P/C-HF and L-

P/C-HF feeding for 2-d and 4-wk. The robust Mean Square Error

(MSE) resulting from GEA was then used to calculate a new F-

statistic and a robust p-value. The p-value was set at 0.001 for

further analysis. The microarray data have been deposited in

Gene Expression Omnibus, and the accession number is

GSE20260 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE20260).

Ingenuity pathway analysis. Probes selected by the statistical

analysis along with their differential expression value were loaded into

Ingenuity Pathways Analysis software (IPA) (Ingenuity Systems,

www.ingenuity.com) for annotation, redundancy checks and network

and pathway analysis. The IPA Reference set was Affymetrix
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Mouse_430 2, and Direct and Indirect relationships were selected for

analyses. Then IPA computed the data with the satisfaction of the

right-tailed Fisher’s Exact Test and generated significant networks

based on semantic associations of these genes in metabolic or cell-

signaling pathways that have been shown in published articles, books,

and KEGG Ligand. For the genes with multiple probesets on the

microarray, only the averaged value of fold change is reported, and

individual values are shown in Table S2 and S4.

Supporting Information

Figure S1 Quality control of Affymetrix chips. Intensity
plot of Pearson’s product correlation matrix.
(TIF)

Figure S2 Cluster analysis of the intensity plot, whereas
B25, A24, A09, and A01 were grouped in two sub-clusters,
separated from the other datasets, respectively.
(TIF)

Figure S3 Principal component analysis (PCA) and
Leave-one-out (LOO) cross validation. The contributions

to the overall variance are plotted for each putative outlier and for

the first 5 components respectively.

(TIF)

Table S1 Organ weight of mice at sacrifice. Data are

median 6 SE, n = 12/group. ND, not determined.

(DOC)

Table S2 List of regulated transcripts after H-P/C-HF
feeding for 2 days. All differentially expressed transcripts

(p,0.001) resulting from a comparison of H-P/C-HF with L-P/C-

HF mice after 2-d of feeding are listed. The significance of

differences was estimated by a moderated ANOVA as described in

the Material and Method section. The fold change with a negative

and a positive value indicates down-regulation and up-regulation

in the H-P/C-HF group, respectively. An Affymetrix probeset ID

(Mouse 430 2.0) is provided for each gene. R in Notes represents a

replicated detection with an alternative probeset for a given gene

on the microarray.

(DOC)

Table S3 Transcription factor analysis of global gene
expressions at 2-d after H-P/C-HF feeding.
(DOC)

Table S4 List of regulated transcripts after H-P/C-HF
feeding for 4 wks. All differentially expressed transcripts

(p,0.001) resulting from a comparison of H-P/C-HF with L-P/

C-HF mice after 4-wk of feeding are listed. The significance of

differences was estimated by a moderated ANOVA as described in

the Material and Method section. The fold change with a negative

and a positive value indicates down-regulation and up-regulation

in the H-P/C-HF group, respectively. An Affymetrix probeset ID

(Mouse 430 2.0) is provided for each gene. R in Notes represents a

replicated detection with a different probeset for a given gene on

the microarray.

(DOC)

Table S5 Transcription factor analysis of global gene
expressions at 4-wk after H-P/C-HF feeding.

(DOC)

Table S6 Nutritional composition of the diets.

(DOC)

Table S7 Arrays were used to perform the LOO analysis
for cross validation of the PCA.

(DOC)

Table S8 A one-way ANOVA was applied to identify the
outlier which significantly reduced the overall variabil-
ity. B25 reduced the variability down to 61.9% of the initial

variance.

(DOC)

Text S1

(DOC)
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