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Abstract
Since its first observational evidence in 1919, gravitational lensing – the deflection of light by
gravitation – has become an established astrophysical tool. Its physical description, by means
of general relativity, is well understood. Observations of the gravitational lensing effect can
be employed to probe the distribution of deflecting mass structures and to study magnified
astrophysical sources in otherwise unachievable ways. Furthermore, observable differences in
light travel time along the multiple optical paths of strong gravitational lens systems probe
their absolute scales. This latter effect allows to constrain the Hubble constant H0 at high
redshift, without the need of any secondary distance estimators or complex astrophysics. Such
a direct measurement of H0 features high complementarity to other cosmological probes, and,
in particular, is crucial for understanding dark energy.
The first, and primary, part of this thesis is embedded in the COSmological MOnitoring of
GRAvItational Lenses (COSMOGRAIL) project, and deals with the measurement of the time
delays between the multiple images of gravitationally lensed quasars. COSMOGRAIL is a
monitoring campaign of such lenses, making use of several medium sized optical telescopes.
The project was initiated in 2004 by the Laboratory of Astrophysics at EPFL, and has now
secured data spanning nearly a decade for some of the targeted lenses. Through a state-of-the-
art image processing pipeline, this data yields light curves of the individual quasar images,
characterized by an unprecedented combination of length and photometric quality.
To robustly measure the delays as well as the associated uncertainties from these light curves,
even in presence of prominent microlensing variations, novel numerical techniques are
required. For this purpose, three different techniques have been developed in this thesis,
that are all explicitly designed to handle light curves with extrinsic variability. The precision
and the accuracy (bias) of the time delay measurements are empirically estimated, using
realistic simulated light curves with known time delays that closely mimic the observations.
The international COSMOGRAIL collaboration now homogeneously employs both the new
photometric pipeline and the delay measurement methods. This will significantly increase
the number of robustly measured quasar time delays. Furthermore, our unique light curves
have an impact in the field of quasar microlensing studies.
A central result of this thesis is the measurement of the time delays of the quadruply lensed
zQSO = 0.658 quasar RX J1131−1231, from more than 700 monitoring epochs. Several sharp
quasar variability features strongly constrain the analysis. While the delays between the 3
close images of this long axis cusp lens are compatible with being 0, the delay of image D is
measured to be 91 days, with a fractional uncertainty of 1.5% (1σ), including systematic errors.
At this level of accuracy, the resulting cosmological inference, performed in collaboration with
Suyu et al. (2012a), is limited by the residual uncertainty of the lens model. In combination
with the Wilkinson Microwave Anisotropy Probe seven-year data (WMAP7), the time delays of
this single lens already yield H0 = 80.0+5.8

−5.7 km s−1 Mpc−1,Ωde = 0.79±0.03, and w =−1.25+0.17
−0.21
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Abstract

in a flat wCDM cosmology. The combination with only one other quasar lens (B1608+656) –
also performed in Suyu et al. (2012a) – further reduces these uncertainties, as quasar lenses
are independent and all known systematic errors are under control.
The second part of this thesis addresses another problem in observational cosmology. It
describes a simple and fast method to correct ellipticity measurements of galaxies from the
distortion by the instrumental and atmospheric point spread function (PSF), in view of weak
lensing cosmic shear measurements. Forthcoming surveys such as the ESA Euclid mission
will exploit this cosmological probe to yield stringent constraints on the dark universe and
its history. Our method performs a classification of galaxies and associated PSFs according
to measured shape parameters, and corrects the measured galaxy ellipticities by querying a
large lookup table (LUT), built by supervised learning. This method was developed in the
scope of the GREAT10 image analysis challenge, and achieves excellent results in terms of the
different challenge evaluation metrics. Of particular interest is the efficiency of the method,
with a processing time below 3 ms per galaxy on an ordinary CPU.
Finally, the third part of this thesis presents the discovery of the first cases of quasar host
galaxies acting as strong lenses on background sources. We have selected four candidates from
the spectroscopic database of the Sloan Digital Sky Survey (SDSS). Our follow-up observations
with the Hubble Space Telescope show that two of them feature spectacular gravitational arcs,
offering a unique way of weighing these quasar host galaxies.

Keywords: astrophysics, observational cosmology, gravitational lensing, time delay, quasar,
light curve, microlensing, Hubble constant, cosmic shear, galaxy shape measurement, cosmo-
logical parameter, deconvolution
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Résumé
Depuis sa première mise en évidence observationnelle en 1919, le phénomène de lentille gra-
vitationnelle – la déflection de la lumière par la gravitation – est devenu un outil astrophysique
établi. Sa description physique, par la relativité générale, est bien comprise. Les observations
d’effets de lentille gravitationnelle peuvent être utilisées pour sonder la distribution de matière
déflechissant la lumière, mais aussi pour étudier les sources astrophysiques dont l’apparence
se trouve agrandie. De plus, la différence mesurable de la durée du parcours de la lumière le
long de différents chemins optiques d’un système de lentille gravitationnelle est sensible à
la taille physique de ce dernier. Cet effet permet de contraindre la valeur de la constante de
Hubble H0 à décalage vers le rouge élevé, sans aucune calibration par d’autres indicateurs
de distance. Une telle mesure directe de H0 est très complémentaire à d’autres observations
cosmologiques, et est notamment essentielle pour comprendre l’énergie sombre.
La première et principale partie de cette thèse s’intègre au projet COSmological MOnitoring
of GRAvItational Lenses (COSMOGRAIL), et concerne la mesure de retards temporels (time
delays) entre les images multiples de quasars subissant l’effet de lentille gravitationnelle.
COSMOGRAIL est un programme d’observation continue de ces lentilles, et utilise plusieurs
télescopes optiques de taille moyenne. Ce projet international a été initié en 2004 au Labora-
toire d’astrophysique de l’EPFL, et a maintenant obtenu des données pendant presque une
décennie pour certaines de ses cibles. Grâce à un logiciel de traitement d’image à la pointe du
savoir-faire, ces données brutes délivrent des courbes de lumière des images individuelles de
quasar, caractérisées par une combinaison de longueur et de qualité photométrique unique
au monde.
Afin de mesurer les retards temporels ainsi que les incertitudes associées à partir de ces
courbes, même en présence de perturbations due à l’effet de microlentille gravitationnelle, de
nouvelles techniques d’analyse se sont avérées nécessaires. Pour répondre à ce besoin, trois
méthodes différentes ont été développées dans cette thèse. Chacune d’elles est explicitement
conçue pour analyser des courbes de lumière avec variabilité extrinsèque. Les dispersions
statistiques et erreurs systématiques de nos mesures de retards temporels sont évaluées de
façon empirique, en appliquant les méthodes à des courbes de lumière simulées avec retards
temporels connus, et qui imitent les données observées. Toute la collaboration COSMOGRAIL
utilise maintenant de façon homogène le nouveau logiciel de photométrie ainsi que ces
méthodes de mesures de retards temporels. Ceci va significativement augmenter le nombre
de retards temporels mesurés de façon robuste. De plus, nos courbes de lumière uniques en
leur genre ont un intérêt considérable pour les analyses de microlentilles gravitationnelles.
Un résultat central de cette thèse est la mesure des retards temporels du système de lentille
quadruple du quasar RX J1131−1231 à zQSO = 0.658, à partir de plus de 700 époques d’obser-
vations. Plusieurs structures nettes de variabilité intrinsèque permettent une analyse précise.
Alors que les retards entre les 3 images proches de ce système sont compatibles avec zéro, le re-
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Résumé

tard de l’image D est mesuré à 91 jours, avec une incertitude relative de 1.5% (1σ), comprenant
les erreurs systématiques. A ce niveau de précision, les déductions cosmologiques réalisées en
collaboration avec Suyu et al. (2012a) sont limitées par l’incertitude résiduelle sur le modèle
de masse de la lentille. En combinaison avec les données du Wilkinson Microwave Anisotropy
probe (WMAP7), les retards temporels de cette lentille individuelle donnent H0 = 80.0+5.8

−5.7 km
s−1 Mpc−1,Ωde = 0.79±0.03, et w =−1.25+0.17

−0.21 dans le formalisme d’une cosmologie wCDM à
courbure spatiale nulle. La combinaison de cette analyse avec une seule autre lentille de qua-
sar (B1608+656) – aussi réalisée dans Suyu et al. (2012a) – réduit encore ces incertitudes. Les
lentilles de quasar sont en effet indépendantes, et toutes les erreurs systématiques connues
sont déterminées.
La deuxième partie de cette thèse répond à un autre problème de cosmologie observationnelle.
Elle décrit une méthode simple et rapide de corriger une mesure d’ellipticité de galaxie des
effets de distorsion occasionnées par la fonction d’étalement du point (PSF) du télescope et
de l’atmosphère. Ces mesures d’ellipticité précises sont primordiales pour analyser le signal
du cisaillement cosmologique (cosmic shear). De futurs relevés, comme celui de la sonde
Euclid de l’ESA, vont exploiter cette information cosmologique pour contraindre l’univers
sombre et son histoire. Notre méthode classifie les galaxies et les étoiles de PSF selon leurs
formes mesurées, et corrige les ellipticités des galaxies à l’aide d’une table de correspondance
construite par apprentissage automatique supervisé. Cette méthode a été développée dans
le cadre du défi d’analyse d’image GREAT10, et obtient des résultats excellents en terme
des métriques d’évaluation de ce défi. Un intérêt tout particulier de notre méthode est son
efficacité : elle traite une image de galaxie en moins de 3 ms sur un processeur standard.
Finalement, la troisième partie de cette thèse présente la découverte des premiers cas de
galaxies hôtes de quasar agissant comme lentilles gravitationnelles produisant des images
multiples de sources d’arrière plan. Nous avons sélectionnés quatre candidats dans la base
de donnée spectroscopique du Sloan Digital Sky Survey (SDSS). Nos observations de suivi
avec le Télescope Spatial Hubble montrent que deux de ces candidats affichent des arcs
gravitationnels spectaculaires, offrant une façon unique de déterminer la masse de ces galaxies
hôtes de quasar.

Mots clés : astrophysique, lentille gravitationnelle, retard temporel, quasar, courbe de lumière,
microlentille gravitationnelle, constante de Hubble, cisaillement cosmologique, mesure mor-
phologique de galaxies, paramètre cosmologique, déconvolution.
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1 Introduction

This thesis deals with measurements of particularly tangible observables constraining cos-
mology, the science that studies the evolution of our Universe as a whole. By definition, the
Universe englobes all existing matter and space surrounding us. The speculative description
and narration of this totality has a history of at least several thousand years. Compared to this,
observational cosmology, that confronts factual measurements to predictions from physical
models, is very young.

Arguably the first observational steps that lead to our current understanding of the Universe
happened exactly 100 years ago, when Vesto Slipher measured, from September 1912 on, large
Doppler shifts in the spectra of “nebulae” (Slipher 1913, 1915). Most of these observed spectra
were shifted towards larger wavelengths, i.e. redshifted. The majority of nebulae were thus
apparently receding.

A few years later, Harlow Shapley estimated the approximatively correct size of our Galaxy and
our location with respect to its center. He achieved this by observing Cepheid variable stars in
globular clusters of the Milky Way (Shapley 1918). As discovered by Henrietta Leavitt, Cepheid
variables follow a tight relation between their pulsation period and intrinsic luminosity : the
longer the period, the brighter the star (Leavitt & Pickering 1912). By measuring such pulsation
periods, Shapley deduced the distance to globular clusters. However, Leavitt’s relation alone
does not yield the absolute intrinsic luminosity of Cepheids, which is required to infer the
absolute distance of a star from its apparent brightness. To obtain this information, Shapley
therefore had to calibrate his distances, using some local cepheids with measured parallaxes.

From 1922 on, Edwin Hubble identified Cepheids in nebulae (Hubble 1925), and it became
clear that many of these nebulae are in fact remote galaxies on their own. The measured
distances to galaxies lead Georges Lemaître and Hubble to interpret the Doppler shift mea-
surements initiated by Slipher as resulting from an expanding Universe (Lemaître 1927; Hubble
1929). The apparent recession velocity v of a galaxy was observed to be proportional to its
distance D, with a proportionality constant known as the Hubble constant H0: v = H0 ·D.
The Hubble constant expresses the present-day rate of expansion of the Universe. The latest
estimate of its value from a technique based on Cepheids, thus somehow in the line of the work
from Hubble, is 73.8±2.4 km s−1 Mpc−1 (Riess et al. 2011). In this abbreviation, which stands
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Chapter 1. Introduction

for kilometers per second per megaparsec, a megaparsec is a unit of length1 that corresponds
approximately to the distance of the Andromeda galaxy.

The accurate determination of H0 plays a major role in this thesis; it is the primary objective
of the COSMOGRAIL project. The Hubble constant is a fundamental parameter in cosmology,
and the interest in constraining its value goes beyond measuring distances. The uncertainty
of H0 is directly related to our understanding of dark energy, one of the biggest and entirely
unsolved problems in all physics, as will be described in just a few pages ahead.

COSMOGRAIL (Chapters 2 and 3) exploits the so-called time delay technique, proposed by
Refsdal (1964), to constrain H0. This technique involves the measurement of light travel
time differences between the multiple images of gravitationally lensed quasars. As will be
elucidated in simple terms in Section 1.2 these time delays allow to measure the Hubble
constant in a direct way. We won’t need calibrations such as required, e.g., by the Cepheid
method outlined above.

Chapter 4 presents a technique for the measurement of cosmic shear, another promising
cosmological probe related to gravitational lensing. The development of this numerical
technique was driven by the GREAT10 data analysis challenge, which will hence also be
summarily described. And finally, chapter Chapter 5 deals with the search – and discovery – of
new strong gravitational lenses.

The primary content of my dissertation consists of research publications, which are directly
included in between the pages of this document. The following introductions on cosmology
and gravitational lensing, as well as the material at the beginning of each chapter, are intended
to give the context of these publications. They are rather minimal and qualitative, but hopefully
comprehensible also for readers not familiar with observational cosmology. In any case, they
are highly biased towards the topics related to my work.

1.1 Physical cosmology

The objective of this short primer is to present the main cosmological parameters that are
related to the measurements discussed in this thesis. The last part of this section also describes
why measuring H0 to high accuracy (say 1%) is so important in the present cosmological
context.

1.1.1 Cosmological redshift

The redshift of light, as measured for spectra of galaxies by Slipher, is defined by

z := λobs −λrest

λrest
(1.1)

where λobs is the observed wavelength, and λrest is the emitted, or “restframe”, wavelength.
For nearby sources, such as stars within the Milky Way, redshifts (or blueshifts, if z < 0)

1One parsec (pc) ≈ 3 ·1016 m, roughly the average distance between neighboring stars around our Sun.
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1.1. Physical cosmology

result from the relative velocity between the source and the observer, i.e. the Doppler effect.
However, for cosmological sources, such as remote galaxies, redshifts are interpreted as being
predominantly due to the expansion of space itself. The wavelength of a photon directly
undergoes this expansion, from emission until absorption. For example, observing a galaxy
to be “at” a redshift of z = 1 (λobs = 2×λrest) means that the Universe expanded by a factor
2 since the light that we observe today was emitted. The higher the redshift of a source, the
deeper we look into the past.

1.1.2 ΛCDM: a model for the Universe

A central objective of cosmology is to understand how – and according to which physical
principles – this expansion takes place. Most astrophysicists currently agree on a “concordance”
cosmological model denoted ΛCDM. So far this model is successfully describing all robust
observations, and it remains qualitatively unchanged since more than a decade, despite the
availability of better and better data. The last profound evolution in our description of the
Universe followed the discovery that its expansion is accelerating, by Riess et al. (1998) and
Perlmutter et al. (1999).

The concordance model relies on Einstein’s general relativity as theory of gravitation, and on
the assumption that the Universe is homogeneous and isotropic (all locations and spatial
directions are similar) on large scales. In this context, the expansion is described by the
Friedmann equations (Friedmann 1922, 1924), that link the dynamics of the Universe to its
contents.

Let us briefly consider the assumption of homogeneity and isotropy. Obviously, our cosmos
is not homogeneous on scales of planets, stars and galaxies. And even galaxies gather in
groups, clusters, and filaments, tracing the large scale structure of the Universe. However,
these inhomogeneities smooth out beyond scales on the order of 500 Mpc. Several inde-
pendent observations of, for example, the Cosmic Microwave Background (CMB) and the
three-dimensional distribution of galaxies (Figure 1.1) have confirmed this general hypothesis
to be highly plausible.

1.1.3 Dark energy

Given the homogeneity on large scales, the content of the Universe can be described by
average mass-energy densities of its components, at least for the purpose of investigating
expansion. At the present epoch of cosmic evolution, the predominant of these components
is referred to as dark energy. This term is nothing but a placeholder. We don’t know anything
about the nature of dark energy, but we plainly need to invoke its existence in order to explain
the observed accelerated expansion at our present cosmic epoch. Gravitational interaction
between matter is attractive; something else, with a “repulsive” overall effect, must be driving
the acceleration.

To parametrize its behavior, dark energy is described by an equation-of-state parameter
w = p/ρ, where p is its pressure and ρ its density. This parameter w must be negative
and inferior to −1/3 for dark energy to act repulsively. The Λ in ΛCDM stands for a simple
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Chapter 1. Introduction

Figure 1.1: Slice through the SDSS redshift survey, showing the distribution of galaxies within
±4 degrees of the celestial equator, from Zehavi et al. (2011). Each dot is a galaxy, color and
dot size encode luminosity. We, the observers, are located at the bottom tip of this diagram
(redshift 0), and the radius towards the edge of this plot corresponds to about 500 Mpc. Note
that in this 2D representation the foamy structure tends to loose contrast with increasing
redshift, due to the projection through progressively larger thickness. Section 5.2 of this thesis
further introduces this SDSS survey.

homogeneous and stationary form of dark energy, the so-called cosmological constant. Λ
corresponds to the special case w = −1, and so far this form of dark energy is sufficient to
model the observations.

But in all generality, w can be seen as a free parameter; the resulting extended version of the
concordance model is denoted wCDM. Furthermore, given our ignorance about dark energy,
we could expect w to change with the evolution of the Universe. To explore this possibility, w
is often written as a Taylor expansion, e.g.,

w(a) = w0 +wa(1−a) with a = 1

1+ z
. (1.2)

The aim of postulating such an arbitrary but simple form for the time- or redshift-dependence
of w is to predict observable effects (cosmological probes) that are sensitive to these new
parameters w0 and wa . Finding that w evolves with time would be an enormous step towards
a better understanding of dark energy. It would at least tell us what dark energy is not, by
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1.1. Physical cosmology

rejecting some of the numerous proposed theories. See for instance (Barger et al. 2006)
for a classification of dark energy models in this (w0, wa) plane. Of course, to refute the
cosmological constantΛ, measuring w to be different form -1 would be sufficient.

1.1.4 Dark matter

The other main component ofΛCDM is Cold Dark Matter (CDM). It is called dark, because so
far it is only observed through its gravitational interaction. In fact dark matter was invoked
precisely to explain several independent gravitational observations. Assuming that general
relativity is correct, dark matter is required to account for the observed high orbital speeds
of stars and gas in galaxies, and of galaxies in galaxy clusters. It also plays a dominant role in
explaining gravitational lensing observations, as will be seen all along this thesis. From the
successful theory of primordial nucleosynthesis, which explains the abundance of chemical
elements in the Universe, we think to know that dark matter cannot be baryonic, i.e., made of
atoms. It’s nature is currently perfectly unknown, even if we know more about dark matter – or
about what it is not – than about dark energy. In particular, the “cold” in CDM refers to the fact
that it must clump under the effect of gravitation. If dark matter would be made from “hot”
relativistic particles, its distribution would be too smooth. Dark matter is required in the form
of halos around galaxies and even satellite galaxies.

1.1.5 Spatial curvature

By fitting the concordance model to relevant cosmological observations (structures in the
cosmic microwave background, distribution of galaxies, luminosity of distant supernovae) it
was inferred that about 73% of today’s total energy density consists of dark energy, 23% is dark
matter, and only 4% is ordinary matter (numbers may slightly vary). The energy content of
radiation is negligible at the present epoch.

Summing up the densities of these components, one gets a total average density. From the
exact value of this density depends the spatial curvature of the Universe2. Indeed, according
to general relativity, which describes gravity in terms of curved spacetime, the geometry of the
Universe is not necessarily flat on the largest scales. The total density at the present day can
be written as

Ω=ΩΛ+ΩM, (1.3)

whereΩΛ is a density parameter associated to dark energy in form ofΛ, andΩM represents
the total (dark and baryonic) matter density. All terms in this equation are dimensionless.
The corresponding physical densities have been normalized by the so-called critical density
that would yield a flat universe. In other words,Ω= 1 corresponds to a flat spatial geometry.
Curvature can now be quantified by an associated “curvature density” parameterΩk ,

Ωk = 1−Ω. (1.4)

2Note that strictly speaking the minimal ΛCDM model is flat – allowing for curvature already consists of an
“extension” to the model, like the free equation of state parameter w .
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Experiments have shown so far that Ωk is compatible with being 0, i.e., the total density of
the Universe is close to the critical density, which corresponds to about 2 ·10−26 kg/m3. As a
property of space itself, curvature has fundamental consequences in definitions of distance.

1.1.6 Distance measurements probe cosmology

With these very brief descriptions of density parameters in hand, we can proceed to the
definition of the angular diameter distance. This definition is of perceivable importance to
motivate the COSMOGRAIL-part of this thesis (Chapters 2 and 3), as it links the strong lensing
time delays to cosmological parameters (Section 1.2.2).

In an expanding universe, the notion of distance is ambiguous and not intuitive. Several
definitions, convenient for different calculations, coexist. The angular diameter distance DA is
constructed so that, for an object of angular size θ, DA ·θ corresponds to the proper dimension
of this object, perpendicular to the line of sight.

Following the notations of Hogg (1999), this angular diameter distance DA measured from us3

(z = 0) to an object at redshift z is

DA = DM

(1+ z)
, (1.5)

where the transverse comoving distance DM is given by

DM =


c

H0

1p|Ωk | sin
(√|Ωk |H0

c ·DC

)
if Ωk < 0 (spherical universe)

DC if Ωk = 0 (flat universe)
c

H0

1p|Ωk | sinh
(√|Ωk |H0

c ·DC

)
if Ωk > 0 (hyperbolic universe)

(1.6)

and the line-of-sight comoving distance DC is

DC = c

H0

∫ z

0

dz

ΩM(1+ z3)+Ωk (1+ z)2 +ΩΛ
. (1.7)

Another common distance, directly related to observations, is the luminosity distance D lum. It
is to be used when comparing the apparent brightness (flux S, in units of W/m2) of a source
to its intrinsic luminosity L through the ordinary relation S = L/(4πD2

lum). The luminosity
distance is linked to the previous relations by

D lum = (1+ z)DM. (1.8)

These formal distance definitions are given here purely to illustrate the connection between
distances and cosmological parameters, especially H0. Note that for z ¿ 1 and a flat universe

3In the scope of gravitational lensing, angular diameter distances between any two redshifts are to be evaluated.
Note that angular diameter distances are not additive functions of redshifts. To avoid detailed descriptions, this
general relation is not given here. It can be found, e.g., in Longair (2008).
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1.1. Physical cosmology

(Ωk = 0 and ΩM +ΩΛ = 1) we simply have D lum ≈ DA ≈ DM ≈ DC ≈ cz/H0. For such small
redshifts, which can be interpreted as resulting from the Doppler effect, cz corresponds to
an apparent recession velocity v . Hence, v ≈ H0 ·D – all the above definitions fall back on
“Hubble’s law”. In the local universe, the apparent recession velocities or redshifts of galaxies do
not depend on other cosmological parameters than H0. For larger redshifts, a dependance on
the densities of matter, dark energy, and curvature sets progressively in. But also in this latter
regime, H0 can be constrained in combination with the density parameters by independently
measuring the redshift of, and the distance to, a given source. Measuring an angular diameter
(luminosity) distance is done by comparing the observed angular size (flux) with the known
proper size (luminosity). Sources for which we know this intrinsic size (luminosity) are called
standard rulers (standard candles).

1.1.7 Why measure H0?

ΛCDM is a minimal model able to consistently account for cosmological observations. But
certainly, our incomprehension of 96% of the total mass energy density is not satisfactory. To
test – and eventually refute – ΛCDM and its underlying assumptions, we can constrain its
parameters until incompatibilities with observations show up, or we can constrain extended
models, such as wCDM or free curvature.

Over the next decades, a range of ambitious experiments exploiting different cosmologi-
cal probes will deliver stringent observational constraints. The most imminent results are
those from the ESA Planck mission4. Planck observed anisotropies in the Cosmic Microwave
Background (CMB), with both higher sensitivity and higher resolution than its predecessor,
the NASA Wilkinson Microwave Anisotropy Probe (WMAP). The observations are already
completed, and Planck’s results are expected to be released in just a few months.

The angular scales of anisotropies in the CMB contain precious information about a wealth
of cosmological parameters, notably the density of baryons, the density of dark matter, and
the curvature. However, this probe also suffers from degeneracies : while it is sensitive to
combinations of parameters, it typically cannot pin down their individual values on its own.

By combining probes that are sensitive to different combinations of parameters, these degen-
eracies can be broken. In the case of CMB data, external measurements of H0 are particularly
helpful, as the CMB itself does not constrain the Hubble constant very well. As a high redshift
probe, the CMB can constrain the present-day expansion rate H0 only when other assump-
tions, such as flatness or w =−1, are made. Figures 1.2 and 1.3 illustrate this in the case of the
7-year WMAP data. Clearly, a tight prior of H0 immensely increases the value of this probe,
resulting in actual constraints on parametrized dark energy.

In a similar way, H0 is also important for obtaining narrow limits on neutrino masses. The mass
of neutrinos is difficult to study in particle physics experiments: while the latter have shown
that neutrinos do have a mass, the scale of this mass is not known. Cosmology probes this
absolute mass scale, as massive neutrinos would reduce the amplitude of matter fluctuations
on small scales, and contribute to the matter density of the Universe. Combining data from a

4http://www.sciops.esa.int/planck/
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Figure 1.2: WMAP7 constraints on cosmology, from Larson et al. (2011). The colored points
sample the posterior probability distribution of a ΛCDM model with curvature, fitted to
WMAP7 CMB data only. Taken on its own, this dataset is compatible with a wide range of
values for H0, and does not strongly constrain curvature. However, these degeneracies can be
broken when combining the data from several independent cosmological probes. The black
1σ and 2σ contours were obtained from WMAP7 + H0 + BAO data (Komatsu et al. 2011). As
these contours cross theΩk = 0 line, this combination shows that our universe is roughly flat.
Figure from Larson et al. (2011).
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WMAP7 only

WMAP7 +       (HKP)

WMAP7 +       (SH0ES)

WMAP7 +       (SH0ES II)

Figure 1.3: Constraints on dark energy from the combination of WMAP7 CMB data and H0 as
measured from Type Ia supernovae observed in the scope of the SH0ES program (Supernovae
and H0 for the Equation of State), by Riess et al. (2011). 1σ and 2σ confidence regions are
shown. As in Figure 1.2, it’s the combination of WMAP7 with additional constrains on H0

that breaks degeneracies and constrains in this case the equation-of-state parameter of dark
energy, w , to be close to −1. Figure from Riess et al. (2011).

8



1.2. Gravitational lensing

galaxy survey, the CMB, baryon acoustic oscillations, supernovae, and a prior on H0, Thomas
et al. (2010) have determined upper bounds around 0.3 eV for the sum of the neutrino masses.
As these authors stress, determining by how much neutrinos affect cosmology is also crucial
to avoid biases in the inference of other cosmological parameters.

To conclude, the complementarity of H0 to other observables, in order to probe dark energy,
curvature, neutrino physics, and general relativity, gives a strong motivation to pin down its
value. For a review about the Hubble constant, how it can be measured, and the increasing
importance of the accuracy of its measurement in the light of future surveys, see Freedman &
Madore (2010). Suyu et al. (2012b) give an up to date overview on this topic, in form of a short
summary of a recent workshop.

1.2 Gravitational lensing

This section provides an introduction to the three traditional regimes of gravitational lensing,
that happen to all play an important role in this thesis. As for the preceding overview of
cosmology, the following synopsis is clearly not comprehensive: it focuses only on the aspects
relevant to my work. A detailed account of the vast field of gravitational lensing can be found
in the textbook of Schneider, Kochanek, & Wambsganss (2006). For a shorter introduction to
the formalism of gravitational lensing, see, e.g., the freely available lecture notes of Narayan &
Bartelmann (1996).

The first observed manifestation of light being “bent” by gravitation was made by Arthur
Eddington and collaborators in 1919 (Dyson et al. 1920). Their observation consists in small
apparent displacements in the angular positions of stars, when these stars are seen close to the
limb of the Sun. Einstein’s theory of general relativity (1915) – a theory of gravitation – correctly
predicted the amplitude of this bending (deflection) of light rays. In the formalism of general
relativity, the apparent displacements of background stars result from the local curvature
of spacetime induced by the mass of the Sun. The term gravitational lensing designates all
effects of this curvature on the propagation of light.

A central equation of gravitational lensing connects the small deflection angle α̂ of a light ray
in empty space passing next to a point mass M with a distance of closest approach ξ :

α̂= 4GM

c2ξ
= 1.′′75 · (M/M¯)

(ξ/R¯)
, (1.9)

where G is the gravitational constant and c is the speed of light in vacuum. The above equation
is an approximation valid only for small deflection angles, but this restriction is easily satisfied
by observed situations of gravitational lensing. At the limb of the Sun, i.e., when M is one solar
mass M¯ and ξ is the solar radius R¯, the deflection is of only 1.75 arcsecond, denoted by the
double prime5. For so small deflections, i.e. when the curvature is relatively weak, the total
deflection resulting from a concentrated distribution of mass can be computed by integrating
over the deflections from many point masses.

5One degree is equivalent to 60′(arcminute), or 3600′′ (arcsecond).
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As gravitational lensing is a geometrical consequence of curved space, it does not depend on
the wavelength of the light – provided that the medium is a vacuum (see Tsupko & Bisnovatyi-
Kogan 2012, for what happens in a plasma). And indeed, the different regimes of gravitational
lensing described in the following are successfully explored from X-ray to radio wavelengths.
Gravitational lensing has become a veritable astrophysical tool, and only some of its numerous
applications will be mentioned in this introduction.

1.2.1 Strong lensing

After Eddington’s validation of Equation 1.9 using the Sun as deflector, it took 60 years to
discover the first occurrence of gravitational lensing due to an another massive object. Walsh
et al. (1979) identified that the “two” quasars SBS 0957+561 A and B, both at z = 1.41, and
separated by only 5.′′7, are in fact two images of one single source. The light emitted by this
quasar gets deflected by a foreground galaxy at z = 0.35 in such a way that it reaches us from
several directions, as depicted in Figure 1.4. This regime, in which several images, or highly
distorted images of a source are observed, is known as strong lensing. Foreground objects
responsible for the local curvature are called lenses or deflectors, and the background objects
emitting the light that gets “lensed” are called sources, whatever their nature.

Observer

Lens galaxy

Source
quasar

Lensed image A

Lensed image B

Figure 1.4: Schema of strong gravitational lensing of a distant quasar by a foreground galaxy. β
and θA denote respectively the angular positions of the source and the image A. These angular
positions are two dimensional on the plane of the sky. The source is never directly observed:
β is an unconstrained parameter that can only be inferred via a lens model reproducing the
observed image positions.

This strong lens schema might remind you of the illustration of a common convergent glass
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lens. But note that following Equation 1.9, the deflection angle of light rays is larger for rays
that come closer to the deflector, as depicted in light red in figure Figure 1.4. Light rays that
seem to originate from these lensed images diverge. Hence gravitational lensing does not form
a “real” image in the plane of the observer, following the terminology of conventional optics.
Instead, we see virtual images of the source, at different positions on the sky, when looking
through the lens.

If a source is perfectly aligned behind a point mass, or behind a lens whose mass distribution
is circularly symmetric with respect to the line of sight, the source will be seen as a ring around
the lens. The dimensionless angular radius of this so-called Einstein ring is the Einstein radius

θE =
√

4GM

c2

DLS

DLDS
, (1.10)

where M is the mass of the lens enclosed in the cylinder described by the ring, and DLS, DL

and DS are the angular diameter distances between the source, the lens, and the observer, as
indicated in Figure 1.4. Trough this equation, the mass of the deflector within this cylinder
can be precisely determined from the measured Einstein radius, provided that the involved
distances are known. In practice, such a perfectly symmetric case is seldom observed. When
the source-lens alignment is slightly broken, when the lens is an ellipsoid, or when the system
is perturbed by the gravitational influence of additional external masses, the ring splits up
into several magnified and stretched images of the source. For an example, see the case of
J0919+2720 in Figure 5.6 (page 121, left panel) of this thesis. However, the distance between
these multiple images remains about twice the Einstein radius, especially when lensed by the
mass density profiles of galaxies. Hence the Einstein radius is a characteristic angle of any
given strong lens.

The strong gravitational lens discovered by Walsh et al. (1979) has a quasar as source. From
the observational point of view, quasars appear point-like : they cannot be spatially resolved
by telescopes. Quasars follow a broad redshift distribution – typically z ≈ 0.5 to 3 – and emit
a phenomenal amount of electromagnetic radiation across the spectrum. Different quasar
variants can be observed from gamma-ray to radio wavelengths, and they are typically much
brighter than entire galaxies. In the optical, quasars are characterized by broad emission
lines, facilitating their spectroscopic redshift determination. Furthermore, quasars vary in
luminosity over a broad range of temporal scales (e.g., MacLeod et al. 2010), sometimes as fast
as a few hours (e.g., Stalin et al. 2005) at optical wavelengths. This is evidence that the light
emitting regions must be compact. All these observations led to a widely accepted physical
model : quasars result from the accretion of matter on supermassive black holes, located at
the center of their host galaxies. Quasars are an extremely luminous subcategory of Active
Galactic Nuclei (AGN). In the scope of gravitational lensing, their small size has important
consequences.

A point-like source is a source whose apparent size on a recorded image is only due to the
limited resolution of the telescope, which smears the “point” into a bell-shaped Point Spread
Function (PSF). If such a point-like source lies behind a gravitational lens, the magnified and
stretched (sheared) multiple images of the source will still be very small, and likely remain
unresolved. As a consequence, multiple point-like images of the source are seen, and only the
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brightness of these images relates their magnification. This is precisely the case for quasars.
On the order of 100 strongly lensed quasars are known6, and by far the most common multiple
image configurations are so-called “doubles” (2 observed images) followed by the “quads”
(4 observed images) which result from a better source-lens alignment. Figure 1.5 shows the
quadruply lensed quasar RX J1131−1231, seen by the Hubble Space Telescope (HST). Note
how the 4 images of the quasar, labeled A, B, C and D are round PSFs, while the host galaxy
of the quasar, an extended source, is stretched into numerous arcs. The object in the middle,
marked G, is the lens galaxy. Appendix A briefly presents a simulation software that can be
used to reproduce all multiple image configurations of strong lensing, by moving a source
“behind” this particular lens galaxy.

E
N

1''

B

A

C

G

S D

Figure 1.5: HST image of the quadruply lensed quasar RX J1131−1231. The multiple quasar
images are labeled A, B, C and D. The letter G indicates the primary lens galaxy. The object
marked S is likely a satellite of G (Claeskens et al. 2006). The color combination is made from
ACS F555W, ACS F814W and NICMOS2 F160W images. Image courtesy of Dominique Sluse.

1.2.2 Time delays, and their link to H0

An astonishing yet trivial property of strong lensing is that the light travel time from the source
to the observer is generally not identical for the different images. In other words, we not only
see several images of one same object, but we also see this object, in each image, at different
moments of its history. Given a physical model of the lens, the light travel time for each image
can be computed. Gravitational lensing can in fact be formulated in terms of this light travel
time, by associating an effective index of refraction n to the gravitational potential of the lens,
in close analogy to conventional optics.

6An exhaustive database of strong lenses will soon be available at http://masterlens.astro.utah.edu/.
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The excess light travel time, with respect to the unlensed case, of photons originating from a
source at β and reaching the observer form the direction θ (see Figure 1.4) is given by

t (θ,β) = D∆t

c

[
(θ−β)2

2
−ψ(θ)

]
. (1.11)

The expression in brackets has two components. The first term, proportional to (θ−β)2

is called the geometric delay, and is due to the increased length of the deflected path, as
perceivable in Figure 1.4. The second term, known as Shapiro delay, is due to time dilation
by the gravitational field of the lens, a direct consequence of general relativity. Photons
traveling through a gravitational potential seem delayed. For weak fields this delay is directly
proportional to the potential, and indeed, ψ(θ) corresponds to the lensing potential ψ at the
position of the images. This lensing potential is a two-dimensional analog to the gravitational
potential : it’s laplacian is proportional to the surface mass density of the lens. Finally, t (θ,β)
is directly proportional to D∆t , the so called time-delay distance of the given lens system :

D∆t := (1+ zlens)
DLDS

DLS
. (1.12)

As for the definition of the Einstein radius, the distances DL, DS and DLS are angular diameter
distances (see Section 1.1.6). They depend on the redshifts of the lens and the source, and on
cosmological parameters – notably the Hubble constant. The time-delay distance D∆t concen-
trates this cosmological information into one single scalar, which is, given the combination of
three angular diameter distances, inversely proportional to H0.

Given that we never directly see the source, the above absolute excess light travel time cannot
be compared to any observation. However, we can use it to express the relative light travel
time difference between two images – say A and B – of the same source. This difference
t (θA,β)− t (θB,β) is the time delay between the images:

∆tAB = D∆t

c

[
(θA −β)2

2
− (θB −β)2

2
+ψ(θB)−ψ(θA)

]
(1.13)

The interest in this this time delay is visualized in Figure 1.6. The time delay is a directly
measurable property of a strong gravitational lens. Furthermore, it has a dimension: it
can for instance be expressed in days. This distinguishes the delay from the other lensing
observables, such as angular image positions, magnification ratios, and redshifts, which are all
dimensionless. Figure 1.6 illustrates that these dimensionless observables are not sensitive to
the overall physical scale of a gravitational lens system. If we do not know the Hubble constant,
which connects redshifts to distance, the measurement of source and lens redshifts only yields
their relative distance. But the time delay does depend on the physical distances. Equation 1.13
shows that it is proportional to the overall physical scale, namely to the time-delay distance
D∆t . Measured time delays scale a given lens system, and hence the universe in which they
are embedded.

Remarkably, using time delay measurements as a probe for H0 was proposed by Refsdal
(1964) no less than 15 years before the discovery of the first extragalactic gravitational lens !

13



Chapter 1. Introduction

Large Universe, small        : ... large time delay

Small Universe, large         : ... small time delay

Figure 1.6: Illustration of strong lensing time delays. Disregarding the time delay, the observer
cannot tell how large a given lens system is, as the dimensionless observables such as angular
image separations do not yield this information. However, the observed time delay is directly
proportional to the scale of the system, and inversely proportional to H0. Illustration inspired
from Narayan & Bartelmann (1996).

Refsdal considered that time delays might be measured for doubly lensed supernovae, whose
explosions would be seen twice – once in each image – separated by a couple of months.
Multiply imaged supernovae have not yet been observed. But instead, Refsdal’s time-delay
method is successfully applied to strongly lensed quasars. Some quasars vary significantly in
luminosity on time scales of days. By monitoring the brightness of the lensed quasar images,
one obtains light curves, i.e., representation of brightness as a function of date (examples are
shown at the beginning of Chapter 3). The same quasar luminosity fluctuations may now be
seen, shifted in time, in the light curves of the different quasar images. As foreseen by Refsdal,
the delays for galaxy-lenses are indeed of the order of a few months.

Let us look in detail at Equation 1.13. Our objective is to measure the time-delay distance
D∆t , as it constrains the cosmology (H0) provided that the source and lens redshifts are
known. To deduce D∆t from a measured time delay ∆tAB, the quantity within brackets must
be determined. It contains the source position β, the image positions θ (called astrometry),
and the difference in lensing potential ψ between the image positions. This lensing potential,
and the source position β, need to be modeled so to reproduce the observed lens. The main
difficulties in measuring D∆t , and how to adress them, are the following.

• The measurement of time delays ∆t between lensed quasar images is not trivial, al-
though in terms of technological effort it is rather cheap when compared to other
cosmological probes. These measurements, in order to constrain H0, are the foremost
objective of the COSMOGRAIL monitoring campaign, subject to Chapters 2 and 3 of this
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1.2. Gravitational lensing

thesis.

• The difference in lensing potential at the image positions must be well constrained,
as any error on this difference directly propagates to D∆t . Galaxy lenses are typically
modeled by parametrized elliptical mass density profiles. The radial concentration of
such a profile has a direct influence on this lensing potential difference at the position
of the images. Unfortunately, while the observed astrometry of the images yields the
total mass inside of the Einstein radius, the shape of this radial profile is much harder
to constrain: it is subject to degeneracies (see, e.g., Saha 2000; Kochanek & Schechter
2004, for a review). One notable lensing degeneracy is that some amount of the mass
responsible for an observed lens may be distributed in form of a homogeneous “mass
sheet” across the line of sight. This reduces the lens potential difference between the
images, without affecting their astrometry or magnification ratios – that is, without
observable consequences at the level of the lensed images. As demonstrated e.g. by
Suyu et al. (2012a) and Courbin et al. (2011) (see Chapter 3) and references therein, these
problems can however be addressed,

– using additional information about the mass profile of the lensing galaxy, from
stellar dynamics in the this galaxy. Typically, a measured velocity dispersion of the
lens probes its mass inside a radius different from the Einstein radius.

– using the extended arcs and rings formed by the lensed quasar host galaxy to
constrain the lens model.

– using additional information about the mass external to the lensing galaxy (κext)
and distributed along the line of sight.

• Finally, a somewhat less severe difficulty is to obtain accurate astrometry θ of the
images. This can be achieved by deconvolving HST images, resulting in an accuracy of a
few milliarcseconds – a task that is also performed in the scope of the COSMOGRAIL
collaboration (Sluse et al. 2012; Chantry et al. 2010). Compared to the uncertainties
on the time delay measurement and on the lensing potential, the direct influence of
milliarcsecond astrometric errors on Equation 1.13 is negligible. However such accurate
relative astrometry is highly important to constrain the lens model and hence ψ(θ).

Since the discovery of the first lensed quasar SBS 0957+561, time delays for about 20 different
lenses have been published. However, the number of robustly measured time delays with
appropriate error bars is much lower, as can be deduced from the disillusioning reanalysis
of 11 light curve sets by Eulaers & Magain (2011). One general reason to be cautious about
time delays measured from light curves spanning only 2 or 3 seasons is quasar microlensing,
presented in the next section.

A recent enumeration of published delay measurements can be found in the article of Paraficz
& Hjorth (2010), which presents the latest effort of simultaneously inferring one value for
H0 from all these lenses. Such studies exploit the independence of each different lens to
statistically increase the precision of H0, instead of performing a detailed study to address
the degeneracies at the level of each individual lens. Both (1) this statistical approach applied
to a much larger number of lenses, and (2) the meticulous analysis of a smaller number of
individual lenses (Suyu et al. 2010; Courbin et al. 2011; Suyu et al. 2012a, Chapter 3 of this
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thesis) will allow for percent-level determinations of H0 (Dobke et al. 2009; Weinberg et al.
2012).

1.2.3 Microlensing

The light deflections yielding the multiple strong lensing quasar images as seen on Figure 1.5
result from the total gravitational field induced by matter in the lens galaxy. These usually 2 or
4 multiple images of the source will be called ”macro-images” in the following paragraphs. As
described in the previous section, they are magnified and sheared, but we still perceive them
as point-like images given the limited spatial resolution of the observations.

Let us now assume that we could zoom, by a factor 106 (!), onto one of these macro-images.
What would we see ? The narrow bundle of light rays that forms the macro-image has traveled
through the outskirts of the lens galaxy, as illustrated in Figure 1.4. On the scale of the width of
this bundle, a lens galaxy is not a smooth matter distribution : at least some amount of the
mass in this galaxy comes in form of stars. The Einstein radius associated to these individual
stars, via Equation 1.10, is of the order of the microarcsecond – the angle approximatively
subtended by a coin on the Moon. As a consequence, at the assumed phenomenal resolution,
we would see the macro-image of the quasar strongly lensed and split into several micro-
images by the stellar population of the lens galaxy. This view is qualitatively simulated in
Figure 1.7, in which a red dot with a diameter of 2 light days and at a redshift of z = 0.6 is
seen lensed by stars in a galaxy at z = 0.3. The overall mass distribution of the lens galaxy
magnifies and shears the image (top right panel), while individual stars close to the line of
sight act as additional strong lenses and heavily distort this macro-image. This general regime
of gravitational lensing, with Einstein radii of microarcsecond scale, is called microlensing.
When images of a strongly lensed quasar are magnified or demagnified by mass structure in
the lens galaxy, as described in this paragraph, one speaks of quasar microlensing.

Gravitational lensing has the remarkable intrinsic property that it conserves surface brightness.
A camera recording the different scenes of Figure 1.7 would measure the same local intensity
of light in all parts of the red areas in all four panels. Clearly, there is more red light seen
in the bottom right panel than in the top right panel, as the red area got larger due to the
distortion. Zooming back at any realistic resolution achievable by telescopes, we do not see
these micro-images anymore. All their light is blended into a tiny point-like macro-image. But
the intensity of this point-like image is affected by microlensing, and this intensity can well be
measured even from low resolution observations.

This effect has several fascinating observational consequences. The two main aspects are
outlined below.

1. When monitoring the brightness of quasar images over time, the micro-image configura-
tions will change as stars of the lens galaxy move “through” the macro-image. Even if the
quasar would be a perfectly stationary and tiny source, microlensing adds perturbations
to the light curves as the total magnification changes with time. These perturbations are
random and independent for each macro-image of a strongly lensed quasar.

2. Microlensing randomly magnifies different subregions of a source in different ways. The
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Macrolensed by smooth lens galaxy

Macro- & microlensed (a)

Unlensed source

Macro- & microlensed (b)

5 microarcsec

2 light days

Figure 1.7: Visualization of quasar microlensing, that is microlensing of a strongly lensed
quasar by stars of the lens galaxy. All four panels share the same exceedingly large scale: we
assume here that we can zoom onto one of the two macro-images of Figure 1.4 at a resolution
below a microarcsecond. In the bottom panels, the image of the source is seen lensed by
solar-mass stars (+) of the lens galaxy, instead of a purely smooth potential. Depending on
the position of these stars, different parts of the source are magnified by different amounts.
While these image configurations are far too small to be spatially resolved by telescopes, we
can nevertheless observe fluctuations of the total image brightness, as the stars move through
the field.
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smaller a given source region, the faster and stronger its magnifications will vary as
stars move through the scene. To see why, compare the two bottom panels of Figure 1.7.
Between these configurations, there is a large difference in the total magnification of
the small, red source, while the total area of the larger checkerboard area is much less
affected no matter how the stars are located.

Microlensing perturbations are, at some level, practically omnipresent in observations of
gravitationally lensed quasars. From the point of view of time delay measurements, this is a
nuisance, as the signal of the intrinsic quasar variability is degraded. The first paper of this
thesis, at the end of Chapter 2, addresses this issue by proposing new techniques to accurately
measure time delays despite microlensing.

However, quasar microlensing itself is a unique tool to probe both the structure of the source
and statistical properties of the mass distribution (stars, dark matter) inside of the lens galaxy.
This is a large topic on its own; for a recent review see Schmidt & Wambsganss (2010), and, for
example, publications of former LASTRO PhD student Alexander Eigenbrod (Eigenbrod et al.
2008a,b). Section 3.2 of the present thesis briefly presents the inference of the physical size of
a quasar, at optical and X-ray wavelengths, obtained through a microlensing analysis.

1.2.4 Weak lensing

Weak lensing designates the regime of gravitational lensing in which the images are only weakly
distorted, and do not form wide arcs or multiple image systems. This happens if the lens mass
in front of a source is not concentrated enough to form multiple images. The resulting small
distortions cannot be seen on individual sources, as we do not know their unlensed, “intrinsic”
shape. However, if an entire population of background sources is available, the distortions can
be revealed, either statistically or by local averaging. In practice, galaxies offer such a field of
sources, as illustrated in Figure 1.8.

To mathematically describe the weak lensing of a small source in the (x, y)-plane of the sky,
the distortion is locally approximated, at the position of each source, by a linear remapping
between the source and the image :

(
xsource

ysource

)
=

(
1−κ−γ1 −γ2

−γ2 1−κ−γ1

)(
ximage

yimage

)
. (1.14)

The convergence κ is the term responsible for the isotropic magnification of the image, and
the two components γ1 and γ2 of the shear stretch the image anisotropically. Both κ and
γ are directly related to the mass distribution responsible for the distortions. Chapter 4 of
this thesis presents a method to accurately measure the shape of weakly lensed galaxies in
order to reconstruct the shear. As will be discussed in this chapter, weak gravitational lensing
affects the entire sky of high redshift sources. For distant quasars and the cosmic microwave
background, the average total deflection due to foreground large scale structures is in the order
of 2 arcminutes (see e.g. Hanson et al. 2010), that is one fifteenth of the apparent diameter of
the Moon !
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Unlensed background galaxies Weakly lensed by foreground structure

Figure 1.8: Illustration of weak gravitational lensing. The left panel shows an “unlensed”
field of randomly oriented background galaxies. In the right panel, gravitational lensing by a
foreground mass distorts the images of these galaxies. The lensed galaxies in the dashed square,
taken individually, do not disclose that they are weakly lensed. But considered altogether,
these galaxies clearly tend to be oriented tangentially to the center of this panel, revealing
a foreground mass overdensity at this location. Original illustration by User:TallJimbo /
Wikimedia Commons / CC-BY-SA-3.0
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2 COSMOGRAIL

COSMOGRAIL, the COSmological MOnitoring of GRAvItational Lenses1, is a monitoring
campaign of gravitationally lensed quasars, involving several optical meter-class telescopes.
The primary aim of this project is to increase the sample of accurate time delay measurements
between the multiple images of these quasars. As elaborated in the introduction to this
thesis (Section 1.2.2), time delay measurements constrain the Hubble constant H0, and such
a standalone inference is highly complementary to other cosmological probes. But several
methods to constrain H0 exist, as reviewed, e.g., in Freedman & Madore (2010). So why use
quasar time delays ?

1. The time-delay technique directly probes H0. It does not make use of step by step
calibrations, such as required to reach the Hubble flow with standard candles.

2. The physics of time delays are well understood, and do not involve any complex astro-
physics related for example to dust absorption or metallicities.

3. Considering constraints on the dark energy equation of state, time delays are particu-
larly complementary to other distance measurements. As shown by Linder (2004), the
degeneracy between the parameters w0 and wa (see Equation 1.2) from time delays is
largely orthogonal to the same degeneracy from, e.g., SN Ia. Realistic time delay data
from 150 lenses can improve the “equation of state area uncertainty” – a figure of merit
for dark energy – of Planck and mid-term supernova surveys by almost a factor 5 (Linder
2011).

4. When compared to the space-based observational efforts to calibrate Cepheids and
Type Ia supernovae, measuring quasar time delays is extremely cheap. As COSMOGRAIL
shows, measuring accurate time delays can be done from the ground even with meter-
class telescopes. Only a relatively modest amount of follow-up observations with large
telescopes is required to constrain the lens models.

5. The outlook for this technique is excellent. The cosmological inference from time delays
is currently dominated by random errors due to lack of data, not systematics. Measuring
more time delay distances will yield better results. At the time of writing, the Dark

1http://www.cosmograil.org
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Energy Survey (DES)2 is about to start. According to the predictions by Oguri & Marshall
(2010), DES will detect hundreds of new lensed quasars, accessible for monitoring by
medium-sized telescopes. Furthermore, the next generation of optical surveys, like the
Large Synoptic Survey Telescope3, should provide thousands of lenses – including time
delay measurements. As stressed by Dobke et al. (2009), these large samples will reduce
the importance of lens parameter degeneracies, as the statistical distributions of these
parameters are better constrained than, e.g., the density profile of a particular lens.

6. The monitoring light curves have high “legacy” value for quasar microlensing studies.
They allow to probe the mean stellar mass and the overall stellar mass fraction in the
cosmologically distant lens galaxies, and the structure of quasars (Kochanek et al. 2007).
Strongly lensed quasars are mandatory for these studies, as the multiple light paths
allow to disentangle the microlensing from the intrinsic variability of the quasar.

7. Some redundancy in cosmological probes is needed to check that systematic errors
are under control, or, in other words, to allow for unexpected deviations to show up.
In this context, it is highly welcome that measurements of H0 accurate to 1% are now
within reach of several methods (Suyu et al. 2012b). Furthermore, time delays are
observables that link H0 to lens models, and this link can be exploited in both directions.
As presented by Keeton & Moustakas (2009), time delay anomalies would allow to detect
dark matter substructure in galaxies.

From the observational point of view, the measurement of time delays by COSMOGRAIL
splits into three distinct parts. First, the lenses are monitored for several years, by cameras
of the involved telescopes. Second, the brightness of each quasar image in each exposure is
measured, a process called photometry and yielding light curves. And third, the time delays
between the images are measured from these light curves, using so-called curve shifting
techniques.

The technical supervision of the monitoring at the Swiss Euler telescope and the development
and application of (1) a new COSMOGRAIL photometry pipeline and (2) new curve shifting
algorithms constitute my main contribution to these observational aspects of COSMOGRAIL.
A description of the monitoring and the photometry is given in Tewes et al. (2012c), which is
included in Chapter 3 (page 49) of this thesis. The curve shifting techniques are the subject of
a dedicated paper, Tewes et al. (2012b), at the end of this present chapter (page 29).

The next pages give selected additional illustrations of some of these topics, in complement to
the research publications.

2http://www.darkenergysurvey.org/
3http://www.lsst.org/
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2.1. Monitoring

2.1 Monitoring

The COSMOGRAIL monitoring is an international effort, to which several 1 to 2 meter tele-
scopes are contributing. Lenses in the southern hemisphere are monitored with the 1.2 meter
Swiss Euler telescope and the SMARTS 1.3-m telescope, both located in Chile. The monitoring
with SMARTS is done by the group of Kochanek et al. (2006), with which COSMOGRAIL has
started a productive cooperation, resulting in the largest monitoring campaign of strongly
lensed quasars ever conducted.

The Euler telescope (Figure 2.1), completed in 1998, is operated at the ESO La Silla Observatory
in close collaboration between the University of Geneva and EPFL. It is mainly dedicated to
the discovery and characterization of extrasolar planets. This research is conducted using
both the Coralie high-resolution echelle spectrograph and the new EulerCAM imaging instru-
ment, commissioned in September 2010. About one 8th of Euler’s observing time goes to the
COSMOGRAIL monitoring, in the form of one half-night every 4 days, although this half-night
can be spread over several dates. The telescope observes every clear night of the year, and
is steered mostly by researchers from the observatoire de Sauverny, who travel to Chile for
two-week shifts. The observing instrument, Coralie or EulerCAM, is typically switched several
times per night, in a matter of seconds. Our monitoring of gravitationally lensed quasars enor-
mously benefits from this flexibility, and complements very well the time-critical observations
of extrasolar planets.

Figure 2.1: The Swiss Euler telescope at the ESO La Silla Observatory in Chile, as revealed by
a 75-second exposure taken while the slit of its dome was rotating through the field of view.
Image credit: M. Tewes / ESO, with thanks to Amaury Triaud and Vincent Mégevand.
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The monitoring in the northern hemisphere is currently conducted by the 2 m Himalayan
Chandra Telescope (HCT), and previously involved the 1.2 m Mercator telescope (La Palma,
Spain), the 1.5 m telescope of the Maidanak observatory in Uzbekistan, and the 2 m robotic
Liverpool telescope, also located at La Palma. Details about these telescopes can be found on
the COSMOGRAIL webpage, and in the related publications.

2.2 Photometry

The photometric measurement of the quasar images and the reference stars is done following
the MCS deconvolution algorithm (Magain, Courbin, & Sohy 1998), which, for this particular
purpose, can be seen as a form of “PSF-fitting”. This is a two step process. First, a model of
the point spread function (PSF) of each exposure is constructed, by fitting field stars with a
hybrid (both parametric and pixelated) model. Second, one single model for the target (lens)
is simultaneously fitted to all exposures, convolved with the respective PSFs. This algorithm is
specifically designed with highly blended sources in mind. But even in the case of an isolated
point source, the resulting photometry is significantly better than what can be achieved by
aperture photometry, as the additional information of the PSF of the exposure is exploited.

Figures 2.2 and 2.3 show control visualizations of PSF construction and the deconvolution
of the lens, respectively. These images are automatically produced by the COSMOGRAIL
photometry pipeline, and allow for a fast and efficient visual inspection of the photometric
process, even for thousands of exposures. They were particularly useful in the development
phase of the pipeline.

2.3 Curve shifting

The three curve shifting techniques of Tewes et al. (2012b), including the associated Monte
Carlo uncertainty estimation, are implemented in form of a python package. This software is
publicly available (Figure 2.4), as its interest goes beyond COSMOGRAIL. The release of this
software, together with the light curves, also makes our measurements at least in part easily
reproducible.
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Figure 2.2: Example of a control visualization of the PSF construction, in the case of an Euler
C2 image of the lens HE 0047−1756. The top row shows four field stars. Cosmic ray hits are
automatically detected in each exposure, and get masked together with manually selected
neighboring sources. The second row shows the associated noise maps, and the third row
shows the residuals after subtraction of the simply parametrized component of the PSF model.
These residuals share a very similar structure, which is modeled by a wavelet-regularized fine
pixel grid. Importantly, the final residuals (bottom row) do not share a common structure
anymore. They result from noise and from PSF evolution across the field of the telescope.
The wavy aspect of the background in this particular example image is due to electronic
interferences during the CCD readout, a problem that has been solved since then.
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Figure 2.3: Example of deconvolution control visualizations, for two exposures of
RX J1131−1231 by the SMARTS 1.3-m ANDICAM (top, 0.′′369 pixels) and EulerCAM (bot-
tom, 0.′′215 pixels) instruments. The FWHM of the images is of 1′′ in both cases. The rightmost
panel in the top row shows the pixelated deconvolution component, that represents the lens
galaxy and the Einstein ring.
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Figure 2.4: Website of the COSMOGRAIL curve shifting techniques, which provides documen-
tation and a tutorial. The software is available at http://www.cosmograil.org.
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ABSTRACT

Measuring time delays between the multiple images of gravitationally lensed quasars is now recognized as a competitive way to
constrain the cosmological parameters, well complementary with other cosmological probes. This requires long and well sampled
optical light curves of numerous lensed quasars, e.g., as obtained by the COSMOGRAIL collaboration. High-quality data from our
monitoring campaign calls for novel numerical techniques to robustly measure the delays as well as the associated random and
systematic uncertainties, even in presence of microlensing variations. We propose three different point estimators to measure time
delays, that are explicitly designed to handle light curves with extrinsic variability. These methods share a common formalism, which
enables them to process data from n-image lenses. As the estimators rely on significantly contrasting ideas, we expect them to be
sensitive to different bias sources. For each method and data set, we empirically estimate both the precision and accuracy (bias) of
the time delay measurement using simulated light curves with known time delays that closely mimic the observations. Eventually, we
test the self-consistency of our approach, and we demonstrate that our bias estimation is serviceable. These new methods, including
the empirical uncertainty estimator, will represent the standard benchmark for the analysis of the COSMOGRAIL light curves.

Key words. Methods: data analysis – Gravitational lensing: strong – cosmological parameters

1. Introduction

In the era of precision cosmology, in which a concordance model
seems to fit independant observations, it is of utmost importance
to both confront and combine all possible methods that constrain
cosmological parameters. Confronting them yields an invaluable
cross-check of the methods and the model. Combining them al-
lows to break the degeneracies inherent to single techniques.
Probes including baryonic acoustic oscillations, weak lensing,
supernovae, and cosmic microwave background measurements
fit exactly in this context.

Also among these probes is the so-called ”time-delay
method”, first proposed by Refsdal (1964) to measure cosmo-
logical distances independently of any standard candle. In prac-
tice, the method uses strongly lensed quasars with significant
photometric variability. Photons emitted by the source quasar
propagate towards us along different optical paths, resulting in
multiple images. The light travel times associated to these im-
ages differ due to (i) the different path lengths, and (ii) the dif-
ferent Shapiro delays induced by the gravitational field of the
lensing galaxy. As a consequence, the same quasar variability is
seen with distinct time shifts in the light curves of the multiple
quasar images. This paper presents methods to infer the relative
time delays between the quasar images, from such resolved, i.e.
unblended, light curves.

Measured time delays, in combination with deep HST imag-
ing and dynamical information on the lensing galaxy lead to
competitive measurement of the Hubble constant H0 (e.g., Suyu
et al. 2009, 2010). The complementarity between quasar time de-
lays and several other cosmological probes has been illustrated

recently by Linder (2011) who points out that the dark energy
figure of merit of a combination of Stage III experiments is im-
proved by a factor of 5 if 150 quasar time delays are added. This
also holds if the Universe is not assumed to be flat. It is notewor-
thy that adding this time delay information is very cheap com-
pared to other Stage III or IV projects.

The COSMOGRAIL collaboration has now gathered almost
a decade of photometric points for about 30 lensed quasars. With
such data, the time delays can in most cases clearly be seen “by
eye”. The data analysis is not anymore about sorting out which
time delay is the best among several plausible yet incompatible
possibilities, but rather to perform an accurate measurement of
the delay that can be reliably used for cosmology. New curve
shifting techniques must be devised to extract the delays from
such curves, which sometimes include a thousand points and
typically display substantial microlensing variability due to stars
of the lensing galaxy.

In this paper we present three independent curve shifting
algorithms that can deal with extrinsic variability. Our motiva-
tion behind the development of several techniques is to provide
a range of methods that rely on different principles. While the
methods might not be free of systematics, we expect them to be
biased in different ways, and we devote a large part of this work
to the estimation of comprehensive error bars. Comparing the
results from different curve shifting techniques will allow us in
particular to systematically cross-check our quantification of the
biases.

Our paper is structured as follows: Section 2 gives an
overview of features to be expected in light curves, most of them
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complicating the time delay extraction problem. We then present
the point estimation formalism that is common to our curve shift-
ing techniques in Section 3. Sections 4 to 6 describe the three
techniques, and we explain how we consistently compute error
bars for each time delay and technique in Section 7. We confront
our techniques as well as the associated uncertainty estimates in
Section 8, using a set of simulated light curves with known time
delays. Finally, we present a summary and our conclusions in
Section 9.

2. Light curves of lensed quasars

The COSMOGRAIL monitoring program obtains decade-long
light curves from 1-2 meter class telescopes (e.g., Courbin et al.
2011). This data is reduced in a homogeneous way using decon-
volution photometry. In the following we enumerate properties
and effects that will or might be observed in light curves from
such ground based optical observations.

1. Sampling and season gaps: the data have irregular
sampling, spaced on average by 3-4 days for typical
COSMOGRAIL curves. By construction of the light curves,
all quasar images of a lensing system are observed at the
same epochs. The sampling can show some amount of pe-
riodicity on the scale of one day, as the targets tend to be
observed always at optimal airmass. Almost all light curves
are also affected by gaps of 2 to 5 months, corresponding to
a period of the year where the lens is not observable.

2. Time delays: by definition, the time delays produce a time-
shifted version of the original variability curve of the source
quasar. These delays range from hours to years. Depending
on the length of the delays and the non-visibility gaps, the in-
trinsic light curve of the quasar source may be fully or only
partially sampled by the observations. The size of the “over-
lap” regions, in which several quasar images follow the same
intrinsic source variability, strongly varies from one lens to
another.

3. Macrolensing image flux ratios: the different strong lens-
ing magnifications, as well as possible absorption by the
lens galaxy or lensing perturbations by its satellites, yield
stationary flux ratios between the lensed quasar images. As
the light curves are usually manipulated in magnitude scales,
this translates into magnitude shifts between the curves.

4. Variable microlensing: stars moving in the lensing galaxy
act as secondary lenses that induce independent flickering
of the light curve of each image. While this effect is in-
teresting in itself as a tool to zoom on the lensed quasar
(e.g., Kochanek et al. 2007; Eigenbrod et al. 2008a,b), it
is an important complication in time delay determinations.
Microlensing variations can occur on a broad range of time-
scales. We will refer to slow microlensing when speaking
about any extrinsic variability that happens on time scales
significantly larger than the intrinsic variability of the quasar.
In extreme cases, microlensing can dominate the intrinsic
variability of the quasar at all observable scales, preventing
us from measuring time delays (e.g., Morgan et al. 2012).

5. Variable source structure: the light magnification by mi-
crolensing depends on source structure and size, i.e., micro-
caustics due to stars may occur on spatial scales comparable
in size with the quasar. In other words, in each source image,
microlensing predominantly magnifies different parts of the
source. As the total intrinsic luminosity of the quasar fluc-
tuates, the light emitting region might physically change in
shape and size, on the same time scales. This can introduce

mismatch between the light curves, that correlates with the
intrinsic variability of the quasar. In particular, intrinsic vari-
ability patterns might be seen with different amplitudes in
the light curves (see Barkana 1997, also for a curve shifting
method that tackles this issue).

6. Spurious additive flux: the photometry of the quasar im-
ages might suffer from light contamination by the lensing
galaxy, or by the lensed images of the quasar host galaxy, re-
sulting in constant additive shifts in flux (not in magnitude)
in the light curves. If in addition the photometric points are
obtained from different telescopes or instruments, i.e., differ-
ent resolutions, filters and CCDs, these flux shifts might well
be different for each setup.

7. Flux sharing: this occurs in narrow blends of quasar im-
ages. The effect is due to the limited ability of photomet-
ric methods in separating the flux of individual images in
such blends: while the total flux of the blend is very well
measured, one observes random transfer of flux between the
components, leading to measurable anticorellated “noise” in
the light curves. This problem is accentuated by bad seeing
conditions.

8. Photometric calibration errors: positively correlated
“noise” between the light curves, due to noise/inaccuracies
in the photometric normalization, i.e. magnitude zero point,
of each observing epoch. This normalization is carried out
using stars in the field of view. Small variability of some of
the considered stars, as well as colour terms that are unac-
counted for, can contribute to errors in the relative flux cali-
bration of the CCD frames.

None of these effects is anything new. They affect all past
and present optical monitoring programs. However, their signif-
icance increases with the quality of the data.

When considering only points 1 to 3 of the above, the prob-
lem of extracting time delays from noisy light curves is easy to
formulate, as it literally corresponds to “curve shifting” along the
time and magnitud axes. A large variety of methods have been
proposed to tackle the problem, from cross-corelations to simul-
taneous model fits. Hirv et al. (2011) provide an overview of the
different existing approaches, and present an algorithm based on
the optimal prediction technique by Press et al. (1992). Recent
works focusing on the statistical tools include a bayesian estima-
tion scheme (Harva & Raychaudhury 2008), and a kernel-based
approach combined with an evolutionary algorithm (Cuevas-
Tello et al. 2010).

Only few of the existing techniques address the problem of
extrinsic variability due to microlensing, or at least acknowledge
this variability in their time delay uncertainty estimation. This
can be attributed to the lack of long light curves of sufficiently
high quality to clearly exhibit extrinsic variability. If incorpo-
rated, models for microlensing variability were kept very sim-
ple (e.g., linear trends). A notable exception is the method of
Morgan et al. (2008), which uses a physical microlensing model
in a bayesian formalism (Kochanek 2004). However, the latter
has a high computational cost, prohibitive in the case of decade
long curves of quadruply lensed quasars.

The methods presented in the following sections use prag-
matic mathematical models to represent extrinsic variability. In
this paper we are not interested in any modeling of microlensing
but rather want to minimize and estimate its effect on the time
delay measurement. Our methods should not be used to evaluate
the odds of mutually exclusive time delay measurements, which
often result from insufficient data. A noticeable example of such
a situation is the decade-long controversy about two compet-
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ing value of the time delay of Q 0957+561 (Walsh et al. 1979),
measured in the optical (∆t = 415 ± 20 days) by Vanderriest
et al. (1989) and in the radio (∆t = 513 ± 40 days) by Lehar
et al. (1992). The debate was closed by Kundic et al. (1997)
using additional photometric measurements, as opposed to re-
fined methods. A more recent example is the delay measurement
of HE 1104-1805 (see, e.g., Gil-Merino et al. 2002; Pelt et al.
2002). In our opinion the reliability of time delay measurement
techniques has often been overestimated, especially when insuf-
ficient data could not hint at the presence of potential extrinsic
variability.

3. Curve shifting through point estimators

All three curve shifting techniques presented in this paper are
point estimators; they can be seen as functions that take n light
curves as input (n ≥ 2, usually 2 or 4) and return n correspond-
ing time shifts τ, one for each curve. These optimal time shifts
minimize the mismatch between the common intrinsic quasar
variability features of all the light curves. Of course, the indi-
vidual time shifts are not informative, but they directly translate
into unambiguous time delay estimations between each pair of
curves:

∆tXY = τY − τX (1)

Hence, time shift estimates obtained from n light curves of a
lens system yield n(n − 1)/2 dependent – and consistent – time
delay estimations. Note that this would naturally generalize to
probability distributions instead of point estimates.

By construction, this trivial time shift formalism avoids the
selection of any reference curve with respect to which n inde-
pendent delays would be expressed. This is crucial as it can well
be that, for example, strong extrinsic variability in quasar image
A prevents us from measuring the delays ∆tAB and ∆tAC, while
the delay ∆tBC can be well determined. Furthermore, methods
complying with this formalism shift all four light curves of quad
lenses simultaneously. This is a strong advantage especially in
presence of extrinsic variability, as using all curves constrains
the intrinsic variability much better than a pairwise processing.

Importantly, we will also exploit the common formalism of
our point estimators by estimating their variance and bias in ex-
actly the same way (Section 7).

Before describing the three methods, we underline that our
point estimators all rely on iterative nonlinear optimization al-
gorithms. As a consequence, they all show a certain amount
of dependence upon the choice of intial guesses for the time
shifts. For each lens system to be analysed, we systematically
evaluate this dependence by running our methods a few hundred
times on the exact same observed light curves, starting from ini-
tial shifts randomly selected in a range of generally ±10 days
around a plausible solution. We call the variance of the resulting
monomodal distributions of time delays the intrinsic variance
of a delay estimator applied to the particular set of curves. We
will illustrate this in Section 4. In principle this intrinsic variance
can be made arbitrarily small, by increasing the robustness and
precision of the optimizations. In practice, a compromise with
CPU cost has to be found. We have implemented our methods
so that their intrinsic variance is significantly smaller than the
other sources of error. In any case, the intrinsic variance will be
part of the total uncertainty evaluation. Furthermore, we will al-
ways use the mean of these distributions as our best time delay
estimations between observed light curves.

4. Method 1: simultaneous spline fit

Our first method fits a single continuous model to all data points
of the light curves, simultaneously adjusting time and magnitude
shifts between these curves so to minimize a χ2 fitting statistic
between the data points and the model. We will designate this
common model as intrinsic, even when in practice microlens-
ing might prevent us from getting access to the pure intrinsic
variability of the source quasar. The idea of fitting such a single
model to shifted light curves defines a whole family of existing
time delay measurement methods. These techniques differ by the
mathematical representation of the intrinsic curve; for instance,
Press et al. (1992) use a Gaussian process, Lehar et al. (1992) use
Legendre polynomials, Barkana (1997) uses cubic splines with
equidistant knots, Burud et al. (2001) use a regularized numer-
ical model, Cuevas-Tello et al. (2006) use a linear combination
of Gaussian kernels, and Vakulik et al. (2009) use a linear com-
bination of sinc functions.

In presence of independent “extrinsic” variability such as
slow quasar microlensing, light curves will not adequately over-
lap for any shifts in time and magnitude. It is easy to conceive
that mismatch of this type can lead to strongly biased time de-
lay estimations. It is therefore mandatory to explicitly model the
extrinsic variability, to the price of an increased number of free
parameters. For example, to represent the microlensing in their
high quality light curves of the lensed quasar HE 0435-1223,
Kochanek et al. (2006) use independent quadratic polynomials
for each season.

Models representing the relative extrinsic variability act sim-
ilarly to high-pass filters on the data. If these models are as
flexible as the intrinsic curve, they can compensate for wrong
time shifts, and the information of the time delay is lost. This
is our main motivation in proposing a new method that tries to
locally adapt the flexibility of the models to the peculiarities of
the curves.

4.1. Free knot splines: the principle

We use so-called free knot B-splines to represent both the in-
trinsic and the extrinsic variability of the light curves. A spline
is a piecewise polynomial function, and its knots are the loca-
tions where the polynomial pieces connect. We will only con-
sider splines of degree 3, i.e., with continuous second derivatives
all across the curves. For these free knot regression splines, not
only the polynomial coefficients but also the knot positions are
seen as free variables to be optimized. These splines yield sig-
nificantly better fits than uniform splines, for a given number of
knots. Furthermore, they do not introduce any arbitrary discrete
grid in the model, which is of high importance for our applica-
tion. Ideally we want our models to be shift-invariant in terms of
their ability to fit any given pattern.

In the case of fixed knots, finding the unique least-squares
spline approximation to some data points is a linear problem.
This property does not hold for free knot splines: optimizing the
knot positions to minimize the χ2 requires nonlinear parameter
estimation. The nonlinear optimization is particularly difficult,
as the motion of the knots leads to many local optima and sta-
tionary areas in the parameter space.

Molinari et al. (2004) present an efficient algorithm named
“Bounded Optimal Knots” (BOK) to optimize the knot locations
of least-squares spline approximations. The authors recall that
fitting a free knot spline is a problem that can be separated in
a linear and a nonlinear part (Golub & Pereyra 1973). For any
given knot configuration, the computation of the corresponding
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Fig. 1. Illustration of the free knot spline technique. The data points are shifted COSMOGRAIL light curves of the quadruply lensed quasar
HE 0435-1223, published in Courbin et al. (2011). A reasonable spline representing the intrinsic variability is shown in black (initial knot step
η = 30); knots are shown as vertical ticks. The red, green, and violet splines represent the relative extrinsic variability corrections, applied to the
observed light curves A, C and D (respectively), so that they match to the common intrinsic spline. These extrinsic splines are plotted relative
to the dashed grey line. The optimization starts with uniformly distributed knots; note how the knots tend to migrate to areas in which they are
required by well constrained patterns of the data. The blue and orange curves are alternative intrinsic splines (shown without knots to avoid clutter)
with inadequate knot densities of η = 50 and 10 (see text).

optimal spline coefficients remains linear, and thus fast – in our
case using scipy’s wrappers around FITPACK (Dierckx 1995).
The main idea of BOK is to wrap the linear coefficient compu-
tation inside an iterative bounded optimization of the knots. The
bounded optimization guarantees a well-defined minimal dis-
tance between the knots, by keeping them confined into disjoint
windows. This scheme avoids the “coalescence” (i.e., superpo-
sition) of knots, that would correspond to unwanted discontinu-
ities in the derivatives of the spline. Following an idea of the
Evolutionary BOK algorithm (also described by Molinari et al.
2004) we update the bounds of the windows once the knot lo-
cations have been robustly optimized, and iteratively repeat the
process. This mechanism effectively pushes the window bounds
to follow their knots, yet always ensuring a minimal knot dis-
tance.

Fitting a single spline to fixed data points is only a fragment
of the curve shifting problem; our model for the light curves
not only consists of a common intrinsic spline, but also of sev-
eral independent extrinsic splines. In addition, to make our curve
shifting technique efficient, we adjust the time shifts between the
curves simultaneously with the splines, instead of performing in-
dependent fits for different trial delays. In mathematical terms,
we aim at finding the global minimum of

χ2 =

n∑
i=1

Ni∑
j=1

[mi j − s(ti j + τi) − µi(ti j)]2

σ2
i j

(2)

in which n is the number of light curves with Ni photometric
points (ti j,mi j±σi j), τi are the time shifts, s is the intrinsic spline
and µi are the extrinsic splines.

We minimize this χ2 in an iterative process, in which the
splines and the time shifts get optimized one after the other, us-
ing custom strategies for each parameter. Several formal diffi-
culties arise as the “footprint” of the mixed data points evolves
when the time shifts are modified; we have for instance to stretch
the knot locations so that they follow the extent of a spline’s do-
main. For details of the admittedly intricate but modular opti-
mization procedure, we refer the reader to the source code.

4.2. Free knot splines in practice

In Fig. 1, we show 3 seasons of a spline fit obtained for the light
curves of the quadruply lensed quasar HE 0435-1223 (Courbin
et al. 2011). The intrinsic spline, going through the shifted data
points, is shown in black. The red, green, and purple splines il-
lustrate extrinsic variability for which the data points have been
corrected (see caption). Vertical ticks across the splines indicate
the knot locations. For a quad lens with 500 points on each curve,
100 knots for the intrinsic spline, and 50 knots (in total) for the
extrinsic splines, the fit converges in less than a minute on a sin-
gle ordinary CPU.

Each spline is parametrized by its knot epochs and associated
polynomial coefficients. The curve shifting starts with equidis-
tant knots, and flat splines. Before running the optimization, one
has to chose a number of knots for the intrinsic spline (e.g., one
knot every 30 days, η = 30), the number of knots for each ex-
trinsic spline (e.g., one knot every 150 days, depending on the
apparent microlensing variability in each individual curve), and
the respective miminum knot distances, ε (e.g. 10 days). These
numbers remain unchanged by the fitting; they control the global
flexibility of each spline.

How sensitive is the technique to these choices ? In Fig. 2 we
illustrate the effect of the initial uniform knot step η of the intrin-
sic spline on the resulting time delay measurements; a smaller
step corresponds to a larger number of knots. These time delay
histograms are obtained by repeatedly running the optimization
on the same data, starting from random initial time shifts, uni-
formly distributed within a range of ±10 days around the typ-
ical best fitting solutions. We also randomly shuffle the order
in which the optimizer processes the microlensing splines, to
marginalize over any possible asymmetry introduced by our iter-
ative spline fitting algorithm. For each number of knots, the dis-
tributions of measured time delays display a finite scatter. This
is the intrinsic variance introduced in Section 3. It depends on
the robustness of the χ2 minimization algorithm, and thus also
on the complexity (degeneracies, local minima) of the χ2 hyper-
surface. As we observe, the result of our optimization is by no
means global. A visual inspection of the splines reveals that the
knots tend to settle in a few different repeating configurations.
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Fig. 2. Distributions of time delays obtained by running the free knot spline technique on always the same data, starting from randomised initial
time shifts. The light curves are from Courbin et al. (2011), an excerpt is shown in Fig. 1. The colours encode the initial knot step η of the intrinsic
spline, spanning a large range corresponding to a factor 5 in the number of knots. Superposed to the histograms are scatter plots of the minimal
χ2 values obtained by the optimization. We stress that the histograms shown here are not to be mistaken for probability density functions of time
delay measurements on HE 0435-1223. They only illustrate the intrinsic variance, i.e., the finite precision of the optimization algorithm, as applied
to a high quality data set.

This intrinsic variance will naturally contribute to the error bar
that we attribute to a time delay measurement.

The influence of the step η on the centroids of the mea-
sured delays in Fig. 2 is surprisingly small, considering that the
range of tested values covers a factor 5 in the number of knots.
Visualizing the intrinsic spline fits (3 examples are shown in Fig
1), an initial step of η = 50 days is clearly too large for this
particular data set, as the resulting spline is not able to follow
obvious intrinsic trends. On the other hand, setting η = 10 days
yields far too many knots and the spline tends to fit the noise of
individual curves. As expected, we observe in Fig. 2 that delib-
erately selecting a too large number of knots leads to an increase
of the intrinsic variance of the method. This behaviour is eas-
ily reproduced when changing the knot density of the extrinsic
splines. Too few knots bias the measured time delays, too many
knots “dilute” them, due to the degeneracies with the intrinsic
spline. Note that it is well possible to attribute an extrinsic spline
to each light curve instead of leaving one curve as a reference;
this leads to obvious degeneracies between the extrinsic splines,
but it does not systematically increase the intrinsic variance.

Finally, we note that the choice of the minimum knot dis-
tance ε of the intrinsic spline, in a range from 2 to 15 days, has
practically no effect at all on the time delay measurements. Only
a very low minimal distance (ε < 5), combined with a high num-
ber of knots (η < 15) significantly increases the intrinsic vari-
ance of the delay measurements, without introducing systematic
shifts. In all the following, we will use a minimal knot distance
of 10 days.

We postpone to Section 7 the assessment of the total un-
certainties of delay measurements, for any (possibly fine-tuned)
choices of the number of knots.

5. Method 2: variability of regression differences

Our second curve shifting technique consists of a much less
parametric approach, and can be summarized as follows:

1. Instead of simultaneously fitting one intrinsic model to all
light curves, we start by performing an independent regres-
sion on each individual curve. We can then easily express nu-
merical difference curves between time shifted pairs of these
finely sampled regressions. As we work with light curves in
magnitudes, these difference curves correspond to flux ra-
tios.

2. The regression curves are shifted along the time axis so to
minimize the variability, i.e., structures, of the difference
curves. In mathematical terms, we propose to measure this
variability through the “weighted average variation”, a con-
cept inspired by the total variation. This approach minimizes
the derivative of the difference curves, as opposed to the dif-
ference curves themselves.

This method is illustrated in Fig. 3. Regressions of the light
curves of two quasar images are shown in red and blue. If the
regressions are shifted in time so to correctly compensate for the
delays, any intrinsic variability pattern of the quasar cancels out
in the difference light curves (black curve of Fig. 3). In this par-
ticular situation, the difference curves contain only the relative
extrinsic variability between the curves. If the absolute extrinsic
variability is independent for each curve, any statistical prop-
erty of the relative extrinsic variability between the curves will
a priori be independent of the time shifts. In practice this is not
entirely the case, due, e.g., to the finite length of the light curves,
which is much shorter than the largest time scales of microlens-
ing variability.

In contrast, if the regressions are not shifted by the correct
time delays, the intrinsic variability does not cancel out. As a
consequence, the difference curves also contain a finite differ-
ence of the intrinsic quasar variability. If the latter is fast and
strong enough, this corresponds to clear additional irregularities
in the difference curves. These can be observed in the brown dif-
ference curve of Fig. 3, that was obtained by attributing wrong
time shifts to the regressions.
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Fig. 3. Illustration of the regression difference technique, on light curves of HE 0435-1223 (Courbin et al. 2011). For clarity, only the light curves
of images A (red) and B (blue) are shown. The Gaussian Process Regressions are shown as red and blue continuous mean functions and 1σ
envelopes. Curve B has been shifted in time with respect to A so to minimize the weighted total variation of the A − B difference curve, shown in
black. The brown difference curve was obtained by deliberately shifting B by 15 days with respect to its optimal position. The curves have been
arbitrarily offset in magnitudes for display purposes.

5.1. Gaussian Process Regression difference curves

The purpose of the regression is to allow the measurement of
relative variability between time shifted light curves, despite the
highly irregular sampling and season gaps. To adequately weight
localized variability according to its uncertainty, we need a re-
gression that expresses not only a most likely value but also a
confidence interval for this value at each epoch.

Gaussian Process Regression (GPR) is a powerful formal-
ism whose predictor curve, a Gaussian process, does not fol-
low a predetermined parametrized form. Instead, the regression
curve is constrained in its freedom by a covariance function, that
describes how correlated two given points of the curve are, de-
pending on their separation along the time axis. Given (i) such
a prior covariance function, (ii) a prior for the regression func-
tion itself, and (iii) the observed data, the GPR yields a Gaussian
distribution (i.e., a mean value and a variance) for the regression
value at any interpolation epoch. For a pedagogical introduction
to GPR, see e.g. Press et al. (2007).

To implement our curve shifting technique, we make use of
the GPR functionality provided by the pymc1 python package
(Patil et al. 2010). Before computing a regression, we have to
choose priors for both the covariance and a mean function. For
the latter, we simply use an uninformative constant function, at
the mean magnitude of the curve’s data points. The choice of a
prior covariance function is less trivial. Several families of co-
variance functions are implemented in pymc; in all the following
we make use of the Matérn family, with an amplitude parame-
ter of 2 magnitudes, a scale of 200 days, and a smoothness de-
gree ν = 1.5. By analogy to the knot density of the splines used
in our first technique, we do not justify a particular covariance
function or its parameters. We consider this choice to be part of

1 http://pypi.python.org/pypi/pymc/

the fine tuning of the curve shifting technique. This fine tuning
can be done empirically, to minimize the time delay uncertainty
determined in Section 7. When experimenting with covariance
functions, it is of particular importance to ensure that the season
gaps are interpolated with adequately large variances.

In practice, for each of the n light curves, we evaluate the
GPR every 0.2 days. Given some trial time shifts, we express
the n (n − 1)/2 difference curves by subtracting linearly interpo-
lated magnitudes of the shifted regression curves. Indeed, each
pair of curves has to be considered only once; for the variabil-
ity analysis, the difference curve A − B yields the same result as
B − A. In a similar way, the uncertainties at each epoch of the
difference curves are obtained by summing the linearly interpo-
lated variances. We procede by quantifying the variability of the
difference curves.

5.2. Minimizing the Weighted Average Variation

For a differentiable function f : R → R, the total variation on
an interval [a, b] is defined by:

TV[a,b]( f ) :=
∫ b

a

∣∣∣ f ′(x)
∣∣∣ dx (3)

Note that this total variation is monotonically increasing with
the length of the interval [a, b]. To measure the variability of our
difference curves, we replace the above derivative by a finite dif-
ference quotient, and the integration by a discrete averaging over
the regular 0.2 day sampling epochs. Furthermore, we weight
the terms of this averaging by the respective uncertainty of the
difference curve, and normalize this weighting so to cancel the
influence of the varying size of the overlapping regions. We will
refer to this statistic as the Weighted Average Variation (WAV).
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For a difference curve f (t j) with variance σ2(t j), and N regularly
sampled points ( j = 1, . . . ,N), we define:

WAV( f ) :=

∑N−1
j=1

∣∣∣ f̂ ′(t j)
∣∣∣ · w( j)∑N−1

j=1 w( j)
(4)

where

f̂ ′(t j) =
f (t j+1) − f (t j)

t j+1 − t j
(5)

and the weights are given by:

w( j) =
2

σ(t j) + σ(t j+1)
(6)

The time shifts of the regression curves are optimized using
a nonlinear technique that minimizes a single scalar objective
function obtained by summing the WAV of all pairwise differ-
ence curves. Due to the low number of parameters (n time shifts)
compared to the free knot spline technique, this optimization can
be made very robust, i.e., leading to a negligible sensitivity to
initial conditions. The total computing time for a quad lens with
500 epochs in each curve is of the order of one minute on a single
CPU. The GPR takes more than half of this time.

6. Method 3: dispersion minimization

Our third curve shifting method is broadly inspired by the dis-
persion techniques from Pelt et al. (1996). In Courbin et al.
(2011), we have already applied this particular time delay es-
timator to the light curves of HE 0435-1223. It has also been
used in Eulaers & Magain (2011). A notable difference to classi-
cal dispersion techniques is that we make use of a simple linear
interpolation to form pairs of predicted and observed points, in-
stead of considering only pairs of closeby observed points.

The method consists of a nonlinear optimization of the time
shift of each light curve so to minimize a single scalar objec-
tive function that quantifies the “mismatch”. Dispersion func-
tions are such objective functions that do not involve any model
for the intrinsic variability, but only use the relative dispersion
between the time-shifted points of the light curves. As for the
free knot spline method (Section 4), it is necessary to explicitly
compensate for any slow extrinsic variability before evaluating
the dispersion for given trial time shifts. We represent this extrin-
sic variability by low order polynomials added to either the full
curves or to individual seasons (for an illustration, see Fig. 5 of
Courbin et al. 2011). These polynomials are optimized simulta-
neously with the time shifts, so to minimize the same dispersion
function.

Remains to define the dispersion function. It should be able
to evaluate the mismatch between n ≥ 2 time-shifted light curves
of a quasar lens, treating all those n curves equally, i.e., without
choice of an arbitrary reference curve. We achieve this by first
defining an elementary dispersion function that operates on pairs
of curves, and then averaging its value over all n(n−1) permuta-
tions of 2 among n light curves. This elementary dispersion func-
tion between two curves X and Y is illustrated in Fig. 4. We lin-
early interpolate (and never extrapolate) the light curve X at each
epoch of Y, provided that the time interval over which this inter-
polation is done is smaller than δ = 30 days. Given the typical
sampling of light curves, this means that we do not interpolate
across observing season gaps. We then compute a sum of square
differences between the interpolated magnitudes mX,interp(ti) and

Fig. 4. Illustration of the “elementary” dispersion function used in the
curve shifting technique described in Section 6. The vertical gray bars
represent the terms of the summation of equation 7. Note that the last
shown point of Y would not contribute to the dispersion, as it falls into
a season gap of X. This elementary dispersion function is not invariant
with respect to swapping the curves X and Y. However, our total disper-
sion estimate is symmetric, as we average these elementary dispersion
accross all permutations of 2 curves among n. Not shown in this sketch
are the polynomial corrections for extrinsic variability. These correc-
tions are optimized against the same total dispersion.

the corresponding magnitude measurements mY(ti) of light curve
Y:

D2(X,Y) =
1
N

N∑
i=1

(
mX,interp(ti) − mY(ti)

)2

σ2
X,interp(ti) + σ2

Y(ti)
, (7)

where the summation goes over the N epochs of Y for which the
interpolation of X was performed, given the above criteria. Each
term is weighted by a combination of the linearly interpolated
uncertainty on mX,interp(ti) and the uncertainty of mY(ti).

For a set S of n lightcurves, e.g. S = {A,B,C,D}, the average
dispersion is computed by:

D2( S ) =
1

n(n − 1)

∑
{X,Y}⊂ S , X,Y

D2(X,Y) (8)

This dispersion is a function of the time shifts and the extrinsic
variability corrections of each light curve. In practice we mini-
mize the average dispersion by using iteratively a simulated an-
nealing optimizer for the time shifts and a Powell optimizer for
the extrinsic variability.

Due to the sampling and scatter of the light curves, the dis-
persion function usually has a very rough structure in time shift
space, resulting in a poorly defined minimum. It is tempting to
“smooth” this dispersion function. This can be done for instance
by using a regression instead of a simple linear interpolation, or
by determining the dispersion minimum through a local fit (see
e.g. Fig 5. of Vuissoz et al. 2008). Such measures clearly reduce
the intrinsic variance (see Section 3) of the estimator by increas-
ing its stability against random initial time shifts. But we also
observe that they often introduce additional bias. We therefore
prefer to simply use the dispersion function described above,
tackling its “noisy” minimum with a robust optimization algo-
rithm.

7. Empirical estimation of time delay uncertainties

As described in Section 3, the three curve shifting techniques
presented in this paper can be seen as recipes that yield a single
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time shift estimation τ for each light curve of a lensed quasar.
In this section, we describe how we proceed to empirically ob-
tain reliable error bars for time delays between pairs of curves
(∆tXY = τY − τX), as measured through these point estimations
τ. This error analysis is done individually for each quasar lens,
i.e., for each set of observed light curves.

To compute the time delay uncertainties, we follow a Monte
Carlo approach. We apply the curve shifting techniques on a
large quantity of synthetic light curves with known time delays.
This allows us to assess both the variance and the bias of our
point estimators, as we relate in Section 7.3. We draw these syn-
thetic light curves from a comprehensive “generative” model,
i.e., a mathematical model for randomly generating mock light
curves from scratch, while controlling the hidden parameters
such as the time delays. For a given lensed quasar, our generative
model – whose details are described in the following sections –
is composed of:

1. A single intrinsic variability curve, common to all n quasar
images. We use the intrinsic free knot spline obtained by ap-
plying our first curve shifting method (Section 4, black spline
of Fig. 1) to the observed light curves.

2. A smooth extrinsic variability curve (“slow” microlensing)
for each curve of the lens. Again, we directly use the curves
obtained by the spline fitting technique on the observed data
(red, green, and purple splines of Fig. 1).

3. An independent “fast” extrinsic variability, which can be
seen as correlated noise, for each curve. This contribution
is randomised, i.e., individually drawn for each realization
of the synthetic curves.

We always sample from this generative model at the actual
observing epochs of the monitoring. As a result, we obtain syn-
thetic curves that closely imitate the intrinsic and extrinsic vari-
ability, sampling, and scatter characteristics of the real data. If
the properties of the randomised fast extrinsic variability are well
adjusted, these synthetic curves are statistically undistinguish-
able from the observations. As illustrated in Fig. 5, they could
easily be mistaken for the real light curves. Yet, they have known
time delays.

Our first objective of this methodology is to obtain synthetic
curves that share a very similar “time delay constraining power”
with the observations, so that we can assume our delay measure-
ment methods to perform equally well or badly on both. Clearly,
this constraining power of a set of light curves increases with the
amount of intrinsic variability, and decreases as this variability
gets diluted by extrinsic effects such as microlensing, sampling,
and noise (Eigenbrod et al. 2005). Furthermore, curve shifting
methods might not be able to optimally exploit the information
content of the data points. In particular, they are likely to be bi-
ased even by those peculiarities of the data that can be indu-
bitably determined from the observations, such as the interplay
between large scale extrinsic and intrinsic variability, and sea-
son gaps. Hence, our second objective in generating synthetic
curves that mimic as closely as possible the real data is to reveal
these biases. Provided that a rough but unambiguous estimation
of time delays can be made, the observed light curves do yield
some nearly unmistakable information about the intrinsic and
extrinsic variability. We use this information as a deterministic,
smooth part of our generative model, and marginalize over the
unkown true time delays and short scale extrinsic variability. We
proceed by describing the generative model in detail.

7.1. Model for the intrinsic and slow extrinsic variability

We directly use the free knot spline fits of our first curve shifting
technique as a model for the intrinsic and slow extrinsic variabil-
ity. While quasars frequently show variability on scales of hours
(see e.g. Stalin et al. 2005), we do not add any additional small
scale variability to the relatively smooth intrinsic spline, as this
could exaggeratedly increase the time delay constraining power
of our synthetic curves.

We observe that the shapes, amplitudes, and the slopes of
the intrinsic and extrinsic splines are virtually insensitive to any
plausible time shifts of the light curves around the estimated time
delays. Therefore, we simply use the set of splines from our free
knot spline technique as a fixed, deterministic part of our model.
We have verified that our results do not significantly change if
we perform a time-shift-constrained spline fit on the observed
curves for each particular delay that we want to simulate.

7.2. Model for the randomised fast extrinsic variability

To add fast extrinsic variability to our synthetic light curves, we
randomly generate “power law noise”, i.e., a time series whose
Fourier spectrum follows a power law. The characteristics of this
noise are adjusted individually for each quasar image. This pro-
cedure can be summarized as follows:

1. For each quasar light curve, draw power law noise following
Timmer & Koenig (1995), using a fine regular sampling of
e.g. 0.2 days.

2. Linearly interpolate these finely sampled signals at the ob-
serving epochs of the light curves, to obtain a noise contri-
bution for each data point.

3. Locally rescale the noise, so that its amplitude follows the
scatter in the observed curves.

4. Run the free knot spline technique on the synthetic curves,
and analyse the residuals.

5. Iteratively repeat the above steps, adjusting the parameters
of the power law noise until the residuals obtained at step 4
are statistically compatible with the residuals obtained from
the real observations.

Note that we use this model to generate both correlated ex-
trinsic variability and independent shot noise at once. Therefore,
the regular sampling used in step 1 should be chosen sig-
nificantly finer than the minimal distance between observing
epochs.

Let us now revisit the steps leading to a well adjusted fast
extrinsic variability in more detail, starting with the power law
noise. The idea of Timmer & Koenig’s algorithm is to generate
random amplitude and phase coefficients in the discrete Fourier
space, and then build the real signal by inverse Fourier trans-
form. We limit the generation of random amplitudes to a finite
window of the frequency domain, thus avoiding to affect the
large scale variability of our extrinsic model curves. The power
law noise is controlled by the following parameters:

– β: the exponent of the spectrum power law; β = −2 corres-
ponds to a random walk, β = 0 is white noise).

– A: a scaling factor for the generated noise
– fMin: low cut-off of the frequency window. We set fMin to

1/500 day−1, as any lower frequencies are by construction
well represented by the extrinsic free knot spline fit.

– fMax: high cut-off of the frequency window. We take this as
the maximum (Nyquist) frequency of the 0.2 day sampling.
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Fig. 5. Synthetic curves (black) drawn from a well adjusted generative model (see text), and the corresponding observed data points for the lensed
quasar HE 0435-1223. For illustration purposes only 3 seasons of 2 quasar images are shown, arbitrarily offset in magnitude. The purpose of the
generative model is to simulate curves with known time delays that nevertheless mimic the observations at best. These synthetic curves are used
to evaluate the accuracy and precision of our curve shifting algorithms, using a Monte Carlo approach. Note that the strong degeneracies between
the extrinsic splines used in the model have no influence on the match between the synthetic and observed light curves; in the scope of our simple
generative model we do not need to know if, for instance, a light curve is amplified by microlensing in image A, or demagnified in B. Only relative
extrinsic variability is relevant.
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Fig. 6. Residuals of the observed (red, blue) and the synthetic (black) light curve of images A and D of HE 0435-1223, as obtained by applying the
free knot spline method. The power law noise used for the synthetic curve is adjusted so that these residuals show on average (i) the same standard
deviation and (ii) the same number of “runs” as those of the observations. As described in the text, the power law noise has been rescaled to locally
match the scatter amplitude of the observed curves, as can be clearly seen in this figure.

The free parameters β and A have a direct influence on the
accuracy and precision that time delay estimators will achieve
on the synthetic curves; these are the parameters that will be ad-
justed for each light curve. We observe that reasonable changes
in the parameters fMin and fMax (i.e., the sampling) have a negli-
gible effect compared to the influence of β and A.

Interpolating this power law noise at the observing epochs
leads to a contribution εi for each data point. The next step is
to locally adapt the amplitude of these εi to the observed scatter
in the light curves. This is empirically well motivated, as ob-
served light curves often contain subregions that clearly display
different smoothness. To perform this local rescaling for a given
curve, we use the residuals ri,obs obtained by running the free
knot spline technique on the observed light curves (red and blue
points of Fig. 6). We normalize the absolute values of these noisy
residuals to an average of one, and smooth the resulting signal
using a median filter with a window of 7 observing epochs:

si = median
(
|r j,obs|

〈|robs|〉
, j ∈ {i − 3, . . . , i + 3}

)
(9)

where 〈|robs|〉 denotes the average absolute residual taken over all
points of the curve. The rescaled εi that we add to our synthetic
light curves are given by:

εi,rescale = εi · si (10)

This local rescaling does not affect the average amplitude of the
synthetic noise, which is still controlled by A.

We proceed by running the spline fitting technique from
scratch on the set of synthetic curves, i.e., disregarding any infor-
mation from the generative model. This yields residuals, shown
as black points in Fig. 6, that can be equitably compared with
the residuals of the observations.

To fine-tune A and β, we quantitatively analyse these residu-
als. For this, we make use of two simple statistics: their standard
deviation σ, and their number of “runs” r. A run is a sequence of
adjacent either positive or negative residuals. The total number
of positive and negative runs is a statistic that can be used to test
the hypothesis that successive residuals are independent (Wall &
Jenkins 2003, chap. 5). For large samples of N truly indepen-
dent observations with N+ positive and N− negative residuals,

9
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Fig. 7. Top: histogram of residuals obtained by running the free knot spline fit technique on the observed light curves of HE 0435-1223 (green),
and the corresponding synthetic curves (gray). Bottom: distribution of the zr parameter computed from these residuals. Only one set of observed
light curves is available, while the distributions related to the synthetic curves are averaged over 1000 realizations. In this example, the parameters
of the generative model have already been adequately adjusted; the synthetic curves shown in Fig. 5 and 6 are drawn from this adjusted model.

the number of runs r is normally distributed with an expectation
value and a variance respectively given by

µr =
2N+N−

N
+ 1 and σ2

r =
(µr − 1)(µr − 2)

N − 1
. (11)

In practice we “normalise” a measured number of runs r to this
hypothesis of independent residuals:

zr =
r − µr

σr
. (12)

Applying the free knot spline technique on COSMOGRAIL
light curves, we typically observe a number of runs in the resid-
uals at least about 2σr lower than µr, i.e., zr ≈ −2, meaning that
the residuals are indeed correlated. Fig. 7 shows a comparision
in terms of residual distribution and zr between the residuals ob-
tained from synthetic curves (gray distributions, averaged over
1000 realizations) and from the observations of HE 0435-1223
(in green). One can now adjust the parameters A and β of the
power law noise so that the average standard deviation and num-
ber of runs of the residuals obtained from the synthetic curves
match the values measured on the observations. The procedure is
straightforward, as the residuals’ number of runs directly relates
to β, and their standard deviation to A, without much crosstalk.
Hence a good match such as shown in Fig. 7 is obtained after
just a few trial and error iterations, simultaneously modifying A
and β of each quasar image.

Finally, we attribute to all our synthetic light curves the pho-
tometric error bars of the observed data. We stress that nowhere
else in our generative model we made use of these photometric
error bars. Photometric error bars only describe the experimen-
tal measurement uncertainty, which is not necessarily the only
source of short scale “mismatch” between multiple light curves.
Furthermore, for all methods presented in this paper, the photo-
metric error bars essentially only act as relative weights between
the data points. As a consequence, our time delay measurements
– including their uncertainty estimates – are not directly influ-
enced by a potential systematic under- or over-estimation of the
photometric errors. We see this as a very desirable feature.

7.3. Quantifying variance and bias of our time delay
estimators

With the well adjusted generative model in hand, we proceed
by drawing typically 1000 synthetic curve sets, choosing model
time shifts in a range of several days around the point estimates
obtained from the observations. We run the curve shifting tech-
nique on these synthetic curves, using the same parameters as
for the estimation perfomed on the real observations. We always
start the techniques from random initial time shifts, to take into
account the potential intrinsic variance of the curve shifting tech-
nique described in Section 3. We then compute the resulting er-
rors between the estimated and the true time delays.

To analyse these errors, we bin the synthetic curve sets ac-
cording to their true time delays, individually for each quasar
image pair. This allows us to check if the uncertainties that we
will derive do not strongly depend on the true time delays. Fig.
10 illustrates the procedure in the case of a quad lens. In each
bin, we estimate the variance and the bias of our time delay esti-
mators, by computing the sample variance (σ2

ran) and the average
(σsys) of the delay measurement errors, respectively.

By construction, the main practical origin of the bias has to
be related to those properties of light curves that are kept con-
stant in the Monte Carlo simulations, such as the interplay be-
tween intrinsic and slow extrinsic variability, season gaps and
sampling. This bias quantifies the accuracy of a time delay es-
timation. Note that such a characterization of accuracy has of-
ten been neglected in past time delay measurements; it cannot
be obtained through resampling techniques that don’t involve a
generative model, such as jackknifing or bootstrapping.

On the other hand, the variance of our time delay estimators
mainly results from their sensitivity to the fast extrinsic vari-
ability and noise, which we randomise in our synthetic curves.
This variance describes the precision of the time delay measure-
ments. It is often possible to increase the precision of a curve
shifting technique, by somehow smoothing either the input light
curves or the cost function to be optimized. Using the apporach
described in this paper, we can verify if such an increase in pre-
cision is not obliterated by an even higher decrease in accuracy.

Lastly, we obtain a comprehensive 1-sigma error bar σtot for
the time delay measurement between each quasar image pair by
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Fig. 8. The “trial curves”, i.e., a set of artifical 4 season long lightcurves of a quad lens, used in place of real observations for the self-consistency
check performed in Section 8. These curves are drawn from a generative model that closely mimics COSMOGRAIL observations. Note the
prominent microlensing on large time scales, but also the presence of obviously extrinsic variability on scales of weeks (e.g., middle of third
season of curve C). The true time delays are ∆tAB = −5.0, ∆tAC = −20.0 and ∆tAD = −70.0 days. In this figure the curves are shifted according to
these delays.

combining the maximal bias and the maximal variance observed
in the bins of true time delays:

σtot =

√
max
∆tTrue

σ2
ran + max

∆tTrue

σ2
sys (13)

In situations where bias and variance do not significantly de-
pend on the true time delays, σ2

tot simply corresponds the mean
squared error (MSE) of our time delay estimators. Fig. 10 corre-
sponds about to such a situation.

As will become evident in the next section, it appears very
tempting to empirically correct each time delay estimation for
its bias, instead of simply combining the bias and the variance
into the total error budget. To avoid any circular argumentation,
we do not perform such a correction in this paper. The circu-
larity would arise as we have to assume time delays for the ob-
served data in order to build the generative model of the syn-
thetic curves. If these initial guesses for time delays are signif-
icantly biased, the generative model will contain erroneous in-
trinsic and extrinsic variability patterns, yet still mimic the ob-
served curves. Hence, running the curve shifting techniques on
the synthetic curves would yield measured delays close to their
true delays, and thus not fully reveal the initial errors.

We prefer to simply use the amplitude of the bias, gauged
through the above procedure, as a quality criterion of each
method.

8. Application to trial curves, discussion

In this section, we apply our three curve shifting techniques, as
well as the error bar computation procedure of Section 7, to a
set of artifical curves with known time delays. This allows us
to check the consistency of the error bar computation, and to
illustrate some general observations about the latter.

8.1. The trial curves

We use the scheme described in Section 7 to generate a single
set of 4-season long light curves, that mimic the data of one of
the quadruply imaged quasars monitored by the COSMOGRAIL
collaboration. In the following, we refer to these artificial curves

as the “trial curves”; they are shown in Fig. 8. The trial curves
include realistic intrinsic variability and sampling, as well as ob-
vious long- and short-scale microlensing. We choose time delays
of ∆tAB = −5.0, ∆tAC = −20.0 and ∆tAD = −70.0 days.

8.2. Analysis

From here on we process the trial curves as if they would be real
observations. We use our time delay estimators on them, disre-
garding any prior information about the true delays and intrinsic
or extrinsic variations. For the spline method, we choose an av-
erage knot step of 20 days for the intrinsic spline, and of 150
days for the four extrinsic splines. The dispersion-like method
is allowed to correct for extrinsic variability using independent
linear trends on each of the 16 seasons. All other parameters of
the curve shifting techniques are fixed to the default values pre-
sented earlier.

As described in Section 3, we systematically run the curve
shifting methods several hundreds of times on the same light
curves, starting from randomised initial time shifts, and we use
the mean of the resulting time delay distributions as our best es-
timation. This leads to the centroids of the time delay estimates,
presented in Fig. 9. The dashed vertical lines indicate the true
time delays of the trial curves analysed in this section.

Finally, we compute error bars for these time delay measure-
ments following the procedure of Section 7. In doing so, the
curves used for the Monte Carlo runs are drawn from a new gen-
erative model built from scratch from the trial curves. Note that
despite this precaution, the same kind of recipes were used to
build the trial curves and the synthetic curves used in the Monte
Carlo procedure. The analysis performed in this section should
therefore be seen as a in a self-consistency check of our time
delay uncertainty estimation procedure.

We present this error analysis in Fig. 10. For each bin of true
delay used in the Monte Carlo simulations, we show the mean
σsys and standard deviation σran of the measurement errors as
a shaded rod and as an associated error bar, respectively. From
this figure, we directly obtain the total uncertainty σtot following
Eq. 13, for each technique and pair of quasar images. These σtot
are used as error bars in Fig. 9.
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Fig. 9. Time delay estimations and associated uncertainties obtained by each of the three curve shifting techniques from the trial curves in Fig. 8.
For each delay measurement, the random error bar, σran and the bias, σsys, are given in parentheses. The drawn error bars depict the total error,
σtot, as obtained from equation 13. The dashed vertical lines show the true delays of the trial curves analysed in this section.
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Fig. 10. Error analysis for the trial curves shown in Fig. 8. For each curve shifting technique, the estimates of the time delay uncertainties are
obtained by analyzing delay measurement errors on 1000 synthetic curves with known time delays. In each panel, the delay measurement errors
(vertical axis) are represented against the true input delays of these synthetic curves (horizontal axis). Instead of showing a scatter plot, the averaged
measurement error (i.e., the bias σsys) in each bin of the true delay is shown by the shaded rod, while the error bars represent the standard deviation
σran. For increased clarity, the rods are drawn three times narrower than the actual bin width. To give an example, we can observe on this figure
that the dispersion-like technique systematically underestimates the delay ∆tAB by about 1.5 days, no matter the true delay used in the synthetic
curves. For this specific curve shifting technique and pair of curves, the bias is larger than the standard deviation of the measurement errors, hence
underlining the importance of evaluating the bias. Recall that the Monte Carlo procedure described in Section 7 allows us to perform the analysis
summarized in this figure for any set of observed light curves. The knowledge of the true delays, as available for the artificial curves examined in
this section, is not used at any step here.
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8.3. Discussion

Several important observations can be made from Figs. 9 & 10.
We recall that the analysis leading to these figures did not use
any knowledge of the true time delays between the trial curves
at any time, except for plotting the dashed vertical lines in Fig.
9.

1. We observe in Fig. 9 that, on average, the total 1σ error
bars computed by our Monte Carlo approach compare well
with the actual errors made by our point estimators on the
trial curves. In particular, this holds for the dispersion-like
technique, that suffers in this example from the largest bi-
ases. The self-consistency check of our uncertainty estima-
tion procedure is successful.

2. Fig. 10 clearly shows that, in the case of these trial curves,
our estimates of both the bias and the variance of each curve
shifting method does not depend much on the true time de-
lays of the Monte Carlo simulations. This optimal situation
is often not observed for shorter or lower quality curves, mo-
tivating our conservative decision to combine the maximum
bias and variance to get the total error bar following equation
13.

3. We can make an additional observation about the direction
and magnitude of the bias. Lets consider for example the
time delay ∆tBD. From Fig. 9 we see that the lowest estimate
of the delay is obtained by the regression difference tech-
nique (green), followed by the spline technique (blue) and
then by the dispersion-like technique (red). Independently,
Fig. 10 shows that on our Monte Carlo simulations, the re-
gression difference technique tends to underestimate this de-
lay, the spline technique tends to slightly overestimates it,
while the dispersion-like technique overestimates it on aver-
age by ∼ 1.5 days. Hence the “order” of the biases as esti-
mated from the Monte Carlo simulations is consistent with
the sequence of time delays measured on the trial curves. A
similar statement holds for nearly all pairs of quasar images,
which is remarkable. We conclude that our uncertainty esti-
mation procedure of Section 7 is at least in part successful
in separating the bias due to flaws of the methods from the
random error that genuinely originates from the data. Note
that this aspect can be analysed for real data, as it does not
involve the knowledge of the true time delays between the
trial curves.

8.4. Investigating error correlations between pairs of quasar
images

The error bars computed for a given delay with our a method
marginalize over the other delays of the same lens. However,
the delay measurements are not independent in their very na-
ture. For example, ∆tAC = ∆tAB + ∆tBC, hence any estimation
of ∆tAC correlates positively with both ∆tAB and ∆tBC. The for-
malism presented in this paper does not fully exploit this joint
information.

We can nevertheless use the measurements obtained from the
Monte Carlo simulations to explore correlations between delay
estimation errors of different pairs of quasar images. In Fig. 11,
we show this correlation for pairs of curves, marginalizing over
the true delays used in the Monte Carlo simulations.

Displacements of these distributions with respect to the zero-
error crosshairs indicate bias, while the width of the distributions
indicates the variance of the time delay estimators. As expected,
we observe positive and negative correlations, that is ellipsoids

AC

A
B

AD

A
B

AD

A
C

BC

A
B

BC

A
C

BC

A
D

BD

A
B

BD

A
C

BD

A
D

BD

B
C

CD

A
B

CD

A
C

CD

A
D

CD

B
C

CD

B
D

Dispersion-like technique
Regression difference technique

Free knot spline technique

Fig. 11. Correlations of delay measurement errors for the quad lens
analysed in Section 8. The distribution of delay measurement errors on
1000 synthetic curves is shown for each quasar image pair against each
other pair, marginalizing over the true delays of the synthetic curves.
The central crosshair of each panel indicates zero error and the ticks are
days, i.e., each axis shows errors from −5 to +5 days. Displacements of
the distributions with respect to the crosshairs indicates bias, while the
width of the distributions indicates variance of the time delay estima-
tors. For clarity, only single contours at half of the maximum density
are shown for two of the techniques. The measurement errors shown in
this figure are exactly the same as used in Fig. 10.

with oblique orientations, for pairs of delays that involve a com-
mon quasar image. Very importantly, at least for the specific set
of light curves used in this work, we do not observe correlations
between the 3 “disjoint” pairs of delays AB/CD, AC/BD, and
AD/BC, located along the short diagonal of Fig. 11.

This analysis is to be made for the light curves of every spe-
cific quadruply imaged quasar, as the sensitivity of the curve
shifting algorithms certainly depends on the details of the fea-
tures in real quasar light curves. If the results are qualitatively
similar to those shown in Fig. 11, we deem as appropriate to
present our time delay measurements in the form of indepen-
dent estimates, marginalizing over all correlations. Note that in
practice a joint probability distribution is only really interesting
for quadruply imaged quasars in which several delays are well
measurable.

8.5. Getting a single answer

It remains to be decided how to “combine” the delay measure-
ments obtained from our different techniques. We cannot com-
bine the measurements as if they were independent, for instance
by multiplying associated probability density functions. Indeed,
no matter how different the methods are, they all use the one
and only realization of the observations. In particular, it can well
happen that the time delay error bars, as derived by our approach
for each method, are significantly larger than the apparent spread
of the delay point estimates obtained from the different methods
(see e.g. panel BC of Fig. 9). The spread of different estimates
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is clearly not an indication of the degree of knowledge of a time
delay.

Hence, when analysing real observations, we propose to sim-
ply select, individually for each lens, the method that tends to
display the smallest total error bar. One can directly use its point
estimates and the associated 1σ error bars as favored answer.

Average delays between competitive methods could also be
used, but in any case the size of the uncertainties are not to be
divided by the square root of the number of methods contributing
to these averages.

9. Conclusions

In this paper, we describe 3 independent “curve shifting tech-
niques” to measure time delays between resolved light curves
of gravitationally lensed quasars. All these methods address the
presence of variable microlensing in the light curves and can be
applied to lens systems with any number of images.

1. The free knot spline technique simultaneously fits one
common intrinsic spline, and independent smoother extrin-
sic splines to the light curves. The curves are shifted in time
so to optimize this fit.

2. The regression difference technique shifts regressions of
the curves so to minimize the variability of the differences
between them. It is nearly parameter free, and does not re-
quire an explicit model for the microlensing variability.

3. The dispersion-like technique shifts the curves so to min-
imize a measure of the dispersion between the overlapping
data points. This method has no explicit model for the com-
mon intrinsic variability of the quasar, but it involves poly-
nomial models for the extrinsic variability. It has previously
been applied in Courbin et al. (2011).

A common point of the methods is that they yield point estimates
(i.e., single values) for the time delays in a self-consistent way
by sharing the formalism of time shifts described in Section 3.

In addition, we present a Monte Carlo approach to estimate
a comprehensive error bar for each time delay measurement.
This procedure is based on synthetic curves that try to mimic
as much information about the intrinsic and extrinsic variabil-
ity as the observations unmistakenly reveal. Provided that we
accept the generative model of the synthetic curves, the curve
shifting techniques themselves are reduced to “recipes”. Given
a set of light curves, we can select methods based solely upon
their empirical performance. This effectively shifts the require-
ment of formal justification from the curve shifting techniques
to the synthetic curves on which these techniques are evaluated.
As a consequence, the recipes can even be fine tuned for each
data set.

Finally, we have verified the self-consistency of our time
delay uncertainty estimation using a trial set of artificial light
curves. Importantly, the availability of 3 different curve shifting
techniques allows to perform consistency checks of our bias de-
termination when analysing real observations, i.e., data without
known time delays. In other words, we acknowledge that any
curve shifting technique may display residual biases, due for ex-
ample to particular patterns of slow microlensing variability, but
we provide a mean to credibly quantify this bias, whatever be its
origin.

The methods described in this paper will be used as stan-
dard benchmark to obtain time delay estimations from the light
curves of the COSMOGRAIL monitoring program. We have im-
plemented the curve shifting techniques, the error bar estimation,

and the generation of all the figures of this paper in form of a
modular python toolbox. This package, called PyCS, as well
as a tutorial including the trial curves of Section 8 are available
from the COSMOGRAIL website2.
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3 COSMOGRAIL results

This chapter is structured as follows:

Section 3.1 rapidly presents a selection of COSMOGRAIL light curves that will be published,
together with time delay measurements, over the next months.

Tewes et al. (2012c) presents the time delays and 9-yr optical monitoring of the quadruply
lensed quasar RX J1131−1231. This paper also describes the monitoring and the pho-
tometry as outlined in Chapter 2 of this thesis.

Suyu et al. (2012a) presents the implications for cosmology of the time delay measurements
of RX J1131−1231, also in combination with WMAP7 and the lens B1608+656, from
state-of-the-art lens modeling.

Courbin et al. (2011) presents time delays, lens dynamics and baryonic fraction in the quad
lens HE 0435−1223. Both the photometry and the time delay measurements presented
in this paper were obtained in 2010 with preliminary versions of the techniques pre-
sented in this thesis. However, these results are robust against a reanalysis with the
finalized techniques.

Section 3.2 summarizes the results of the microlensing analysis of Q J0158−4325 by Morgan
et al. (2012).

3.1 Selected light curves

The next pages show a selection of COSMOGRAIL R-band light curves of gravitationally lensed
quasars, mostly from the southern hemisphere. Some of these light curves are still prelimi-
nary, but they have all been homogeneously obtained using our photometric pipeline. Once
published, they will naturally be available in machine-readable form form the COSMOGRAIL
website.

COSMOGRAIL currently monitors about 20 quasar lenses, either “doubles” (2 quasar images)
or “quads” (4 quasar images). While doubles have longer time delays (see, e.g., Saha 2004),
which is good for delay measurements with low fractional uncertainty, two quasar images
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Chapter 3. COSMOGRAIL results

yield less constraints on a lens mass model than four. As a consequence, the lens model is
highly degenerate, and the time-delay distance of doubles is harder to constrain. However, as
shown by Suyu (2012), the radial mass profile of a lens can be accurately constrained from
double images of the source galaxy with measurable arc thickness. Provided that deep and
sharp imaging – revealing these extended arcs – is available, the time-delay distance of these
lenses can also be recovered to a few percent. This is valuable also in future, as only about 15%
of the quasar lenses expected to be discovered in the next generation of surveys are quads
(Oguri & Marshall 2010).
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Figure 3.1: The light curves of RX J1131−1231 (zlens = 0.295, zQSO = 0.658). These are the same
data points as shown in Fig. 4 of Tewes et al. (2012c), but color-coded according to the spatial
resolution of the exposures. For this relatively large and bright lens, our photometric pipeline
is able to recover good measurements even from images beyond 2.′′0 of Full Width at Half
Maximum (FWHM) of the point spread function.
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Figure 3.2: The light curves of WFI 2033−4723 (zlens = 0.661, zQSO = 1.66), from the Euler
telescope. WFI 2033−4723 is a quadruply lensed quasar in “fold” configuration. The quasar
images A1 and A2 are separated by only 0.7′′ and should have very small time delays (Vuissoz
et al. 2008). Therefore, for the purpose of time delay measurements with respect to B and C,
their fluxes are shown here summed into one single light curve.
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Figure 3.3: The double HE 0047−1756 (zlens = 0.407, zQSO = 1.67), from the Euler telescope.
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Figure 3.4: The light curves of the double SDSS J0246−0825 (zlens = 0.723, zQSO = 1.68), from
the Euler telescope.
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Figure 3.5: The light curves of the double SDSS J1226−0006 (zlens = 0.517, zQSO = 1.125), from
the Euler telescope. The B curve is shifted by a plausible time delay. Note the sharp intrinsic
variability feature in the 2009 season.
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Figure 3.6: The light curves of the double HE 2149−274 (zlens = 0.603, zQSO = 2.03), from Euler.
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Figure 3.7: The light curves of the nothern double SDSS J1206+4332 (zlens ≈ 0.75, zQSO = 1.79).
E. Eulaers, M. Tewes et al. (2012, in prep).
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Figure 3.8: The light curves of the northern double SDSS J1001+5027 (zQSO = 1.839). The curve
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ABSTRACT

We present the results from 9 years of optically monitoring the gravitationally lensed zQSO = 0.658 quasar RX J1131−1231. The R
band light curves of the 4 individual images of the quasar are obtained using deconvolution photometry, for a total of 707 epochs.
Several sharp quasar variability features strongly constrain the time delays between the quasar images. Using three different numerical
techniques, we measure these delays for all possible pairs of curves, while always processing the 4 curves simultaneously. For all three
methods, the delays between the 3 close images A, B and C are compatible with being 0, while we measure the delay of image D
to be 91 days, with a fractional uncertainty of 1.5% (1σ), including systematic errors. Our analysis of random and systematic errors
accounts in a realistic way for the observed quasar variability, fluctuating microlensing magnification over a broad range of temporal
scales, noise properties, and seasonal gaps. Finally, we find that our time delay measurement methods yield compatible results when
applied to subsets of the data.

Key words. Gravitational lensing: strong – cosmological parameters

1. Introduction

Using the time delays between strong lensing images to measure
cosmological distances (Refsdal 1964) has a number of advan-
tages: there is no need for any primary or secondary calibra-
tor, and there are no effects from the intergalactic or interstel-
lar medium. The method, originally proposed for gravitationally
lensed supernovae, has so far exclusively been applied to quasars
lensed in most cases by individual massive galaxies. Exceptions
are SDSS J1004+4112 and J1029+2623, two quasars lensed by
galaxy clusters, with long time delays (Fohlmeister et al. 2008,
2012). The quasar lens time delay method is now recognized as
a tool that complements other cosmological probes, in particular
to constrain H0 as well as the dark energy equation of state pa-
rameter, w (e.g., Suyu et al. 2012b; Linder 2011; Moustakas et al.

? Based on observations made with the 1.2-m Swiss Euler telescope
(La Silla, Chile), the 1.3-m SMARTS telescope (Las Campanas, Chile),
and the 1.2-m Mercator Telescope. Mercator is operated on the island
of La Palma by the Flemish Community, at the Spanish Observatorio
del Roque de los Muchachos of the Instituto de Astrofı́sica de Canarias.
?? Light curves will be available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-
bin/qcat?J/A+A/???, and on http://www.cosmograil.org.

2009). In spite of its advantages, the method has long faced two
severe limitations to its effectiveness in constraining cosmology.

First, time delays between the gravitationally lensed images
of a quasar are hard to measure. The first time delay measure-
ments were quite controversial (Vanderriest et al. 1989; Press
et al. 1992; Schild & Thomson 1997; Kundic et al. 1997).
Understandably, early light curves tended to be short and sparse,
often too short to clearly demonstrate that microlensing vari-
ability was not interfering with their analysis. Microlensing is
seen as an uncorrelated extrinsic variability in the quasar images,
which results from the time-variable magnification created by
stars in the lensing galaxy (e.g., Chang & Refsdal 1979; Schmidt
& Wambsganss 2010). In the best cases, light curves spanned
a few years (see, e.g., Wyrzykowski et al. 2003; Hjorth et al.
2002; Burud et al. 2002a,b). One consequence is that the numer-
ical methods used to measure time delays from these light curves
were exceedingly “optimistic” in their assumptions about extrin-
sic variability. Later measurements with better data frequently
yielded delays inconsistent with the error estimates of the earlier
measurements.

Second, given measured time delays, and lens and quasar
image astrometry, there is a famed degeneracy between the time
delay distance, which is a scale parameter inversely proportional
to H0, and the spatial distribution of mass responsible for the
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strong lensing phenomenon. The delays constrain only a com-
bination of this time delay distance and the surface density of
the lens near the images (Kochanek 2002). This can be over-
come given independent constraints on the structure of the lens.
Suyu et al. (2009, 2010) convincingly show that it is possi-
ble to control the effects of model degeneracies in the case of
B1608+656, a quadruply imaged quasar with accurate radio time
delays (Fassnacht et al. 2002). To do this, the authors combine
(1) detailed HST images of the lensed quasar host galaxy, (2) a
velocity-dispersion measurement of the lens galaxy, and (3) in-
formation about the contribution of intervening galaxies along
the line of sight, from galaxy number counts calibrated with nu-
merical simulations.

In parallel to the advances in lens modeling, the observa-
tional situation has drastically evolved as well. Two observa-
tional groups, COSMOGRAIL and Kochanek et al. (2006), have
been intensely monitoring ≈ 20 lenses for roughly 10 years. In
2010, our 2 groups decided to merge their observational efforts,
with the COSMOGRAIL group focusing on the analysis of time
delays and the Kochanek et al. group focusing on the analysis
of microlensing. While preliminary results have been published
both before and after this merger (Kochanek et al. 2006; Vuissoz
et al. 2007, 2008; Morgan et al. 2008a,b), exquisite data span-
ning almost a decade of continuous observation are now being
released, such as for the quadruply imaged quasar HE 0435-1223
(Courbin et al. 2011; Blackburne et al. 2011).

In this paper, we present 9 years of optical monitoring of the
quadruply imaged quasar RX J1131−1231 (Sluse et al. 2003),
and measure its time delays with the techniques of Tewes et al.
(2012). RX J1131−1231 is one of the most spectacular lenses of
our sample. The redshift of the lensing galaxy is zlens = 0.295,
while the quasar is at zQSO = 0.658. This low quasar redshift
means (1) that the photometric variations are fast, numerous
and strong because it is a lower luminosity quasar (see, e.g.,
MacLeod et al. 2010), and (2) that the host galaxy of the lensed
quasar is seen as a full Einstein ring with many spatially re-
solved structures in HST images. Similarly, the lensing galaxy
is sufficiently bright to allow a precise measurement of its ve-
locity dispersion and possibly of its velocity dispersion profile.
These characteristics ease both the time delay measurement and
the lens modeling. The latter, with state-of-the-art inferences of
cosmological constraints based on our time delay measurements
of RX J1131−1231, are presented in Suyu et al. (2012a).

The COSMOGRAIL and SMARTS observations of
RX J1131−1231 and their reduction are described in Sections 2
& 3, while the light curves are presented in Section 4. In
Section 5, we apply three different curve shifting techniques
to the light curves and we infer our best measurements of the
delays along with realistic random and systematic error bars.
Our results are summarized in Section 6.

2. Observations

We have been monitoring the quadruply lensed quasar
RX J1131−1231 (J2000: 11h31m52s, −12◦31′59′′) since
December 2003 with 3 different telescopes in the R band (∼ 600
- 720 nm). Table 1 summarizes the observational strategy and
instrumental characteristics. The light curves presented in this
paper cover 9 observing seasons (2004 - 2012, see Fig. 4), with
707 monitoring epochs in total. The average sampling within the
seasons is 2.9 days, and the median sampling is 2.0 days. The
mean seasonal gap in the combined light curves is of 132 days,
with a standard deviation of 2 weeks.

1.0 1.5 2.0 2.5
FWHM [arcsec]

1.05 1.10 1.15 1.20 1.25 1.30

ε=a/b

Euler C2
Euler ECAM
SMARTS 1.3-m
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Fig. 1. Distributions of stellar FWHM and elongation ε of all images
contributing to the light curves, by telescope.

The majority of the measurements for this southern target
came from the Swiss 1.2-m Euler telescope and the SMARTS
1.3-m telescope, both located in Chile under equally good atmo-
spheric conditions. Fig. 1 shows the distributions of stellar Full
Width at Half Maximum (FWHM) and elongation ε of the each
observing epoch, as measured by SExtractor (Bertin & Arnouts
2010) using field stars. The SMARTS 1.3-m telescope is guided,
in contrast to Euler and Mercator, which are solely tracking. This
accounts in part for the broad elongation distribution of the Euler
and Mercator images.

The imaging instrument C2 of the Euler telescope was re-
placed in September 2010 by EulerCAM, a liquid nitrogen
cooled 4k × 4k e2v 231-84 CCD yielding a pixel scale of 0.′′215.
At the same time the focusing procedure has been improved.
Fig. 1 shows that after two years of observations, images from
EulerCAM tend to be statistically sharper than C2 images, and
more comparable to SMARTS 1.3-m data in terms of FWHM.
All images from the SMARTS 1.3-m telescope were obtained
through the optical channel of the ANDICAM1 camera (DePoy
et al. 2003). See Kochanek et al. (2006) for details about the
SMARTS data.

Fig. 2 shows the central part of a deep combination of Euler
monitoring images, totaling 2.5 days of exposure. In the best in-
dividual exposures the 4 quasar images are well resolved; images
A and B have the smallest separation of 1.′′2.

3. Image reduction

In this section we describe the reduction procedure leading to the
light curves of the multiple quasar images of RX J1131−1231.
This same procedure will homogeneously be applied to other
lenses monitored by COSMOGRAIL and SMARTS, hence we
also focus on general aspects in our description.

All exposures are corrected for bias/readout effects and flat
fielded using standard methods. This prereduction is done in-
dividually for each telescope and instrument. For Euler and
Mercator we have developed custom python pipelines that en-
able efficient human inspection and validation of each step.
Particular attention is given to a semi-automated selection and
combination of sky-flats, which is controlled through a simple
graphical interface highlighting the temporal evolution of instru-
mental contaminations such as dust. Using difference images we
check that all sources in the flatfield exposures are adequately
masked and that the contamination does not evolve significantly
within sets of flatfields that are stacked as master-flats. The pe-
riod over which we stack flatfields can be from single days to

1 http://www.astronomy.ohio-state.edu/ANDICAM/
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Table 1. Overview of our optical monitoring of RX J1131−1231

Telescope Location Instrument Pixel scale Field Exp. time Epochs Sampling
Euler 1.2 m ESO La Silla, Chile C2 0.344′′ 11′ × 11′ 5 × 360s 265 5.0 (4.0)
Euler 1.2 m ESO La Silla, Chile EulerCAM 0.215′′ 14′ × 14′ 5 × 360s 76 5.4 (4.1)
SMARTS 1.3 m CTIO, Chile ANDICAM 0.369′′ 6.1′ × 6.1′ 3 × 300s 288 6.1 (5.1)
Mercator 1.2 m La Palma, Canary Islands, Spain MEROPE 0.193′′ 6.5′ × 6.5′ 5 × 360s 78 8.9 (4.5)

Notes. The column “Exp. time” indicates the number of dithered exposures per epoch and their individual exposure times. One epoch corresponds
to one data point in each light curve. The temporal sampling of the observations is given as the average (median) number of days between
consecutive epochs, excluding the seasonal gaps.

Fig. 2. Part of the field of view of the Swiss 1.2-m Euler telescope around RX J1131−1231. The wide-field image is a combination of 600 exposures
of 360s each, corresponding to a total exposure time of 2.5 days. The inset shows a single 360s exposure of the EulerCAM instrument under good
conditions (FWHM∼1′′, ε = 0.1, no Moon). All images are taken in the R band. We mainly use the stars labeled 1 to 4 to build a PSF model for
each exposure. Stars 1 to 5 are used for the photometric calibration.

several weeks. Some exposures of the Mercator telescope are
prereduced using “superflats”, combinations of masked science
exposures obtained in a single night. We have developed vari-
ants of these pipelines adapted to the particularities of other
COSMOGRAIL telescopes.

From here on, all images are processed by a single deconvo-
lution photometry software package. The principle ideas for this
reduction procedure are the same as employed for previously
published COSMOGRAIL light curves (Vuissoz et al. 2007,
2008; Courbin et al. 2011). Over the years we have reworked the
steps, and implemented the procedure in the form of a python
pipeline linked to a relational database, containing one “row” per
exposure.

3.1. PSF construction

We first build a conservatively smooth sky model, obtained using
SExtractor, for each exposure. This sky model is not critical, as
the subsequent photometry procedure will fit for any residual sky
level around all sources of interest.

We then align the images, separately for each instrument,
and individually estimate the Point Spread Function (PSF) of
each exposure. This is done by fitting several field stars using a
common model, composed of (i) a simply parametrized profile
and (ii) a regularized fine pixel array. The details of this proce-
dure, which is part of a general purpose deconvolution package,
are described in Cantale et al. (in prep). For most of the expo-
sures of RX J1131−1231, we use the stars labeled 1 - 4 in Fig. 2
to build the PSF model. The pipeline allows us to easily explore
and compare different choices of PSF-stars. The final choice of
stars is empirically selected so as to yield the least scatter in the
final quasar light curves. In the case of RX J1131−1231 the sit-
uation is close to optimal, since (1) the stars 1 - 4 are bright
but still in the linear regime of the CCDs, (2) they surround the
lens at modest angular distances, and (3) all stellar companions
or background objects can be identified and masked, yielding
clean fitting residuals. Cosmic ray hits and CCD artifacts are au-
tomatically masked using a variant of the L.A. Cosmic algorithm
(van Dokkum 2001). We visually supervise the PSF construction
and manually adapt the selection of PSF-stars for problematic
frames. The construction of the PSF models is the predominant
technical issue affecting the final quality of the light curves.
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3.2. Photometric normalization of the exposures

We next compute a multiplicative normalization coefficient for
each exposure, based on photometry of field stars. These coeffi-
cients will constitute the reference for the differential photome-
try of the quasar images.

In a first step, this computation is done separately for each in-
strument. We measure the instrumental fluxes N?i j (in photons)
of star i in each exposure j, by fitting the PSF j of this exposure
to each star, leaving only the fluxes, astrometric shifts, and back-
ground levels of each star as free parameters. For each star and
exposure, we then compute an individual coefficient

c′i j =
med j(N?i j)

N?i j
, (1)

where med j denotes the median over all exposures of this instru-
ment. Then, for each exposure j, we obtain the normalization
coefficient through

c j = medi(c′i j). (2)

The advantages of this simple and fast method is that it does
not select a single exposure as the “reference” for all stars. For
each instrument, the distribution of these coefficients c j is highly
unimodal, as the exposure time is kept constant.

To select the normalization stars we first inspect the normal-
ized stellar light curves for any anomalies or variability on scales
of months or years, and, if required, we iteratively repeat the co-
efficient computation with a refined selection of stars. In terms of
the smoothness of the final quasar light curves, the best results
are generally obtained by computing these coefficients from a
few well exposed stars with a comparable and high signal-to-
noise ratio, as opposed to using larger numbers of noisier stars.
Furthermore, the ideal normalization stars should be of similar
color to the quasar. This minimizes potential differential effects
due to varying atmospheric conditions given the relatively broad
R band filters used for the monitoring.

In a second step, we rescale the coefficients of each instru-
ment so that a star whose color is closest to the quasar gets the
same normalized median flux across all instruments. Residual
adjustments to this normalization between instruments will be
performed later, using the quasar light curves in the regions
where the data from different telescopes overlap.

3.3. Photometry of the quasar images

We obtain deblended light curves of the quasar images by
MCS deconvolution photometry, following Magain et al. (1998).
This algorithm fits a single model consisting of (1) some num-
ber of point sources and (2) a fine pixel array (hereafter the
pixel channel) simultaneously to all exposures. In the case of
RX J1131−1231, 4 point sources depict the quasar images, while
the pixel channel represents both the lensing galaxy and the
Einstein ring. This model is scaled by the normalization coef-
ficients, and convolved by the specific PSFs, before being fit to
the corresponding exposures. By construction, the relative as-
trometry of the 4 point sources and the pixel channel are com-
mon to all exposures. Only the fluxes of the point sources, the
absolute astrometric shift, and a flat residual sky level around
the lens are free to vary between exposures. Iteratively, all these
parameters are optimized, together with the structure of the regu-
larized pixel channel, so as to minimize a single global χ2. This
algorithm has been successfully applied already in the discov-
ery paper of RX J1131−1231 (Sluse et al. 2003), as well as in

past COSMOGRAIL publications (e.g., Eigenbrod et al. 2007;
Vuissoz et al. 2008; Courbin et al. 2011; Sluse et al. 2012) or for
similar monitoring data (Burud et al. 2002a; Hjorth et al. 2002;
Jakobsson et al. 2005; Morgan et al. 2012). The light curves of
the quasar images are a direct output of this procedure.

Errors in the astrometry or the structure of the pixel channel
might degrade or bias the photometry of the quasar images. We
observe that the influence of the astrometry on the light curves
is small. Even for bright quasar images, alterations of the rel-
ative position of the point sources by as much as 0.′′05 do not
significantly modify the light curves. Larger errors tend first to
smoothly bias the magnitude measurements, before introducing
additional scatter. To obtain light curves for gravitational lenses
with image separations on the order of the resolution of the best
monitoring data, we find no difference between using the tight
astrometric constraints from HST images (Chantry et al. 2010)
or letting the deconvolution algorithm freely optimize the as-
trometry of the model.

We reach similar conclusions about the impact of the pixel
channel, and its mandatory regularization. Simple numerical ex-
periments show that to first order, the effect of different plausible
solutions is similar to very small additive shifts to the flux of the
light curves, with only marginally perceptible effects even for
faint quasar images. In practice we systematically constrain this
pixel channel as well as the point source astrometry using only a
subset of images with the best resolution.

3.4. Photometric error estimation

In this section we describe how we compute a rather formal “best
case” error estimate for the photometry of each quasar image in
each exposure. The normalized flux of a quasar image in a given
exposure can be written f? = N? · c, where N? is the measured
number of photons, and c is the normalization coefficient from
Equation 2. We assume that the random error on f? has two in-
dependent sources: (i) the shot noise σN?

of the quasar image
itself, and (ii) the noise σc of the normalization coefficient as
computed in Section 3.2.

We compute σN?
following the standard “CCD equation”

(see e.g. Howell 2006, chap. 4.4)

σN?
=

√
N? + npix · (S + R2) (3)

where S is the sky level, R is the CCD read noise (both in pho-
tons per pixel), and npix is the number of (equivalent) pixels of
the software aperture. The dark current is negligible in our im-
ages. MCS deconvolution of point sources corresponds to PSF
fitting, and following Heyer & Biretta (2004, section 6.5.1) we
use for npix the reciprocal of the PSF sharpness,

1
npix

=
∑
l,m

(PSFlm)2, (4)

where PSFlm is the fraction of light in the total PSF at pixel lm.
In this simple “best case” computation, we assume that the PSF
is perfectly known, and that the sky level is well determined by
the fitting procedure. We do not take into account the flux of the
lensing galaxy, which is generally negligible with respect to the
sky level. Furthermore we do not compute noise terms due to the
blending with other point sources.

As a sanity check, we have tested our deconvolution photom-
etry algorithm on simulated point source images created with
SkyMaker (Bertin 2009), for various realistic signal-to-noise ra-
tios, elongations, and seeing conditions. Using 2 or more well-
exposed stars to build the PSF, the statistical scatter obtained by
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our photometry is only marginally larger than the best-case shot
noise computed through the above procedure. Using similar syn-
thetic images, we have also verified that deconvolving two par-
tially blended sources of different fluxes does not significantly
bias their measured flux difference in any direction.

To estimate the random uncertainty of the normalization co-
efficient, we use the standard error of the mean (SEM) of the
individual coefficients obtained from the n normalization stars
in the exposure (see Equation 1)

σc =
s
√

n
where s2 =

1
n − 1

n∑
i=1

(c′i − c̄′)2. (5)

Finally we obtain the error estimated σ f? CCD on the normalized
flux through

σ2
f? CCD

f 2
?

=
σ2

N?

N2
?

+
σ2

c

c2 . (6)

Note that for our COSMOGRAIL and SMARTS monitoring
data, the shot noise term from the CCD equation dominates this
error budget. The contribution from σc is typically � 3% of
σ f? CCD. Such small calibration errors are particularly important
when measuring very short delays, as they would introduce pos-
itively correlated noise into the curves.

3.5. Combination of points per night

In each monitoring night, we observe the lenses m times in a row
(m = 3 or 5), over ≈ 30 minutes, yielding flux measurements
f?k, with k = 1, .. ,m for each quasar image. To reduce the CPU
cost and to reject outliers, we bin these measurements by epochs,
separately for each instrument and telescope, before measuring
the time delays. We attribute to each epoch the medians of the
photometric measurements f?k within that night, and the mean
of the Heliocentric Julian Dates (HJD).

This approach also allows us to obtain an empirical photo-
metric error estimate for each quasar image, using a measure of
the spread of the image’s f?k. For increased robustness against
outliers, we quantify this spread using the Median Absolute
Deviation from the median, or MAD (Hoaglin et al. 1983),

MAD( f?k) = med( | f?k −med( f?k) | ). (7)

To estimate the usual σ of an (assumed) Gaussian distribution,
the MAD is rescaled as

σ f? MAD = 1.4826 ·MAD( f?k). (8)

These procedures give us two different error estimates for each
epoch and for each quasar image: (1) the median of the errors es-
timated individually for each exposure med(σ f? CCD), and (2) the
more empirical σ f? MAD. We observe, as expected, that both er-
ror estimations are highly correlated, but also that the empirical
σ f? MAD is typically twice as big.

The uncertainty we finally assign to each epoch and quasar
image uses the larger of med(σ f?CCD ) and σ f? MAD. Indeed a real-
istic error estimate cannot be smaller than either of them. We di-
vide this estimate by the square root of the number of exposures
m of the epoch, so that the final error estimate for the median
photometric measurement is

σmed( f?) =
max
[
med(σ f? CCD), σ f? MAD

]
√

m
. (9)

161718192021
R [mag]

10-3

10-2

10-1

100

1
σ
 e

rr
o
r 

[m
a
g
]

Euler C2
Euler ECAM
SMARTS 1.3-m
Mercator

Fig. 3. Photometric 1σ error estimates of each observing epoch as a
function of approximative R band magnitude. These errors are esti-
mated following Equation 9.

Fig. 3 displays the distribution of the resulting error estimates as
a function of R band magnitude and instrument. The data points
from all 4 quasar images of RX J1131−1231 are shown, yielding
a broad spread in magnitudes.

3.6. Combination of telescopes

The lens galaxy and the lensed images of the quasar host galaxy
differ in color from the quasar itself. As a consequence, the dif-
ferent R filters and CCD response functions of the monitoring in-
struments might “see” these contaminating sources with slightly
different amplitudes even with a perfect calibration of the quasar
fluxes. This can result in small mismatches between the light
curves obtained using different combinations of telescopes and
instruments.

We correct our light curves for such small effects (. 10%
of the flux of faint quasar images) in this final step. We typically
select the instrument that yields the longest or the highest quality
curve as a reference. For each of the other instruments, we opti-
mize additive magnitude and flux shifts (i.e., multiplicative and
additive flux corrections) so to minimize a dispersion measure
between each instrument’s light curve and the reference light
curve. We compute this dispersion following the curve shifting
technique presented in Tewes et al. (2012), but evaluate it be-
tween the light curves of different instruments, instead of differ-
ent quasar images. Provided that the colors of the quasar images
are not differentially reddened by absorption in the lens galaxy,
we optimize a single common magnitude shift per instrument,
and individual flux shifts for each quasar image and instrument.
This is adequate for RX J1131−1231, as previously suggested
by Sluse et al. (2007) and Chartas et al. (2009).

4. The light curves of RX J1131−1231

All these steps were applied to the COSMOGRAIL and
SMARTS data for RX J1131−1231. Fig. 4 shows the final 9-
year long light curves of the 4 quasar images. The light curves
are dominated by intrinsic quasar variability, with some features
on scales as fast as a few weeks. It can be readily seen in the
2008 season for instance, that the delays between A, B and C
must be very small, while D is delayed by a bit less than 100
days. Intriguingly, looking only at the first season of A, B and C,
one might guess that A is significantly delayed with respect to
B and C. We attribute this discrepancy to microlensing variabil-
ity, which manifestly changes the magnitude difference between
the A and B images from the first to the second season. We dis-
cuss this “event” further in Section 5.3. Prominent microlensing
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Fig. 4. Optical monitoring of RX J1131−1231, as obtained from deconvolution photometry. From top to bottom are shown the R band light curves
for the quasar images A, B, C, D along with the 1σ photometric error bars. Colors encode the contributing instruments. Curves B and D have been
shifted by +0.3 magnitudes for display purposes. The light curves are available in tabular form from the CDS and the COSMOGRAIL website.

variability on large time scales is omnipresent, as the flux ratios
between the quasar images evolve by as much as a magnitude.
These microlensing effects in RX J1131−1231 have been ana-
lyzed in Morgan et al. (2010) and Dai et al. (2010).

Lastly, we observe that the photometric error estimates, ob-
tained from equation 9, match the observed scatter well in the
smooth sections of curves from the individual telescopes. They
are certainly not conservatively large, but we stress that the scale
of these error estimates has no direct influence on the uncertain-
ties that we will compute for the time delay measurements in the
next Section. Our results are robust against a deliberate increase
of these error estimates by up to a factor of 5.

5. Time delay estimation

In this section we infer the time delays of RX J1131−1231 from
our light curves of Fig. 4, closely following the curve shifting
and uncertainty evaluation procedures described in Tewes et al.
(2012). We summarize the principal ideas below. A major dif-

ficulty, and potential source of bias, for curve shifting methods
is the presence of “extrinsic” variability in the light curves, on
top of the “intrinsic” quasar variability common to all 4 images.
The main source of the extrinsic signal is variable microlens-
ing magnification due to the motions of the stars in the lens
galaxy. As shown by Mosquera & Kochanek (2011), microlens-
ing can affect light curves over a broad range of time scales. For
RX J1131−1231, Mosquera & Kochanek (2011) estimate a time
scale of ≈ 11 years for the crossing of a stellar Einstein radius,
and ≈ 3 months for the source radius to cross a caustic.

The curve shifting methods of Tewes et al. (2012) try to min-
imize the bias due to such extrinsic variability in different ways.
They all rely on iterative optimizations of time shifts of the 4
light curves, and yield self-consistent point estimates of the time
delays between all 6 image pairs :

1. The free knot spline technique simultaneously fits one
common intrinsic spline for the quasar variability, and in-
dependent, smoother extrinsic splines for the microlensing
to the light curves. The curves are shifted in time to optimize
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this fit. This method is similar to the polynomial method of
Kochanek et al. (2006).

2. The regression difference technique shifts continuous re-
gressions of the curves in time, to minimize the variability
of the differences between them. This novel method does not
involve an explicit model for the microlensing variability.

3. The dispersion-like technique, inspired by Pelt et al.
(1996), shifts the curves so to minimize a measure of the
dispersion between the overlapping data points. This method
has no explicit model for the common intrinsic variability of
the quasar, but it includes polynomial models for the extrin-
sic variability.

Using several independent algorithms allows us to cross-
check our estimates for technique-dependent biases. Indeed, as
important as the time delay point estimates themselves is the reli-
able estimation of their uncertainties. For this we follow a Monte
Carlo approach, by applying the curve shifting techniques to a
large number of synthetic light curves with known time delays.
These curves are drawn from a light curve model that mimics
both the observed intrinsic and extrinsic variability of the real
observations, randomizing only the unrecoverable short scale ex-
trinsic variability. This latter “correlated noise” locally adapts its
amplitude to the scatter of the observed data points. As a result,
the synthetic curves are virtually indistinguishable from the real
ones (see Figs. 5 and 6 of Tewes et al. 2012, for an illustration).

5.1. Application to RX J1131−1231

We begin by evaluating the robustness of the time shift optimiza-
tion of each method given the data. For this we repeatedly run
the delay point estimators on the observed light curves. Each
time, we start the optimizations from random initial conditions,
using time shifts uniformly drawn ±10 days around plausible so-
lutions. The resulting distributions of point estimates are shown
in Fig. 5, characterizing what we call the intrinsic variance of
the estimates.

These tests are essential to check the reliability of the non-
linear optimization algorithms for a given data set and model pa-
rameters. We stress that this procedure should not be interpreted
as importance sampling of any posteriors. Generally speaking,
overly flexible models dilute the time delay information and
yield higher intrinsic variances. For the free knot spline tech-
nique we have chosen an average knot step of 20 days for the
quasar variability spline, and 150 days for the extrinsic splines.
For the dispersion-like method we model the extrinsic variability
by independent linear trends on each season. If the light curves
sufficiently constrain the time delays, the free knot spline and re-
gression difference techniques can easily be adjusted to display
small intrinsic variance and roughly unimodal distributions, as
in Fig. 5. The dispersion-like technique is inherently more sen-
sitive to initial conditions, due to a much higher roughness of
the scalar objective function that it minimizes. As discussed in
Tewes et al. (2012), it is important to note that smoothing the
objective function does not necessarily lead to a more accurate
time delay estimation. For each technique, we use the mean val-
ues of the distributions in Fig. 5 as our best time delay estimates.
They correspond to the points in Fig. 6, which summarizes our
results for RX J1131−1231.

The remaining part of the analysis is solely about estimating
realistic error bars for these point estimates. For this we proceed
by blindly running the exact same curve shifting techniques on
1000 sets of fully synthetic light curves with true time delays
randomly chosen around the measured ones. Again, we start the
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Delay [day]
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96 93 90
Delay [day]
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96 93 90
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Regression difference technique

Free knot spline technique

Fig. 5. Analysis of the “intrinsic variance” of the time delay point esti-
mators, found by running the three curve shifting techniques 200 times
on the light curves shown in Fig. 4, starting the optimizations from ran-
dom initial time shifts. The widths of these distributions reflect the fail-
ure of the methods to converge to a single optimal solution given the
data. We stress that these distributions do not represent probability den-
sity functions the time delays, and that a small intrinsic variance does
not imply that a time delay estimation is precise or accurate, only that
the error surface is relatively smooth.

methods from random initial shifts. Statistics of the resulting
time delay measurement errors (i.e., measurement − truth), are
shown in Fig. 7 as a function of the true delays of the synthetic
curves. In this figure, the shaded rods show the mean measure-
ment error, which we call systematic error or bias, while the error
bars indicate the standard deviation of the measurement errors,
representing the random errors. The total errors for our delay
measurements, as shown as error bars in Fig. 6, are computed
by adding the maximum bias and the maximum random error
of each panel in quadrature. Note that we run the curve shift-
ing techniques only once on each random synthetic curve set,
so this error analysis takes into account the intrinsic variance.
This is rather conservative, given that we use the mean result
of several time shift optimizations as our best estimates for the
observed data. However, the additional contribution to the un-
certainty estimates is negligible for methods with low intrinsic
variance. Before discussing these results, we show in Fig. 8 the
same measurement errors as in Fig. 7, but plotted for each delay
against each other, in order to explore potential abnormal corre-
lations.

5.2. Discussion

In terms of simple lens model considerations, RX J1131−1231
is a “long axis cusp lens”, with the source is located inside a cusp
of the tangential caustic curve on the long axis of the potential
(Sluse et al. 2003). Images A and D are the saddle points of the
arrival time surface, while B and C are minima (Blandford &
Narayan 1986). Fig. 14 of Saha et al. (2006) gives an illustration
of this particular lens. Hence the delays ∆tAB and ∆tAC are pre-
dicted to be small but positive, while ∆tAD is negative and large;
the possible arrival time orders are BCAD or CBAD.

Our measured delays, as shown in Fig. 6, are consistent with
these predictions, although the delays between A, B and C are
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Fig. 6. Time delay measurements along with the 1σ errors for RX J1131−1231, obtained by the 3 techniques from the full 9-season long light
curves shown in Fig 4. The random and systematic error contributions are given in parentheses for each delay. The error bars represent the random
plus systematic errors summed in quadrature. A positive AB-delay ∆tAB means that image B leads image A. We consider the measurements from
the regression difference technique, which display the smallest bias and variance in our error analysis, as the delays that should be used to constrain
cosmology and/or lens models.
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Fig. 7. Results of the Monte Carlo analysis leading to the error estimates for our time delay measurements shown in Fig. 6. We obtain our
uncertainty estimates by applying the curve shifting techniques to 1000 synthetic light curve sets that closely mimic the observed data but have
known “true” time delays. The vertical axes show the delay measurement error, against the true delays used to generate the synthetic curves
(horizontal axes). Separately for each panel, the outcomes are binned according to the true time delays. The bin intervals are shown as light
vertical lines. Within each bin, the shaded rods and error bars show the systematic and random errors, respectively, of the delay measurements for
each technique.
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Fig. 8. Correlations of delay measurement errors for synthetic light
curves mimicking RX J1131−1231; the measurement errors are the
same as shown in Fig. 7, but this time marginalizing over the true de-
lays. Crosshairs indicate zero error, and ticks are in days, i.e., each axis
displays measurement errors from −4 to +4 days. For clarity, only sin-
gle contours at half of the maximum density are shown for two of the
techniques. We observe no correlations, i.e., oblique contours, for the
unrelated delay measurements along the short diagonal of this figure.

compatible with being zero given the 1σ errors. It is reassuring
to observe that the three methods yield consistent results for all
delays despite the very different methodologies, which we see as
a success of our error estimation procedure. Keep in mind how-
ever that the delay measurements are not independent, because
they all use the same single set of observed light curves.

Let us look in more detail at the measurement error analy-
sis shown in Fig. 7, which is based solely on synthetic curves.
Overall, we do not observe any strong dependence of a method’s
bias or random error on the true time delays used in the simula-
tions. For most image pairs and methods, the random errors are
more important than the almost negligible bias. Exceptions are
the two results from the dispersion-like technique, which is ob-
served to overpredict ∆tAB, and underpredict ∆tBC , by about one
day. Remarkably, this same technique also measured the high-
est (lowest) delay ∆tAB (∆tBC) for the observed curves (Fig. 6),
when compared to the other methods. We see this as a further in-
dication that the bias estimates are reliable. Finally, Fig. 8 shows
no sign of abnormal correlations between measurement errors of
quasar image pairs, whether they share a common quasar image
or not. By construction our time delay uncertainty estimates for
each image pair marginalize over all other pairs.

Which delay measurement method performs best on
RX J1131−1231 ? Given that the regression difference tech-
nique yields both the smallest biases and the smallest ran-
dom errors, we simply conclude that its measurements are
the most informative ones. We will use the delays from
the regression difference technique, expressed with respect to
quasar image B, to measure the time-delay distance towards
RX J1131−1231. Details and results of lens modeling, as ap-

plied to RX J1131−1231, are described in detail in Suyu et al.
(2012a).

5.3. Delay measurement on subsets of the light curves

Our long light curves, featuring several delay-constraining in-
trinsic variability patterns, suggest to independently measure
time delays from subsets of the observing seasons. This analy-
sis represents an invaluable check of the consistency of the time
delay estimation procedure of Tewes et al. (2012), and hence for
the results from the full light curves.

We analyze 3 subsets of the available data : (1) the first two
seasons, (2) the first 5 seasons, and (3) the remaining last 4
seasons. Case (1) is chosen for comparison with Morgan et al.
(2006). We perform the analyses from scratch, without using
any knowledge about the delay estimates from the full curves.
In particular, for each case, we build a new model for the syn-
thetic light curves, independently adjusted so that they best re-
semble the observations based on the statistical criteria presented
in Tewes et al. (2012, Section 7). We do not alter any parameters
of the curve-shifting techniques.

Fig. 9 presents the resulting delay measurements. The data
points and error bars depict the individual point estimates and
the corresponding 1σ total errors obtained by each technique for
the 3 cases. The shaded regions show the 1σ intervals from the
full 9 seasons taken from Fig. 6. We observe :

1. Using only the first 2 seasons, our three methods are system-
atically biased towards large values of ∆tAB and ∆tAC . Our
interpretation is that some microlensing variability in image
A conspiratorially imitates a time shift, particularly around
mid 2004. The estimates from the dispersion-like and spline
technique roughly reproduce the results obtained from the
same two seasons by Morgan et al. (2006, ∆tAB = 12.0±1.5,
∆tAB = 9.6± 1.9 and ∆tAD = −87± 8), but with significantly
wider, yet still too small, error bars. This demonstrates the
need of long monitoring programs to measure accurate time
delays and minimize the influence of unfortunately placed
microlensing events.

2. For these same two seasons, the regression difference
method yields far better estimates for these delays – includ-
ing adequately sized error bars that encompass the delays
estimated from the full light curves. Note that the regression
difference technique is the only one that does not involve an
explicit model for the microlensing.

3. For the other 2 divisions of the data, namely seasons 1-5 and
6-9, which are disjoint and hence independent, our meth-
ods give consistent results. As would be expected, both cases
show larger error bars than the combined analysis of all sea-
sons.

6. Conclusions

The first part of this paper describes the COSMOGRAIL data
reduction procedure, which will be used to reduce all the
data gathered by our monitoring campaign of gravitationally
lensed quasars. In the second part we apply this pipeline to our
COSMOGRAIL and SMARTS observations of the quad lens
RX J1131−1231, leading to an unprecedented set of 9 year long
light curves of high photometric quality. Several strong and fast
intrinsic quasar variability patterns constrain the time delays
between the multiple images. Microlensing-related “extrinsic”
variability is clearly present, as pointed out and analyzed in pre-
vious studies (Sluse et al. 2006, 2007; Morgan et al. 2010; Dai
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Fig. 9. Application of the curve shifting techniques to subsections of the full light curves. The square diamonds (top) show measurements using
only the 2 first seasons, the leftward triangles (middle) use the first 5 seasons, and the rightward triangles (bottom) use the last 4 seasons. All error
bars depict total errors, as in Fig. 6. The blue and green shaded regions correspond to the interval covered by the total error bars using the full 9
seasons, by the spline and regression difference techniques, respectively.

et al. 2010; Chartas et al. 2012). However, this distorting signal
does not prevent us from measuring accurate time delays, using
the three independent algorithms of Tewes et al. (2012).

The best time delay estimates of RX J1131−1231 are pro-
vided by the regression difference technique. It measures the 91-
day delays between D and the other quasar images to a frac-
tional 1σ uncertainty of 1.5%. This error estimate is obtained
by applying the techniques to synthetic curves with known time
delays, which contain extrinsic variability features similar to
the observed ones. We demonstrate the consistency of our er-
ror estimates by independently measuring time delays – includ-
ing error bars – from subsets of the observed light curves of
RX J1131−1231. This experiment also reveals that long multi-
year monitoring is essential to reliably measure time delays, de-
spite progress on the methods.

The results from this paper are used to constrain the time
delay distance towards RX J1131−1231, and deduce stringent
implications for cosmology in Suyu et al. (2012a). We note that
the uncertainty of this time delay distance – and hence of H0 – is
not dominated by the error on the time delays, given the achieved
precision of our measurements.
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ABSTRACT

Strong gravitational lenses with measured time delays between the multiple images and models of
the lens mass distribution allow a one-step determination of the time-delay distance, and thus a mea-
sure of cosmological parameters. We present a blind analysis of the gravitational lens RXJ1131−1231
incorporating (1) the newly measured time delays from COSMOGRAIL, the COSmological MOnitor-
ing of GRAvItational Lenses, (2) archival Hubble Space Telescope imaging of the lens system, (3) a new
velocity-dispersion measurement of the lens galaxy of 323±20 km s−1 based on Keck spectroscopy, and
(4) a characterization of the line-of-sight structures via observations of the lens’ environment and ray
tracing through the Millennium Simulation. Our blind analysis is designed to prevent experimenter
bias. The joint analysis of the data sets allows a time-delay distance measurement to 6% precision that
takes into account all known systematic uncertainties. In combination with the Wilkinson Microwave
Anisotropy Probe seven-year (WMAP7) data set in flat wCDM cosmology, our unblinded cosmological
constraints for RXJ1131−1231 are: H0 = 80.0+5.8

−5.7 km s−1 Mpc−1, Ωde = 0.79± 0.03, w = −1.25+0.17
−0.21.

We find the results to be statistically consistent with those from the analysis of the gravitational lens
B1608+656, permitting us to combine the inferences from these two lenses. The joint constraints from
the two lenses and WMAP7 are H0 = 75.2+4.4

−4.2 km s−1 Mpc−1, Ωde = 0.76+0.02
−0.03 and w = −1.14+0.17

−0.20 in

flat wCDM, and H0 = 73.1+2.4
−3.6 km s−1Mpc−1, ΩΛ = 0.75+0.01

−0.02 and Ωk = 0.003+0.005
−0.006 in open ΛCDM.

Time-delay lenses constrain especially tightly the Hubble constant H0 (5.7% and 4.0% respectively in
wCDM and open ΛCDM) and curvature of the universe. The overall information content is similar
to that of Baryon Acoustic Oscillation experiments. Thus, they complement well other cosmological
probes, and provide an independent check of unknown systematics. Our measurement of the Hubble
constant is completely independent of those based on the local distance ladder method, providing an
important consistency check of the standard cosmological model and of general relativity.
Subject headings: galaxies: individual (RXJ1131−1231) — gravitational lensing: strong — methods:

data analysis — distance scale

1. INTRODUCTION

In the past century precise astrophysical measurements
of the geometry and content of the universe (hereafter
cosmography) have led to some of the most remarkable
discoveries in all of physics. These include the expansion
and acceleration of the Universe, its large scale structure,
and the existence of non-baryonic dark matter (see re-
view by Freedman & Turner 2003). These observations
form the empirical foundations of the standard cosmo-
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logical model, which is based on general relativity and
the standard model of particle physics but requires addi-
tional non-standard features such as non-baryonic dark
matter and dark energy.
Even in the present era of so-called precision cosmogra-

phy, many profound questions about the Universe remain
unanswered. What is the nature of dark energy? What
are the properties of the dark matter particle? How many
families of relativistic particles are there? What are the
masses of the neutrinos? Is general relativity the correct
theory of gravity? Did the Universe undergo an infla-
tionary phase in its early stages?
From an empirical point of view, the way to address

these questions is to increase the accuracy and precision
of cosmographic experiments. For example, clues about
the nature of dark energy can be gathered by measur-
ing the expansion history of the Universe to very high
precision, and modeling the expansion as being due to
a dark energy component having an equation of state
parametrized by w that evolves with cosmic time (e.g.,
Frieman et al. 2008, and references therein). Likewise,
competing inflationary models can be tested by measur-
ing the curvature of the Universe to very high precision.
Given the high stakes involved, it is essential to develop
multiple independent methods as a way to control for
known systematic uncertainties, uncover new ones, and
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ultimately discover discrepancies that may reveal new
fundamental physics. For example, a proven inconsis-
tency between inferences at high redshift from the study
of the cosmic microwave background, with inferences at
lower redshift from galaxy redshift surveys would chal-
lenge the standard description of the evolution of the
Universe over this redshift interval, and possibly lead to
revisions of either our theory of gravity or of our assump-
tions about the nature of dark matter and dark energy.
In this paper we present new results from an obser-

vational program aimed at precision cosmography using
gravitational lens time delays. The idea of doing cos-
mography with time-delay lenses goes back fifty years
and it is a simple one (Refsdal 1964). When a source
is observed through a strong gravitational lens, multiple
images form at the extrema of the time-delay surface, ac-
cording to Fermat’s principle (e.g., Schneider et al. 1992;
Falco 2005; Schneider et al. 2006). If the source is vari-
able, the time delays between the images can be mea-
sured by careful monitoring of the image light curves
(see, e.g., Courbin 2003). With an accurate model of
the gravitational lens, the absolute time delays can be
used to convert angles on the sky into an absolute dis-
tance, the so-called time-delay distance, which can be
compared with predictions from the cosmological model
given the lens and source redshifts (e.g., Blandford &
Narayan 1992; Jackson 2007; Treu 2010, and references
therein). This distance is a combination of three an-
gular diameter distances, and so is primarily sensitive to
the Hubble constant, with some higher order dependence
on the other cosmological parameters (Coe & Moustakas
2009; Linder 2011). Gravitational time delays are a one-
step cosmological method to determine the Hubble con-
stant that is completely independent of the local cosmic
distance ladder (Freedman et al. 2001; Riess et al. 2011;
Freedman et al. 2012; Reid et al. 2012). Knowledge of
the Hubble constant is currently the key limiting fac-
tor in measuring parameters like the dark energy equa-
tion of state, curvature, or neutrino mass, in combination
with other probes like the cosmic microwave background
(Freedman & Madore 2010; Riess et al. 2011; Freedman
et al. 2012;Weinberg et al. 2012; Suyu et al. 2012). These
features make strong gravitational time delays a very at-
tractive probe of cosmology.
Like most high-precision measurements, however, a

good idea is only the starting point. A substantial
amount of effort and observational resources needs to be
invested to control the systematic errors. In the case of
gravitational time delays, this has required several ob-
servational and modeling breakthroughs. Accurate, long
duration, and well-sampled light curves are necessary to
obtain accurate time delays in the presence of microlens-
ing. Modern light curves have much higher photometric
precision, sampling and duration (Fassnacht et al. 2002;
Courbin et al. 2011) compared to the early pioneering
light curves (e.g., Lehar et al. 1992). High resolution
images of extended features in the source, and stellar
kinematics of the main deflector, provide hundreds to
thousands of data points to constrain the mass model of
the main deflector, thus reducing the degeneracy between
the distance and the gravitational potential of the lens
that affected previous models constrained only by the po-
sitions of the lensed quasars (e.g., Schechter et al. 1997).
Finally, cosmological numerical simulations can now be

used to characterize the distribution of mass along the
line of sight (LOS) (Hilbert et al. 2009), which was usu-
ally neglected in early studies that were not aiming for
precisions of a few percent. The advances in the use of
gravitational time delays as a cosmographic probe are
summarized in the analysis of the gravitational lens sys-
tem B1608+656 by Suyu et al. (2010). In that paper,
we demonstrated that, with sufficient ancillary data, a
single gravitational lens can yield a time-delay distance
measured to 5% precision, and the Hubble constant to
7% precision. In combination with the Wilkinson Mi-
crowave Anisotropy Probe 5-year (WMAP5) results, the
B1608+656 time-delay distance constrained w to 18%
precision and the curvature parameter to ±0.02 preci-
sion, comparable to contemporary Baryon Acoustic Os-
cillation experiments (Percival et al. 2007) and obser-
vations of the growth of massive galaxy clusters (on w
constraints; Mantz et al. 2010).
Building on these recent developments in the analysis,

and on the state-of-the-art monitoring campaigns car-
ried out by the COSMOGRAIL (COSmological MOni-
toring of GRAvItational Lenses; e.g., Vuissoz et al. 2008;
Courbin et al. 2011; Tewes et al. 2012b) and Kochanek
et al. (2006) teams, it is now possible to take gravita-
tional time delay lens cosmography to the next level and
achieve precision comparable to current measurements
of the Hubble constant, flatness, w and other cosmolog-
ical parameters (Riess et al. 2011; Freedman et al. 2012;
Komatsu et al. 2011). To this end we have recently initi-
ated a program to obtain data and model four additional
gravitational lens systems with the same quality as that
of B1608+656.
We present here the results for the first of these sys-

tems, RXJ1131−1231, based on new time delays mea-
sured by the COSMOGRAIL collaboration (Tewes et al.
2012b), new spectroscopic data from the Keck Tele-
scope, a new analysis of archival Hubble Space Telescope
(HST ) images, and a characterization of the LOS ef-
fects through numerical simulations, the observed galaxy
number counts in the field, and the modeled external
shear. We carry out a self-consistent modeling of all
the available data sets in a Bayesian framework, and in-
fer (1) a likelihood function for the time-delay distance
that can be combined with any other independent probe
of cosmology, and (2) in combination with our previ-
ous measurement of B1608+656 and the WMAP 7-year
(WMAP7) results, the posterior probability density func-
tion (PDF) for the Hubble constant, curvature density
parameter and dark energy equation-of-state parameter
w.
Three additional lens systems are scheduled to be ob-

served with HST in cycle 20 (GO 12889; PI Suyu) and
will be published in forthcoming papers. An integral part
of this program is the use of blind analysis, to uncover
unknown systematic errors and to avoid unconscious ex-
perimenter bias. Only when each system’s analysis has
been judged to be complete and final by its authors, are
the implications for cosmology revealed. These results
are then published without any further modification. In
this way, we can assess whether the results are mutually
consistent within the estimated errors or whether un-
known systematics are adding significantly to the total
error budget.
This paper is organized as follows. After a brief re-
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cap of the theory behind time-delay lens cosmography in
Section 2, we summarize our strategy in Section 3 and de-
scribe our observational data in Section 4. In Section 5,
we write out the probability theory used in the data
modeling and describe the procedure for carrying out the
blind analysis. The lensing and time-delay analysis are
presented in Section 6, and a description of our treatment
of the LOS mass structure in the RXJ1131−1231 field
is in Section 7. We present measurements of the time-
delay distance, and discuss the sources of uncertainties in
Section 8. We show our unblinded cosmological parame-
ter inferences in Section 9, which includes joint analysis
with our previous lens data set and with WMAP7. Fi-
nally, we conclude in Section 10. Throughout this paper,
each quoted parameter estimate is the median of the ap-
propriate one-dimensional marginalized posterior PDF,
with the quoted uncertainties showing, unless otherwise
stated, the 16th and 84th percentiles (that is, the bounds
of a 68% credible interval).

2. COSMOGRAPHY FROM GRAVITATIONAL LENS TIME
DELAYS

In this section, we give a brief overview of the use of
gravitational lens time delays to study cosmology. More
details on the subject can be found in, e.g., Schneider
et al. (2006), Jackson (2007), Treu (2010) and Suyu et al.
(2010). Readers familiar with time-delay lenses may wish
to proceed directly to Section 3.
In a gravitational lens system, the time it takes the

light from the source to reach us depends on both the
path of the light ray and also the gravitational potential
of the lens. The excess time delay of an image at angular
position θ = (θ1, θ2) with corresponding source position
β = (β1, β2) relative to the case of no lensing is

t(θ,β) =
D∆t

c

[

(θ − β)2

2
− ψ(θ)

]

, (1)

where D∆t is the so-called time-delay distance, c is the
speed of light, and ψ(θ) is the lens potential. The time-
delay distance is a combination of the angular diameter
distance to the lens (or deflector) (Dd) at redshift zd,
to the source (Ds), and between the lens and the source
(Dds):

D∆t ≡ (1 + zd)
DdDs

Dds
. (2)

The lens potential ψ(θ) is related to the dimensionless
surface mass density of the lens, κ(θ), via

∇2ψ(θ) = 2κ(θ), (3)

where

κ(θ) =
Σ(Ddθ)

Σcrit
, (4)

Σ(Ddθ) is the surface mass density of the lens (the pro-
jection of the three dimensional density ρ along the LOS),
Σcrit is the critical surface mass density defined by

Σcrit =
c2

4πG

Ds

DdDds
, (5)

and G is the gravitational constant.
For lens systems whose sources vary in time (as do ac-

tive galactic nuclei, AGNs), one can monitor the bright-
nesses of the lensed images over time and hence measure

the time delay, ∆tij , between the images at positions θi

and θj :

∆tij ≡ t(θi,β)− t(θj ,β)

=
D∆t

c

[

(θi − β)2

2
− ψ(θi)−

(θj − β)2

2
+ ψ(θj)

]

.(6)

By using the image configuration and morphology, one
can model the mass distribution of the lens to determine
the lens potential ψ(θ) and the unlensed source position
β. Lens systems with time delays can therefore be used
to measure D∆t via Equation (6), and constrain cosmo-
logical models via the distance-redshift test (e.g., Refsdal
1964, 1966; Fadely et al. 2010; Suyu et al. 2010). Having
dimensions of distance, D∆t is inversely proportional to
H0, and being a combination of three angular diameter
distances, it depends weakly on the other cosmological
parameters as well.
The radial slope of the lens mass distribution and the

time-delay distance both have direct influence on the ob-
servables: for a given time delay, a galaxy with a steep
radial profile leads to a lower D∆t than that of a galaxy
with a shallow profile (e.g., Witt et al. 2000; Wucknitz
2002; Kochanek 2002). Therefore, to measure D∆t, it is
necessary to determine the radial slope of the lens galaxy.
Several authors have shown that the spatially extended
sources (such as the host galaxy of the AGN in time-
delay lenses) can be used to measure the radial slope at
the image positions, where it matters (e.g., Dye & War-
ren 2005; Dye et al. 2008; Suyu et al. 2010; Vegetti et al.
2010; Suyu 2012).
In addition to the mass distribution associated with

the lens galaxy, structures along the LOS also affect the
observed time delays. The external masses and voids
cause additional focussing and defocussing of the light
rays respectively, and therefore affect the time delays and
D∆t inferences. We follow Keeton (2003), Suyu et al.
(2010) and many others and suppose that the effect of
the LOS structures can be characterized by a single pa-
rameter, the external convergence κext, with positive val-
ues associated with overdense LOS and negative values
with underdense LOS. Except for galaxies very nearby
to the strong lens system, the κext contribution of the
LOS structures to the lens is effectively constant across
the scale of the lens system.
Given the measured delays between the images of a

strong lens, a mass model that does not account for the
external convergence leads to an under/overprediction of
D∆t for over/underdense LOS. In particular, the true
D∆t is related to the modeled one by

D∆t =
Dmodel

∆t

1− κext
. (7)

Two practical approaches to overcome this degeneracy
are (1) to use the stellar kinematics of the lens galaxy
(e.g., Treu & Koopmans 2002; Koopmans & Treu 2003;
Treu & Koopmans 2004; Barnabè et al. 2009; Auger et al.
2010; Suyu et al. 2010; Sonnenfeld et al. 2012) to make
an independent estimate of the lens mass and (2) to
study the environment of the lens system (e.g., Keeton
& Zabludoff 2004; Fassnacht et al. 2006; Momcheva et al.
2006; Suyu et al. 2010; Wong et al. 2011; Fassnacht et al.
2011) in order to estimate κext directly. In Section 7, we
combine both approaches to infer κext.



4 Suyu et al.

3. ACCURATE AND PRECISE DISTANCE
MEASUREMENTS

We summarize our strategy for accurate and precise
cosmography with all known sources of systematic un-
certainty taken into account. We assemble the following
key ingredients for obtaining D∆t via Equation (6)

• observed time delays: dedicated and long-duration
monitoring, particularly from COSMOGRAIL,
yields delays with uncertainties of only a few per-
cent (Tewes et al. 2012a,b).

• lens mass model: deep and high-resolution imag-
ings of the lensed arcs, together with our flexible
modeling techniques that use as data the thousands
of surface brightness pixels of the lensed source, al-
low constraints of the potential difference between
the lensed images (in Equation (6)) at the few per-
cent level (e.g., Suyu et al. 2010).

• external convergence: the stellar velocity disper-
sion of the lens galaxy provides constraints on both
the lens mass distribution and external conver-
gence. We further calibrate observations of galaxy
counts in the fields of lenses (Fassnacht et al. 2011)
with ray tracing through numerical simulations of
large-scale structure (e.g., Hilbert et al. 2007) to
constrain directly and statistically κext at the ∼5%
level (Suyu et al. 2010).

With all these data sets for the time-delay lenses, we
can measure D∆t for each lens with ∼ 5 − 8% precision
(including all sources of known uncertainty). A com-
parison of a sample of lenses will allow us to test for
residual systematic effects, if they are present. With sys-
tematics under control, we can combine the individual
distance measurements to infer global properties of cos-
mology since the gravitational lenses are independent of
one another.

4. OBSERVATIONS OF RXJ1131−1231

The gravitational lens RXJ1131−1231 was discovered
by Sluse et al. (2003) during polarimetric imaging of a
sample of radio quasars. The spectroscopic redshifts of
the lens and the quasar source are zd = 0.295 and zs =
0.658, respectively. We present the archival HST images
in Section 4.1, the time delays from COSMOGRAIL in
Section 4.2, the lens velocity dispersion in Section 4.3
and information on the lens environment in Section 4.4.

4.1. Archival HST imaging

HSTAdvanced Camera for Surveys (ACS) images were
obtained for RXJ1131−1231 in two filters, F814W and
F555W (ID 9744; PI Kochanek). In each filter, five expo-
sures were taken with a total exposure time of 1980s. We
show in Figure 1 the F814W image of the lens system.
The background quasar source is lensed into four images
denoted by A, B, C, and D, and the spectacular features
surrounding the quasar images are the lensed images of
the quasar host that is a spiral galaxy (Claeskens et al.
2006). The primary lens galaxy is marked by G, and
the object marked by S is most likely a satellite of G
(Claeskens et al. 2006). Henceforth, we refer to S as the
satellite.

A

B

C

D

G

S

1’’

N

E
Fig. 1.— HST ACS F814W image of the gravitational lens

RXJ1131−1231. The lensed AGN images of the spiral source
galaxy are marked by A, B, C and D, and the star forming re-
gions of the spiral galaxy form the spectacular lensed structures.
The primary lens galaxy and the satellite lens galaxy are indicated
by G and S, respectively.

We reduce the images using MultiDrizzle10 with
charge transfer inefficiency taken into account (e.g., An-
derson & Bedin 2010; Massey et al. 2010). The images
are drizzled to a final pixel scale of 0.′′05 pix−1 and the
uncertainty on the flux in each pixel is estimated from
the science and the weight image by adding in quadra-
ture the Poisson noise from the source and the back-
ground noise due to the sky and detector readout. We
note that in some of the exposures the central regions of
the two brightest AGN images are slightly saturated and
are masked during the drizzling process.
To model the lens system using the spatially extended

Einstein ring of the host galaxy, we focus on the F814W
image since the contrast between the ring and the AGN
is more favorable in F814W. In particular, the bright
AGNs in F555W have diffraction spikes extending into
the Einstein ring that are difficult to model and are thus
prone to systematics effects. The detailed modeling of
the F814W image is in Section 6.

4.2. Time delays

We use the new time-delay measurements of
RXJ1131−1231 presented in Tewes et al. (2012b). The
COSMOGRAIL and Kochanek et al. teams have moni-
tored RXJ1131−1231 since December 2003 using several
optical 1–1.5m telescopes. Resolved light curves of the
four AGN images are extracted from these observations
by “deconvolution photometry”, following Magain et al.
(1998). These curves presently span 9 years with over
700 epochs, and display a typical sampling of 2–3 days
within the observation seasons. The time delays are mea-
sured through several new and independent techniques
(detailed in Tewes et al. 2012a), all specifically devel-

10 MultiDrizzle is a product of the Space Telescope Science
Institute, which is operated by AURA for NASA.
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oped to handle microlensing variability due to stars in
the lens galaxy. All these techniques yield consistent re-
sults, attributed to both the long light curves and the
comprehensive uncertainty estimation. For our analy-
sis we select the time-delay measurements from the re-
gression difference technique, which displays the smallest
systematic error when applied to synthetic curves mim-
icking the microlensing variability in RXJ1131−1231. In
particular we use the time delays relative to image B,
namely: ∆tAB = 0.7±1.4 days, ∆tCB = −0.4±2.0 days,
and ∆tDB = 91.4± 1.5 days, where the uncertainties are
conservative and direct sums of the estimated statistical
and systematic contributions from Tewes et al. (2012b).

4.3. Lens velocity dispersion

We observed RXJ1131−1231 with the Low-Resolution
Imaging Spectrometer (LRIS; Oke et al. 1995) on Keck 1
on 4–5 January 2011. The data were obtained from the
red side of the spectrograph using the 600/7500 grat-
ing with the D500 dichroic in place. A slit mask was
employed to obtain simultaneously spectra for galaxies
near the lens system. The night was clear with a nomi-
nal seeing of 0.′′7, and we use 4 exposures of 1200s for a
total exposure time of 4800s.
We follow Auger et al. (2008) to reduce each exposure

by performing a single resampling of the spectra onto a
constant wavelength grid. We use the same wavelength
grid for all exposures to avoid resampling the spectra
when combining them. An output pixel scale of 0.8 Å
pix−1 was used to match the dispersion of the 600/7500
grating. Individual spectra are extracted from an aper-
ture 0.′′81 wide (corresponding to 4 pixels on the LRIS red
side) centered on the lens galaxy. The size of the aperture
was chosen to avoid contamination from the spectrum of
the lensed AGNs. We combine the extracted spectra
by clipping the extreme points at each wavelength and
taking the variance-weighted sum of the remaining data
points. We repeat the same extraction and coaddition
scheme for a sky aperture to determine the resolution of
the output co-added spectrum: R = 2300, corresponding
to σobs = 56 km s−1. The typical signal-to-noise ratio per
pixel of the final spectrum is ∼20.
The stellar velocity dispersion is determined in the

same manner as Suyu et al. (2010). Briefly, we use a
suite of stellar templates of K and G giants, augmented
with one A and one F star template, from the INDO-US
library (Valdes et al. 2004) to fit directly to the observed
spectrum, after convolving each template with a kernel to
bring them to the same spectral resolution as the data.
First and second velocity moments are proposed by a
Markov chain Monte Carlo (MCMC) simulation and the
templates are shifted and broadened to these moments.
We then fit the model templates to the data in a lin-
ear least squares sense, including a fifth order polyno-
mial to account for any emission from the background
source (e.g., Suyu et al. 2010). The observed and mod-
eled spectra are shown in Figure 2. Our estimate for the
central line-of-sight velocity dispersion from this infer-
ence is σ = 323± 20 km s−1, including systematics from
changing the polynomial order and choosing different fit-
ting regions.

4.4. Galaxy counts in the field
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Fig. 2.— Top panel: The LRIS spectrum of RXJ1131−1231
(black line) with a model generated from 9 INDO-US templates
and a 5th order continuum overplotted (red line, with green show-
ing the continuum). The gray shaded areas were not included in
the fit. Bottom panel: the residuals of the model fit. From the
spectrum and model, we measure a central velocity dispersion of
σ = 323 ± 20 km s−1, including systematic uncertainties.

Fassnacht et al. (2011) counted the number of galax-
ies with F814W magnitudes between 18.5 and 24.5 that
lie within 45′′ from the lens system. Compared to the
aperture counts in random lines of sight in pure-parallel
fields, RXJ1131−1231 has 1.4 times the average number
of galaxy counts. We use this relative galaxy count in
Section 7.2 to estimate statistically the external conver-
gence.

5. PROBABILITY THEORY FOR COMBINING MULTIPLE
DATA SETS

We now present the mathematical framework for the
inference of cosmological parameters from the combina-
tion of the data sets described in the previous section.
In order to test for the presence of any unknown sys-
tematic uncertainty, we describe a procedure for blind-
ing the results during the analysis phase in Section 5.2.
This procedure is designed to ensure against unconscious
experimenter bias towards “acceptable” results.

5.1. Joint analysis

The analysis performed here is similar to the one pre-
sented in Suyu et al. (2010), with a few improvements.
We briefly describe the procedure below.
The data sets are denoted by dACS for the ACS im-

age (packaged into a vector of 1602 surface brightness
values), ∆t for the delays between the images, σ for
the lens velocity dispersion, and denv for properties of
the lens environment such as the relative galaxy count
nr = ngal/〈ngal〉. We are interested in obtaining the pos-
terior PDF of the model parameters ξ given all available
data,

P (ξ|dACS,∆t, σ,denv) ∝ P (dACS,∆t, σ,denv|ξ)P (ξ)
(8)

where the proportionality follows from Bayes’ Theorem.
The first term is known as the likelihood, and the second
is the prior PDF. Since the data sets are independent,
the likelihood is separable,

P (dACS,∆t, σ,denv|ξ)=P (dACS|ξ)P (∆t|ξ)
P (σ|ξ)P (denv|ξ). (9)
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Some of the parameters influence all the predicted
data sets, while other parameters affect the fitting
of particular data sets only. Specifically, ξ =
{π, γ′, θE, γext,η, rani, κext}, where π are the cosmologi-
cal parameters (e.g., H0, w, Ωde), γ

′ is the radial profile

slope of the main lens galaxy (where ρ ∝ r−γ′

), θE is the
Einstein radius of the main lens (that characterizes the
normalization of the lens mass profile), γext is the exter-
nal shear strength at the lens, η denotes the remaining
lens model parameters for the ACS data,11 rani is the
anisotropy radius for the stellar orbits of the lens galaxy,
and κext is the external convergence. For the lensing and
time delays, we subsume the cosmological dependence
into the time-delay distance D∆t = D∆t(π). Keeping
only the direct dependencies in each of the likelihoods,
we obtain

P (ξ|dACS,∆t, σ,denv) ∝ P (dACS,∆t|D∆t, γ
′, θE, γext,

η, κext)P (σ|π, γ′, θE, rani, κext)P (denv|κext, γext)
P (π)P (γ′)P (θE)P (γext)P (η)P (rani)P (κext). (10)

For cosmography, we are interested in the cosmological
parameters π after marginalizing over all other parame-
ters

P (π|dACS,∆t, σ,denv) =
∫

dγ′ dθE dγext dη drani
dκext P (ξ|dACS,∆t, σ,denv) (11)

We describe the forms of the partially marginalized lens-
ing and time-delay likelihood in Section 6, the kinemat-
ics likelihood in Section 7.1 and the external convergence
likelihood in Section 7.2. For marginalizing the param-
eters that are common to the data sets, we importance
sample the priors following Lewis & Bridle (2002) and
Suyu et al. (2010) (a procedure sometimes referred to as
“simple Monte Carlo”).

5.2. Blind analysis

We blind the analysis to avoid experimenter bias, al-
lowing us to test for the presence of residual systemat-
ics in our analysis technique by comparing the final un-
blinded results from RXJ1131−1231 with the constraints
from the previous analysis of B1608+656. As described
by Conley et al. (2006), the blinding is not meant to
hide all information from the experimenter; rather, we
blind only the parameters that concern the cosmological
inference.
We define two analysis phases. During the initial

“blind” phase, we compute likelihoods and priors, and
sample the posterior PDF, as given above, taking care
to only make parameter-space plots using one plotting
code. This piece of software adds offsets to the cos-
mological parameters (D∆t and the components of π)
before displaying the PDFs, such that we always see the
marginalized distributions with centroids at exactly zero.
We can therefore still see, and measure, the precision of
the blinded parameters, and visualize the correlations be-
tween these parameters, but without being able to see if
we have “the right answer.” Both the parameter uncer-
tainties and degeneracies serve as useful checks during
this blind phase: the plotting routine can overlay the

11 excluding the source surface brightness parameters s that can
be marginalized analytically

constraints from different models to investigate sources
of statistical and systematic uncertainties.
During the blind phase we performed a number of tests

on the modeling to quantify the sources of uncertain-
ties, and to check the robustness of the results. These
are described in Sections 4–8. At the end of the tests,
the collaboration convened a telecon to unblind the re-
sults. The authors SHS, MWA, SH, PJM, MT, TT, CDF,
LVEK, DS, and FC discussed in detail the analysis and
the blinded results, over a summary website. After all
agreeing that the blind analysis was complete, and that
we would publish without modification the results once
unblinded, a script was run to update automatically the
same website with plots and tables containing cosmolog-
ical constraints no longer offset to zero. These are the
results presented in Sections 8 and 9.1.

6. LENS MODELING

In this section, we simultaneously model the ACS im-
ages and the time delays to measure the lens model pa-
rameters, particularly D∆t, γ

′, θE, and γext.

6.1. A comprehensive mass and light model

The ACS image in Figure 1 shows the light from the
source as lensed by the galaxies G and S. To predict the
surface brightness of the pixels on the image, we need
a model for the lens mass distribution (that deflects the
light of the source), the lens light distribution, the source
light distribution and the point spread function (PSF) of
the telescope.

6.1.1. Lens mass profiles

We use elliptically-symmetric distributions with
power-law profiles to model the dimensionless surface
mass density of the lens galaxies,

κpl(θ1, θ2) =
3− γ′

2

(

θE
√

qθ21 + θ22/q

)γ′
−1

, (12)

where γ′ is the radial power-law slope (with γ′ = 2 corre-
sponding to isothermal), θE is the Einstein radius, and q
is the axis ratio of the elliptical isodensity contours. Var-
ious studies have shown that the power-law profile pro-
vides accurate descriptions of lens galaxies (e.g., Gavazzi
et al. 2007; Humphrey & Buote 2010; Koopmans et al.
2009; Auger et al. 2010; Barnabè et al. 2011). In partic-
ular, Suyu et al. (2009) found that the grid-based lens
potential corrections from power-law models were only
∼ 2% for B1608+656 with interacting lens galaxies, thus
validating the use of the simple power-law models even
for complicated lenses. We note that the surface bright-
ness of the main deflector in RXJ1131−1231 shows no
signs of interaction (Section 6.1.2) and it is therefore
much simpler than the case of B1608+656, further jus-
tifying the use of a simple power-law model to describe
the mass distribution within the multiple images.
The Einstein radius in Equation (12) corresponds to

the geometric radius of the critical curve,12 and the mass

12 The critical curve of κpl in Equation (12) is symmetric about

θ1 and θ2, and the geometric radius is
√

θlongθshort, where θlong
(θshort) is the distance of the furthest (closest) point on the critical
curve from the origin.
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enclosed within the isodensity contour with the geometric
Einstein radius is

ME = πθ2ED
2
dΣcrit (13)

that depends only on θE, a robust quantity in lensing.
The deflection angle and lens potential of the power-

law profile are computed following Barkana (1998). For
each lens galaxy, the distribution is suitably translated
to the position of the lens galaxy and rotated by the
position angle φ of the lens galaxy (where φ is a free
parameter, measured counterclockwise from θ2). Since
the satellite galaxy is small in extent, we approximate
its mass distribution as a spherical isothermal mass dis-
tribution with γ′S = 2 and qS = 1 in Equation (12). The
(very small) impact of the satellite on cosmographic in-
ferences is discussed in Section 8.5.
Our coordinate system is defined such that θ1 and θ2

point to the west and north, respectively. The origin of
the coordinates is at the bottom-left corner of the ACS
image containing 160×160 pixels.
In addition to the lens galaxies, we include a constant

external shear of the following form in polar coordinates
θ and ϕ:

ψext(θ, ϕ) =
1

2
γextθ

2 cos 2(ϕ− φext), (14)

where γext is the shear strength and φext is the shear
angle. The shear position angle of φext = 0◦ corresponds
to a shearing along the θ1 direction whereas φext = 90◦

corresponds to a shearing in the θ2 direction.
We do not include the external convergence κext at this

stage, since this parameter is completely degenerate with
D∆t in the ACS and time-delay modeling. Rather, we
useDmodel

∆t ≡ (1−κext)D∆t for the lensing and time-delay
data, and information on κext will come from kinematics
and lens environment in Section 7 to allow us to infer
D∆t.

6.1.2. Lens light

For the light distribution of the lens galaxies, we use
elliptical Sérsic profiles,

I(θ1, θ2) = A exp



−k





(

√

θ21 + θ22/q
2
L

Reff

)1/nsersic

− 1







 ,

(15)
where A is the amplitude, k is a constant such that Reff

is the effective (half-light) radius, qL is the axis ratio, and
nsersic is the Sérsic index (Sérsic 1968). The distribution
is suitably rotated by positions angle φL and translated
to the galaxy positions (θ1,L, θ2,L). We find that a single
Sérsic profile for the primary lens galaxy leads to signif-
icant residuals, as was found by Claeskens et al. (2006).
Instead, we use two Sérsic profiles with common cen-
troids and position angles to describe the lens galaxy G.
For the small satellite galaxy that illuminates only a few
pixels, we use a circular Sérsic profile with nsersic = 1.
This simplifying assumption has no effect on the mass
modeling since the light of the satellite is central and
compact, and thus does not affect the light or mass of
the other components.

6.1.3. Source light

To describe the surface brightness distribution of the
lensed source, we follow Suyu (2012) and use a hybrid
model comprised of (1) point images for the lensed AGNs
on the image plane, and (2) a regular grid of source sur-
face brightness pixels for the spatially extended AGN
host galaxy. Modeling the AGN point images inde-
pendently accommodates variations in the fluxes arising
from microlensing, time delays and substructures. Each
AGN image therefore has three parameters: a position in
θ1 and θ2 and an amplitude. We collectively denote these
AGN parameters as ν. The extended source on a grid
is modeled following Suyu et al. (2006), with curvature
regularization.

6.1.4. PSF

A PSF is needed to model the light of the lens galax-
ies and the lensed source. We use stars in the field to
approximate the PSF, which has been shown to work
sufficiently well in modeling galaxy-scale strong lenses
(e.g., Marshall et al. 2007; Suyu et al. 2009; Suyu 2012).
In particular, we adopt the star that is located at 2.′4
northwest of the lens system as the model of the PSF.

6.1.5. Image pixel uncertainties

The comprehensive mass and light model described
above captures the large-scale features of the data very
well. However, small-scale features in the image might
cause misfits which, if not taken into account, may lead
to an underestimation of parameter uncertainties and
biased parameter estimates. Suyu (2012) found that
by boosting the pixel uncertainty of the image surface
brightness, the lens model parameters can be faithfully
recovered with realistic estimation of uncertainties.
Following this study, we introduce two terms to de-

scribe the variance of the intensity at pixel i of the ACS
image dACS,

σ2
pix,i = σ2

bkgd + fdACS,i, (16)

where σbkgd is the background uncertainty, f is a scal-
ing factor, and dACS,i is the image intensity. The second
term, fdACS,i, corresponds to a scaled version of Poisson
noise for the astrophysical sources. We measure σbkgd
from a blank region in the image without astrophysical
sources. We set the value of f such that the reduced
χ2 is ∼1 for the lensed image reconstruction (see, e.g.,
Suyu et al. 2006, for details on the computation of the
reduced χ2 that takes into account the regularization on
the source pixels). Equation (16) by design downweights
regions of high intensities where the residuals are typ-
ically most prominent. This allows the lens model to
fit to the overall structure of the data instead of reduc-
ing high residuals at a few locations at the expense of
poorer fits to the large-scale lensing features. The resid-
uals near the AGN image positions are particularly high
due to the high intensities and slight saturations in some
of the images. Therefore, we set the uncertainty on the
inner pixels of the AGN images to a very large number
that effectively leads to these pixels being discarded. We
discard only a small region in fitting the AGN light, and
increase the region to minimize AGN residuals when us-
ing the extended source features to constrain the lens
mass parameters.
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6.2. Likelihoods

The model-predicted image pixel surface brightness
can be written as a vector

dP

ACS
= Bg + BLs+

NAGN
∑

i=1

ai(ν), (17)

where B is a blurring operator that accounts for the PSF
convolution, g is a vector of image pixel intensities of the
Sérsic profiles for the lens galaxy light, L is the lensing
operator that maps source intensity to the image plane
based on the deflection angles computed from the param-
eters of the lens mass distributions (such as γ′, θE, γext),
s is a vector of source-plane pixel intensities, NAGN(= 4)
is the number of AGN images, and ai(ν) is the vector of
image pixel intensities for PSF-convolved image i of the
AGN.
The likelihood of the ACS data with Nd image pixels

is

P (dACS|γ′, θE, γext,η)

=

∫

dsP (dACS|γ′, θE, γext,η, s)P (s), (18)

where

P (dACS|γ′, θE, γext,η, s) =
1

Zd
exp

Nd
∑

i=1

[

−
(

dACS,i − dPACS,i

)2

2σ2
pix,i

]

·
NAGN
∏

i

1√
2πσi

exp

[

−|θi − θP
i |2

2σ2
i

]

. (19)

In the first term of this likelihood function, Zd is just the
normalization

Zd = (2π)Nd/2
Nd
∏

i=1

σpix,i, (20)

dACS,i is the surface brightness of pixel i,
dPACS,i(γ

′, θE, γext,η, s) is the corresponding predicted

value given by Equation (17) (recall that η are the
remaining lens model parameters to which the ACS data
are sensitive), and σ2

pix,i is the pixel uncertainty given

by Equation (16). The second term in the likelihood
accounts for the positions of the AGN images, modeled
as independent points (i.e. non-pixelated sources) in
the image. In this term, θi is the measured image
position (listed in Table 1), σi is the estimated posi-

tional uncertainty of 0.005′′, and θ
P
i (γ

′, θE, γext,η) is
the predicted image position given the lens parameters.
(Notice that this second term does not contribute to
the marginalization integral of Equation (18).) The
form of P (s) for the source intensity pixels and the
resulting analytic expression for the marginalization in
Equation (18) are detailed in Suyu et al. (2006).
The likelihood for the time delays is given by

P (∆t|Dmodel
∆t , γ′, θE, γext,η) =

∏

i

(

1√
2πσ∆t,i

exp

[

(∆ti −∆tPi )
2

2σ2
∆t,i

])

, (21)

TABLE 1
Lens model parameters

Marginalized
Description Parameter or optimized

constraints

Time-delay distance (Mpc) Dmodel
∆t

1883+89
−85

Lens mass distribution

Centroid of G in θ1 (arcsec) θ1,G 4.420+0.003
−0.002

Centroid of G in θ2 (arcsec) θ2,G 3.932+0.004
−0.003

Axis ratio of G qG 0.763+0.005
−0.008

Position angle of G (◦) φG 115.8+0.5
−0.5

Einstein radius of G (arcsec) θE 1.64+0.01
−0.02

Radial slope of G γ′ 1.95+0.05
−0.04

Centroid of S in θ1 (arcsec) θ1,S 4.323
Centroid of S in θ2 (arcsec) θ2,S 4.546
Einstein radius of S (arcsec) θE,S 0.20+0.01

−0.01

External shear strength γext 0.089+0.006
−0.006

External shear angle (◦) φext 92+1
−2

Lens light as Sérsic profiles

Centroid of G in θ1 (arcsec) θ1,GL 4.411+0.001
−0.001

Centroid of G in θ2 (arcsec) θ2,GL 4.011+0.001
+0.001

Position angle of G (◦) φGL 121.6+0.5
−0.5

Axis ratio of G1 qGL1 0.878+0.004
−0.003

Amplitude of G1 AGL1 0.091+0.001
−0.001

Effective radius G1 (arcsec) Reff,GL1 2.49+0.01
−0.01

Index of G1 nsersic,GL1 0.93+0.03
−0.03

Axis ratio of G2 qGL2 0.849+0.004
−0.004

Amplitude of G2 AGL2 0.89+0.03
−0.03

Effective radius of G2 (arcsec) Reff,GL2 0.362+0.009
−0.009

Index of G2 nsersic,GL2 1.59+0.03
−0.03

Centroid of S in θ1 (arcsec) θ1,SL 4.323
Centroid of S in θ2 (arcsec) θ2,SL 4.546
Axis ratio of S qSL ≡ 1
Amplitude of S ASL 34.11
Effective radius of S (arcsec) Reff,SL 0.01
Index of S nsersic,SL ≡ 1

Lensed AGN light

Position of image A in θ1 (arcsec) θ1,A 2.383
Position of image A in θ2 (arcsec) θ2,A 3.412
Amplitude of image A aA 1466
Position of image B in θ1 (arcsec) θ1,B 2.344
Position of image B in θ2 (arcsec) θ2,B 4.594
Amplitude of image B aB 1220
Position of image C in θ1 (arcsec) θ1,C 2.960
Position of image C in θ2 (arcsec) θ2,C 2.300
Amplitude of image C aC 502
Position of image D in θ1 (arcsec) θ1,D 5.494
Position of image D in θ2 (arcsec) θ2,D 4.288
Amplitude of image D aD 129

Notes. There are a total of 39 parameters that are optimized or
sampled. Parameters that are optimized are held fixed in the sam-
pling of the full parameter space and have no uncertainties tabu-
lated. Changes in these optimized parameters have little effect on
the key parameters for cosmology (such as Dmodel

∆t
). The tabulated

values for the sampled parameters are the marginalized constraints
with uncertainties given by the 16th and 84th percentiles (to indi-
cate the 68% credible interval). For the lens light, two Sérsic pro-
files with common centroid and position angle are used to describe
the primary lens galaxy G. They are denoted as G1 and G2 above.
The position angles are measured counterclockwise from positive
θ2 (north). The source surface brightness of the AGN host is mod-
eled on a grid of pixels; these pixel parameters (s) are analytically
marginalized and are thus not listed.
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where ∆ti is the measured time delay with uncer-
tainty σ∆t,i for image pair i=AB, CB, or DB, and
∆tPi (D

model
∆t , γ′, θE, γext,η) is the corresponding pre-

dicted time delay computed via Equation (6) given the
lens mass model parameters.
The joint likelihood for the ACS and time

delay data that appears in Equation (10),
P (dACS,∆t|D∆t, γ

′, θE, γext,η, κext), is just the
product of the likelihoods in Equations (18) and (21).
We assign uniform priors over reasonable ranges for all

the lens parameters: Dmodel
∆t , γ′, θE, γext and η.

6.3. MCMC sampling

We model the ACS image and time delays with
Glee13. The ACS image has 160×160 surface bright-
ness pixels as constraints. There are a total of 39 lens
model parameters that are summarized in Table 1. This
is the most comprehensive lens model of RXJ1131−1231
to date. The list of parameters excludes the source sur-
face brightness pixel parameters, s, which are analyti-
cally marginalized in computing the likelihood (see, e.g.,
Suyu & Halkola 2010, for details). With such a large pa-
rameter space, we sequentially sample individual parts of
the parameter space first to get good starting positions
near the peak of the PDF before sampling the full pa-
rameter space. The aim is to obtain a robust PDF for
the key lens parameters for cosmography: Dmodel

∆t , γ′, θE,
and γext.
For an initial model of the lens light, we create an an-

nular mask for the lensed arc and use the image pixels
outside the annular mask to optimize the lens Sérsic pro-
files. The parameters for the light of the satellite is fixed
to these optimized values for the remainder of the analy-
sis since the satellite light has negligible effect on Dmodel

∆t
and other lens parameters. Furthermore, we fix the cen-
troid of the satellite’s mass distribution to its observed
light centroid. We obtain an initial mass model for the
lenses using the image positions of the multiple knots in
the source that are identified following Brewer & Lewis
(2008). Specifically, we optimize for the parameters that
minimize the separation between the identified image po-
sitions and the predicted image positions from the mass
model. We then optimize the AGN light together with
the light of the extended source while keeping the lens
light and lens mass model fixed. The AGN light parame-
ters are then held fixed to these optimized values. Having
obtained initial values for all the lens model parameters
to describe the ACS data, we then proceed to sample the
lens parameters listed in Table 1 using a MCMC method.
In particular, we simultaneously vary the following pa-
rameters: all mass parameters of G, the Einstein radius
of S, external shear, the extended source intensity dis-
tribution, the lens light profile of G. Glee employs sev-
eral of the methods of Dunkley et al. (2005) for efficient
MCMC sampling and for assessing chain convergence.

6.4. Constraints on the lens model parameters

We explore various parameter values for the AGN light
and the satellite Sérsic light, try different PSF mod-
els, and consider different masks for the lensed arcs and

13 a lens modeling software developed by S. H. Suyu and
A. Halkola (Suyu & Halkola 2010) based on Suyu et al. (2006)
and Halkola et al. (2008)

the AGNs (which are fixed in the MCMC sampling).
These variations have negligible effect on the sampling
of the other lens parameters. The only attribute that
changes the PDF of the parameters significantly is the
number of source pixels, or equivalently, the source pixel
size. We try a series of source resolution from coarse
to fine, and the parameter constraints stabilize start-
ing at ∼50×50 source pixels, corresponding to source
pixel sizes of ∼0.′′05. Nonetheless, the parameter con-
straints for different source resolutions are shifted sig-
nificantly from one another. Different source pixeliza-
tions minimize the image residuals in different manners,
and predict different relative thickness of the arcs that
provides information on the lens profile slope γ′ (e.g.,
Suyu 2012). To quantify this systematic uncertainty, we
consider the following set of source resolutions: 50×50,
52×52, 54×54, 56×56, 58×58, 60×60, and 64×64. The
likelihood P (dACS,∆t|Dmodel

∆t , γ′, θE, γext), which is pro-
portional to the marginalized posterior of these parame-
ters P (Dmodel

∆t , γ′, θE, γext|dACS,∆t) since the priors are
uniform, is plotted in Figure 3 for each of these source
resolutions. The scatter in constraints among the vari-
ous source resolutions allows us to quantify the system-
atic uncertainty. In particular, we weight each choice of
the source resolution equally, and combine the Markov
chains together. In Table 1, we list the marginalized pa-
rameters from the combined samples.
We show the most probable image and source recon-

struction for the 64×64 resolution in Figure 4. Only the
image intensity pixels within the annular mask shown in
the top-middle panel are used to reconstruct the source
that is shown in the bottom-right panel. A comparison
of the top-left and bottom-left panels shows that our lens
model reproduces the global features of the ACS image.
The time delays are also reproduced by the model: for
the various source resolutions, the χ2 is ∼2 for the three
delays relative to image B. There are some small resid-
ual features in the bottom-middle panel of Figure 4, and
these cause the shifts in the parameter constraints seen
in Figure 3 for different source pixel sizes. The recon-
structed host galaxy of the AGN in the bottom-right
panel shows a compact central peak, which is proba-
bly the bulge of the spiral source galaxy, embedded in
a more diffuse patch of light (the disk) with knots/spiral
features.

6.5. Understanding the external shear

The inferred external shear is γext = 0.089 ± 0.006
(marginalizing over all other model parameters) from
modeling the ACS image and the time delays. The ex-
ternal shear may provide information on the amount of
external convergence, since they originate from the same
external structures. However, the high γext found in our
model could potentially be attributed to deviations of
the primary lens from its elliptical power-law descrip-
tion; if this were the case, some of γext would in fact
be internal shear. To gauge whether the modeled shear
is truly external, we also considered a model that in-
cludes a constant external convergence gradient. This
introduces two additional parameters: κ′ (gradient) and
φκ (the position angle of the gradient, where φκ = 0
corresponds to positive κ gradient along the positive θ2
direction, i.e., north). The ACS data allow us to con-
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Fig. 3.— Posterior of the key lens model parameters for the lensing and time-delay data. Each color represents a particular source
resolution that is the dominant source of systematic uncertainty in the modeling of the ACS data. The solid curves are a Gaussian fit to
the PDF by weighting each source resolution chain equally. The contours/shades mark the 68.3%, 95.4%, 99.7% credible regions.

strain κ′ = (5.1+0.4
−0.3) × 10−3 arcsec−1 and φκ = 87 ± 2◦.

The convergence gradient is aligned along the same di-
rection as the external shear within 5◦ and has a sensible
magnitude, suggesting that the shear is in fact truly ex-
ternal, and is likely due to mass structures to the east of
the lens.
To investigate the origin of the external shear, we

construct a wide-field R-band image from the COSMO-
GRAIL monitoring images that is shown in Figure 5.
The lens system is indicated by the box, and the galaxies
(stars) in the field are marked by solid (dashed) circles,
identified using SExtractor (Bertin & Arnouts 1996).
Overlaid on the image within the dashed box are the
X-ray contours from Chartas et al. (2009), showing the
presence of a galaxy cluster at z = 0.1 that is located
at 158′′ northeast of the lens (Morgan et al. 2006; Char-
tas et al. 2009). Using the measured X-ray luminosity in
Chartas et al. (2009), we estimate that the contribution
of the cluster to the external shear at the lens is only a
few percent. Nonetheless, large-scale structures associ-
ated with the cluster and the plethora of mass structures
to the east of the lens could generate additional shear.
The fact that our modeled external shear and conver-
gence gradients both point toward mass structures in
the east that are visible in Figure 5 is a further indi-
cation that the modeled shear is indeed external. We

will use this external shear in Section 7.2 to constrain
the external convergence.

6.6. Propagating the lens model forward

To facilitate the sampling and marginalization of the
posterior of the cosmological parameters in Equations
(10) and (11), we approximate the overall likelihood of
dACS and∆t from the multiple source resolutions in Fig-
ure 3 with a multivariate Gaussian distribution for the
interesting parameters γ′, θE, γext and D

model
∆t , marginal-

izing over the nuisance parameters η. This approxima-
tion allows the value of P (dACS,∆t|γ′, θE, γext, Dmodel

∆t )
to be computed at any position in this 4-dimensional pa-
rameter space. Note that in contrast to the other param-
eters, the Einstein radius of the primary, θE, is well deter-
mined, with minimal degeneracy with other parameters.
This robust quantity is used in the dynamics modeling of
the lens galaxy. The approximated Gaussian likelihood
provides an easy way to combine with the stellar kine-
matics and lens environment information for measuring
D∆t.

7. CONSTRAINING κext

In this section, we fold in additional information on the
lens galaxy stellar kinematics and density environment to
constrain the nuisance parameter κext.
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Fig. 4.— ACS image reconstruction of the most probable model with a source grid of 64×64 pixels. Top left: observed ACS F814W
image. Top middle: predicted lensed image of the background AGN host galaxy. Top right: predicted light of the lensed AGNs and the lens
galaxies. Bottom left: predicted image from all components, which is a sum of the top-middle and top-right panels. Bottom middle: image
residual, normalized by the estimated 1σ uncertainty of each pixel. Bottom right: the reconstructed source. Our lens model reproduces
the global features of the data.

7.1. Stellar kinematics

We follow Suyu et al. (2010) and model the velocity
dispersion of the stars in the primary lens galaxy G,
highlighting the main steps. The three-dimensional mass
density distribution of the lens galaxy can be expressed
as

ρG(r) = (κext − 1)Σcritθ
γ′

−1
E Dγ′

−1
d

Γ(γ
′

2 )

π1/2Γ(γ
′−3
2 )

1

rγ′
.

(22)
Note that the projected mass of the lens galaxy en-
closed within θE is (1 − κext)ME, while the projected
mass associated with the external convergence is κextME;
the sum of the two is the Einstein mass ME that was
given in Equation (13). We employ spherical Jean’s
modeling to infer the line-of-sight velocity dispersion,
σP(π, γ′, θE, rani, κext), from ρG by assuming the Hern-
quist profile (Hernquist 1990) for the stellar distribution
(e.g., Binney & Tremaine 1987; Suyu et al. 2010).14 An
anisotropy radius of rani = 0 corresponds to pure radial
stellar orbits, while rani → ∞ corresponds to isotropic
orbits with equal radial and tangential velocity disper-
sions. We note that σP is independent of H0, but is
dependent on the other cosmological parameters (e.g.,w
and Ωde) through Σcrit and the physical scale radius of

14 Suyu et al. (2010) found that Hernquist (1990) and Jaffe
(1983) stellar distribution functions led to nearly identical cosmo-
logical constraints.

the stellar distribution.
The likelihood for the velocity dispersion is

P (σ|π, γ′, θE, rani, κext)

=
1

√

2πσ2
σ

exp

[

− (σ − σP(π, γ′, θE, rani, κext))
2

2σ2
σ

]

,(23)

where σ = 323 km s−1 and σσ = 20 km s−1 from Sec-
tion 4.3. Recall that the priors on γ′ and θE were assigned
to be uniform in the lens modeling. We also impose a
uniform prior on rani in the range of [0.5, 5]Reff for the
kinematics modeling, where the effective radius based on
the two-component Sérsic profiles in Table 1 is 1.′′85 from
the photometry.15 The uncertainty in Reff has negligible
impact on the predicted velocity dispersion. The prior
PDF for π is discussed in Section 8.1, while the PDF for
κext is described in the next section.

7.2. Lens environment

We combine the relative galaxy counts from Sec-
tion 4.4, the measured external shear in Section 6.4, and
the Millennium Simulation (MS; Springel et al. 2005) to
obtain an estimate of P (κext|denv, γext,MS). This builds
on the approach presented in Suyu et al. (2010) that used
only the relative galaxy counts.

15 Before unblinding, we used an effective radius of 3.′′2 based
on a single Sérsic fit. The larger Reff changes the inference of D∆t

at the < 0.5% level.
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Fig. 5.— 11.5′×10.5′ R-band image obtained from stacking 60 hours of the best-quality images in the COSMOGRAIL monitoring. The
lens system is marked by the box near the center. Galaxies (stars) in the field are indicated by solid (dashed) circles. The radius of the
solid circle is proportional to the flux of the galaxy. X-ray map from Chartas et al. (2009) are overlaid on the image within the dashed
box. The concentrations of mass structures to the east of the lens are consistent with the modeled external shear and convergence gradient
directions.

Tracing rays through the Millennium Simulation (see
Hilbert et al. 2009, for details of the method), we create

64 simulated survey fields, each of solid angle 4×4 deg2.
In each field we map the convergence and shear to
the source redshift zs, and catalog the galaxy content,
which we derive from the galaxy model by Guo et al.
(2010). For each line of sight in each simulated field,
we record the convergence, shear, and relative galaxy
counts in a 45′′ aperture having I-band magnitudes be-
tween 18.5 and 24.5. These provide samples for the PDF
P (κext, γext,denv|MS). We assume that the constructed
PDF is applicable to strong-lens lines of sight, following
Suyu et al. (2010) who showed that the distribution of
κext for strong lens lines of sight are very similar to that
for all lines of sight.
Structures in front of the lens distort the time delays

and the images of the lens/source, while structures be-
hind the lens further affect the time delays and images of

the source. However, to model simultaneously the mass
distributions of the strong lens galaxies and all structures
along the line of sight is well beyond the current state
of the art. In practice, the modeling of the strong lens
galaxies is performed separately from the description of
line-of-sight structures, and we approximate the effects
of the lines-of-sight structures into the single correction
term κext, whose statistical properties we estimate from
the Millennium Simulation.
By selecting the lines of sight in the Millennium Sim-

ulation that match the properties of RXJ1131−1231, we
can obtain P (denv|κext, γext,MS)P (κext) and simultane-
ously marginalize over γext in Equation (10). We as-
sumed a uniform prior for γext in the lensing analysis,
such that P (γext) is a constant. The lensing likelihood is
the only other term that depends on γext, and from Sec-
tion 6.4, the lensing likelihood provides a tight constraint
on γext that is approximately Gaussian: 0.089 ± 0.006.
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Fig. 6.— The effective prior probability distribution for the ex-
ternal convergence κext from combining ray tracing through the
Millennium Simulation with the relative galaxy counts of 1.4 and
the modeled external shear of 0.089 ± 0.006. Dashed line: the
convergence distribution for all lines of sight; Dot-dashed line: the
convergence distribution for lines of sight with relative galaxy count
nr = 1.4 ± 0.05; Dotted line: the convergence distribution for all
lines of sight weighted by the likelihood for γext from the lens
model; Solid line: the γext-weighted convergence distribution for
lines of sight with nr = 1.4±0.05. The effective prior for κext used
in the final cosmological parameter inference is described by this,
most informative, distribution.

We can therefore simplify part of Equation (10) to
∫

dγextP (dACS,∆t|D∆t, γ
′, θE, γext, κext)

·P (denv|κext, γext,MS)

≃ P (dACS,∆t|D∆t, γ
′, θE, κext)

·P (denv|κext, γext = 0.089± 0.006,MS), (24)

where the above approximation, i.e., neglecting the co-
variance between γext and the other parameters in the
lensing likelihood and then marginalizing γext separately,
is conservative since we would gain in precision by includ-
ing the covariances with other parameters. Furthermore,
by Bayes’ rule,

P (denv|κext, γext = 0.089± 0.006,MS)P (κext)

∝ P (κext|denv, γext = 0.089± 0.006,MS), (25)

which is precisely the PDF of κext by selecting the sam-
ples in P (κext, γext,denv|MS) that satisfies denv with a
relative galaxy count within 1.4±0.05, and subsequently
weighting these samples by the Gaussian likelihood for
γext. This effective prior PDF for κext that is con-
structed from the weighted samples, P (κext|denv, γext =
0.089 ± 0.006,MS), is shown by the solid line in Figure
6.

8. TIME-DELAY DISTANCE OF RXJ1131−1231

We combine all the PDFs obtained in the previous sec-
tions to infer the time-delay distance D∆t.

8.1. Cosmological priors

As written above, we could infer the time delay dis-
tance D∆t directly, given a uniform prior. However, we
are primarily interested in the cosmological information
contained in such a distance measurement, so prefer to
infer these directly. The posterior probability distribu-
tion on D∆t can then be obtained by first calculating the
posterior PDF of the cosmological parameters π through
the marginalizations in Equations (11) and (10), and

then changing variables to D∆t. Such transformations
are of course straightforward when working with sam-
pled PDFs.
In Table 2, we consider the following five cosmological

world models, each with its own prior PDF P (π):

• UH0: Uniform prior PDF for H0 between 0 and
150 km s−1 Mpc−1 in a ΛCDM cosmology with
ΩΛ = 1−Ωm = 0.73. This is similar to the typical
priors that were assumed in most of the early lens-
ing studies, which sought to constrain H0 at fixed
cosmology.

• UwCDM: Uniform priors on the parameters
{H0,Ωde, w} in a flat wCDM cosmology, where w
is time-independent and Ωm = 1− Ωde.

• WMAP7wCDM: The prior PDF for the parameters
{H0,Ωde, w} is taken to be the posterior PDF from
the WMAP 7-year data set (Komatsu et al. 2011),
assuming a flat wCDM cosmology, where w is time-
independent and Ωm = 1− Ωde.

• WMAP7oΛCDM: The prior PDF for the parame-
ters {H0,ΩΛ,Ωk} is taken to be the posterior PDF
from the WMAP 7-year data set, assuming an open
(or rather, non-flat) cosmology, with dark energy
described by Λ and Ωk = 1− ΩΛ − Ωm as the cur-
vature parameter.

• WMAP7owCDM: The prior PDF for the parame-
ters {H0,Ωde, w,Ωk} is taken to be the posterior
PDF from the WMAP 7-year data set, assum-
ing an open wCDM cosmology, where w is time-
independent and Ωk = 1−Ωde−Ωm is the curvature
parameter.

8.2. Posterior sampling

We sample the posterior PDF by weighting samples
drawn from the prior PDF with the joint likelihood func-
tion evaluated at those points (Suyu et al. 2010). We
generate samples of the cosmological parameters π from
the priors listed in Table 2. We then join these to sam-
ples of κext drawn from P (κext) from Section 7.2 and
shown in Figure 6, and to uniformly distributed samples
of γ′ within [1.5, 2.5] and rani within [0.5, 5]Reff. Rather
than generating samples of θE from the uniform prior, we
obtain samples of θE directly from the Gaussian approx-
imation to the lensing and time-delay likelihood since
θE is quite independent of other model parameters (as
shown in Figure 3). This boosts sampling efficiency, and
the θE samples are only used to evaluate the kinematics
likelihood.
For each sample of {π, κext, γ′, rani, θE}, we obtain the

weight (or importance) as follows: (1) we determine D∆t

from π via Equation (2), (2) we calculate Dmodel
∆t via

Equation (7), (3) we evaluate P (dACS,∆t|Dmodel
∆t , γ′)

based on the Gaussian approximation shown in Figure 3
for Dmodel

∆t and γ′, (4) we compute P (σ|π, γ′, κext, θE,
rani) via Equation (23), and (5) we weight the sam-
ple by the product of P (dACS,∆t|Dmodel

∆t , γ′) and
P (σ|π, γ′, κext, θE, rani) from the previous two steps.
The projection of these weighted samples onto π or D∆t

effectively marginalizes over the other parameters.



14 Suyu et al.

TABLE 2
Priors on cosmological parameters

Prior Description

UH0 uniform H0 in [0, 150] km s−1 Mpc−1,
Ωm = 0.27, ΩΛ = 0.73, w = −1

UwCDM uniform H0 in [0, 150] km s−1 Mpc−1,
uniform Ωde = 1−Ωm in [0, 1],
uniform w in [−2.5, 0.5]

WMAP7wCDM WMAP7 for {H0, Ωde, w} with flatness
and time-independent w

WMAP7oΛCDM WMAP7 for {H0, ΩΛ, Ωm} with w = −1
in open ΛCDM

WMAP7owCDM WMAP7 for {H0, Ωde, w, Ωk} with time-
independent w and curvature Ωk

8.3. Blind analysis in action

As a brief illustration of our blind analysis approach,
we show in the left panel of Figure 7 the blinded plot of
the time-delay distance measurement. For all cosmolog-
ical parameters such as D∆t, D

model
∆t , H0, w, Ωm, etc.,

we always plotted their probability distribution with re-
spect to the median during the blind analysis. There-
fore, we could use the shape of the PDFs to check our
analysis without introducing experimenter bias by blind-
ing the absolute parameter values. When we marginal-
ized the parameters during the blind phase, our analysis
code also returned the constraints with respect to the
median. For example, the blinded time-delay distance
for the WMAP7wCDM cosmology would be 0+130

−120 Mpc.
We used this particular cosmology as our fiducial world
model during the blind analysis. In the remainder of the
paper, we show the unblinded results of RXJ1131−1231.
The comparison with the gravitational lens B1608+656
and other cosmological probes was performed after we
unblinded the analysis of RXJ1131−1231; otherwise, the
blind analysis would be spoiled by such a comparison
since the results of these previous studies were already
known.

8.4. Posterior PDF for D∆t

We show in the right-hand panel of Figure 7 the un-
blinded probability distribution of the time-delay dis-
tance for the first three cosmological models in Table 2.
The priors, shown in dotted lines, are broad and rather
uninformative. When including information from dACS,
∆t, σ, and κext, we obtain posterior PDFs of D∆t

for RXJ1131−1231 that are nearly independent of the
prior, demonstrating that time-delay lenses provide ro-
bust measurements of D∆t. We find that the data con-
strain the D∆t to RXJ1131−1231 with ∼6% precision.
We can compress these results by approximating the

posterior PDF for D∆t as a shifted log normal distribu-
tion:

P (D∆t|H0,Ωde, w,Ωm) ≃
1√

2π(x− λD)σD
exp

[

− (log(x− λD)− µD)
2

2σ2
D

]

, (26)

where x = D∆t/(1Mpc), λD = 1425.6, µD = 6.4993
and σD = 0.19377. This approximation accurately re-
produces the cosmological inference, in that H0 is recov-
ered within < 1% in terms of its median, 16th and 84th

percentile values for the WMAP7 cosmologies we have
considered. The robust constraint on D∆t serves as the
basis for cosmological inferences in Section 9.

8.5. Sources of uncertainty

Our D∆t measurement accounts for all known sources
of uncertainty that we have summarized in Table 3. The
dominant sources are the first three items. The precision
for the time delay is the 1σ uncertainty as a fraction of
the measured value for the longest delay, ∆tDB. For the
lens mass model and line-of-sight contributions, we de-
fine the precision as half the difference between the 16th

and 84th percentiles of the PDF for Dmodel
∆t from Sec-

tion 6.4 in fractions of its median value and for κext from
Section 7.2 in fractions of 1, respectively. The remaining
sources of uncertainty are collectively denoted by “other
sources”, and the two main contributors to this category
are the peculiar velocity of the lens and the impact of
the satellite.
Spectroscopic studies of the field of RXJ1131−1231

indicate that the lens is in a galaxy group with a ve-
locity dispersion of 429+119

−93 km s−1 (Wong et al. 2011).
RXJ1131−1231 is the brightest red sequence galaxy in
this group, and is thus likely to be near the center of mass
of the group halo with a small peculiar velocity relative
to the group (Zabludoff & Mulchaey 1998; Williams et al.
2006; George et al. 2012). However, the group could be
moving relative to the Hubble flow due to nearby large-
scale structures. The one-dimensional rms galaxy pe-
culiar velocity is typically . 300km s−1 (e.g., Mosquera
& Kochanek 2011; Peebles 1993). A peculiar velocity
of 300 km s−1 for RXJ1131−1231 would cause D∆t to
change by 0.8%.16 A similar peculiar velocity for the
lensed source has a much smaller impact on D∆t, chang-
ing it by only 0.2%. We note that the peculiar velocities
of lenses are stochastic, and this source of uncertainty
should average out in a sample of lenses.
We have explicitly included the satellite in our lens

mass model in Section 6. However, there is some de-
generacy in apportioning the mass between the satellite
and the primary lens galaxy since lensing is mostly sensi-
tive to the total mass enclosed within the lensing critical
curves (approximately traced by the arcs). The more
massive the satellite, the less massive the primary lens
galaxy. Owing to its central location and the degener-
acy with the mass of the main deflector, we expect the
impact of the satellite on the difference in gravitational
potential between the multiple images to be very small.
To assess the effect of the mass of the satellite on our

D∆t inference, we consider an extreme model where the
satellite has zero mass. In this case, we require a more
massive primary lens galaxy with higher θE to fit the
lensing features, as expected. The resulting Dmodel

∆t and
γ′ from this model are consistent with that of the orig-
inal model, but with larger parameter uncertainties due
to poorer fits without the satellite. Even if we use the
overestimated θE of the primary lens from this extreme
model for the kinematics, we find that the effect on the
inferred D∆t is at the < 1% level.
In Table 3, we list the total uncertainty of 6.7% based

on a simple Gaussian approximation where we add up the

16 The change in redshift due to peculiar velocities is described
in, e.g., Harrison (1974).
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Fig. 7.— Blinded (left) and unblinded (right) PDFs for D∆t, showing the RXJ1131−1231 posterior constraints on D∆t (solid) given
assorted priors for the cosmological parameters (dotted, labeled). See the text and Table 2 for a full description of the various priors.
RXJ1131−1231 provides tight constraints on D∆t, which translates into information about Ωm, Ωde, w and particularly H0.

TABLE 3
Error budget on time-delay distance of RXJ1131−1231

Description uncertainty

time delays 1.6%
lens mass model 4.6%
line-of-sight contribution 4.6%
other sources <1%

Total (Gaussian approximation) 6.7%
Total (full sampling) 6.0%

Notes. The other sources of uncertainty that contribute at the
<1% include the peculiar velocity of the lens and the impact of the
satellite. Details are in Section 8.5. The Gaussian approximation
simply adds the uncertainties in quadrature, providing a crude es-
timate for the total uncertainty based on the full sampling of the
non-Gaussian PDFs.

uncertainties of each contribution in quadrature. This is
close to the more accurate 6.0% based on proper sam-
pling that takes into account the non-Gaussian distribu-
tion (e.g., of κext) and the inclusion of the stellar ve-
locity dispersion. We note that the sampling does not
include explicitly the other sources that contribute at
the <1% level; however, they are practically insignif-
icant in the overall error budget. Most of the uncer-
tainty in D∆t comes from the lens mass model and the
line-of-sight contribution. To reduce the uncertainty on
RXJ1131−1231’s D∆t would require a better model of
the source intensity distribution that depends less sensi-
tively on the source pixel size (possibly via an adaptive
source pixelization scheme (e.g., Vegetti & Koopmans
2009)), and a better characterization of κext by using
more observational information from the field. Investiga-
tions are in progress to improve κext constraints (Greene
et al. in preparation, Collett et al. in preparation).

9. COSMOLOGICAL INFERENCE

We now present our inference on the parameters of the
expanding Universe and compare our results to other cos-

mographic probes. Specifically, our D∆t measurement
for RXJ1131−1231 provides information on cosmology
that is illustrated in Section 9.1. We compare the re-
sults to that of B1608+656 to check for consistency in
Section 9.2, before combining the two lenses together in
Section 9.3. We then compare the constraints from the
two time-delay lenses to a few other cosmological probes
in Section 9.4.

9.1. Constraints from RXJ1131−1231

We have seen that the RXJ1131−1231 D∆t measure-
ment is nearly independent of assumptions about the
background cosmology. While D∆t is primarily sensitive
to H0, information from D∆t must be shared with other
cosmological parameters via the combination of angular
diameter distances. Therefore, cosmological parameter
constraints will depend somewhat on our assumptions
for the background cosmology. In this section we con-
sider the first three cosmologies listed in Table 2: UH0,
UwCDM, and WMAP7wCDM.
With all other parameters fixed in the UH0 cosmol-

ogy except for H0, all our knowledge of D∆t is con-
verted to information on H0. We therefore obtain a
precise measurement of H0 = 78.7+4.3

−4.5 km s−1 Mpc−1 for
RXJ1131−1231 with a 5.5% uncertainty.
Next, we relax our assumptions on Ωde, Ωm and w,

and consider the UwCDM and WMAP7wCDM cosmolo-
gies in a flat Universe. Figure 8 shows the result-
ing constraints. The contours for the UwCDM cos-
mology with vertical bands in the H0 panels illustrates
that the time-delay distance is mostly sensitive to H0.
The constraint on H0 breaks the parameter degeneracies
in the WMAP7 data set, and we obtain the following
joint parameter constraints for RXJ1131−1231 in com-
bination with WMAP7: H0 = 80.0+5.8

−5.7 km s−1Mpc−1,

Ωde = 0.79± 0.03, and w = −1.25+0.17
−0.21.
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Fig. 8.— RXJ1131−1231 marginalized posterior PDF for H0,
Ωde and w in flat wCDM cosmological models. Contours/shades
mark the 68.3%, 95.4%, 99.7% credible regions. The three sets of
contours/shades correspond to three different prior/data set com-
binations. Shaded red: RXJ1131−1231 constraints given by the
UwCDM prior; dashed blue: the prior provided by the WMAP
seven-year data set alone; solid black: the joint constraints from
combining WMAP and RXJ1131−1231.

9.2. Comparison between RXJ1131−1231 and
B1608+656

How do the results of RXJ1131−1231 compare with
that of B1608+656? We show in Figure 9 the overlay
of the cosmological constraints of RXJ1131−1231 and
B1608+656 in UH0 (top panel) and UwCDM (bottom
panel). To investigate the consistency of the two data
sets, we need to consider their likelihood functions in
the multi-dimensional cosmological parameter space: in-
consistency is defined by insufficient overlap between the
two likelihoods. We follow Marshall et al. (2006), and
compute the Bayes Factor F in favor of a single set of
cosmological parameters and a simultaneous fit:

F =
〈LRLB〉
〈LR〉〈LB〉 , (27)

where LR and LB are the likelihoods of the
RXJ1131−1231 and B1608+656 data respectively, com-
puted at each prior sample point. See the Appendix for
the derivation of this result.
For the cosmology UH0, the Bayes Factor is 3.2; for

UwCDM, it takes the value 3.8. For comparison, with
two one-dimensional Gaussian PDFs, F takes the value
of 1 when the two distributions overlap at their 2σ
points, and is about 3.6 when they overlap at their 1σ
point. From this we conclude that the results from
RXJ1131−1231 and B1608+656 are consistent with each
other. We do not detect any significant residual sys-
tematics given the current uncertainties in our measure-
ments.
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Fig. 9.— Comparison of RXJ1131−1231 (solid red) with
B1608+656 (dotted blue) in UH0 (top) and UwCDM (bottom)
cosmologies. The two distributions overlap within 2σ. The cosmo-
logical constraints from the two lenses are statistically consistent
with each other: the ratio of the probability that the two lenses
share global cosmological parameters to the probability that the
lenses require independent cosmologies is 3.2 in UH0 and 3.8 in
UwCDM.

9.3. RXJ1131−1231 and B1608+656 in unison

Having shown that RXJ1131−1231 and B1608+656
are consistent with each other, we proceed to combine
the results from these two lenses for cosmological in-
ferences. In particular, we consider the constraints in
the WMAP7wCDM and WMAP7oΛCDM cosmologies
in Table 2.
We show in Figure 10 the cosmological constraints from

individual lenses in combination with WMAP7, and the
combination of both lenses and WMAP7. By combining
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TABLE 4
Cosmological constraints from RXJ1131−1231 and

B1608+656 in combination with WMAP7

Cosmology Parameter Marginalized Precision
Value (68% CI)

H0 75.2+4.4
−4.2 5.7%

wCDM Ωde 0.76+0.02
−0.03 2.5%

w −1.14+0.17
−0.20 18%

H0 73.1+2.4
−3.6 4.0%

oΛCDM ΩΛ 0.75+0.01
−0.02 1.9%

Ωk 0.003+0.005
−0.006 0.6%

Notes. The H0 values are in units of km s−1 Mpc−1. The “preci-
sion” in the fourth column is defined as half the 68% confidence
interval, as a percentage of 75 for H0, 1 for Ωde, ΩΛ, and Ωk, and
−1.0 for w.

the two lenses, we tighten the constraints on H0, Ωde and
Ωk. The precision on w does not improve appreciably.
With its low lens redshift, RXJ1131−1231 provide very
little information to w in addition to that obtained from
B1608+656. In Table 4, we summarize the constraints
from the two lenses.

9.4. Comparison of lenses and other cosmographic
probes

How do the robust time-delay distances from the strong
lenses compare to the distance measures of other probes?
We show in Figure 11 a comparison of the cosmological
constraints of the two lenses, Baryon Acoustic Oscilla-
tions (BAO; e.g., Percival et al. 2010; Blake et al. 2011;
Mehta et al. 2012), and supernovae (SN; e.g., Hicken
et al. 2009; Suzuki et al. 2012), when each is combined
with WMAP7 in the owCDM cosmology. The figures
are qualitative since the samples for WMAP7 chain in
the owCDM cosmology are sparse and we have smoothed
the contours after importance sampling. Nonetheless, we
see that the sizes of the contours are comparable, sug-
gesting that even a small sample of time-delay lenses is a
powerful probe of cosmology. Both the lenses and BAO
are strong in constraining the curvature of the Universe,
while SN provides more information on the dark energy
equation of state. Lenses are thus highly complementary
to other cosmographic probes, particularly the CMB and
SN (see also, e.g., Linder 2011; Das & Linder 2012). Each
probe is consistent with flat ΛCDM: Ωk = 0 and w = −1
are within the 95% credible regions.
In Figure 12, we compare the precisions on Ωk and

w in owCDM from the following cosmological probes in
combination with WMAP: the Cepheids distance ladder
(Riess et al. 2011)17, BAO from the Sloan Digital Sky
Survey (SDSS) (Percival et al. 2010), SN from the Union
2.1 sample (Suzuki et al. 2012), reconstructed BAO using
the SDSS galaxies (Mehta et al. 2012) and our two time-
delay lenses. We note that the precisions on the Cepheids
and the time-delay lenses are only approximates since the
samples of WMAP7 are sparse in owCDM due to the

17 To derive the constraints on Ωk and w from the combination
of Cepheids and WMAP7, we importance sample the WMAP7
chain by a Gaussian likelihood centered on H0 = 73.8− 1.475(w+
1) km s−1 Mpc−1 with a width of 2.4 km s−1 Mpc−1 (Riess et al.
2011). The −1.475(w + 1) corresponds to the tilt in the H0-w
plane shown in Figure 10 of Riess et al. (2011).
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large parameter space. Nonetheless, the histogram plot
shows that time-delay lenses are a valuable probe, espe-
cially in constraining the spatial curvature of the Uni-
verse.

10. SUMMARY

We have performed a blind analysis of the time-delay
lens RXJ1131−1231, modeling its high precision time de-
lays from the COSMOGRAIL collaboration, deep HST
imaging, newly measured lens velocity dispersion, and
mass contribution from line-of-sight structures. The data
sets were combined probabilistically in a joint analysis,
via a comprehensive model of the lens system consisting
of the light of the source AGN and its host galaxy, the
light and mass of the lens galaxies, and structures along
the line of sight characterized by external convergence
and shear parameters. The resulting time-delay distance
measurement for the lens allows us to infer cosmologi-
cal constraints. From this study, we draw the following
conclusions:

1. Our comprehensive lens model reproduces the
global features of the HST image and the time
delays. We quantify the uncertainty due to the
deflector gravitational potential on the time-delay
distance to be at the 4.6% level.

2. Based on the external shear strength from the lens
model and the overdensity of galaxy count around
the lens, we obtained a PDF for the external con-
vergence by ray tracing through the Millennium
Simulation. This κext PDF contributes to the un-
certainty on D∆t also at the 4.6% level.

3. Our robust time-delay distance measurement of 6%
takes into account all sources of known statistical
and systematic uncertainty. We provide a fitting
formula to describe the PDF of the time-delay dis-
tance that can be used to combine with any other
independent cosmological probe.

4. The time-delay distance of RXJ1131−1231 is
mostly sensitive toH0, especially given the low red-
shift of the lens.

5. Assuming a flat ΛCDM with fixed ΩΛ = 0.73
and uniform prior on H0, our unblinded
H0 measurement from RXJ1131−1231 is
78.7+4.3

−4.5 km s−1Mpc−1.

6. The constraint on H0 helps break parameter
degeneracies in the CMB data. In combina-
tion with WMAP7 in wCDM, we find H0 =
80.0+5.8

−5.7 km s−1Mpc−1, Ωde = 0.79 ± 0.03, and

w = −1.25+0.17
−0.21. These are statistically consis-

tent with the results from the gravitational lens
B1608+656. There are no significant residual sys-
tematics detected in our method based on this com-
bined analysis of the two systems.

7. By combining RXJ1131−1231, B1608+656 and
WMAP7, we derive the following constraints:
H0 = 75.2+4.4

−4.2 km s−1Mpc−1, Ωde = 0.76+0.02
−0.03

and w = −1.14+0.17
−0.20 in flat wCDM, and H0 =
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73.1+2.4
−3.6 km s−1Mpc−1, ΩΛ = 0.75+0.01

−0.02 and Ωk =

0.003+0.005
−0.006 in open ΛCDM.

8. Our measurement of the Hubble constant is com-
pletely independent of those based on the local dis-
tance ladder method (e.g., Riess et al. 2011; Freed-
man et al. 2012), providing an important consis-
tency check of the standard cosmological model and
of general relativity.

9. A comparison of the lenses and other cosmological
probes that are each combined with WMAP7 shows
that the constraints from the lenses are compara-
ble in precision to various state-of-the-art probes.
Lenses are particularly powerful in measuring the
spatial curvature of the universe, and are comple-
mentary to other cosmological probes.

Thanks to the dedicated monitoring by the COSMO-
GRAIL (e.g., Vuissoz et al. 2008; Courbin et al. 2011;
Tewes et al. 2012b,a) and Kochanek et al. (2006) col-
laborations, the number of lenses with accurate and pre-
cise time delays are increasing. Deep HST imaging for
three of these lenses will be obtained in cycle 20 to allow
accurate lens mass modeling that turns the delays into
distances. Current and upcoming telescopes and sur-
veys including the Panoramic Survey Telescope & Rapid
Response System, Hyper-Suprime Camera on the Sub-
aru Telescope, and Dark Energy Survey expect to detect
hundreds of AGN lenses with dozens of delays measured
(Oguri & Marshall 2010). Ultimately, the Large Syn-
optic Survey Telescope will discover thousands of time-
delay lenses, painting a bright future for cosmography
with gravitational lens time delays.
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APPENDIX

QUANTIFYING DATA SET CONSISTENCY VIA THE BAYES FACTOR B

Marshall et al. (2006) invite us to consider the following two hypotheses: (1) Hglobal, in which the two lenses share
a common set of cosmological parameters π = {H0,Ωde, w}, and (2) Hind, in which each of the two lenses is provided
with its own independent set of cosmological parameters, πR = {HR

0 ,Ω
R
de, w

R} and πB = {HB
0 ,Ω

B
de, w

B}, with which
to fit the data. Each set of parameters covers the same prior volume as in H

global. If the two data sets are highly
inconsistent, only H

ind will provide a good fit to both data sets in a joint analysis. The question is, do the data require
H

ind, or is Hglobal sufficient?
We quantify the answer to this question with the evidence ratio, or Bayes Factor, in favor of Hglobal:

F =
P (dR,dB|Hglobal)

P (dR|Hind)P (dB|Hind)
. (A1)

where we have collectively denoted all the data sets of RXJ1131−1231 as dR and of B1608+656 as dB. Each of the
terms on the right-hand side of the above equation can be written in terms of a multi-dimensional integral over the
cosmological parameters. For example, we have (starting with the simpler terms in the denominators)

P (dR|Hind) =

∫

d3πR P (dR|πR,Hind)P (πR|Hind), (A2)

where P (dR|πR,Hind) is the likelihood of the RXJ1131−1231 data sets (the weights for the cosmological samples) that
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we denote by LR. Equation (A2) is then just the ensemble average of the samples’ likelihood values,

P (dR|Hind) = 〈LR〉. (A3)

For P (dB|Hind), we can rewrite the likelihood P (dB|πB,Hind) in terms of DB
∆t to make use of P (DB

∆t|dB,Hind) given
by Equation (35) of Suyu et al. (2010):

P (dB|πB,Hind) =
P (DB

∆t(π
B)|dB,Hind)P (dB|Hind)

P (DB
∆t|Hind)

. (A4)

The ratio ZB = P (dB|Hind)/P (DB
∆t|Hind) is a constant factor since the prior on DB

∆t is uniform; thus, we obtain

P (dB|Hind) = ZB〈LB〉, (A5)

where LB is given by the likelihood of the time-delay distance P (DB
∆t(π

B)|dB,Hind).
Finally, for the numerator in Equation (A1), we have

P (dR,dB|Hglobal)=

∫

d3π P (dR|π,Hglobal)P (dB|π,Hglobal)P (π|Hglobal)

=ZB〈LRLB〉, (A6)

where the constant ZB is the same as that in P (dB|Hind) since the parameterization of the cosmology for each inde-
pendent lens is identical to that of the global cosmology (i.e., πB and π are the same cosmological parameterization).
Substituting Equations (A3), (A5), and (A6) into Equation (A1), we obtain

F =
〈LRLB〉
〈LR〉〈LB〉 , (A7)

which can be readily computed given the values of LR and LB (the weights) that we have for each cosmological sample.
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ABSTRACT

We present accurate time delays for the quadruply imaged quasar HE 0435-1223. The delays were measured from 575 independent
photometric points obtained in the R-band between January 2004 and March 2010. With seven years of data, we clearly show that
quasar image A is affected by strong microlensing variations and that the time delays are best expressed relative to quasar image B. We
measured ΔtBC = 7.8 ± 0.8 days, ΔtBD = −6.5 ± 0.7 days and ΔtCD = −14.3 ± 0.8 days. We spacially deconvolved HST NICMOS2
F160W images to derive accurate astrometry of the quasar images and to infer the light profile of the lensing galaxy. We combined
these images with a stellar population fitting of a deep VLT spectrum of the lensing galaxy to estimate the baryonic fraction, fb, in
the Einstein radius. We measured fb = 0.65+0.13

−0.10 if the lensing galaxy has a Salpeter IMF and fb = 0.45+0.04
−0.07 if it has a Kroupa IMF.

The spectrum also allowed us to estimate the velocity dispersion of the lensing galaxy, σap = 222 ± 34 km s−1. We used fb and σap

to constrain an analytical model of the lensing galaxy composed of an Hernquist plus generalized NFW profile. We solved the Jeans
equations numerically for the model and explored the parameter space under the additional requirement that the model must predict
the correct astrometry for the quasar images. Given the current error bars on fb andσap, we did not constrain H0 yet with high accuracy,
i.e., we found a broad range of models with χ2 < 1. However, narrowing this range is possible, provided a better velocity dispersion
measurement becomes available. In addition, increasing the depth of the current HST imaging data of HE 0435-1223 will allow us to
combine our constraints with lens reconstruction techniques that make use of the full Einstein ring that is visible in this object.

Key words. cosmological parameters – gravitational lensing: strong
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1. Introduction

To determine the expansion rate of the Universe, H0, accurately,
it is important to scale the extragalactic distance ladder and to
measure w(z), the redshift evolution of the dark energy equation
of state parameter (e.g., Frieman et al. 2008).

Some of the most popular methods in use to measure H0 have
recently been reviewed (Freedman & Madore 2010). The huge
observational and theoretical efforts invested in these measure-
ments have led to random errors between 3% and 10%, depend-
ing on the methods. However, all these methods rely at some
level on each other and are in the end all based on the same lo-
cal standard candles. In addition, the accuracy required on H0
to measure w(z) and H(z) is of the order of 1% (Hu 2005; Riess
et al. 2009, 2011). It is therefore of interest (i) to explore meth-
ods that are fully independent of any standard candle and (ii) to
combine the different methods to further reduce the current error
bar on H0.

Article published by EDP Sciences A53, page 1 of 12



A&A 536, A53 (2011)

Strong gravitational lensing of quasars and the so-called
“time delay method” in multiply imaged quasars is independent
of the traditional standard candles (Refsdal 1964) and is based
on well understood physics: general relativity. However, it re-
quires to measure the time delays from long-term photometric
monitoring of the many lensed quasars, which has long been
a serious observational limitation. While the attempts to mea-
sure accurate time delays have been numerous, only few quasars
have been measured with an accuracy close to the percent (e.g.,
Goicoechea 2002; Fassnacht et al. 2002; Vuissoz et al. 2008). In
addition, the lens model necessary to convert time delays into
H0 often remains poorly constrained and hampers a breaking of
the degeneracies between the properties of the lensing galaxy
and H0. In recent years, successful attempts have been made to
constrain the lens model as much as possible to break these de-
generacies (Suyu et al. 2009, 2010).

COSMOGRAIL, the COSmological MOnitoring of
GRAvItational Lenses, aims both at measuring precise time
delays for a large sample of strongly lensed quasars, and at
obtaining and using all necessary observations to constrain the
lens models. The present paper describes the COSMOGRAIL
results for the quadruply imaged quasar HE 0435-1223, using
deep VLT spectra and deconvolved HST images.

HE 0435-1223 (α(2000): 04h38min14.9s; δ(2000) =
−12◦17′14.′′4) was discovered by Wisotzki et al. (2000) dur-
ing the Hamburg/ESO Survey (HES) for bright quasars in the
Southern Hemisphere. It was identified two years later as a
quadruply imaged quasar by Wisotzki et al. (2002). The redshift
of the source is zs = 1.689 (Wisotzki et al. 2000) and that of the
lens is zl = 0.4546 ± 0.0002 (Morgan et al. 2005). The quasar
shows evidence for intrinsic variability, which makes it a good
candidate for determining the time delays between the different
images. The local environment of the lensing galaxy has been
studied in detail by Morgan et al. (2005) using the Hubble Space
Telescope (HST) Advanced Camera for Surveys (ACS) and by
Momcheva (2009), who has found that the lensing galaxy lies in
a group of at least 11 members. The velocity dispersion of this
group is σ ∼ 496 km s−1.

Analytical lens models of HE 0435-1223 are given by
Kochanek et al. (2006), who have also measured time delays
from two years of optical monitoring: ΔtAD = −14.37+0.75

−0.85 days,
ΔtAB = −8.00+0.73

−0.82 days, and ΔtAC = −2.10+0.78
−0.71 days. For a fixed

H0 = 72 ± 7 km s−1 Mpc−1 they found that the lensing galaxy
must have a rising rotation curve at the position of the lensed
images and a non-constant mass-to-light ratio. Moreover, high
dark matter surface densities are required in the lens halo. New
monitoring data of Blackburne & Kochanek (2010) analysed us-
ing a physically motivated representation of microlensing give
time delays compatible with those of Kochanek et al. (2006),
although these authors do not provide their measured values.

2. Photometric monitoring

2.1. Optical imaging

HE 0435-1223 was monitored during more than six years, from
January 2004 to March 2010, through the R filter, using three
different telescopes: the Swiss 1.2 m Euler telescope located on
the ESO La Silla site (Chile), the Belgian-Swiss 1.2 m Mercator
telescope located at the Roque de Los Muchachos Observatory,
La Palma, Canary Island (Spain), and the 1.5 m telescope located
at the Maidanak Observatory (Uzbekistan). In addition we also
use 136 epochs from the two-year long monitoring of Kochanek
et al. (2006), from August 2003 to April 2005, obtained with the

ANDICAM camera mounted on the 1.3 m Small and Moderate
Aperture Research Telescope System (SMARTS) located at
the Cerro Tololo Inter-American Observatory (CTIO) in Chile.
A summary of the observations is given in Table 1. Note that we
used the published photometry for the SMARTS data, i.e., we
did not reprocess the original data frames with our own photo-
metric pipeline.

2.2. Image processing and deconvolution photometry

The data from the three telescopes used by the COSMOGRAIL
collaboration are analysed with the semi-automated reduction
pipeline described in Vuissoz et al. (2007). The main challenge
was that we had to assemble data from different telescopes: each
camera has a different size, resolution and orientation on the
plane of sky.

The pre-reduction for each observing epoch consists of
flat-fielding using master sky-flats. The Euler image with the
best seeing was taken as the reference frame to register all
other frames. This reference frame was taken on the night of
November 11, 2005 and has a seeing of 0.′′82. Two reference
stars were then chosen in the field of view (Fig. 1) to compute
the geometrical transformations between the images. This trans-
formation involves a spatial scaling and a rotation. The reference
stars were also used to compute the relative photometric scal-
ing between the frames taken at different epochs. Eventually, the
L. A. Cosmic algorithm (van Dokkum 2001) was applied sepa-
rately to every frame to remove cosmic rays. All images were
checked visually to make sure that no pixel was removed inap-
propriately, especially in the frames with good seeing.

The photometric measurements were carried out using “de-
convolution photometry” with the MCS deconvolution algorithm
(Magain et al. 1998). This software has been successfully ap-
plied to a variety of astrophysical problems ranging from grav-
itationally lensed quasars (e.g., Burud et al. 2000, 2002) to the
study of quasar host galaxies (e.g., Letawe et al. 2008), or to
the search for extrasolar planets using the transit technique (e.g.,
Gillon et al. 2007a,b). Image deconvolution requires accurate
knowledge of the instrumental and atmospheric point spread
function (PSF). The latter was computed for each frame from
the four stars labelled PSF 1-4 in Fig. 1. These stars are from 0
to 1 mag brighter than the quasar images in HE 0435-1223 and
are located within 2′ from the centre of the field, which mini-
mizes PSF distortions.

Because it does not attempt to achieve an infinitely high spa-
tial resolution, the MCS algorithm produces deconvolved im-
ages that are always compatible with the sampling theorem. This
avoids deconvolution artefacts and allowed us to carry out ac-
curate photometry over the entire field of view. Moreover, the
deconvolved image was computed as the sum of extended nu-
merical structures and of analytical point sources whose shape is
chosen to be symmetrical Gaussians. In the case of gravitation-
ally lensed quasars, the numerical channel of this decomposition
contains the lensing galaxy. The photometry and astrometry of
the quasar images were returned as a list of intensities and posi-
tions of Gaussian deconvolved profiles. Finally, the deconvolved
image can be computed on a grid of pixels of arbitrary size. In
the present work, the pixel size in the deconvolved frames is half
the pixel size of the Euler data, i.e., 0.′′172. The spatial resolu-
tion in the deconvolved frames is two pixels full-width-at-half-
maximum (FWHM), i.e., 0.′′35.

With the MCS software, dithered images of a given target
can be “simultaneously deconvolved” and combined into a sin-
gle deep and sharp frame that matches the whole dataset at once,
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Table 1. Summary of the optical monitoring data.

Telescope Camera FoV Pixel Period of observation #obs. Exp. time Seeing Sampling
Euler C2 11′ × 11′ 0.′′344 Jan. 2004–Mar. 2010 301 5 × 360 s 1.′′37 6 days
Mercator MEROPE 6.5′ × 6.5′ 0.′′190 Sep. 2004–Dec. 2008 104 5 × 360 s 1.′′59 11 days
Maidanak SITE 8.9′ × 3.5′ 0.′′266 Oct. 2004–Jul. 2006 26 10 × 180 s 1.′′31 16 days
Maidanak SI 18.1′ × 18.1′ 0.′′266 Aug. 2006–Jan. 2007 8 6 × 300 s 1.′′31 16 days
SMARTS ANDICAM 10′ × 10′ 0.′′300 Aug. 2003–Apr. 2005 136 3 × 300 s ≤1.′′80 4 days
TOTAL – – – Aug. 2003–Mar. 2010 575 242.5 h – 3.2 days

Notes. The temporal sampling is the mean number of days between two consecutive observations.

E

N

1 arcmin

Star6

Star5
PSF4

PSF3

PSF2

PSF1

HE0435-1223

Fig. 1. Part of the field of view of the 1.2 m Swiss Euler telescope, with HE 0435-1223 visible in the centre. The four PSF stars used for
deconvolution purposes and the two reference stars used to carry out the flux calibration are indicated.

given the PSFs and the noise maps of the individual frames. In
doing this, the intensities of the point sources are allowed to vary
from one frame to the next while the smooth background, which
includes the lensing galaxy, is held constant in all frames. The
result of the process is shown in Fig. 2, where the point sources
are labelled as in Wisotzki et al. (2002). Prior information on the
object to be deconvolved can be used to achieve the best possi-
ble results. In the case of HE 0435-1223 the relative positions
of the point sources are fixed to the HST astrometry obtained in
Sect. 3.

Figure 3 shows the deconvolution light curves obtained for
each quasar image of HE 0435-1223, where the 1σ error bars ac-
count both for the statistical and systematic errors. The statistical

part of the error was taken as the dispersion between the pho-
tometric points taken during each night. The systematic errors
were estimated by carrying out the simultaneous deconvolution
of reference stars in the vicinity of HE 0435-1223.

Finally, a small scaling factor was applied to the light
curves of all telescopes, including the published light curves of
Kochanek et al. (2006), to match the Euler photometry. These
shifts are all smaller than 0.03 mag.

3. HST NICMOS2 imaging

We used deep near-IR HST images of HE 0435-1223 to de-
rive the best possible relative astrometry between the quasar
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Fig. 2. Result from the simultaneous deconvolution of the ground-based frames. G is the lensing galaxy and G22 (Morgan et al. 2005) is its closest
neighbour on the plane of the sky. The grey scale in the deconvolved image is set to display all light level above 3 × σsky. The FWHM resolution
of the deconvolved image is 0.′′34.

images and the lensing galaxy and to constrain the light distri-
bution in the lensing galaxy. The data are part of the CASTLES
project (Cfa-Arizona Space Telescope LEns Survey) and were
acquired in October 2004 (PI: C. S. Kochanek) with the
camera 2 of NICMOS, the Near-Infrared Camera and Multi-
Object Spectrometer. They consist of four dithered frames taken
through the F160W filter (H-band) in the MULTIACCUM mode
with 19 samples and calibrated by CALNICA, the HST image
reduction pipeline. The total exposure time amounts to approxi-
mately 44 min and the pixel scale is 0.′′075652.

The MCS deconvolution algorithm was used to combine the
four NIC2 frames into a deep sharp IR image. We followed
the iterative technique described in Chantry et al. (2010) and
Chantry & Magain (2007), which allowed us to build a PSF in
the absence of a stellar image in the field of view. The method
can be summarised as follows. First, we estimated the PSF us-
ing Tiny Tim software (Krist & Hook 2004) and carried out
the simultaneous deconvolution of the four F160W frames using
a modified version of the MCS software (Magain et al. 2007).
This produces a first approximation of the extended channel of
the deconvolved image, i.e., the lensing galaxy and the lensed
quasar host galaxy. We reconvolved the latter by the PSF and
subtracted it from the original data. A new estimate of the PSF
was built on the new image that now contained only the quasar
images. The process was repeated until the residual image was
satisfactory (for more details see Chantry et al. 2010). Figure 4
shows the result. In this image the pixel size is half that of the
original data and the resolution 0.′′075 (FWHM), unveiling an
almost full Einstein ring.

In the final deconvolved image, the lensing galaxy was mod-
elled analytically rather than numerically to minimise the num-
ber of degrees of freedom. We found that the best-fit profile
is an elliptical de Vaucouleurs with the parameters as given
in Table 3. The astrometry of the quasar images relative to
the lensing galaxy, corrected for the known distortions of the
NIC2 camera and for the difference of pixel scale between the x
and y directions is summarised in Table 2. Based on our previ-
ous work using deconvolution of NICMOS images (Chantry &
Magain 2007), we estimate that the total error bars, accounting
for residual correction of the distortions amounts to 2 mas. Our
results agree well with previous measurements from HST/ACS

(Morgan et al. 2005) or HST/NIC2 imaging (Kochanek et al.
2006), also shown for comparison in Table 2.

4. Time delay measurement

4.1. Curve shifting method

Our method to measure the time delays is based on the disper-
sion technique of Pelt et al. (1996): the light curves are shifted in
time and in magnitude to minimise a global dispersion function.
In addition, the light curves are distorted on long time scales
to account for slow microlensing variations. This was made by
adding low-order polynomials to either the full curves or to spe-
cific observing seasons.

Pelt et al. (1996) has defined several dispersion statistics be-
tween pairs of light curves. We implemented a dispersion es-
timate similar to D2

3 (see Eq. (8) of Pelt et al. 1996), which
performed a linear interpolation between points of one of the
curves over a maximum range of 30 days. In the case of four
light curves, we defined a total dispersion that is the sum of the
dispersions computed using the 12 possible permutations of two
curves among four. Each pair was considered twice so to avoid
the arbitrary choice of a reference light curve. The photomet-
ric error bars were taken into account to weight the influence of
the data points in the dispersion. We then minimised the total
dispersion by modifying the time delays and the microlensing
polynomials.

4.2. Microlensing and influence on the time delay

Simulated light curves that mimic the observed data were used to
estimate the robustness of the method. The error bars on the time
delays were calculated using Monte Carlo simulations, i.e., re-
distributing the magnitudes of the data points according to their
photometric error bars. The width of the resulting time delay
distributions gives us the 1σ error bars.

Because of microlensing we do not have access to the in-
trinsic variations of the quasar. We represent microlensing in
three of the light curves as a relative variation with respect to
the fourth light curve, taken as a reference. We tested each of
the four light curves in turn as a reference and kept the one that
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Fig. 3. R-band light curves of the four lensed images of HE 0435-1223 from December 2003 to April 2010. The magnitudes are given in relative
units as a function of the Heliocentric Julian Day (HJD), along with their total 1σ error bars. These light curves are available in tabular form at
the CDS.
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Fig. 4. Left: combination of the four original HST/NIC2 F160W frames of HE 0435-1223. The field of view is 9 × 9 arcsec. Middle: deconvolved
image, where the lensing galaxy is modelled as a de Vaucouleurs profile (see text). The nearest galaxy on the plane of the sky, G22, is also
indicated. Right: residual map in units of the noise. The colour scale ranges from −4σ (white) to +4σ (black).

Table 2. Relative astrometry of HE 0435-1223 as derived from the simultaneous deconvolution of all NIC2 frames.

This work Morgan et al. (2005) Kochanek et al. (2006)
ID Δα (′′) Δδ (′′) Mag (F160W) Δα (′′) Δδ (′′) Δα (′′) Δδ (′′)
A 0. 0. 17.20 ± 0.01 0. 0. 0. 0.
B –1.4743 ± 0.0004 +0.5518 ± 0.0006 17.69 ± 0.01 –1.477 ± 0.002 +0.553 ± 0.002 –1.476 ± 0.003 +0.553 ± 0.001
C –2.4664 ± 0.0003 –0.6022 ± 0.0013 17.69 ± 0.02 –2.469 ± 0.002 –0.603 ± 0.002 –2.467 ± 0.002 –0.603 ± 0.004
D –0.9378 ± 0.0005 –1.6160 ± 0.0006 17.95 ± 0.01 –0.938 ± 0.002 –1.615 ± 0.002 –0.939 ± 0.002 –1.614 ± 0.001
G –1.1706 ± 0.0030 –0.5665 ± 0.0004 16.20 ± 0.12 –1.169 ± 0.002 –0.572 ± 0.002 –1.165 ± 0.002 –0.573 ± 0.002

Notes. The 1σ error bars are the internal errors after deconvolution. Additional 2-mas systematic errors must be added to these (see text). The
magnitudes are in the Vega system. For comparison we show the results from Morgan et al. (2005) using HST/ACS images and from Kochanek
et al. (2006) using HST/NIC2 images.

Table 3. Shape parameters for the lensing galaxy in HE 0435-1223.

PA (◦) Ellipticity aeff (′′) beff (′′) reff (′′)
174.8 (1.7) 0.09 (0.01) 1.57 (0.09) 1.43 (0.08) 1.50 (0.08)

Notes. The position angle (PA) is measured positive east of north. The
1σ error bars (internal errors) are given in parenthesis.

minimised the residual microlensing variations to be modelled
in the 3 others. This is best verified with component B as a ref-
erence.

With B as a reference light curve, we note that microlensing
in C and D remains smooth and can therefore be modelled with a
low-order polynomial drawn over the full length of the monitor-
ing. However, A contains higher frequency variations that need
to be accounted for in each season individually, as illustrated
in Fig. 5. In doing this, we obtain fairly good fits to the light
curves, as shown in the residual signal. To quantify the quality of
these residuals, we applied the so-called one-sample runs test of
randomness, a statistical test to estimate whether successive rea-
lizations of a random variable are independent or not. In practice
the test was applied to a sequence of residuals to decide whether
a model is a good representation of the data. For most seasons
in our curves the number of runs was between 1σ and 3σ lower
than the value expected for independent random residuals. Thus,
although our microlensing model is not fully representative of
the real signal, the deviations from the data points remain small.

We tested the robustness of our curve-shifting method in sev-
eral ways. First, we modelled the microlensing variations using

polynomial fits of different orders. Second, we fitted these poly-
nomials either across each individual season or across groups of
seasons. Finally, we masked the seasons with the worst residual
signal (Fig. 5). All these changes had only a negligible impact
on the time delay measurements. We note that this is not the
case when considering only two or three seasons of data, which
shows the importance of a long-term monitoring with good tem-
poral sampling.

4.3. Final results

Our results are summarised in Table 4 and are compared with
the previous measurements of Kochanek et al. (2006), who
have used pure a polynomial fit to the light curves and two
seasons of monitoring. Using the same data but with our modi-
fied dispersion technique, we obtained very similar time delays
as Kochanek et al. (2006), but larger error bars. We prefer keep-
ing a minimum possible number of degrees of freedom (e.g.,
in the polynomial order used to represent microlensing), in ac-
cordance with the Occam’s razor principle, even to the cost of
apparently larger formal error bars.

We also note that Kochanek et al. (2006) give their time de-
lays with respect to A, which, with seven seasons of data, turns
out to be the most affected by microlensing. As a consequence
the error bars on these time delays are dominated by residual mi-
crolensing rather than by statistical errors. The time delays used
in the rest of our analysis are therefore measured relative to B.

Finally, we used the mean values of our microlensing cor-
rections to estimate the macrolensing R-band flux ratios between
the four quasar images, assuming that no long-term microlensing
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Fig. 5. Light curves obtained with all four telescopes and shifted by time delays of ΔtBA = 8.4 days, ΔtBC = 7.8 days and ΔtBD = −6.5 days.
The relative microlensing representations applied on curves A, C and D are shown as continuous curves with respect to the dashed blue line (see
text). A fifth-order polynomial was used over the seven seasons to model microlensing on the quasar images C and D, while seven independent
third-order polynomials were used for image A. The lower panels show residuals obtained by subtracting a simultaneous spline fit (grey) from the
light curves.

affects the data. We found mB − mA = ΔmBA = 0.62 ± 0.04,
ΔmBC = 0.05 ± 0.01, and ΔmBD = −0.16 ± 0.01, which is well
compatible with the ratios measured at seven wavelengths by
Mosquera et al. (2011). However, these authors report significant
wavelength dependence of the image flux ratios, which led us not
to use flux ratios as a constraint in the lens models.

5. Constraining the mass profile of the lensing
galaxy

The goal of the present section is to constrain the radial mass
profile of the lensing galaxy as much as possible, which is the
main source of uncertainty on the determination of H0 with the
time delay method. One way of doing this is to use the infor-
mation contained in the Einstein ring that is formed by the host
galaxy of the lensed quasar (Suyu et al. 2010, 2009; Warren &
Dye 2003). This works well when a prominent Einstein ring is
visible. Unfortunately, given the depth of the current HST im-
ages of HE 0435-1223, the radial extent of the ring is too small
to efficiently apply this technique. We propose instead to use in-
formation on the dynamics and on the stellar mass of the lens,
using deep optical spectroscopy.

5.1. Stellar population and velocity dispersion of the lensing
galaxy

A deep VLT spectrum of the lensing galaxy is available from
Eigenbrod et al. (2006). While the spectrum was originally used

to measure the redshift of the galaxy, it turns out to be deep
enough (〈S/N〉 ∼ 20) to measure the stellar velocity dispersion
and the mass-to-light ratio.

We analysed the data using full spectrum fitting with the
ULySS package (Koleva et al. 2009). The method consists in
fitting spectra against a grid of stellar population models con-
volved by a line-of-sight velocity distribution. A single minimi-
sation allowed us to determine the population parameters (age
and metallicity) and the kinematics (redshift and velocity dis-
persion). The stellar mass-to-light ratio was derived from the
age and metallicity for the considered model. The simultaneous
fit of the kinematical and stellar population parameters reduced
the degeneracies between age, metallicity and velocity disper-
sion (Koleva et al. 2008).

We performed the spectral fit using the PEGASE-HR single
stellar population models (SSP, Le Borgne et al. 2004), where
the observed flux, Fλ, is modelled as follows:

Fλ = Pn(λ) × [L(vsys, σ) ⊗ S (t, [Fe/H], λ)]

+Qm(λ). (1)

The models were built using the Elodie.3.1 (Prugniel & Soubiran
2001; Prugniel et al. 2007) spectral library and the Kroupa
(Kroupa 2001) and Salpeter (Salpeter 1955) initial mass func-
tions (IMF). L(vsys, σ) is a Gaussian function of the systematic
velocity, vsys, and of the velocity dispersion, σ. S (t, [Fe/H], λ) is
the model for the SSP and depends on age and metallicity. Pn is
a polynomial of degree n, which models any residual uncertainty
in the flux calibration and extinction correction. In addition,
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Table 4. Time delays for HE 0435-1223, with the same arrival order convention as Kochanek et al. (2006), i.e., D arrives last.

Data Method ΔtAB ΔtAC ΔtAD ΔtBC ΔtBD ΔtCD

SMARTS (seasons 1 and 2) Kochanek (2006) −8.0 ± 0.8 −2.1 ± 0.8 −14.4 ± 0.8
SMARTS (seasons 1 and 2) dispersion −8.8 ± 2.4 −2.0 ± 2.7 −14.7 ± 2.0 6.8 ± 2.7 −5.9 ± 1.7 −12.7 ± 2.5
COSMOGRAIL (all seasons) dispersion −8.4 ± 2.1 −0.6 ± 2.3 −14.9 ± 2.1 7.8 ± 0.8 −6.5 ± 0.7 −14.3 ± 0.8

Table 5. Model parameters of the lens potential well.

Reff 8.44 kpc radius containing 50% of the observed light
RE 6.66 kpc Einstein radius
fb parameter baryonic fraction in the Einstein radius [0.05−0.5]
r� 5.3 kpc stellar component scaling radius
M� Mh fb/(1 − fb) stellar total mass
r�,max 20 r� stellar truncation radius
γDM parameter dark matter inner slope [0−2]
rs parameter dark matter scaling radius [1, 2, 4, 8] × RE

Mh parameter dark matter total mass [4.8 × 1011−9.1 × 1012] M

rs,max 10 rs dark matter truncation radius

Notes. For the variables used as parameters the ranges of values used are given between brackets.

the quasar spectrum might not be perfectly subtracted from the
galaxy. To mimic this effect, we included an additive polyno-
mial, Qm. The order of the additive and multiplicative polyno-
mials is the minimum required to provide an acceptable χ2, i.e.,
in our case (n = 10, p = 1).

We obtained SSP-equivalent ages and metallicities of
t ∼ 3 Gyr and [Fe/H] ∼ 0.0 dex respectively. The cor-
responding rest-frame B-band stellar mass-to-light ratio is
M�/LB = 3.2+0.3

−0.5 M
/L
,B using a Kroupa IMF and M�/LB =

4.6+0.9
−0.7 M
/L
,B using a Salpeter IMF. The uncertainties in the

age and metallicity were estimated via Monte Carlo simulations
and propagated in the error in M�/LB.

To compute the physical velocity dispersion we subtracted
quadratically the instrumental broadening from the measured
profile, neglecting the dispersion of the models since they are
based on high-resolution templates. The instrumental broaden-
ing was measured both from the PSF stars used to carry out
the spatial deblending of the spectrum (Eigenbrod et al. 2006)
and from the lamp spectra. We obtained the rest-frame physical
stellar velocity dispersion of the lensing galaxy: σap = 222 ±
34 km s−1 in an aperture of 1′′, i.e., 5.7 kpc.

5.2. Numerical integration of the Jeans equations

In this section we model the lensing galaxy using a 3D spheri-
cal potential well formed of two components, one for the stel-
lar part of the mass and one for the dark matter halo. We then
perform a numerical integration of the Jeans equations in 3D
to predict a theoretical velocity dispersion and a total mass for
the model. The assumption of spherical symmetry is sufficient
for our purpose, as illustrated by the study of the lensed quasar
MG 2016+112, where Koopmans & Treu (2002) introduced an
anisotropy parameter and showed that it has almost no influence
on the inferred mass slope.

The luminous component of the model is a Hernquist profile
(Hernquist 1990):

ρ�(r) =
ρ�(0)

(r/r�) (1 + r/r�)3
, (2)

where ρ�(0) is the central density and r� is a scale radius chosen
so that the integrated mass in a cylinder of radius Reff (effective

radius) is equal to half the total stellar mass M�. The profile has
a maximum radius of r�,max = 20 r�.

The dark matter halo is modelled as a generalised Navarro,
Frenk & White (NFW) profile (Navarro et al. 1996):

ρh(r) =
ρh(0)

(r/rs)γDM (1 + (r/rs)2)(3−γDM)/2
, (3)

where γDM is the inner slope of the profile, rs is the scaling radius
and ρh(0) is the central mass density. For γDM = 1 the model
closely follows the standard NFW profile. Its total mass, Mh, is
given in the truncation radius rh,max = 10 rs.

Following the usual convention, the integrated stellar and
dark matter masses are related by the baryonic fraction fb,

fb =
M�

Mh + M�
· (4)

Because all integrations in this work were carried out numeri-
cally, fb can easily be computed in any aperture. We chose to
compute it in the Einstein radius, which is also where lensing
gives the most accurate mass measurement. The velocity dis-
persion of the stellar component was computed by solving the
second moment of the Jeans equation in spherical coordinates
(Binney & Merrifield 1998). The velocity dispersion is then

σ2
�(r) =

1
ρ�(r)

∫ ∞

r
dr′ ρ�(r′) ∂r′Φ(r′), (5)

where Φ(r) is the total gravitational potential. Equation (5) is
solved numerically as follows. First, the density of each mass
component (stars and dark halo) is sampled by N particles, using
a Monte-Carlo method. Second, the potential is computed using
a treecode method (Barnes & Hut 1986). For self-consistency,
the density is computed by binning the particles in spherical
shells. Then, a velocity is allocated to each particle at a distance r
from the galaxy center, following a Gaussian distribution of vari-
ance σ�(r). Finally, the velocity dispersion of the model, σJeans,
is computed numerically, by integrating all the particle velocities
in an aperture that matches exactly the slit used to carry out the
observations.

The advantages of the numerical representation of the lens
models are multiple. They allow us (i) to compute velocity
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dispersions for any combination of density profiles, even non-
parametric ones; (ii) to account for the truncation radius of the
halo; (iii) to test the dynamical equilibrium of the system by
evolving the model with time. Computing the velocity disper-
sion as well as the total mass in a cylinder along the line of sight
of the observer is then straightforward.

In all calcultations we fixed the effective radius to the one ob-
served for the lensing galaxy, i.e., Reff = 8.44 kpc. The remain-
ing parameter space to explore is composed of the halo scale
radius, rs, the slope of the profile, γDM, and the baryonic frac-
tion, fb, within the Einstein radius.

5.3. Applying the dynamical and stellar population
constraints

Using our HST photometry, we measured the total rest-frame
B-band galaxy luminosity by converting its total H-band mag-
nitude, mF160W = 16.20. Using a k-correction of 1.148, and a
galactic extinction1 of E(B − V) = 0.059 (Schlegel et al. 1998),
we find LB = 1.04 × 1011 LB,
. For a given galaxy model we can
therefore compute the total stellar mass-to-light ratio, M�/LB, as
well as the baryonic fraction that we can compare with the ob-
served ones. This requires a choice of IMF. For a Salpeter IMF
we measured fb = 0.65+0.13

−0.10, while for a Kroupa IMF we mea-
sured fb = 0.45+0.04

−0.07. In our computation of the baryonic fraction,
the total mass is the mass in the Einstein radius, M(<RE).

We compared the model properties to the data by com-
puting a chi-square, χ2

Jeans. This χ2
Jeans includes the measured

lens velocity dispersion and the total mass in the Einstein ra-
dius, M(<RE) = (3.16 ± 0.31) × 1011 M
. We allowed for a
10% error on the total mass in the Einstein radius to account
for the weak dependence of this mass upon the choice of a lens
model, which led to

χ2
Jeans =

(
σJeans − 222

34

)2

+

(
M(<RE) − 3.16 × 1011

0.31

)2

· (6)

We used our numerical integration of the Jeans equations to sam-
ple the γDM − fb plane, for a given choice of the scale radius, rs,
of the dark matter halo. Figure 6 shows the value of χ2

Jeans for
960 000 galaxy models with rs = 4 × RE = 25 kpc. For a
given choice of IMF a precise measurement of the baryonic frac-
tion, fb, can constrain the dark matter slope γDM well, at least in
the case of a Kroupa IMF.

Figure 6 is drawn for rs = 4 × RE = 25 kpc, which gives
the best χ2

Jeans values. However, models with χ2
Jeans < 1 are also

obtained with other values of rs. We therefore test the influence
of a change in rs by building models for a range of scale radii,
rs = 5, 15, 30 kpc (i.e., rs = 0.75×, 2.25×, 4.50 × RE). Figure 7
summarises the results and shows no influence of rs on the γDM−
fb relation unless rs becomes unrealistically small.

The Hernquist profile in our model also has a scale parame-
ter, r�, which is fixed to the observed value of the effective ra-
dius, Reff = 8.44 kpc. Although we have HST images that allow
us to measure Reff and although our error bars on this parameter
are small, we note that studies of lensing galaxies by different au-
thors often find different Reff values from the same data. This is
because different methods are used to subtract the quasar images
and to mask (or not) the Einstein ring. We therefore computed
models for a range of different Reff and show the influence on
the γDM − fb plane in Fig. 8, for Reff = 4.22, 8.44, 12.88 kpc.

1 A galactic extinction calculator is available at this address:
http://nedwww.ipac.caltech.edu/forms/calculator.html

Fig. 6. Radial slope, γDM, of the dark matter halo as a function of the
baryonic fraction in the Einstein radius, RE. The colour code represents
the value of χ2

Jeans for all acceptable models, i.e., χ2
Jeans < 1 (see text;

Eq. (6)). The observational limits drawn on fb using our spectrum of
the lensing galaxy are indicated as shaded vertical regions. The blue
region corresponds to a Kroupa IMF and the red regions corresponds to
a Salpeter IMF. In this figure, all models have rs = 4 × RE = 25 kpc.

Fig. 7. Effect of change in rs, the scale radius of the dark matter halo, on
the γDM − fb relation. The contours show the region containing 68% of
the models. The blue area has rs = 25 kpc (our adopted choice for the
final modelling), the green region has rs = 15 kpc, and the red region is
for models with small scale radii, rs = 5 kpc.

This reflects an (unlikely high) 50% change in Reff with respect
to the actual measurement and translates into a 10−20% shift
of the γDM − fb relation. This is comparable to the width of the
coloured areas in Fig. 8. Because our true measurement error on
Reff is certainly much better than 50%, we conclude that this pa-
rameter does not affect the models much, given the accuracy of
the observations.

6. Towards H0 with HE 0435-1223

The gravlens software (Keeton 2004) was used in combina-
tion with the dynamical and stellar population constraints to
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Fig. 8. Effet of a change in Reff on the γDM − fb relation. The contours
show the region containing 68% of the models. The value adopted in
this paper is Reff = 8.44 kpc, as measured from HST images. This
corresponds to the area in red. The models in the blue region have
Reff = 4.22 kpc, and the region in green has Reff = 12.88 kpc.

reproduce the lensing configuration of the quasar images and to
attempt converting the time delays into H0. We adopted a total
potential well composed of the main lensing galaxy, the nearby
galaxy G22 (see Morgan et al. 2005) plus an external shear.

The main galaxy is composed of a projected Hernquist +
cuspy halo model identical to those in Eqs. (1) and (2).

For the Hernquist profile, we fixed the ellipticity and PA of
the lensing galaxy to the observed ones.

We then estimated how well each of the models described
in Sect. 5.2 reproduces the observed image configuration. In do-
ing this, we allowed only the external shear (γ, θγ), the Einstein
radius of G22 and H0 to vary. The potential well of G22 was as-
sumed to lie at its observed position and was modelled as a sin-
gular isothermal sphere (SIS). We assumed a conservative value
of RE(G22) < 0.′′4, following the results of Morgan et al. (2005),
who have found RE(G22) = 0.′′18.

We show in Fig. 9 the value of H0 for each lens model as
a function of its dark matter slope, γDM. The colour code in the
figure corresponds to the value of χ2

Tot, where the baryonic frac-
tion, fb ± σ( fb), in the Einstein radius is now included in the
calculation:

χ2
Tot = χ

2
Jeans +

(
fb(model) − fb(obs)

σ( fb)

)2

· (7)

Including fb is justified by Fig. 6, showing that different values
of fb select different lens models. We display our results for the
two most common IMFs in use in stellar population modelling,
the Salpeter and the Kroupa IMFs.

The points define a χ2
Tot surface with a clear valley which

minimum indicates the best dark matter slopes for each IMF.
These are γDM(Sal) ∼ 1.15 and γDM(Kro) ∼ 1.54 for the Salpeter
and the Kroupa IMFs, respectively. Each model shown in Fig. 9
is also required to display a good lensing chi-square, χ2

L, after
fitting of the quasar image positions with gravlens. The val-
ues of χ2

L are systematically lower for the lensing galaxies with
Kroupa IMFs. The present lensing and dynamical work there-
fore favours a lensing galaxy with a Kroupa IMF, as also found
by Cappellari et al. (2006) from 3D spectroscopy of early-type

galaxies and by Ferreras et al. (2008) using the SLACS sample
of strong lenses (Bolton et al. 2008).

The points in Fig. 9 all have χ2
Jeans < 1, which prevents us, for

now, from giving a value for H0 given the observational uncer-
tainty on fb andσap. The measurement errors on both parameters
will, however, easily improve with deeper and higher resolution
spectroscopy of the lens.

With the current observational constraints we rely on pre-
vious work done on the total mass slope, γ′, of lensing galax-
ies. Koopmans et al. (2009) have measured the probability dis-
tribution function of γ′ in the SLACS sample of strong lenses.
They have found 〈γ′〉 = 2.085+0.025

−0.018, with an intrinsic spread of
σ(γ′) = 0.20, also confirmed in a more recent study by Auger
et al. (2010). The models with the best χ2

Tot values in Fig. 9 corre-
spond to a total slope of γ′ = 2.1 ± 0.1 independent of the choice
of an IMF. This is well within the rms limits of Koopmans et al.
(2009) and leads to 57 < H0 < 71 km s−1 Mpc−1 with all models
equiprobable within this range.

In our analysis we modelled the environment of the lens-
ing galaxy as a SIS that represents galaxy G22, plus an exter-
nal shear with a PA of the order of −15◦, and amplitudes in the
range 0.06 < γ < 0.08. However, we did not explicitly account
for the fact that HE 0435-1223 lies within a group of galaxies
(Momcheva 2009). The unkown convergence, κ, associated with
the group leads to an overestimate of H0 by a factor (1 − κ)−1,
meaning that the range of acceptable H0 values would decrease
further if we have underestimated the convergence caused by the
group. Current imaging data suggest, however, that the line of
sight is in fact sightly under-dense compared with other lensed
systems (Fassnacht et al. 2011). However, the missing conver-
gence is about κ ∼ 0.01−0.02, leading to at most a 2% change
(upwards) in H0. The above statement should, however, be con-
sidered with care because the effect of a group is poorly appro-
ximated by a simple convergence term. Explicit modelling of the
group halo is likely needed to properly account for the modifi-
cations induced on the main lens potential. Deep X-ray and/or
optical integral field spectroscopy may turn out to be very useful
as well in determining the centroid and mass of the group that
contains the galaxy lensing HE 0435-1223.

7. Conclusion

We presented seven years of optical monitoring for the four
lensed quasar images of HE 0435-1223. We found that the
time delays are better expressed with respect to component B,
which is the least affected by stellar microlensing in the lensing
galaxy. The formal error bars on the time delays are between 5%
and 10% depending on the component, which is remarkable
given the very short time delays involved. In addition, the de-
lays are robust against different tests performed on the data, in-
cluding removal of subsets of data and monte carlo simulations.
These tests are possible only with very long light curves, as pro-
vided by COSMOGRAIL. Most past lens monitorings have two
to three seasons and much coarser temporal sampling. The de-
lays are also independent of the way the microlensing variations
are modelled. Given the short length of the delays, additionally
improving the error bars will only be possible by increasing the
temporal sampling of the curves, i.e., by merging all existing
data on HE 0435-1223 taken by different groups over the years.

We introduced a method to convert the time delays into H0
purely based on external constraints on the radial mass slope of
the lens. These constraints come from deep optical spectroscopy
of the lens, which allowed us to measure its velocity dispersion
and its stellar mass-to-light ratio. The present paper describes
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Fig. 9. Distribution of our lens models as a function of the dark matter slope and H0. The colour code gives the value of χ2
Tot (see text; Eq. (7)). Only

the models with χ2
Tot < 1 are shown. The results in the left panel are for a Salpeter IMF, and for a Kroupa IMF in the right panel. The lensing χ2

itself is not included in the figure. However, it is systematically lower for galaxies with Kroupa IMFs than for galaxies with Salpeter IMFs.

Fig. 10. Same as Fig. 9, but the colour code now gives the slope of the total (dark+luminous) mass profile, γ′. A logarithmic slope of γ′ = 2
corresponds to an isothermal profile, shown in green.

our approach, but the current observations of the lensing galaxy
so far lead to a broad range of values for H0.

Our methodology complement that presented by Suyu et al.
(2009, 2010) well. Combining the two in the future will require
follow-up observations such as (i) deep HST imaging to map
the Einstein ring with high signal-to-noise; (ii) deep high res-
olution spectroscopy of the lens over a broad spectral range to
narrow down the uncertainty on its velocity dispersion and stel-
lar mass; (iii) integral field spectroscopy to measure all redshifts
within 30−60′′ around the lens; and (iv) X-ray imaging to pin-
point massive groups along the line of sight.

If all these observations are taken for HE 0435-1223 as well
as for a few lenses with well measured time delays, the cost in
terms of follow-up observations will still remain very modest
compared with other existing methods to measure H0, such as
Cepheids and supernovae.
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3.2. Microlensing analysis of Q J0158−4325

3.2 Microlensing analysis of Q J0158−4325

The quasar Q J0158−4325 is lensed by a z = 0.317 galaxy into two images, with an image
separation of 1.′′22. A Hubble Space Telescope image is shown in Figure 3.9. Our light curves
are displayed in Figure 3.10. Despite 8 years of monitoring, no correspondence of the variability
patterns of the images A and B is seen. Yet, a simple lens model predicts a short delay, of
only ∆tAB =−12.4 day (Morgan et al. 2012). The variability in the light curves is apparently
completely dominated by quasar microlensing, on both short and long time scales, and there
is no hope to measure a delay from the present data.

However, this particularly strong and fast microlensing variability is interesting on its own. As
illustrated in Section 1.2.3, microlensing is sensitive to the source size: the larger the source,
the smoother the quasar microlensing variability. In Morgan et al. (2012), the microlensing
variability of Q J0158−4325 is analyzed by the bayesian Monte Carlo technique of Kochanek
(2004). This method is based on randomly simulating a large number of microlensing magni-
fication curves, trying to reproduce the observed data. The parameter space is large, as the
microlensing curves depend on perfectly unknown parameters such as the spatial configura-
tion of lens stars, the effective velocity of their bulk motion, the stellar mass fraction of the lens
galaxy (“how many microlenses”), the microlens mass, and of course the source size. Exploring
this parameter space in order to fit our 8 year long curves is extremely CPU-costly: in total
2.4 ·1011 trial light curves were drawn by Morgan et al. (2012). The resulting inference on the
source size is shown in Figure 3.11, in which the latter is parametrized by a scale radius rs of an
assumed surface brightness profile of the quasar. The size of the quasar, at optical wavelengths,
is found to be of the order of 5 ·1015 cm ≈ 2 light days. Our optical light curves complement
a 6-epoch monitoring with the Chandra X-ray Observatory. From the combined analysis,
constraints on the size of the X-ray emitting region of the quasar could also be obtained.

E
N

1''

A
BG

Q J0158–4325

Figure 3.9: HST I -band Image of Q J0158−4325. Color encodes brightness (black is brightest).
Image from the CASTLES survey, PI: C. S. Kochanek, http://www.cfa.harvard.edu/castles/
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Figure 3.10: Light curves of the double J0158–4325 (zlens = 0.317, zQSO = 1.26), that we pub-
lished in Morgan et al. (2012).
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Figure 3.11: Probability distribution of the X-ray (top) and optical (bottom) size of the quasar
J0158−4325, from Morgan et al. (2012). The solid curve in the bottom panel shows the estimate
for the scale radius rs in the optical (λrest ∼ 3100 Å) from the analysis of the light curves shown
in Figure 3.10.
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4 Cosmic shear measurement

4.1 Introduction

In this chapter we leave the subject of strong lensing and time delays, and focus on another
way to constrain cosmology with gravitational lensing. Cosmic shear designates small apparent
distortions of galaxies that are due to weak gravitational lensing (Figure 1.8 on page 19) by the
largest structures in our Universe.

Independent observations such as galaxy redshift surveys have shown that the baryonic
matter density of the Universe is not homogeneous on scales below a few hundred Mpc.
Galaxies and galaxy clusters are distributed along filaments separated by voids, forming a
foamy “cosmic web” (see Figure 1.1 on page 4 of this thesis). According to concordance
cosmology, these structures should be largely dominated by dark matter; the observed galaxies
reveal only a possibly biased part of the total picture. Weak gravitational lensing, which does
not differentiate between baryonic and dark matter, is therefore a unique tool to map these
structures at low redshift and learn about dark matter. It even allows us to probe the evolution
of the statistical properties of these structures over cosmic time, thereby also constraining
dark energy. For a review of this powerful cosmological probe see, e.g., Huterer (2010).

It remains to harness the observational effect. Weak lensing is literally too weak to be dis-
cernible on individual background sources. In the case of cosmic shear, that is shear measured
on “random” areas of the sky and not only in proximity of galaxy clusters, the distortions are at
best of the order of 1%. As every galaxy has an individual intrinsic shape and orientation, we
cannot tell if and how a particular galaxy got sheared. An appealing way to reveal the shear
induced by galaxy clusters is to locally average the apparent orientations of many background
galaxies. Random intrinsic galaxy alignments will tend to cancel out, and the resulting average
orientations will tangentially encircle mass over-densities. From such shear field measure-
ments, the mass density can be partially reconstructed, as illustrated in Figure 4.1. Another
approach, more suited to the delicate cosmic shear, is to analyze its imprint on statistical
properties of the observed galaxy shapes, such as two-point correlation functions or power
spectra. These functions quantify the size of the fluctuations in the shear field as a function
of angular scale. Exploiting such statistics, the first detections of cosmic shear by several
independent groups succeeded in 2000 (see Refregier 2003, for a review). Statistical shear mea-
sures can be related to the three dimensional power spectrum of matter density fluctuations,
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Chapter 4. Cosmic shear measurement

Figure 4.1: Detection of a dark-matter filament connecting two galaxy clusters, by Dietrich et al.
(2012). Blue shades indicate the surface mass density as reconstructed from the weak lensing
distortions of more than 40,000 background galaxies. The continuous (dashed) contours give
the significance of the over-density (under-density) starting at 2.5 σ in steps of 0.5 σ. It is
likely that this filament is rather perpendicular to the celestial sphere, and hence longer then
it appears. By comparing these results with X-ray observations, the authors show that hot
intergalactic plasma accounts for at most 10% of the mass of the filament; it is mainly made
of dark matter. Image credit : Jörg Dietrich, University of Michigan / University Observatory
Munich.

which in turn directly depends on cosmological parameters. They probe matter density and
structure formation. Schneider et al. (2006) gives a thorough introduction to the observational
techniques of weak lensing and to cosmic shear interpretation.

The first step of all these shear studies is to accurately measure the shapes of numerous –
and thus faint – background galaxies, as distorted by weak lensing, over wide areas of the
sky. The difficulty of this task is illustrated in Figure 4.2 : ground-based observations are
degraded by atmospheric turbulence, diffraction of telescope optics, and noise. While space-
based telescopes avoid the atmosphere, the complications remain very similar. First, the
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Intrinsic galaxy

 Star (point source)

Weak lensing by 
foreground mass

causes shear

Atmosphere and
telescope cause a 
convolution by a

PSF

Detectors measure
pixelated images

The images
contain noise

Figure 4.2: The “forward process” leading to the imaging data used in shear studies. This
chapter describes a method to reconstruct shape properties of the sheared galaxies (second
panel of the top row) from images of observed galaxies and stars (rightmost panels). In this
visualization, the amplitude of the distortion by cosmic shear is exaggerated by a factor 10.
Also note that for real ground-based data the size of the PSF is roughly comparable to the size
of the observed galaxies. Illustration adapted from the GREAT08 handbook (Bridle et al. 2009).

Point Spread Function (PSF) that characterizes the smearing of the image (central panels
of Figure 4.2) introduces anisotropies (e.g. ellipticity) that are typically several times larger
than the distortions by cosmic shear. The PSF significantly varies across the field of view of
telescopes. Even when using telescopes designed for optimal image quality, the PSF smearing
has to be corrected for in order to reveal any shear signal. Second, the pixelation and noise
of the images, as well as the simple isotropic component of the PSF, introduce both random
scatter and bias in the measured shape properties of small and faint galaxies. Refregier
et al. (2012) have recently illustrated the so-called noise bias using a didactic toy model.
They draw simple 2D Gaussians on a pixel grid, add some noise, and fit those images with
Gaussian profiles, leaving only the width of the profile as a free parameter. Despite this
idealized situation in which the true “galaxy profile” is perfectly known, the resulting biases
are comparable in magnitude to typcial shear signals, and thus far too high to be neglected.

The paper at the end of this chapter (Tewes et al. 2012a) presents a novel technique, MegaLUT,
to correct galaxy shape measurements for PSF smearing, pixelation, and noise in one single
step. Our involvement in this subject was directly motivated by the GREAT10 galaxy challenge,
a data analysis challenge organized in the form of a competition, and presented in the next
section. To our knowledge, MegaLUT is the first technique that performs the shape measure-
ment correction entirely using supervised machine learning. The idea is straightforward : by
analyzing shape measurement biases on a large sample of simulated yet realistic galaxies with
known “true” shape, one can learn how to empirically correct for these biases when facing real
data. Machine learning has been applied so far only to correct for residual errors of techniques
that try to analytically compensate for the smearing by the PSF. In contrast, our approach is to
directly ask the “machine” to correct measured shape parameters of a galaxy, given observed
images of the galaxy and a PSF-star. Our elementary implementation of such a machine –
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namely a simple look-up table (LUT) – turns out to be competitive with the best alternative
techniques applied to GREAT10, at a fraction of their computational cost.

4.2 The GREAT10 data analysis challenge

GRavitational lEnsing Accuracy Testing 2010 (GREAT10) (Kitching et al. 2011, 2012) is a data
analysis challenge that was held for 9 months between December 2010 and September 2011.
GREAT10 stands in a row with similar public weak lensing challenges1. Aside of comparing
and improving existing shear measurement techniques, the aim of such well-defined and
documented competitions is also to open up this problem to experts of image processing,
computer science, and statistics not necessarily involved in astrophysical research. The simple
formulation of the shear measurement problem makes it well suited for such blind analysis
challenges based on simulated data.

The GREAT10 challenge consists of reconstructing at best different shear power spectra,
“hidden” by the organizers in simulated images of 50 million PSF-convolved and noisy galaxies.
The simulated PSF was a ground-based PSF, and it was given to the participants, for the
position of each galaxy, both as a single noisy star and in exact analytic form. Figure 4.3
displays a few galaxies and associated PSF stars from different signal-to-noise ratio (S/N)
categories of the challenge data.

The random intrinsic orientations of the galaxies were cleverly drawn2 so that pure shear
power spectra can be extracted directly from the estimated sheared ellipticities of the galaxies,
i.e., the ellipticities that the galaxies had prior to their convolution by the PSF. Participants to
the challenge could either submit a catalog of these sheared ellipticities (one for each galaxy),
or directly submit shear power spectra. The latter case opened the possibility to empirically
tweak the measured power spectra before submission. In this perspective, the true shear
power spectrum was disclosed for a small training-subset of the full data. For the application
of our MegaLUT technique to GREAT10, we decided to focus on the conditions of a real cosmic
shear survey, and did not exploit any information of the analytic PSF or the shear power
spectrum of this training set. MegaLUT processes each galaxy individually, disregarding its
spatial location.

All submissions to GREAT10 are evaluated using 10 evaluation metrics, described in detail
in the GREAT10 results paper (Kitching et al. 2012). The most important of these metrics are
directly linked to the quality of a cosmological inference from cosmic shear. They quantify the
comparison between the true and the reconstructed shear power spectra, as shown respec-
tively in green and red in Fig. 6 of our paper at the end of this chapter. The simulated shear
power spectra are roughly linear in the covered range of multipole moments (l = 102 corre-
sponds to angular scales of about 1◦, l = 103 ∼ 10′). To probe the ability of the techniques to
reconstruct these shear power spectra without any model assumptions, a random polynomial
was added to the power spectrum of each data subset. These perturbations can be seen as

1http://www.greatchallenges.info
2The intrinsic ellipticity correlation function contains only B-mode power. The analysis focused on the E-mode

of the shear, as gravitational lensing does not produce B-mode patterns. This effectively decouples the shear signal
from the intrinsic galaxy orientations.
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4.2. The GREAT10 data analysis challenge

Figure 4.3: 15 out of 50 million GREAT10 galaxies (top) and corresponding PSF stars (bottom),
from 3 different “sets” of the challenge data. All stamps are shown with the same logarithmic
intensity scale.

kinks in the true power spectra shown in Fig. 6 of our paper. To reduce biases in cosmological
inferences, shear measurement techniques should reconstruct these perturbations at best.
Scalar metrics which measure the match of these power spectra are briefly introduced below.

• The “quality factor” Q is the most prominent GREAT10-metric; it tries to assess the
overall performance of a method. Q is inversely proportional to the area between the
true and measured shear power spectra: higher Q-values are better. This quality factor
was used to compare the methods on the online learderbord during the challenge.

• M, A designate respectively multiplicative and additive biases of the reconstructed
power spectra. Values closest to zero are better.
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Figure 4.4: Control visualization of our first, modestly successful, attempt to implement
a shape measurement for GREAT10 galaxies and PSF stars. The images are first strongly
denoised, and the shapes are measured from the 2nd moments of denoised light distributions
within masks. This shape measurement is referred to as “MMD”.

As illustrated in the inset of Fig. 6 of our paper, these metrics can also be evaluated individually
for each of the 24 sets of the data, to study the behavior of a technique in different conditions
covered by GREAT10. The spread of the M and A values evaluated per set is clearly also an
indicator of the quality of a technique.

4.3 MegaLUT applied to GREAT10

The shape measurement part of MegaLUT can be seen as an interchangeable black box. We
have considered two different choices in the scope of GREAT10.

In a first step, we experimented with our own simple shape measurement code, dubbed
“MMD”. Its commonplace underlying principle is to measure the ellipticity and orientation of
galaxies and stars by computing second moments of the light distributions. The key difficulty
for any shape measurement algorithm is to minimize the sensitivity to image noise. To address
this issue we made use of a wavelet-denoising method. The denoising can be rather strong, as
MegaLUT will inherently correct for shape measurement biases. A summarizing screenshot of
this MMD method is shown in Figure 4.4.

The second and much more successful variant completely outsources the shape measurement,
by relying on the open Source Extractor package3 (Bertin & Arnouts 1996). While Source
Extractor is certainly one of the most widely used softwares in observational astrophysics, it
is not renowned for shape measurement by the weak lensing community. Source Extractor
focuses on efficient source detection and deblending, without any correction for PSF smearing
or other biases. However, it is able to compute windowed second moments (“SEWIN”) that
are rather robust against noise, even if these moments are highly biased – a perfect match for
MegaLUT.

3http://www.astromatic.net/software/sextractor
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4.3. MegaLUT applied to GREAT10

Table 4.1: Values of GREAT10 metrics achieved by the competing methods (based on Table 3
of Kitching et al. 2012).

Method Approach Q m c/10−4 M/2
p
A/10−4

ARES 50/50 (DEIMOS + KSB)/2 105.80 −0.03 0.35 −0.0186 0.0728
cat7unfold2 “shapefit” & ML, PS 152.55 - - 0.0214 0.0707
DEIMOS C6 Moments, analytic 56.69 0.01 0.08 0.0043 0.6329
fit2-unfold “shapefit” & ML, PS 229.99 - - 0.0408 0.0656
gfit Model-fitting 50.11 0.01 0.29 0.0058 0.0573
im3shape Model-fitting 82.33 −0.05 0.12 −0.0538 0.0945
KSB Moments, analytic 97.22 −0.06 0.86 −0.0376 0.0872
KSB f90 Moments, analytic 49.12 −0.01 0.19 0.0208 0.0789
MegaLUT MMD & ML 69.17 −0.27 −0.55 −0.1831 0.1311
MegaLUT SEWIN & ML 104.14 −0.15 −0.06 0.0119 0.0819
method04 Moments, analytic 83.52 −0.17 −0.12 −0.0907 0.0969
NN23 func Image deconvolution 83.16 −0.24 0.47 −0.0153 0.0982
shapefit Model-fitting 39.09 0.11 0.17 0.0491 0.8686

The results achieved by those variants of MegaLUT and the other techniques competing in
GREAT10 are presented in Table 4.1. The combination of MegaLUT and Source Extractor
is shaded in gray. We developed this SEWIN variant only after the end of the GREAT10
competition, but its results were analyzed with the official analysis code by the principal
investigator of GREAT10, Thomas Kitching. Our pure python implementation of MegaLUT is
publicly available4, and our results are thus easily reproducible.

The second column of Table 4.1 gives reductive hints on how the different methods work. “ML”
stands for Machine Learning, “analytic” designates an analytic correction for the anisotropy
of the PSF, and “moments” identifies methods that use moments of the light distributions to
measure the shapes, as do MMD and SEWIN. Importantly, “PS” indicates submissions of shear
power spectra, instead of shape catalogs. The resulting possibility of additional empirical
corrections to the power spectra was successfully exploited by the two methods that lead the
competition in terms of the Q and won the challenge. More detailed descriptions of each
method can be found in the GREAT10 results paper (Kitching et al. 2012).

Considering our conservative approach to not perform any corrections at the power spectrum
level, the combination of MegaLUT with Source Extractor yields very competitive results. One
highlight of our method is that it analyzed the entire GREAT10 data (≈ 1 TB) in less then one
day on a single desktop computer (< 3 ms · CPU per galaxy). This is about 200 times faster
than the winning entries fit2-unfold and cat7unfold2, which are limited in speed by their
model-fitting algorithm.

4http://lastro.epfl.ch/megalut, GPLv3 license
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4.4 Outlook

In order to reduce statistical errors in the cosmological parameter inferences, large area
shear surveys are required. Measuring shear statistics in only a small region of the sky yields
biased results, due to cosmic variance : the large-scale structure is not isotropic, by definition.
Figure 4.5 shows that, assuming perfectly unbiased shear measurements, it is truly the sky
that limits the inference (see also Amara & Refregier 2007). A survey on the order of the full
sky (41253 deg2) is needed to reach an accuracy of 1% on the dark energy equation-of-state
parameter. Keeping the systematic errors of measurement methods under control, so that
they don’t spoil this analysis, is the task of future GREAT-like challenges. On the observational
front, planned weak lensing surveys will indeed cover a significant part of the entire sky.

Figure 4.5: Accuracy on the dark energy equation of state parameter w0 as a function of area
of a cosmic shear survey. The red line assumes no biases at all, while the black lines show
different amplitudes of systematic errors in the shear power spectrum. Figure from Amara &
Refregier (2008).

Cosmic shear is a main science goal for several future ground- and space-based surveys, such
as the 8.4-m Large Synoptic Survey Telescope (LSST)5 to be built in Chile, and ESA’s Euclid
space mission6 scheduled for launch in 2020. Euclid will observe 1.5 billion (1.5 ·109) source
galaxies, with typical redshifts around z = 1.0, by imaging roughly half the sky with a resolution
below 0.′′2 (Euclid Consortium 2011). These galaxies will be classified into several redshift bins
to perform so-called weak lensing tomography, exploring the radial dimension of large scale
structure. Considering this depth information, by means of photometric redshifts, further
increases the cosmological constraining power of weak lensing.

This exciting perspective underlines the importance of not only accurate but also fast shear
measurement techniques. Processing Euclid’s galaxies at a rate of one per second corresponds
to 50 CPU years! MegaLUT’s efficient combination of raw shape measurement and a pure

5http://www.lsst.org
6http://www.euclid-ec.org
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4.4. Outlook

machine learning correction for PSF and image noise certainly opens up an interesting path.
Notably, a method like MegaLUT could also be used to quickly provide a set of initial conditions
for further analyses. Especially the slow model-fitting techniques would benefit from good
first-guess parameters. A meticulous source detection and measurement, as exploited by
MegaLUT, will be done anyway on the imaging data of cosmic shear surveys.

The third GRavitational lEnsing Accuracy Testing challenge (GREAT3)7, supported by the
European PASCAL2 Network of Excellence8 and NASA/JPL9, will start in July 2013 for a period
of 6 months. GREAT3 is a significant evolution of its predecessors. It makes use of a much more
realistic image simulation software, notably involving real galaxy images, physically-motivated
PSF models for ground- and space-based data, and multi-exposure imaging. We are looking
forward to improving our empirical technique for this new edition. A simple 4-dimensional
look-up table is obviously just a first step.

7http://www.great3challenge.info/
8http://www.pascal-network.org/
9http://www.jpl.nasa.gov/
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ABSTRACT

We describe a simple and fast method to correct ellipticity measurements of galaxies from the distortion by the instrumental and
atmospheric point spread function (PSF), in view of weak lensing shear measurements. The method performs a classification of
galaxies and associated PSFs according to measured shape parameters, and corrects the measured galaxy ellipticites by querying a
large lookup table (LUT), built by supervised learning. We have applied this new method to the GREAT10 image analysis challenge,
and present in this paper a refined solution that obtains the competitive quality factor of Q = 104, without any shear power spectrum
denoising or training. Of particular interest is the efficiency of the method, with a processing time below 3 ms per galaxy on an
ordinary CPU.

Key words. gravitational lensing: weak – methods: data analysis

1. Introduction

Gravitational lensing offers a means to map the distribution of
matter over a broad range of spatial scales. In the strong regime,
gravitational lensing gives rise to multiple images of distant
sources. This allows both to study lensed sources in great details
and to map the matter in the central parts of the lensing objects,
either individual galaxies (e.g., Bolton et al. 2008; Faure et al.
2008; Courbin et al. 2012) or galaxy clusters (e.g., Coe et al.
2010; Shan et al. 2012). In the weak regime, only one image of
the source galaxy is seen and its apparent distortion can only be
measured statistically, by averaging the signal over many galax-
ies. This occurs either when the mass density in the lensing ob-
jects is too low, below the “critical density”, or when the sources
are separated from the lenses in projection on the plane of the
sky. Strong and weak lensing are sometimes combined e.g., to
probe simultaneously the core and the large scale halo of galaxy
clusters (e.g., Limousin et al. 2007).

On very large spatial scales, weak gravitational lensing is not
caused anymore by mass along a specific line of sight, but rather
by the combined gravitational fields of the large scale struc-
tures of the Universe. The signature of the lensing distortions,
called cosmic shear, is best seen in this regime through its power
spectrum or through its two-point correlation function across
the whole sky. Since the first measurement of the effect (Maoli
et al. 2001; Bacon et al. 2000; Kaiser et al. 2000; Van Waerbeke
et al. 2000; Wittman et al. 2000), it was quickly realized that
cosmic shear is a sensitive tool to measure indirectly some of
the most important cosmological parameters, including the dark
energy equation of state parameter and its evolution with red-
shift (Hu 1999). Several ground-based wide field surveys to mea-
sure cosmic shear with unprecedented accuracy are under way or

under study (e.g., Pan-STARRS1, DES2, Subaru HSC3, LSST4).
Euclid5, a space mission currently being implemented by ESA,
will image at least 15 000 square degrees of space with one of
the main science objectives being the measurement of cosmic
shear (see, e.g., Laureijs et al. 2011).

All the applications of gravitational shear, whether they be
about galaxy and cluster halos or about dark energy, require the
measurement of shapes of numerous and faint distant galaxies
with optimal precision and without any significant systematic
bias. Euclid will observe about 1.5 billion galaxies to achieve
its scientific goal. However, any telescope produces images that
are limited either by diffraction, by the Earth’s atmosphere,
or by both effects. The algorithms that will be used to measure
galaxy shapes must correct for this smearing, characterized by
the point spread function (PSF) of the entire image acquisition
process. A considerable amount of work has been devoted so far
to tackle this problem. Among the most popular approaches is
the “KSB” family of methods (Kaiser et al. 1995), based on the
measurement of the second order moments of the light distribu-
tion of galaxies. In these methods, the correction for the smear-
ing by the PSF is done analytically. Many different implemen-
tations and improvements of KSB are currently in use. Other
algorithms consider a fit of an analytical model to the galaxies
(e.g., Miller et al. 2007; Kitching et al. 2008) or decompose them
on an orthogonal basis of vectors called “shapelets” (Kuijken
2006; Refregier 2003; Refregier & Bacon 2003).

1 http://pan-starrs.ifa.hawaii.edu
2 http://www.darkenergysurvey.org
3 http://www.naoj.org/Projects/HSC/
4 http://www.lsst.org
5 http://www.euclid-ec.org
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Even if the PSF is properly accounted for, galaxy shape mea-
surements, as well as the resulting shear measurements, are pos-
sibly biased by the presence of noise in the images (see e.g.
Refregier et al. 2012; Melchior & Viola 2012). It is likely that,
given the complexity of galaxy shapes, this “noise bias” will
have to be addressed by an empirical calibration using synthetic
data (Kacprzak et al. 2012). Such calibrations can be performed
at the topmost level of the shear measurement (i.e., the recovered
shear itself), or at the lower levels of the shape measurements
(i.e., correcting every galaxy measurement). Recently, Gruen
et al. (2010) introduced a promising method based on training
a neural network to correct for the bias at the level of each indi-
vidual galaxy. We propose in the present work an algorithm in
line with the work of Gruen et al. (2010), but we apply a simple
machine learning approach directly to the PSF removal problem
instead of correcting for the residual bias of an existing PSF re-
moval method. This potentially yields unbiased galaxy shapes,
which is the primary goal of this work. However, as empha-
sized by Melchior & Viola (2012), also the variance of shape
estimates leads to a bias on the shear measurement. We show
in this paper that our method is competitive even without any
specific calibration of this noise bias at the level of the shear
power spectrum.

The article is structured as follows: the principles of our
method are described in Sect. 2. Section 3 describes an applica-
tion to the simulated data of the GRavitational lEnsing Accuracy
Testing 2010 (GREAT10) challenge (Kitching et al. 2011), illus-
trating how our method can be combined with existing shape
measurement techniques. The results achieved on GREAT10 are
presented in Sect. 4, while limitations and possible extensions to
our method are discussed in Sect. 5. Lastly, Sect. 6 summarizes
our conclusions.

2. Description of MegaLUT

This paper proposes a conceptually simple, empirical, and fast
method to correct ellipticity measurements of galaxies for the
distortion by the instrumental and atmospheric PSF. The central
idea of the method is to perform a classification of galaxy-PSF
pairs with respect to their measured shape parameters, i.e., the
parameters characterizing both the galaxy and its PSF. For each
of these classes, an ellipticity correction is estimated to remove
the effect of PSF smearing. These corrections are obtained by
supervised learning and written into a large but tractable lookup
table (LUT), hence the name MegaLUT. With this approach,
the problem of correcting galaxy shapes for the convolution by
the PSF is reduced to a simple array indexing operation.

The goal of MegaLUT is to describe at best the elliptici-
ties of individual galaxies prior to the convolution by the PSF.
We do not consider here the additional problem of extracting
the shear due to gravitational lensing. Depending on the appli-
cations, the gravitational shear signal may be derived either by
computing the power spectrum of the measured galaxy shapes,
or by averaging the latter locally over small regions of the sky.
We stress that MegaLUT, implemented as described below, aims
at recovering ellipticities only, neglecting any shape parameter
not used for shear studies.

In the following, we will refer to observed galaxy shapes
when dealing with the shape of galaxies convolved by their PSF,
as recorded on a detector. Note that these observed galaxies
can be either real or simulated. In addition, we refer to sheared
galaxy shapes when dealing with the shape galaxies had prior to
convolution by the atmospheric and instrumental PSF.

These sheared galaxy shapes, and in particular the sheared
ellipticities are what we are after. To recover them from
the observed galaxy shapes, the proposed method needs
some knowledge of the PSF either as a parametric model
(e.g., Moffat, Gaussian or other more sophisticated profiles),
or as a decomposition on a basis of vectors (e.g., Shapelets,
Zernike or Hermite polynomials), or simply as an array of pix-
els, i.e., a sampled image of a star or a stack of stars. We assume
that the PSF has already been estimated at best at the position of
each galaxy in the survey, i.e., PSF interpolation is considered as
a separate/solved problem. The way galaxies and PSFs are repre-
sented need not be the same, as long as the same representations
are adopted for the real and the synthetic learning data.

Through this paper, we will use the notion of complex ellip-
ticity, common to shear studies, as defined in the GREAT10 chal-
lenge (Kitching et al. 2011). This complex ellipticity, e, is linked
to the elongation ε and position angle θ of the objects, where
ε = a/b, and a and b are respectively the semi-major and semi-
minor axis of the light distribution isophotes:

e =
ε − 1
ε + 1

ei2θ (1)

= |e| [cos(2θ) + i sin(2θ)] (2)

= e1 + i e2. (3)

The factor 2 in the angular argument reflects shape invariance
under rotation by 180◦. Complex ellipticity does not encode the
apparent size of an object.

Keeping the above in mind, MegaLUT consists of three
steps: (1) generating a learning sample of simulated data;
(2) building the lookup table (LUT) from this simulated data;
(3) querying the LUT to recover the sheared galaxy shapes of
the real data, i.e., the shapes of the (lensed) galaxies as they were
before convolution by the PSF.

2.1. Step 1: generating the learning sample

The first step is to build a learning sample of observed galaxies
with known sheared complex ellipticities eSheared, and randomly
associating a PSF to each of these galaxies. Properties like pixel
size, noise characteristics, galaxy morphology and PSF profiles
of this learning sample should be as close as possible to the data
to be analysed. To build such a learning sample, where observed
galaxies and PSFs are in the form of pixelized images, we adopt
the following procedure:

1. Draw artificial sheared (i.e., weakly lensed) galaxies, and as-
sociated PSFs, on a fine pixel grid. The adopted pixel sam-
pling for the artificial images should simply be chosen fine
enough so that it does not influence the results, given the
required precision. For each galaxy, store the sheared el-
lipticity eSheared. For both the galaxies and the PSFs, ran-
domly sample a broad range of radial profiles, apparent sizes,
fluxes, ellipticities and orientations. This sampling can very
well be uniform as long as it covers the full parameter space
for real galaxies and PSFs.

2. Numerically convolve the galaxies with their associated
PSFs.

3. Downsample the convolved galaxies and PSFs to match the
pixel size of the real data.

4. Add realistic noise to the simulated images. The properties
of the noise can easily be chosen to match that of the real data
and may even include subtleties like cosmic rays and charge
transfer inefficiency. In the present implementation the latter
two effects are left out.
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We now measure these simulated observed galaxies with any
given shape measurement algorithm, leading to a set of parame-
ters, such as size, ellipticity, position angle and flux. The shape
measurement algorithm can be seen as a black box; it should be
precise, but not necessarily accurate, i.e., it should be as insensi-
tive as possible to noise, while systematic biases in the measure-
ments are acceptable. Those biases will be inherently cancelled
by the method. We do the same with the simulated PSFs, leading
to a set of associated PSF shape parameters. Note that the shape
measurement algorithms applied to the galaxies and to the PSF
need not be the same.

At this point, the learning sample consists of an unordered
collection of measured galaxy and PSF shape parameters, asso-
ciated to the known underlying sheared galaxy ellipticities.

2.2. Step 2: building the LUT

Next, we classify the galaxies from the learning sample accord-
ing to these measured shape parameters. A given galaxy can be
seen as a point in a multidimensional space, each dimension cor-
responding to one parameter, e.g., size, ellipticity, position angle
and flux of the galaxy, as well as size, ellipticity and position
angle of the PSF. Some of these observed parameters are clearly
degenerate with respect to the sheared ellipticities. For example,
the absolute sizes of the galaxy and the PSF are not required to
recover the sheared ellipticity. What matters is the relative size
of the galaxy with respect to the PSF. Following a similar theo-
retical argumentation, the measured fluxes of the sources seem
a priori irrelevant. Note that in practice, the flux – or signal-to-
noise ratio S/N – of the galaxies and PSF stars could well be
important, as it might bias the other measured shape parameters.
For the specific application of MegaLUT described in this paper,
we made use of a shape measurement whose biases do not sig-
nificantly depend on the S/N within the considered range, as we
will show in Sect. 3.2.3. Therefore, we do indeed disregard the
fluxes in the following.

Similarly, the PSF smearing should be invariant with respect
to rotation on the plane of the sky6. Hence, only the relative ori-
entation between the PSF and the galaxy influences the correc-
tion for the PSF smearing.

Both to accommodate for the parameter degeneracies and to
minimize the dimensionality of the LUT, we reduce the parame-
ter space to the following set of four less degenerate continuous
coordinates:

– εGal: the elongation of the galaxy;
– εPSF: the elongation of the associated PSF;
– r: the size ratio between the galaxy and its associated PSF;
– Δθ: the relative orientation of the PSF with respect to

the galaxy.

Each galaxy can now be represented as a point in this four-
dimensional space. The classification consists of dividing this
space into numerous hyperrectangles (“4-orthotopes” in math-
ematical terms), that we call here cells. This is easily done by
individually splitting the full range of observed values of each
of the above coordinates into a finite number of bins. The co-
ordinates of any galaxy can then be univocally associated to
a corresponding cell.

Computationally, the four discretization functions that relate
the continuous coordinate values to four indexes that identify a

6 We neglect in this first approach possible rotation-dependent effects
due to finite and square stamp size, pixel sampling, or charge transfer
inefficiency.

cell can be kept short and very fast. They consist mainly of a
rounding operation. We have explored the situation in which all
the cells have the same size, i.e. the binning of the coordinates
is regular. While this is the simplest choice, it is by no means
a required condition.

Finally, to build the LUT, we distribute all galaxies of the
learning sample among the corresponding cells. In each cell, the
differences between the known sheared and the measured ob-
served complex ellipticities eSheared − eObs give an estimation for
a simple additive correction to undo the smearing by the PSF.
But the galaxies in a cell, and hence also these differences, have
random position angles on the sky. To obtain complex elliptic-
ity corrections that are rotation invariant we express their orien-
tations with respect to the measured orientation of the galaxy.
In mathematical terms, this corresponds to computing:

δe :=
eSheared − eObs

eObs/|eObs| with δe, eSheared, eObs ∈ C (4)

for each simulated galaxy. These δe can now be averaged within
each cell. The LUT, as it will be used in the next step, thus con-
sists of a multidimensional array of complex ellipticity correc-
tions 〈δe〉. The standard deviation of the δe within each cell can
be used to express the uncertainty of these corrections.

2.3. Step 3: querying the LUT for real galaxies

For each galaxy and PSF pair in the real data, we measure the
observed shape parameters using the exact same black box as
applied on the learning sample. Hence any systematic errors in-
herent to the shape measurement are cancelled. The measured
parameters are transformed into coordinates, and the coordinates
are discretized into integer indexes of the LUT, again by the
exact same simple functions that were used to build the LUT.
Through a simple array indexing operation, the complex ellip-
ticity correction 〈δe〉 can thus be directly read from the LUT.
Finally, we obtain the estimation of the sheared ellipticity by ap-
plying the correction to the observed galaxy shape:

êSheared = eObs + 〈δe〉 · eObs

|eObs| , (5)

where the multiplication by eObs/|eObs| corresponds to a rotation
of the correction by the measured orientation of the galaxy.

In the scope of cosmic shear surveys, the recovery of the
sheared ellipticty has to be done for billions of galaxies, hence
the simplicity and computational speed of this LUT query are
crucial. Figure 1 summarizes the procedure.

3. Implementation for the GREAT10 challenge data

We applied MegaLUT to the GREAT10 Galaxy Challenge,
described in detail in the handbook and results papers (Kitching
et al. 2011, 2012). The challenge consists of recovering the
shear power spectrum by measuring the sheared ellipticities of
50 million simulated noisy galaxies placed on a rectangular grid.
The shape of the PSF is variable across the field of view, but it is
provided, at the position of each galaxy, both as a noisy pixelized
stamp and under exact analytical form. For our implementation
of MegaLUT, we have exclusively used the noisy PSF images.

In this section, we describe how we generated the learning
sample for MegaLUT, and how we improved on the shape mea-
surement since the end of the GREAT10 challenge.
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Fig. 1. Structure of a MegaLUT query to recover the sheared ellipticity, that is the ellipticity the galaxy had prior to the PSF convolution, from the
observed shapes of the galaxy and the PSF. The shape measurement requires most of the computational time; it should be as precise as possible,
but does not need to be accurate, as MegaLUT cancels any biases in the coordinates.

3.1. Generation of the learning sample

The GREAT10 Coordination Team has simulated the galaxy im-
ages to be analysed by superposing two exponential profiles of
the form exp(−kR1/n), namely a disk (n = 4) and a bulge (n = 1),
that may be misaligned with respect to each other. Then, before
convolving them by the PSF, the shear signal was introduced by
explicitly applying a distortion to the galaxy images (Kitching
et al. 2011).

To build our learning sample, we have chosen to directly
draw sheared galaxies using a single elliptical exponential pro-
file with n = 1.5. Doing so we keep the generation of our learn-
ing sample as simple as possible, and show that a detailed knowl-
edge of the GREAT10 simulation details is not required by our
method. Furthermore, this simplification unambiguously links
the true sheared ellipticities of our learning sample galaxies to
their analytical form.

For the PSF, we use Moffat profiles with β = 3, i.e., the same
profile that was used to generate the PSFs of GREAT10.

Before drawing the stamps for the learning set, we need to
determine the ranges of sheared galaxy and PSF sizes and el-
lipticities so that the resulting measured shape parameters, and
thus the 4 coordinates of MegaLUT as described in Sect. 2.2,
cover the values required to process the GREAT10 data. In prac-
tice, we therefore first run a shape measurement algorithm on the
GREAT10 data, and then empirically adjust the input parameter
ranges of the learning simulations so that the observed character-
istics (aGal, aPSF, εGal, εPSF) match those of the GREAT10 stamps.
Position angles of the galaxies and PSFs follow a uniform dis-
tribution across all possible orientations. The signal-to-noise ra-
tio (S/N) is simply kept constant, for both the galaxies and the
PSFs, to the fiducial S/N of the GREAT10 data. The centroid
positions of the galaxy and PSF profiles within the stamps are
randomized by a uniformly distributed scatter of ±1 large pixel
in each direction.

We now draw, and then convolve, these galaxy and PSF pro-
files on fine pixels, 4 times smaller than the GREAT10 pix-
els (i.e., 16 times in area). We bin the pixels 4 × 4 to match
the GREAT10 sampling and we add a simple Gaussian noise
with σ = 1 ADU (in the same flux scale as GREAT10) to
the convolved galaxy and to the PSF images. This is well rep-
resentative of the “sky-limited” acquisition regime. Taken in-
dividually, the resulting stamps are indistinguishable from the

GREAT10 data in terms of the proposed shape measurement and
visual inspection.

3.2. Shape measurement methods

In the scope of the GREAT10 challenge, we have compared two
fast shape measurement methods, both based on the computa-
tion of the 2nd order moments of the light distribution. Here we
briefly describe them and assess their precision.

3.2.1. Masked 2nd moments + denoising (hereafter MMD)

To optimally include the shape measurement in our workflow
and test the feasibility of the proposed method, we have, in a first
step, implemented our own shape measurement. It sequentially
processes the pairs of galaxies and PSFs, stamp by stamp, and
can be summarized as follows:

1. Denoise the stamp, using hard thresholding of the first and
second level of its Haar wavelet coefficients.

2. Build a boolean isophotal mask for the denoised stamp, se-
lecting only those pixels whose values are above a certain
fraction of the maximum value.

3. Compute the barycenter, and the centered 2nd order mo-
ments of the resulting (i.e. masked and denoised) stamps.

4. Transform the 2nd order moments into an orientation θ and
a semi-major and semi-minor axes a and b. In doing this, we
use the same formalism as in the SExtractor package (Bertin
& Arnouts 1996b).

The denoising step is important to increase the precision of the
measured parameters and also because it smoothes the contour
of the isophotal mask. As MegaLUT cancels biases of the shape
measurement step, we can make use of a rather strong denoising,
even if the latter does not completely preserve object shapes.

We have submitted MegaLUT only in combination with this
first MMD shape measurement method to the GREAT10 chal-
lenge leaderbord.

3.2.2. SExtractor windowed 2nd moments (SEWIN)

The widely used SExtractor software (Bertin & Arnouts 1996a)
implements “windowed” measurements of the centroids and
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2nd order moments. The computation of the latter are similar
to the basic 2nd order moments, except that the pixel values
are weighted, in a similar way to which it is done in KSB, by
an adaptive circular Gaussian window7. While these windowed
parameters can be significantly biased with respect to the basic
ones, they are far less sensitive to noise in the input images.

As an alternative to the simple MMD shape measurement,
we thus include a second shape measurement based solely on
the latest SExtractor (version 2.8.6) in our analysis. To retain its
advantage in computational speed, simplicity, and reproducibil-
ity, we do not combine it with prior denoising of the images.

We have considered this second shape measurement method
only after the GREAT10 challenge deadline. Thus its results are
not included in Kitching et al. (2012).

3.2.3. Analysis of the shape measurement precision

For MegaLUT to deliver precise results, the scatter of elliptic-
ity corrections within each cell should be as small as possible
(e.g., see Fig. 1). This scatter has three sources:

1. The precision of the shape measurement, i.e., the sensitiv-
ity of the coordinates to noise in the images. An imprecise
shape measurement will randomly allocate the learning sam-
ple galaxies to the wrong cells. Additionally, these random
errors will also influence the querying the LUT. Note that in
practice, galaxies and PSF images are sampled on a discrete
pixel grid, resulting in an inherent limit in precision for any
shape measurement.

2. The reduction of the multidimensional parameter space to a
limited number of coordinates. A given choice of coordinates
effectively marginalizes over all parameter dependencies not
explicitly included in the chosen coordinates. If for instance
the measurement of an elongation depends on the signal to
noise ratio (S/N) of a source, and the LUT does not discrim-
inate according to S/N, stamps differing only by their S/N
may be allocated to different cells.

3. The actual variation of the ellipticity correction within the
finite size of the cells, due to the continuous evolution of
the ellipticity corrections, δe, in the parameter space. This
effect is inherent to the method, but can be easily adressed by
choosing a sufficiently fine sampling of the parameter space.
For the sampling used in our implementation, this source of
scatter is insignificant compared to the first two points.

We evaluate the precision of the two shape measurement meth-
ods presented in the previous sections by running them on
400 realizations of a single simulated galaxy and an associ-
ated PSF. The corresponding stamps are drawn using the same
light profiles as for the learning sample, but we keep all param-
eters of the profiles constant, by setting them to typical values
representative of the GREAT10 data. Only the noise realiza-
tion and the scatter in centroid positions differ between these
simulated stamps.

The histograms for the four coordinates obtained through the
two methods are shown in Fig. 2. In this plot, each coordinate c
obtained from MMD has been linearly rescaled (c′ = m · c) so
that its variance can be equitably compared to the variance of the
SEWIN coordinate. Indeed, the different ways of masking and
weighting the second order moments yield significantly different
raw shape parameters; for instance, the elongations measured by

7 The windowed parameters are described in the SExtractor manual
by E. Bertin, available at http://www.astromatic.net/software/
sextractor

Fig. 2. Comparison of the precision of the shape measurements methods
used in this work, obtained by running them on 400 noisy realizations of
always the same galaxy and PSF pair. MMD results are shown in grey,
SEWIN in red. The shape parameters measured by MMD are rescaled
so that their variance can be equitably compared to the variance of the
SEWIN ones (see text). The vertical lines indicate the 20 bins in each
coordinate, as used for all applications to GREAT10 described in this
paper. See Fig. 1 for a description of the coordinates.

SEWIN are systematically about half of the elongations from
MMD. For each coordinate, the scaling factor m is chosen so that
the range of coordinates computed for the full learning sample
by the two techniques robustly overlaps. Note that this rescaling
is only required for the comparative study of Fig. 2.

Discrepancies in accuracy (i.e. positions of the peaks) of
the techniques is not a concern, as MegaLUT corrects for bias
using the learning sample; the peaks should simply be as nar-
row as possible. The SEWIN method clearly evinces a higher
precision than the simple MMD that was submitted to the
GREAT10 challenge. This is especially true for the measurement
of the elongation of the PSF.

The width of the histograms in Fig. 2 gives the resolution of
the shape measurement for data very similar to GREAT10. The
bin size used to discretize the coordinates of the LUT cells can
now be chosen fine enough to avoid any significant degradation
of this resolution.

To evaluate the importance of the second source of scatter,
that is the marginalization over potentially discriminating pa-
rameters, we process in a similar way. In Fig. 3, we compare
the SEWIN measurements for the 3 different signal-to-noise ra-
tios encountered in the GREAT10 data. We observe that the cen-
troids of all 4 coordinates, as obtained from SExtractor, are not
significantly affected by the S/N, at least within the range of
S/N explored in GREAT10. This is a remarkable property of
SExtractor’s windowed moments, hence it is justified not to in-
clude the S/N as a coordinate in the LUT. Naturally, we do ob-
serve an increase in the variance of the coordinates with decreas-
ing S/N; such a lack of precision inevitably degrades the shear
signal, whatever be the accuracy of the correction.

Figure 4 illustrates a similar analysis, but varying the size of
the galaxy and PSF, instead of the S/N. The coordinate r dis-
criminates stamps by their galaxy-to-PSF area ratio. For an an-
alytical convolution, this ratio would not be affected by rescal-
ing both the galaxy and the PSF by the same factor. However,
as a consequence of the pixelization, the histogram for the val-
ues of r slightly depends on the galaxy and PSF scale. At the
cost of adding one more dimension to the LUT, this limitation
may be adressed by including both the galaxy and the PSF size
as coordinates to the LUT, instead of their ratio.
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Fig. 3. Sensitivity of SEWIN coordinates to the 3 different signal-to-
noise ratios of GREAT10, for a typical galaxy and PSF. There is no ob-
servable bias of the shape measurements with changing S/N. Therefore
we do not include the S/N as a dimension of the LUT.

Fig. 4. Sensitivity of SEWIN coordinates to the size of the PSF and
galaxy pair. The distinction between the small (red) and large (blue)
couples is a factor 1.8 in full width at half maximum of both the PSF
and the galaxy, covering the range from the smallest to the widest PSFs
in GREAT10. For the present MegaLUT implementation, the measure-
ment of the size ratio r should ideally not depend on this rescaling.

Aside from the mentioned sources of scatter within the cells,
the ellipticity corrections can also be biased, if the learning sam-
ple is not representative enough of the galaxies and PSFs to
be analyzed. Our method is indeed a machine learning method.
As such, the quality of the training set is important. We discuss
this source of error in Sect. 5.

3.3. Building the LUT

Given the resolution of the two considered shape measurement
methods (see Fig. 2), we have chosen, for all our applications to
GREAT10, to use a regular sampling of 20 bins in each of the
4 coordinates, yielding 204 = 160 000 cells. As expected, fur-
ther increasing this sampling did not improve the performance
of the algorithm.

For our submission of MegaLUT using the MMD shape
measurement to the GREAT10 challenge, we built a learning
sample of 2.1 million galaxies. Since then, we increased this
number to 9 millions, without changing neither the profiles nor
the parameter distributions. As illustrated in Fig. 5, this number
is large enough to sufficiently fill the required cells of the LUT.
But in fact, we observe that the GREAT10 scores achieved do

Fig. 5. Histogram of the number of learning sample galaxies in the cells
as encountered by the 50 million queries to the LUT. The cells of the
LUT that are most queried by the GREAT10 data are sufficiently filled
by the learning sample. Using a learning sample of 9 million galaxies,
we find that only 5% of the queries found less than 5 learning galaxies
in their cells. Note that for those queries falling on an empty cell, our
implementation returns the mean correction from the cells neighbors.

Table 1. Quality factors Q and further GREAT10 metrics obtained by
MegaLUT in combination with the two discussed shape measurement
methods MMD and SEWIN.

Method Q m c/10−4 M/2 √A/10−4

MegaLUT +MMD 69.17 −0.27 −0.550 −0.1831 0.1311
MegaLUT + SEWIN 104.14 −0.15 −0.057 0.0119 0.0819

Notes. All values are computed using the same analysis code as for the
GREAT10 results paper. The description of these metrics can be found
in Kitching et al. (2012). The entry MegaLUT + MMD refers to the
submission “MegaLUTsim2.1 b20” in Kitching et al. (2012).

not significantly decrease when using only our initial learning
sample of 2.1 million galaxies.

4. Results on the GREAT10 challenge data

We participated in the GREAT10 challenge by combining
MegaLUT with the MMD shape measurement (Sect. 3.2.1),
reaching an encouraging quality factor Q of 69.2 (Kitching et al.
2012).

With the SExtractor-based SEWIN shape measurement
(Sect. 3.2.2) – implemented after the challenge deadline, and
thus not in the official leaderboard – MegaLUT reaches a Q fac-
tor of 104, without power spectrum denoising or training. This
score is competitive with the results achieved by the best ellip-
ticity catalog submission to GREAT10.

The achieved values of all GREAT10 metrics obtained us-
ing the two shape measurements are presented in Table 1.
We observe that the SEWIN shape measurement substantially
improves (i.e., reduces) both the one-point (m, c) and power
spectrum (M/2,

√A) bias estimates. Performance details of
MegaLUT + SEWIN, for each set of the GREAT10 data, are
displayed in Fig. 6.

We implemented MegaLUT in pure PYTHON in a
few hundred lines of code8. Using the SExtractor shape

8 The code is available at http://lastro.epfl.ch/megalut
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Fig. 6. Power spectra of the sheared ellipticities as obtained by MegaLUT + SEWIN for each set of the challenge. This figure can be directly
compared with those from all GREAT10 submissions described in Kitching et al. (2012). The red lines represent the measured shear power,
obtained without the denoising term, while the green lines represent the true shear power. The inset gives the metricsM/2,

√A and Q (without
denoising or training) for each set.

measurement, the whole process of detecting, characteriz-
ing the galaxy/PSF pairs, and querying the LUT takes
less than 3 milliseconds per galaxy on an AMD Opteron
2216 2.4 GHz CPU. Given the competitive quality met-
rics, this makes MegaLUT a very efficient solution to the
PSF correction problem.

5. Discussion

MegaLUT splits the measurement process of sheared elliptici-
ties into two distinct parts: the shape measurement itself, and the
subsequent ellipticity correction by a simple form of supervised
learning. Limitations of the shape measurement algorithms in
the presence of noise as well as the finite sampling and dimen-
sionality of the LUT are practical error sources. They are dis-
cussed in Sect. 3.2.3. We recall that even if our empirical method
corrects for biases on the estimated sheared ellipticites, the re-
maining variance in this output will degrade the weak lensing
signal, and in particular bias the shear power spectrum.

The remaining and more fundamental sources of error con-
cern the discrepancies between the learning sample and the data
to be analyzed. In this paper, we have kept the learning sample

as elementary as possible, using a single simply parametrized
profile for the galaxies. All the free parameters describing the
generation of these learning galaxies and the associated PSFs,
such as size and ellipticity, directly relate to coordinates of
the LUT. Assuming a perfect shape measurement and noise-
less data, two galaxy-PSF pairs from the learning sample would
get attributed the same coordinates only if the pairs are virtu-
ally identical, except for their absolute orientation and size. As a
consequence, for such a simple parametrization of the learning
sample, the actual distributions of parameters used to generate
the learning sample do not act as priors of the method. Indeed,
the queried ellipticity corrections don’t depend on these distri-
butions, as long as the LUT gets sufficiently filled with learning
data in all required cells.

But clearly, real galaxies do not follow smooth exponential
light profiles. Instead, their possibly multiple components fol-
low a variety of slopes, contain asymmetries, and may well not
come isolated. Any employed shape measurement is sensitive to
these substructures. Therefore, a machine learning approach like
MegaLUT will yield biased results if it is not trained on realis-
tic galaxies. How can we deal with this necessity for a realistic
learning sample?
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Let us note that for a real galaxy there is no longer a natural
and unambiguous definition of ellipticity as we have for the sim-
ple smooth profiles with perfectly elliptical isophotes. The el-
lipticity of a real galaxy must be defined through a measurement
on the image. Hence, to combine MegaLUT with a more detailed
and realistic learning sample, one can easily measure the sheared
ellipticities of the simulated galaxies before the convolution by
the PSF and the addition of noise. This procedure allows to use
simulated learning galaxies with arbitrary substructure, and also
to shear them in a well controlled way once they have been
drawn on a pixel grid. When such a detailed learning sample
is built, the distribution of parameters describing the generation
of galaxy substructure (e.g. light profiles, clumps, companions)
would influence the distribution of ellipticity corrections inside
the LUT cells. They would thus effectively act as priors on the
method, to be chosen according to the population of galaxies to
be analyzed. Ideally such simulated data should be cosmology-
independent and blind, to avoid confirmation bias effects.

Furthermore, such an increase in details of the learning sam-
ple represents an opportunity for more sophisticated shape mea-
surement methods to test the benefits of additional characteri-
zations of the galaxies and PSF, as for example an estimation
of the radial slope of the light distributions. If consequently the
desired number of coordinates or cells of the LUT increases
significantly, the memory requirements and CPU time for the
generation of enough learning data might become a limitation.
In any case, the brute-force LUT with manually chosen coordi-
nates could be replaced by a fast interpolation across sparse data
in a large parameter space, for instance by using an artificial neu-
ral network like those employed by Gruen et al. (2010).

6. Conclusion

In this paper we have presented MegaLUT, a new method to
correct galaxy shape measurements from smearing by the in-
strumental and atmospheric PSF. We list below a summary of
the advantages of our method.

1. MegaLUT is empirical. It does not need to rely on a specific
shape measurement method or shape definition, and does
not require the shape measurement to be accurate (bias is
tolerated) as long as it is precise (low variance). The shape
measurement itself can be considered as an interchangeable
black box.

2. As a consequence, MegaLUT can well be combined with
existing shape measurements techniques, in particular it can
make use of strong image denoising to increase the shape
precision, even if the denoising itself introduces biases in the
measured parameters.

3. Each galaxy is processed individually, hence MegaLUT is
independent from the spatial power spectrum of the shear
field or the PSF variations.

4. The total computational cost of the analysis of a galaxy and
its corresponding PSF is dominated by the shape measure-
ment process, as the shape correction essentially reduces
to a simple array indexing operation. When combined with

an efficient shape measurement, MegaLUT is fast, with a
total processing time of a few milliseconds per galaxy, on
an ordinary CPU.

By applying this method to the GREAT10 challenge (Kitching
et al. 2011, 2012), we have shown that its results are well com-
petitive (Q = 104) with the best submitted methods, despite a
truly simplistic learning sample and the lack of additional cor-
rections for bias at the level of the shear power spectra. Like for
any machine learning technique, once the technical aspects are
well controlled, it’s ultimately the quality of this learning sam-
ple that limits the performance of the shape measurement itself.
To obtain the best possible shape estimates for real weak lensing
observations, a more representative learning sample might be re-
quired. We have discussed in Section 5 how a learning sample
containing arbitrarily realistic galaxies and PSFs could easily be
used. In particular, such a learning sample can be build directly
using high-resolution observations, like Hubble Space Telescope
images.
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5 Strong lensing by QSO host galaxies

5.1 Introduction

This last chapter deals again with strong gravitational lensing. It present results from a spec-
troscopic search of literal “QSO-lenses”, that is QSO1 host galaxies acting as lenses. This
configuration is uncommon : the term QSO-lens is usually used to designate systems in which
a quasar is the seen as multiply-imaged point source, lensed by a foreground galaxy.

Source galaxy

Lensed image A

Lensed image B

Lens galaxy with quasar Hubble Space Telescope

Figure 5.1: Strong lensing by QSO host galaxies. The bright quasar sits in the lens galaxy,
while the distant source galaxy is much fainter. Sharp imaging such as from the Hubble Space
Telescope is required to spatially resolve the lensed images, as they would otherwise remain
hidden in the bright glare of the foreground quasar.

Why search for new galaxy-scale strong gravitational lens systems ? The results presented in
Chapter 3 of this thesis give a compelling case for searching for new gravitationally lensed
quasars. For these lenses, it’s the variable nature of the source that enables us to measure
the time delays so useful to constrain cosmological parameters. In this context, the lens
itself may seem secondary. But importantly, strong lensing also allows us to probe the mass
density distribution of the lenses, especially if the observations feature extended lensed images
such as wide arcs, and not only unresolved quasar images. A recent highlight in the field

1QSO stands for Quasi-Stellar Object, a synonym of quasar. Quasars are briefly introduced in Section 1.2.1 on
page 11 of this thesis.
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of galaxy lenses is the gravitational detection of a low-mass (2 ·108 M¯) dark satellite galaxy
at a distance of z = 0.881, by accurate modeling an Einstein ring (Vegetti et al. 2012). Such
observations of galaxy substructure, predicted by numerical simulations but rarely “seen”,
are absolutely crucial to test our current cold dark matter cosmological model. Another
motivation for searching new galaxy lenses is to obtain large samples of cases for different lens
galaxy categories. Properties such as the mass profile, and its evolution with redshift, can then
be statistically studied within each category. If these samples are well defined, they allow for
robust generalization of the results to similar galaxies not acting as strong lenses. Two surveys
fit exactly in this picture : SLACS2 builds and analyses a sample of lenses formed by early-type
(i.e., elliptical to lenticular) galaxies (Bolton et al. 2006), and SWELLS successfully focused its
search and follow-up observations on edge-on late-type (lenticular to spiral) lenses (Treu et al.
2011).

For a review on how strong lensing allows us to explore the spatial mass distribution in galaxies,
see Treu (2010). The foremost goal of our search for QSO host galaxies acting as lenses is to
weigh galaxies of this particular class, and compare their dynamical and lensing masses.

5.2 The SDSS spectroscopic survey

The next question to answer is how to perform a systematic search for such relatively small
strong galaxy lenses. Identifying these systems from ground-based survey images is close to
impossible if the Einstein radii, that is approximatively the angular separation between the
lens and the lensed images, approaches the spatial resolution of the data. And indeed, as
illustrated in this thesis by the COSMOGRAIL sample, Einstein radii as small as 1′′ are common
for lens galaxies.

Both SLACS and SWELLS select their lens candidates from the ground-based Sloan Digital Sky
Survey (SDSS), and our search for “QSO-lenses” is also done in the same way and using this
same survey. The trick is to perfom a spectroscopic search.

SDSS is a survey of about a quarter of the sky, using a dedicated 2.5-m telescope in New Mexico
(USA). The particularity making SDSS truly “one of the most ambitious and influential surveys
in the history of astronomy”3 is that it performs spectroscopy of selected targets of its multi-
filter imaging data. The SDSS has so far obtained spectra of about 1.5 million galaxies, 230000
quasars, and 670000 stars4, in a spectral range from 3900 to 9100 Å and with a resolution λ/∆λ
of 1800. This is accomplished by using a fiber-fed spectrograph capable of simultaneously
recording more than 600 spectra of different targets in the field of view. In such a design,
optical fibers bring the light from the focal plane of the telescope to the spectrograph. The
heads of these fibers must be individually placed at the position of each target in the focal
plane. In the case of SDSS, robots drill aluminum “plug-plates” to hold the fibers in place,
and plug in the fiber heads, for each observing field. A detail of such a plug-plate is shown in
Figure 5.2. The small black dot in the center of each fiber head is the opening that accepts the
light to be analyzed. These holes have a diameter of 180 µm, corresponding to 3′′ on the sky.

2See http://www.slacs.org for an image gallery, a summary of major results, and a publication list.
3http://www.sdss.org/
4http://www.sdss3.org/dr9/ (August 2012)
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5.2. The SDSS spectroscopic survey

Figure 5.2: Close-up of a plug-plate that holds the optical fibers in the focal plane of the
SDSS telescope. The inset zooms on one of the installed fiber heads. Original photograph by
User:EdPost / Wikimedia Commons / CC-BY-SA-3.0

How to find strong lenses in these spectra ? The idea is to look for emission lines superposed
to the spectrum of a given galaxy, but at a higher redshift. The spectrograph fibers mix up
all the light received within 1.′′5 from the center of their targets, and even a bit more, as the
image is blurred by the PSF. If light from a background object at a significantly different redshift
from the foreground galaxy is recorded within this aperture, it is likely that the background
object is somehow gravitationally lensed. A dedicated follow-up observation by deep and
sharp imaging can then be afforded to confirm the candidate and reveal the magnified and
distorted images. A striking advantage of the spectroscopic selection technique is that the
source and lens redshifts are directly known already from the survey data.

Figure 5.3 shows such a continuum-subtracted SDSS spectrum of a target classified as QSO.
Strong typical emission lines of the quasar, indicated by black dotted lines, are clearly observed
at a redshift of 0.209. In addition, several other emission lines can be discerned. Taken
individually, the latter would be hard to interpret. But altogether, they can be matched to
hydrogen and oxygen lines at a much higher redshift of 0.558, as identified by the red dashed
lines. Figure 5.4 show the corresponding imaging data. The SDSS image does not give any hint
about the origin of these emission lines at two different redshifts. In contrast, the sharp HST
image not only clearly reveals two wide arcs, but also the interesting and apparently double
structure of this particular lens.
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SDSS J0919+2720 0.209 0.558
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Figure 5.3: Continuum-subtracted SDSS spectrum of the QSO-lens J0919+2720. The top panel
gives an overview of the spectrum, while the bottom panels show cutouts around the detected
background emission lines. The dashed curves give the relative transmissions of the two filters
used for HST imaging, in arbitrary units.

Figure 5.4: SDSS and Hubble Space Telescope (HST) images of J0919+2720. The red disk on
the bottom right of both insets shows the size of fiber feeding the SDSS spectrograph. The
corresponding spectrum, that lead to our selection of this lens for follow-up imaging by the
HST, is shown in Figure 5.3.
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5.3 Results

The paper inserted at the end of this chapter (Courbin et al. 2010) summarizes the simple
algorithm that we have implemented to search for lens candidates, trawling through the SDSS
database of quasar spectra. It essentially corresponds to a cross-correlation between the
observed spectra and redshifted emission line templates.

In our initial search run, realized in the scope of excellent LASTRO summer projects of
François Rérat and Dheeraj Reddy, we identified four highly convincing lens candidates:
SDSS J0013+1523 (Figure 1 of Courbin et al. 2010), J0919+2720 (Figure 5.3), J0827+5224, and
J1005+4016 (Figure 5.5). They all feature 4 consistently redshifted “background” emission
lines. Follow-up observations in May 2010 with the 10-m Keck I telescope on Mauna Kea
(Hawaii) and in February and March 2011 with the Hubble Space Telescope (HST) have led to
two publications.

Courbin et al. (2010) This first letter announces the likely confirmation of a first candidate,
SDSS J0013+1523, based on spectroscopy and adaptive optics K -band imaging from the
Keck telescope. It is included at the end of this chapter.

Courbin et al. (2012) This second article presents Keck but also the HST follow-up obser-
vations for all four candidates. Color combined HST images of the 3 new candidates,
which led to the press release STScI-2012-14 of the Space Telescope Science Institute
are shown in Figure 5.6.

Two of the four candidates, namely J0919+2720 and J1005+4016, display prominent grav-
itational arcs. In J0919+2720, the bright point-like quasar is displaced with respect to an
early-type main lens galaxy. A first rough estimate of the total mass within the rings yields
21±6 ·1010 solar masses (M¯) for this exotic combination, which might be an ongoing merger.
For J1005+4016, the arc surounds a QSO in a face-on spiral galaxy. For this system the mass
within the Einstein radius is estimated to be 7.5±1 ·1010 M¯. For all cases, a detailed lensing
analysis is still pending. Unfortunately, the HST observations could not confirm the potential
counter-image “B” identified in the Keck imaging of J0013+1523. It might be obscured by dust,
and thus too faint in the optical, or it might have been an artifact of the adaptive optics images
(Courbin et al. 2012). The present HST images are not conclusive on the strong lens nature of
this candidate.

Since the initial selection of these candidates, the spectroscopic search for QSO-lenses has
been carried on at LASTRO in the scope of student projects and master theses. Future high
resolution imaging surveys such as Euclid (Section 4.4) will also boost the potential for discov-
eries of new strong lenses. To search for lenses in the roughly 1013 pixels of Euclid’s sky map,
efficient algorithms are required. Spectroscopically selected lenses like those presented in this
chapter constitute a precious sample for the training and evaluation of such robots.
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Figure 5.5: SDSS spectra of J0827+5224 and J1005+4016, displayed in the same way as
J0919+2720 (Figure 5.3) as and as J0013+1523 (Figure 1 of Courbin et al. 2010).
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ABSTRACT

We present the first case of strong gravitational lensing by a QSO: SDSS J0013+1523 at z = 0.120. The discovery is the result of
a systematic search for emission lines redshifted behind QSOs, among 22 298 spectra of the SDSS data release 7. Apart from the
z = 0.120 spectral features of the foreground QSO, the spectrum of SDSS J0013+1523 also displays the [O ii] and Hβ emission lines
and the [O iii] doublet, all at the same redshift, z = 0.640. Using sharp Keck adaptive optics K-band images obtained using laser
guide stars, we unveil two objects within a radius of 2′′ from the QSO. Deep Keck optical spectroscopy clearly confirms one of these
objects at z = 0.640 and shows traces of the [O iii] emission line of the second object, also at z = 0.640. Lens modeling suggests that
they represent two images of the same z = 0.640 emission-line galaxy. Our Keck spectra also allow us to measure the redshift of an
intervening galaxy at z = 0.394, located 3.2′′ away from the line of sight to the QSO. If the z = 0.120 QSO host galaxy is modeled as
a singular isothermal sphere, its mass within the Einstein radius is ME(r < 1 h−1 kpc) = 2.16× 1010 h−1 M� and its velocity dispersion
is σSIS = 169 km s−1. This is about 1-σ away from the velocity dispersion estimated from the width of the QSO Hβ emission line,
σ∗(MBH) = 124 ± 47 km s−1. Deep optical HST imaging will be necessary to constrain the total radial mass profile of the QSO host
galaxy using the detailed shape of the lensed source. This first case of a QSO acting as a strong lens on a more distant object opens
new directions in the study of QSO host galaxies.

Key words. gravitational lensing: strong – quasars: individual: SDSS J0013+1523– dark matter

1. Introduction

With the growing number of ongoing and future wide-field sur-
veys, strong gravitational lensing is becoming a powerful tool to
weigh individual galaxies and study their total radial mass pro-
files. Historically, strong lenses have long been source-selected,
i.e., they were found by identifying gravitationally lensed mul-
tiple images of distant sources such as QSOs, either in the op-
tical (e.g., SDSS, Oguri et al. 2006) or in the radio (e.g., the
CLASS survey, e.g., Browne et al. 2003; Myers et al. 2003).
The discoveries of multiply imaged QSOs, by numerous in-
dependent teams over two decades, have led to a sample of
about 100 strongly lensed QSOs. Detailed HST imaging is
now available for most of these objects mainly thanks to the
CfA-Arizona Space Telescope LEns Survey (CASTLES, Muñoz
et al.1998; Impey et al. 1998). The second largest sample of
source-selected systems is the one obtained in the COSMOS

� Some of the data presented herein were obtained at the W. M. Keck
Observatory, which is operated as a scientific partnership among the
California Institute of Technology, the University of California and the
National Aeronautics and Space Administration. The Observatory was
made possible by the generous financial support of the W. M. Keck
Foundation. This program also makes use of the data collected by the
SDSS collaboration and released in DR7.
�� Alexander Von Humboldt fellow.

field (Faure et al. 2008), where the sources are almost always
emission-line galaxies.

Source-selected samples tend to yield lensing galaxies span-
ning a broad range of physical properties, i.e., effective radii,
Einstein radii, dark matter profiles, total masses, and environ-
ments. With current wide-field surveys such as the SDSS, it
is now also possible to build lens-selected samples, where the
lenses can be chosen with well-defined photometric properties.
The largest sample of these lens-selected systems to date is
the SLACS sample (e.g., Bolton et al. 2008), where the lenses
are color-selected early-type galaxies with 0.1 < z < 0.6 and
where the sources are emission line galaxies with z > 0.5. While
source-selected samples use optical or radio data to look for
multiple images, SLACS uses SDSS optical spectra to look for
emission lines redshifted behind the selected lensing galaxies,
following the technique of Warren et al. (1996).

Following the same approach, we started to compile a lens-
selected sample where the foreground lenses are QSOs in place
of early-type galaxies. Our long-term goal is to provide a di-
rect measure of the total mass of QSO host galaxies and to use
SLACS as a non-QSO “control” sample. Because the lensing
QSOs are at low redshift (z < 0.4), the range of follow-up appli-
cations is very rich, as their Hβ, Hα, [O iii] emission lines are
clearly measurable in the SDSS spectra. In addition, the angu-
lar size and luminosity of their host galaxies make it possible to
carry out direct spectroscopy of the host (e.g., Lewate et al. 2007;
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Fig. 1. Top: SDSS spectrum of SDSS J0013+1523, after subtraction of the continuum, as provided by the SDSS pipeline. The emission lines
associated with the foreground z = 0.120 QSO are shown with vertical dotted lines (black) and the emission lines associated with the z = 0.640
background object are shown with dashed lines (red). The noise spectrum is also displayed indicating the position of the strongest sky lines.
Bottom: from left to right zooms on the z = 0.640 [O ii], Hβ and on the [O iii] doublet. The noise spectrum does not show any strong feature at the
position of the background emission lines. Note as well that the [O ii] doublet is spectrally resolved. No smoothing has been applied.

Letawe et al. 2004; Courbin et al. 2002). Our sample will there-
fore allow us to test directly the scaling laws established between
the properties of QSO emission lines, the mass of the central
black hole, and the total mass of the host galaxies (e.g., Kaspi
et al. 2005; Bonning et al. 2005; Shen et al. 2008).

In this paper, we focus on the discovery of the first
case of a QSO, SDSS J0013+1523 (RA(2000): 00h13m40.21s;
Dec(2000): +15◦23′12.1′′; z = 0.120; r = 18.04), producing
two images of a background galaxy (z = 0.640) due to strong
gravitational lensing.

2. Spectroscopic search in SDSS

We used the SDSS DR7 catalogue (Abazajian et al. 2009) of
spectroscopically confirmed QSOs to build a sample of potential
lenses, without applying any magnitude cut. We considered all
QSOs in the catalogue with 0 < zl < 0.7, providing a sample
of 22 298 potential lenses with SDSS spectra. In these spectra,
we look for emission lines redshifted beyond the redshift of the
QSO. Since the SDSS fiber is comparable in size (3′′ in diam-
eter) to the typical Einstein radius of our QSOs, the object re-
sponsible for the background emission lines is very likely to be
strongly lensed (e.g., Bolton et al. 2008).

Looking for emission lines in the background of QSOs is
far more difficult than behind galaxies, for three reasons: (i) the
QSO outshines the lensed background images, making follow-
up imaging very challenging and (ii) in contrast to early-type
galaxies, QSO spectra span a huge range of properties, both in
the continuum and emission lines. It is therefore impossible to
subtract a QSO template from the SDSS spectra and to search
for emission lines in the residual spectrum. Finally, (iii), QSO
spectra have many weak iron features that can mimic faint back-
ground emission lines. These lines lead to false positives that

can be removed statistically thanks to the huge number of QSO
spectra available in SDSS.

Although our search technique will be the topic of a future
paper, the main components of our strategy are the following.
First we subtract the continuum of the QSO spectra using a
spline fit. Then, we cross-correlate the continuum-subtracted
spectra with several analytical templates of emission lines. We
typically use 3 templates, one with only the optical Hβ and [O iii]
doublet, a second to which we add the [O ii] doublet, and a third
that also contains Hα. The cross-correlation provides us with a
catalogue of candidates, a candidate being defined as a signifi-
cant peak in the cross-correlation function of redshift higher than
the foreground QSO. Each QSO spectrum has many possible
candidates, of which we retain the 5 most significant. For those,
we fit Gaussian profiles to each of the candidate emission lines
and compute a quality factor, based on the total signal-to-noise
ratio (S/N) in the spectroscopic lines.

The quality factor is used to select the most likely candidates
in terms of S/N. However, at this point, the catalogue of candi-
dates still needs to be cleaned from false positives produced by
residuals caused by either sky subtraction or faint features in the
spectrum of the foreground QSO. Thanks to the large number of
QSOs in the SDSS sample, these can be identified statistically
and rejected efficiently. As a final step, we carry out a visual in-
spection of the most probable candidates. This process leaves us
with about 10 candidates that have at least 3 significant emis-
sion lines and an additional 4 candidates with 4 emission lines.
SDSS J0013+1523 is one of the latter. Its SDSS spectrum and
the background emission lines at zs = 0.640 are shown in Fig. 1.

If all 14 objects are actually lensed, the probability of find-
ing these objects is 14/22, 298 = 6.2 × 10−4. This is about 8
times less than in SLACS, where the discovery rate is 0.005 (e.g.,
Auger et al. 2009). However, our selection function is very dif-
ferent from SLACS, because of (i) the contrast between the QSO
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SDSS J0013+1523

G2
G1

5 arcsec

Fig. 2. Full field of view of the Keck NIRC2+AO observations. No star
is available to construct the PSF. Also indicated are galaxies G1 and G2,
which may contribute to the external shear of the lens models. From our
Keck spectra, galaxy G2 is at z = 0.394. North is to the top, east left.

and the background emission lines; (ii) the regions of the QSO
spectra that must be masked due to strong QSO spectral fea-
tures; (iii) the requirement to see multiple background emission
lines simultaneously outside the masked regions; (iv) differences
between the redshift distributions of QSOs in our sample and the
galaxies in SLACS. A detailed study of the selection function
(e.g., Dobler et al. 2008) beyond the scope of the present discov-
ery paper. However, if real, the difference between the SLACS
discovery rate and ours may reflect a genuine difference between
the lensing cross-sections of the two samples, i.e., between the
physical properties of QSO and non-QSO galaxies.

3. Keck adaptive optics imaging

The imaging observations were obtained on the night of
11 September 2009 UT, using the NIRC2 instrument1 in the laser
guide star adaptive optics mode (LGSAO, Wizinowitch et al.
2006) at the 10-m Keck-2 telescope on Mauna Kea, Hawaii,
in variable conditions. Images were obtained in the K′ band,
using the “wide field" NIRC2 camera with the FOV ≈ 40 arc-
sec, and the pixel scale of 0.0397′′. The observations consist of
42 dithered exposures of 40 s each. The data were reduced using
standard procedures, leading to the combined image shown in
Fig. 2.

Owing to the small field of view of the NIRC2+AO imager,
no star is available to construct a numerical point spread func-
tion (PSF), hence making image deconvolution impossible. We
nevertheless subtracted the low spatial frequencies of the PSF in
two different ways.

First, we used the GALFIT package (Peng 2002) to fit ana-
lytical profiles to the data. We tried a number of different models
where the QSO is represented with either a Gaussian or a Moffat
profile and where the host galaxy is represented by an ellipti-
cal Sersic, a de Vaucouleurs, or an exponential disk profile. We

1 http://www2.keck.hawaii.edu/inst/nirc2/

Table 1. Summary of the Keck astrometry.

Object x(′′) y(′′) Flux
QSO +0.000 +0.000 −
A +0.731 +0.027 1.00
B −0.539 +0.132 0.72
G1 −8.318 +2.873 −
G2 −2.842 +1.610 −

Notes. The error bars in the positions are about 20 mas, i.e., about half
a pixel.

found that the best fits were thoses with a Moffat for the QSO
and an exponential disk for the host. This model was subtracted
from the 42 individual images and the difference images were
then stacked and cleaned for cosmic-rays using sigma-clipping.

As a second method, we computed an estimate of the PSF
directly from the QSO itself. The goal here was to remove the
low frequency signal of the PSF (plus QSO host galaxy), by
symmetrizing the image of the QSO. For each of the 42 frames,
we produced 10 different duplicates rotated by 36 degrees about
the QSO centroid. We then took the median of these 10 rotated
frames, hence producing a circularly symmetric PSF. Thanks to
the median average, all small details in the PSF were removed,
i.e., the spikes, any blob in the PSF, and the putative lensed im-
ages of a background object. The 42 PSFs were then subtracted
from the data and the residual images were stacked together.

The results of these two ways of subtracting the QSO are
shown in Fig. 3. The subtraction is found satisfactory for dis-
tances larger than 0.25′′ away from the QSO. In this area, the
structures in the PSF-subtracted data change depending on the
model we adopt in GALFIT. This is because the first diffraction
ring of the PSF that cannot be modeled analytically. This ring
is more accurately modeled by our second subtraction method,
where we symmetrized the PSF.

Two obvious objects are found to the east and west of the
QSO, labelled A and B in Fig. 3. These are outside the area
where the PSF subtraction is uncertain and they are not located
on the PSF spikes indicated by dashed lines in the middle panel
of Fig. 3. We consider them as the best candidates for lensed
images of a source at zs = 0.640. All other faint structures are
either superimposed with PSF features or are not fitted by lens
models (Sect. 5). A summary of the relative astrometry and the
flux ratio of objects A to B is given in Table 1.

4. Keck optical spectroscopy

Deep Keck optical spectra were obtained on the night of
20 December 2009, using the LRIS2 instrument (Oke et al.
1995). The weather conditions were variable, with patchy
clouds. The seeing at the moment of the observations was 1.5′′.

A long slit was used (1.5′′ wide), with a position angle (PA)
of 70◦, ensuring that we could observe simultaneously the QSO
as well as object A and galaxy G2. Object B also enters partly
in the slit. The data consist of 3 exposures of 600 s each, with
nodding along the slit to minimize the effect of CCD traps.
The wavelength range from 3500 Å to 8500 Å is covered us-
ing the dichroic #560 that splits the beam into a blue and a red
channels. The spectrum in the blue channel is obtained using a
400 lines/millimeter grism and the spectrum in the red channel
is obtained with a 600 lines/millimeter grism.

2 http://www2.keck.hawaii.edu/inst/lris/
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1 arcsec

AB AB AB

Fig. 3. Left: zoom on the central part of Fig. 2. The resolution is 0.1′′ FWHM and the pixel scale is 0.0397′′ . Two objects, labelled A and B, appear
in the vicinity of the QSO. Middle: residual after subtraction of the GALFIT model (Moffat+exponential disk), where objects A and B are now
well visible. The circle indicates the position of the QSO. Its size, 0.5′′ in diameter, corresponds to the region where the subtraction may not be
reliable, mainly due to the presence of the complex first Airy ring of the PSF. Spike-like features in the PSF are indicated by the dashed lines.
Right: as in the middle panel, but a symmetrized PSF has been subtracted. This removes more effectively the Airy ring than an analytical model of
the PSF.

Fig. 4. Keck/LRIS spectrum of SDSS J0013+1523, normalized to the continuum. As in Fig. 1, the labels in black show the spectral features
associated with the foreground z = 0.120 QSO and the labels in red show the emission lines of the z = 0.640 background galaxy. No smoothing
has been applied.

The data were reduced using the IRAF3 package, to perform
the wavelength calibration, the sky subtraction, and the spectra
combination in two dimensions. The pixel size in the blue chan-
nel is 0.6 Å in the spectral direction and 0.135′′ in the spatial
direction. In the red channel the spectral scale is 0.8 Å per pixel
and the spatial scale is 0.210′′ per pixel. The final 1D spectrum
was extracted, confirming all of the z = 0.640 emission lines
seen in the SDSS spectrum (Fig. 4). In addition to the QSO spec-
trum we also obtained the spectrum of galaxy G2, allowing us

3 http://iraf.noao.edu/

to measure its redshift from the [O ii], Hβ, and [O iii] emission
lines, z = 0.394. This rules out the possibility that G2 is a counter
image of object A. We do not detect the continuum of G2.

The seeing for the 2D spectra was poor, but sufficient to sep-
arate spatially the spectrum of the QSO from that of object A.
This was achieved by subtracting a two-dimensional Moffat pro-
file from the data, clearly unveiling the four z = 0.640 emission
lines seen in the 1D spectrum, off-centered by 0.8′′ from the
centroid of the QSO. This is almost exactly the separation be-
twen the QSO and object A. We show in Fig. 5 the result of the
QSO subtraction for the two brightest emission lines. Although
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z = 0.640

[OIII] (5007A)

B (?)
A

5 arcsec

[OII] (3727A)

z = 0.640

A

Fig. 5. Two-dimensional spectrum of SDSS J0013+1523 obtained with
the Keck and LRIS. The spatial direction runs along the x-axis and the
spectral direction along the y-axis (red to the top). Top: zoom on the
[O iii] (5007 Å) emission line, redshifted to z = 0.640. The left panel
shows the original spectrum, while the right panel shows the data af-
ter subtraction of the QSO spatial profile, centered on the dashed line.
Object A is clearly detected, off-center with respect to the QSO, and
traces of B may be present at the position expected from the AO im-
ages. Bottom: same as above but for the [O ii] (3727 Å) doublet.

the signal is very weak, we can also detect a weak [O iii] emis-
sion line at the position expected for object B. Deeper obser-
vations with better seeing would be needed to provide firm
conclusions.

5. Lens modeling

We show that the observed image configuration is consistent
with the gravitational lens hypothesis. We model the mass
distribution of the lens with a singular isothermal sphere (SIS)
and include the effect of the environment as an external shear.
This simple model has three parameters: the angular Einstein ra-
dius θE of the SIS, the amplitude γ, and the position angle θγ
of the shear. The observational quantities used to constrain the
model are the relative positions of the lensed images A and B and
the flux ratio of these images. Since the flux ratio can be affected
by differential extinction, PSF uncertainties, or microlensing, we
assume an error of up to 20% in the flux ratio reported in Table 1.
The center of the SIS is assumed to be coincident with the po-
sition of the lensing QSO. Using the lensmodel lensing code
developed by Keeton (2001), we find that the observed system
can be perfectly reproduced (χ2 ∼ 0) with the following model
parameters (θE, γ, θγ) = (0.64 ± 0.06′′, 0.019 ± 0.02, 43+6

−4).

The angular Einstein radius θE of the SIS model is directly
related to the central velocity dispersion σSISof the stars in the
galaxy by the equation

θE =
4πσ2

SIS

c2

D1s

Dos
, (1)

where Dls (respectively Dos) is the angular cosmological dis-
tance between the lens and the source (resp. observer and
source). Using this formula, we find σSIS ∼ 169 km s−1 for
our best model. Because multiple images are observed, the sur-
face mass density Σ inside the Einstein radius equals the critical
surface mass density Σc. This allows us to calculate the amount
of mass ME inside the Einstein radius RE = 1 h−1 kpc. We find
ME = 2.16 × 1010 h−1 M�. This mass might be overestimated
as the intervening galaxies G1 and G2 are not included in the
lens modeling, due to the lack of sufficient observational con-
straints (such as the masses of G1 and G2). However, Keeton &
Zabludoff (2004) show that this overestimate is unlikely to be
larger than 6%. This would result in an overestimate of 3% in
the velocity dispersion, i.e., only 5 km s−1.

We can compare σS IS to two estimates of the velocity dis-
persion based on the SDSS spectrum of SDSS J0013+1523.
Shen et al. (2008) measure the stellar velocity dispersion of
the host galaxy, based on the broadening of absorption features
observed its spectrum. They derive a surprisingly small value,
σ∗ = 96.4 ± 13.8 km s−1. We note, however, that this value is
based on a low S/N spectrum of the host galaxy, following a
principle component analysis decomposition of the SDSS spec-
trum. While this is certainly sufficient to measure, statistically,
velocity dispersions for a large sample of objects, the accuracy
reached for individual objects remains limited.

An indirect but more robust estimate of σ∗ can be found us-
ing the relation between the black hole mass and the galaxy ve-
locity dispersion derived by Gültekin et al. (2009) for all type of
host galaxies. Using the black hole mass estimate log(MBH) =
7.24 ± 0.27 M� derived by Shen et al. (2008) from the width
of the Hβ emission line of the QSO, we obtain σ∗(MBH) =
124± 47 km s−1. We note that the width of the QSO Hβ line mea-
sured by Shen et al. (2008), FWHM(Hβ) ∼ 2920 ± 390 km s−1,
compares well with our measurement from the Keck spectra:
FWHM(Hβ) ∼ 3090 km s−1. The error associated with the former
estimate is derived by adding quadratically the intrinsic scatter
in the error in the black hole mass and by propagating the various
errors in the formula of Gültekin et al. (2009). The latter estimate
is, within 1σ, compatible with the lensing velocity dispersion.

6. Conclusions

We have conducted a systematic spectroscopic search for QSOs
acting as strong gravitational lenses on background emission-
line galaxies. This has produced a sample of about 14 potential
lenses.

We have presented Keck-AO imaging of one of the most
likely candidates, SDSS J0013+1523, a QSO at z = 0.120 whose
spectrum additionally displays four emission lines at the same
redshift, z = 0.640. After PSF subtraction, we found two faint
objects, A and B, within a radius of 2′′ from the QSO.

Keck LRIS spectroscopy of SDSS J0013+1523 spatially re-
solves object A and confirms that it is at z = 0.640. Traces of
object B may be seen at the expected position, also at z = 0.640.
We measured the redshift of one of the two galaxies seen in the
vicinity of the QSO, galaxy G2 at z = 0.394.
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The position, flux ratio, and shape of objects A and B are
fully compatible with simple lens models involving a singular
isothermal sphere plus external shear. Although lower than in
most galaxies in SLACS, the velocity dispersion found from the
lens models is within 1σ compatible with that estimated from
the empirical scaling laws established between the mass of the
central black-hole and that of the QSO host galaxy.

Given the available observations, SDSS J0013+1523 is the
first example of strong gravitational lensing by a QSO. Full
confirmation will require deep HST observations in the op-
tical, where the emission lines of the background object are
prominent.

Apart from the exotic nature of SDSS J0013+1523, the dis-
covery may open a new direction in the study of QSOs, provid-
ing a powerful test of existing empirical scaling laws in QSOs
and allowing us to measure the total radial mass profile of QSO
host galaxies with unprecedented accuracy.
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A QCgravlens: a didactic simulation

QCgravlens is an application for Mac OS X that “gravitationally lenses” the video flux from a
webcam in real time, simulating the deflection by the lens galaxy of RX J1131−1231. Technically,
the program remaps the pixels according to precalculated deflections, which were obtained
using a simple Singular Isothermal Ellipsoid (SIE) lens model. The live display can be switched
between the source- and image plane. Caustics and critical curves are superposed to the
respective views. By displacing bright or colorful source objects in front of the camera, all
common strong lensing configurations due to simple galaxies can be explored.

The application is available at http://obswww.unige.ch/~tewes/QCgravlens.

Figure A.1: Screenshots of QCgravlens. The left panel shows the source plane as recorded by
the webcam, and the right panel simulates a view as it would be seen through the potential
well of the lens galaxy. The small red circles depict the model source position and the observed
astrometry of the quasar images of RX J1131−1231.
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