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The growing use of focused lasers or electric sparks to generate cavitation bubbles raises concerns

about the possible alteration of gas content during the initiation process and its effect on bubble

dynamics. We provide experimental evidence that hydrogen molecules are produced for such

plasma-induced bubbles. We performed spectral analysis of the light emitted by the plasma and

monitored the dissolved hydrogen concentration in water. The mass of dissolved hydrogen was

found proportional to the potential energy of the rebound bubble for both laser and spark methods.

Nevertheless, hydrogen concentration was found 2.7 times larger with the spark. VC 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4793193]

Cavitation bubbles are used in various areas, including

medical treatment,1,2 environmental treatment,3 and surface

cleaning,4 where the phenomena occurring at the collapse of

the bubble2,5,6 are taken advantage of. To understand these

phenomena, namely, shock waves, microjets, chemical reac-

tions, luminescence, and nano/microbubbles, most experi-

mental studies on the dynamics of cavitation bubbles in still

water6–8 use point-like hot plasma which is used to initiate

thermal growth of a quasi-spherical vapor bubble in a con-

trolled and repetitive way. Such plasma is obtained either by

focusing a pulsed laser9 or by producing an electric spark

between two immersed electrodes.10,11 As it expands, the

bubble cools down and reaches a maximum radius, which is

limited by the initial energy in the plasma and the pressure

within the liquid. The bubble then undergoes a collapse

phase in good agreement with the Rayleigh model.12 At the

final stage of the collapse, both the pressure and the tempera-

ture increase significantly within the bubble with the possi-

bility of complex chemical reactions, which may influence

the water condensation process at the bubble interface.13 The

water vapor could be trapped within the cavity and become

compressed as well.13–15 It is widely believed that under

these extreme conditions, the amount of gas present in the

cavity is a crucial parameter that governs all the relevant

phenomena associated with the bubble collapse. The size of

the rebound and the energy of the shock wave are influenced

by the amount of non-condensable gas in the bubble,16 and

the emission intensity of sonoluminescence depends on the

type of trapped gases, such as inert gases and air, in the

collapsing bubble.17,18 The gas trapped in the bubble is

closely related to the gas dissolved in water, because diffu-

sion occurs during the oscillation process. Therefore, the

monitoring of dissolved gas in water gives an indication of

the amount and type of gas within the bubble.

It is widely accepted that laser- or spark-induced bub-

bles behave like hydrodynamic cavitation bubbles, which

can form in flowing water. It is commonly argued that when

the maximum radius is reached, thermodynamic equilibrium

is recovered and the bubble dynamics are no longer influ-

enced by the initial hot plasma. Owing to this assumption,

tremendous progress has been made in understanding single

cavitation bubble dynamics. Nevertheless, this assumption

may be questionable because of the possible occurrence of

chemical reactions during plasma generation with subse-

quent changes in the gas content within the bubble. Indeed,

the plasma generated by the laser or the spark can reach a

temperature that is high enough for hydrogen to form

through the chemical process of water dissociation.3,19,20

In this study, measurement of the dissolved hydrogen

concentration and spectral analysis of the light emitted by

the plasma were performed during the successive collapses

and rebounds of both laser- and spark-induced bubbles to

detect and quantify the presence of hydrogen and to under-

stand the key factors of hydrogen generation.

Figure 1 shows the experimental setup. It consisted of a

vessel, a laser source, an optical arrangement for laser beam

focusing, electrodes with a power supply, a high-speed cam-

era, and a delay line for synchronization purposes. Laser-

FIG. 1. Schematic of the experimental setup for observation of bubble

dynamics and measurement of dissolved hydrogen.
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induced bubbles were generated by a Q-switch Nd:YAG

laser providing a 5-ns pulse at a wavelength of 532 nm.21

The energy per pulse, Elaser, was varied between 3.2 and 10.6

mJ. For spark-induced bubbles, platinum electrodes with a

diameter of 0.3 mm and a gap of 0.075 mm were used. The

spark energy per pulse, Espark, was 0.32, 0.76, or 1.2 J.22 The

vessel was filled with 250 ml of ultrapure water (Millipore,

Simplicity UV). The bubbles were observed using a high-

speed camera (Photron, Fastcam SA1.1) at 100 000 fps and 1

ls of exposure time, with a resolution of 320 � 128 pixels.

The emission lines during plasma generation were analyzed

with an optical multichannel analyzer (Hamamatsu

Photonics, PMA-12). A notch filter with a center wavelength

of 532 nm and a full-width at half-maximum of 10 nm was

used to reduce the intensity of laser scattering. The notch fil-

ter also cuts off the emissions with wavelengths shorter than

320 nm. The concentration of dissolved H2 was measured

with a polarographic-type sensor with a resolution of

0.01 lg � l�1 (Bionics-kiki, BIH-50D) by circulating the

water at a flow rate of 0.9 l �min�1. The water was changed

for each new test to avoid residual dissolved H2. This device

was equipped with a diaphragm to prevent microbubbles and

thus ensure the reliability of the measurements. For each ex-

perimental condition, the tests were repeated at least 3 times

to allow the results to be averaged. These experiments were

performed at atmospheric pressure and room temperature

(�20 �C).

The Rayleigh Eq. (1)6,12 was used to compare the exper-

imental results with those of a theoretical model

R €R þ 3

2
_R

2 ¼ Pv � P1
q

: (1)

Here R is the bubble radius, which depends on time, q is the

water density, and Pv and P1 are, respectively, vapor pres-

sure and pressure in the surrounding water. Rayleigh time

TRayl in Eq. (2) is the collapse time of the bubble, i.e., the

time between bubble maximum diameter and the first col-

lapse of the bubble.

TRayl ¼ kRmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=ðP1 � PvÞ

p
: (2)

Here k � 0:915 is a constant, and Rmax is the maximum radius

of the bubble. The radii of the bubbles were estimated from

the movies using cross-sectional area Ab (R ¼ ðAb=pÞ1=2
).

Figure 2(a) presents snapshots of bubbles for the laser

and spark cases at different key stages: (1) initiation, (2) maxi-

mum radius, (3) main collapse, and (4) end of successive col-

lapses and rebounds. The evolution of the normalized radius

of the bubbles is shown in Fig. 2(b). Bubble radius R and time

t were normalized, respectively, by the maximum bubble ra-

dius Rmax and the Rayleigh time TRayl. The solid line shows

the evolution of the normalized radius of the bubble predicted

by the Rayleigh equation. In the case of the laser, after a few

weak rebounds and collapses, the volume of the residual gas

quickly reaches a steady value R*¼R/Rmax¼ 0.08 within a

time frame of t*¼ t/TRayl¼ 3. In the case of the spark, the

bubble oscillates longer, with larger amplitude. It takes almost

t*¼ 6 for the bubble to reach a steady radius of R*¼ 0.21.

These results show that despite similar collapse processes that

agree with the Rayleigh theory, differences appear both in the

number of post-collapse bubbles and in the dynamics of the

rebound when the bubbles are generated either by a laser or

by a spark.

Figure 3 shows the emission spectra at the generation of

the bubbles for the laser case (a) and the spark case (b)

revealing the generation of hydrogen atoms. By black body

radiation curve fitting, shown by the dashed lines in

Figs. 3(a) and 3(b), temperatures of around 11 000 K for the

laser-induced bubbles and around 14 000 K for the spark-

induced bubbles were obtained. Those estimated tempera-

tures agree with values reported in the literature.23 With such

high temperatures, H and OH were likely generated by ther-

mal dissociation of water vapor.20,24,25 The relationships

between the mass of the dissolved H2 per pulse and the radia-

tion intensities of Hb and Ha lines observed in the laser case

and the spark case are also shown in Figs. 3(c) and 3(d),

respectively. Here, the intensity is the difference between the

measured intensity and the intensity obtained from the fitting

black body curve. Since the mass of generated hydrogen gas

increased with the increase of the radiation intensities of Hb

and Ha in both cases, these results also provide evidence that

the generated hydrogen atoms at the plasma spot change into

hydrogen molecules due to recombination.

The generation of hydrogen gas was also verified by

measuring the concentration of dissolved H2. Figure 4(a)

shows the mass of dissolved H2 divided by the potential

energy of the bubble and the number of pulses versus the

potential energy of a bubble for different output laser ener-

gies. Figure 4(b) shows the mass versus the potential bubble

energy for different spark energies. The potential energy

of a bubble at its maximum radius, Eb, were derived

by Eb ¼ 4pR3
maxðp1 � pvÞ=3.26 In the cases of both laser-

induced bubbles and spark-induced bubbles, the mass of

FIG. 2. Visualization of bubble behaviors for the laser and spark cases at the

initiation, maximum expansion, collapse, and post-collapse of bubbles (a);

the time evolution of the reduced radius of bubbles for the both cases, and

comparison with Rayleigh theory (b). The open triangles and closed circles

denote the laser case and the spark case, respectively. The error bars denote

standard error.
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dissolved H2 was almost constant against the potential

energy of the bubble. This hydrogen gas was possibly gener-

ated by chemical reactions such as H2O2 þ H! HO2 þ H2,

HO2þH!H2þO2 and HþHþH2O!H2þH2O,25

which resulted from the generation of hydrogen atoms and

chemical species by the thermal dissociation of water vapor

due to the high temperature at the initiation. Hydrogen mole-

cules can also be formed by both H radical recombination

and hydroxyl radical attack through H þ OH! O þ H2.27

The mean mass of dissolved hydrogen, MH2, divided by

the potential energy of the bubble was 2.7 times larger for

the spark case (MH2/Eb¼ 0.17 lg � J�1) than for the laser case

(MH2/Eb¼ 0.063 lg � J�1). This difference can be explained

by the involvement of additional physical phenomena when

the plasma was initiated by a spark. In the case of the spark,

in addition to thermal dissociation, electrolysis (2H2O(l)
! 2H2(g)þO2(g))28 and electron impact dissociation of

water molecules (eþH2O! eþHþOH)29 occurred, which

led to the formation of a larger mass of H2. Note that these

phenomena could also explain the difference in the bubble

generation energy efficiencies because they represent the

sources of energy dissipation specific to the spark case. In

the case of the laser, 12% of the input energy is converted

into the bubble (Eb/Elaser), whereas for the spark, only 2.5%

of the input energy is converted into the bubble (Eb/Espark).

Figure 5 shows the potential energy of a rebound bubble

versus the mass of dissolved H2 per pulse in the cases of the

laser and the spark. The potential energy of the rebound bub-

ble increased with the increase in generated hydrogen gas.

The linear regression going through the origin shows a good

relationship for both the laser and the spark cases, especially

when the mass of H2 is greater than 5� 10�5 lg. This result

means that there is a universal relationship between the

potential energy of rebound bubbles and the mass of dis-

solved H2 and provides further evidence of the effect of

hydrogen gas on cavitation bubble dynamics.

In conclusion, the mass of hydrogen increases propor-

tionally with the potential energy of the bubble, but the factor

of proportionality depends on how the bubble is generated,

FIG. 3. Spectral analysis at the initiation of the bubbles and the black body

fittings for the laser case at 9.0 mJ (a) and the spark case at 1.2 J (b). The

mass of dissolved H2 per pulse increases proportional to the radiation inten-

sities of Hb and Ha lines observed in the laser case (c) and the spark case (d).

The error bars denote standard error.

FIG. 4. Mass of dissolved H2 per unit of bubble potential energy vs. poten-

tial energy of the bubble for different laser (a) and spark (b) energies. In the

laser case, each point was the average of 5 samples, each of the 5 samples

being the average of 3 samples for different numbers of pulses such as 100,

200, 300, 400, and 500. In the spark case, each point was the average of 10

or 11 samples. The error bars denote standard error.

FIG. 5. Potential energy of rebound bubble vs. the mass of dissolved H2 per

pulse in the case of the laser and the spark. The linear regression goes

through the origin, i.e., MH2¼ 0 lg and Eb_rebound¼ 0 mJ. The error bars

denote standard error.
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i.e., laser or spark. By contrast, the potential energy of the

rebound bubble is proportional to the mass of hydrogen with

a universal constant of proportionality that does not depend

on whether a laser or spark was used to generate the bubble.

The mass of hydrogen increased with the intensities of the

hydrogen emission lines in both the laser and spark cases; it

is believed that hydrogen molecules are generated at the ini-

tiation of the bubble by the occurrence of thermal dissocia-

tion. It was also found that the mass of hydrogen for the

spark-induced bubbles was 2.7 times greater than that for the

laser-induced bubbles. This difference can be explained by

the occurrence of electron impact dissociation and electroly-

sis in the spark case. The potential energy of the rebound bub-

ble was proportional to the mass of dissolved hydrogen in

both the laser and spark cases. These results are the evidence

of the presence of hydrogen molecules in the bubble and con-

tribute to the widely discussed question regarding the differ-

ence between “hydrodynamic” and laser- or spark-induced

cavitation bubbles.

This study was partly supported by JSPS Core-to-Core

Project (No. 20001), by Toyo Advanced Technologies, Co., by

the Collaborative Research Project of IFS, Tohoku University,

by the JSPS Grant-in-aid for Scientific Research, and by the

Swiss National Science Foundation (Grant No. 200020-

116641). We wish to thank François Avellan, Makoto Ohta,

Tatsuyuki Nakatani, and Tomoki Nakajma for their help.

1B. J. O’Daly, E. Morris, G. P. Gavinc, J. M. O’Byrne, and G. B.

McGuinness, J. Mater. Process. Technol. 200, 38 (2008).
2D. A. Fletcher and D. V. Palanker, Appl. Phys. Lett. 78, 1933 (2001).
3O. L. Li, N. Takeuchi, Z. He, Y. Guo, K. Yasuoka, J. S. Chang, and

N. Saito, Plasma Chem. Plasma Process. 32, 343 (2012).

4C.-D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, Appl. Phys.

Lett. 89, 074102 (2006).
5B. Gerold, P. Glynne-Jones, C. McDougall, D. McGloin, S. Cochran,

A. Melzer, and P. Prentice, Appl. Phys. Lett. 100, 024104 (2012).
6Fundamentals of Cavitation, edited by J. P. Franc and J. M. Michel

(Kluwer Academic, Dordrecht, 2004).
7M. S. Plesset and A. Prosperetti, Annu. Rev. Fluid Mech. 9, 145 (1977).
8J. R. Blake and D. C. Gibson, Annu. Rev. Fluid Mech. 19, 99 (1987).
9A. Philipp and W. Lauterborn, J. Fluid Mech. 361, 75 (1998).

10D. Obreschkow, P. Kobel, N. Dorsaz, A. Bosset, C. Nicollier, and

M. Farhat, Phys. Rev. Lett. 97, 094502 (2006).
11S. Buogo and G. B. Cannelli, J. Acoust. Soc. Am. 111, 2594 (2002).
12L. Rayleigh, Philos. Mag. 34, 94 (1917).
13A. J. Colussi and M. R. Hoffmann, J. Phys. Chem. A 103, 11336 (1999).
14G. Hauke, D. Fuster, and C. Dopazo, Phys. Rev. E 75, 066310 (2007).
15I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and

W. Lauterborn, Phys. Fluids 13, 2805 (2001).
16M. Tinguely, D. Obreschkow, P. kobel, N. Dorsaz, A. de Bosset, and

M. Farhat, Phys. Rev. E 86, 046315 (2012).
17D. J. Flannigan and K. S. Suslick, Nature (London) 434, 52 (2005).
18M. Farhat, A. Chakravarty, and J. E. Field, Proc. R. Soc. A 467, 591

(2011).
19M. J. Kirkpatrick and B. R. Locke, Ind. Eng. Chem. Res. 44, 4243 (2005).
20G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C.

Fallnich, H. Welling, and W. Ertmer, J. Opt. A: Pure Appl. Opt. 2, 59

(2000).
21E. Robert, J. Lettry, M. Farhat, P. A. Monkewitz, and F. Avellan, Phys.

Fluids 19, 067106 (2007).
22F. Pereira, M. Farhat, and F. Avellan, in Proceedings of 1993 IUTAM

Symposium on Bubble Dynamics and Interface Phenomena, Birmingham,

U.K., 6–9 September 1993, pp. 227–240.
23O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, Phys. Rev.

Lett. 86, 4934 (2001).
24H. Yui and T. Sawada, Phys. Rev. Lett. 85, 3512 (2000).
25S. Medodovic and B. R. Locke, J. Phys. D 40, 7734 (2007).
26B. Sun, M. Sato, and J. S. Clements, J. Electrost. 39, 189 (1997).
27K.-Y. Shih and B. R. Locke, IEEE Trans. Plasma Sci. 39, 883 (2011).
28M. A. Malik, A. Ghaffar, and S. A. Malik, Plasma Sources Sci. Technol.

10, 82 (2001).
29B. R. Locke and S. M. Thagard, Plasma Chem. Plasma Process. 32, 875

(2012).

074105-4 Sato et al. Appl. Phys. Lett. 102, 074105 (2013)

Downloaded 22 Feb 2013 to 128.178.4.135. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1016/j.jmatprotec.2007.11.041
http://dx.doi.org/10.1063/1.1357452
http://dx.doi.org/10.1007/s11090-011-9346-8
http://dx.doi.org/10.1063/1.2337506
http://dx.doi.org/10.1063/1.2337506
http://dx.doi.org/10.1063/1.3676414
http://dx.doi.org/10.1146/annurev.fl.09.010177.001045
http://dx.doi.org/10.1146/annurev.fl.19.010187.000531
http://dx.doi.org/10.1017/S0022112098008738
http://dx.doi.org/10.1103/PhysRevLett.97.094502
http://dx.doi.org/10.1121/1.1476919
http://dx.doi.org/10.1080/14786440808635681
http://dx.doi.org/10.1021/jp9927202
http://dx.doi.org/10.1103/PhysRevE.75.066310
http://dx.doi.org/10.1063/1.1401810
http://dx.doi.org/10.1103/PhysRevE.86.046315
http://dx.doi.org/10.1038/nature03361
http://dx.doi.org/10.1098/rspa.2010.0134
http://dx.doi.org/10.1021/ie048807d
http://dx.doi.org/10.1088/1464-4258/2/1/311
http://dx.doi.org/10.1063/1.2744402
http://dx.doi.org/10.1063/1.2744402
http://dx.doi.org/10.1103/PhysRevLett.86.4934
http://dx.doi.org/10.1103/PhysRevLett.86.4934
http://dx.doi.org/10.1103/PhysRevLett.85.3512
http://dx.doi.org/10.1088/0022-3727/40/24/021
http://dx.doi.org/10.1016/S0304-3886(97)00002-8
http://dx.doi.org/10.1109/TPS.2010.2098052
http://dx.doi.org/10.1088/0963-0252/10/1/311
http://dx.doi.org/10.1007/s11090-012-9403-y

