
Incremental Query Evaluation in a Ring of Databases

Christoph Koch

École Polytechnique Fédérale de Lausanne
christoph.koch@epfl.ch

Abstract

This article approaches the incremental view maintenance problem from an algebraic
perspective. The algebraic structure of a ring of databases is constructed and extended to
form a powerful aggregate query calculus. The query calculus inherits the key properties
of rings, such as distributivity and the existence of an additive inverse. As a consequence,
the calculus has a normal form of polynomials and is closed under a universal difference
operator. This difference operator allows to express the so-called delta queries of the incre-
mental view maintenance literature, but also deltas to the deltas (second deltas), deltas to
second deltas (third deltas), and so on. The k-th delta of a query of polynomial degree k
is purely a function of the update, not of the database. This gives rise to a multi-layered
incremental view maintenance scheme in which a view is maintained using a hierarchy of
auxiliary materialized views of k-th deltas. What is gained by this hierarchy is that the
work required to keep all views fresh given an update is extremely simple.

The method allows to eliminate expensive query operators such as joins and aggregate
sums entirely from programs that perform incremental view maintenance. The main result
is that, for non-nested queries, each individual aggregate value can be incrementally main-
tained using a constant amount of work. This is not possible for nonincremental evaluation
and provides a complexity separation between the incremental and nonincremental query
evaluation problems.

As a byproduct, we obtain a query language that is significant in its own right. It is
an algebraic language in which queries, like in relational calculus, are built up from base
objects (generalized relations) using an extremely small set of connectives – addition, mul-
tiplication, and aggregation. It is based on a family of algebraic structures developed in
this article – called avalanche (semi)rings – which algebraizes range-restriction. Thus these
structures guarantee finite query results in the presence of inequalities, without making use
of an explicit selection operation. The entire language behaves like a polynomial ring of re-
lations and thus makes algebraic manipulation very easy. As a simple algebraic language of
interesting expressive power – relational algebra with SQL-style aggregation and unlimited
nesting – it is a natural internal representation language for query processors and compilers.

1 Introduction

Most databases evolve incrementally, through changes that are small compared to the overall
database size. Memoization of the result of a repeatedly asked query can substantially reduce

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147993237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the amount of work needed to re-evaluate the query after moderate changes to the database.
Using stored query results or auxiliary data structures to this effect is known as incremental
view maintenance, and has been studied extensively in the past [5, 32, 4, 31, 6, 15, 16, 14, 35, 9,
11, 7, 26, 27, 29, 22].

The notion of a delta query is key to incremental view maintenance. Let u denote a change
(“update”, which captures both insertions and deletions) to database D. Denote the updated
database by D+ u, where + is a way of combining a database with a change to it, made precise
later. In the case that u is an insertion into D, + is just the union operation of relational algebra.
Denote the result of a query Q on a database D by Q(D). A delta query ∆Q expresses the change
to the result of query Q as database D is updated to D + u: Q(D + u) = Q(D) + ∆Q(D, u).

Most work on incremental view maintenance revolves around delta queries and their use
according to this formula. The intuition is that evaluating ∆Q(D, u) and using the result to
update a materialized representation of Q(D) is often faster than recomputing Q(D + u) from
scratch, because ∆Q is usually a simpler query than Q.

The practical benefits of incremental view maintenance are real and have led to the integra-
tion of such techniques into commercial database management systems. Can we also make a
complexity-theoretic argument that incremental view maintenance is more efficient than nonin-
cremental query evaluation?

The following argument suggests the answer is no: If we consider a query language L with
multiset semantics that is closed under joins (such as SQL), the image of L under taking deltas
is the full language L: Given an arbitrary query Q0 ∈ L, there is another query Q ∈ L and
a single-tuple insertion u such that ∆Q(D, u) = Q0(D) on any database D. To see this, just
let u be an arbitrary single-tuple insertion into a relation R that does not occur in Q0. Then
query Q0 × π∅R in multiset relational algebra is such a Q. This suggests that incremental view
maintenance is not fundamentally easier than nonincremental query evaluation.

This article demonstrates that this intuition is fortunately incorrect: Incremental evaluation
is provably easier than nonincremental evaluation. To obtain this result, we have to approach
the problem from a fresh perspective and look beyond classical incremental view maintenance
based on the evaluation of delta queries. As odd as this may sound, we have to evade any query
evaluation in the classical sense of the word whatsoever; even more oddly, unlimited procrastina-
tion and delegation (to delta queries) does the job. The main result that achieves the complexity
separation is in the realm of parallel complexity, but the actual technique is relevant when used
on sequential computers as well.

1.1 Recursive Delta Procesing

To get an intuition for the incremental query evaluation technique that allows us to achieve all
this, we first consider the core technique abstractly.

Given a function f : A×Θ→ A′ (where Θ is the product of zero or more sets, so f has one
or more arguments overall), binary operations + defined on sets A and A′, and a set U ⊆ A (the
possible “updates”). To quantify the impact of changing x on f(x, θ) as the other arguments θ
remain unchanged, define functions

∆jf : A×Θ× U j → A′

of j-th deltas of f for each j ≥ 0 in such a way that (∆0f) = f , that is, the 0-th delta of f is

2

f(x)
∆f(x,−1) ∆f(x,+1)

x ∆2f(x,−1,−1) ∆2f(x,−1,+1) ∆2f(x,+1,−1) ∆2f(x,+1,+1)

−2 2 5 −2 4 −2 −3 2

−1 2 3 −2 1 −2 −1 2

0 2 1 −2 0 −2 1 2

1 2 −1 −2 1 −2 3 2

2 2 −3 −2 4 −2 5 2

3 2 −5 −2 9 −2 7 2

4 2 −7 −2 16 −2 9 2

Figure 1: Recursive memoization of deltas for f(x) = x2: the seven function values to be
memoized for various values x ∈ Z. (See Example 1.1.)

just f , and
(∆jf)(x, θ) + (∆j+1f)(x, θ, u) = (∆jf)(x+ u, θ)

for θ ∈ Θ × U j and u ∈ U . Think of (∆j+1f)(x, θ, u) as the amount of change that happens to
the value of ∆jf(x, θ) as the value of x is changed to x + u (“updated by u”) while the other
arguments θ remain unchanged. The updated version of the j-th delta is just the old version of
the j-th delta plus the (j + 1)-st delta. To render this less abstract, take the case of a unary
function f(x) and j = 0: Then this just says that f(x) + (∆f)(x, u) = f(x + u), the equation
that motivated delta queries above.

If A′ has an additive inverse, the functions ∆j (j > 0) can be defined inductively by

(∆0f) := f

(∆j+1f)(x, θ, u) := (∆jf)(x+ u, θ)− (∆jf)(x, θ).

We require the following: Function f must have the property that there exists k ∈ N such
that ∆kf is 0A

′
on all inputs, and that we can determine k statically from the definition of f .

We assume that it is easy to perform additions in A′, but expensive to compute f (and
generally, ∆jf) from its arguments. Assume there is a value x ∈ A that is considered current.
We would like to allow for x to be updated with increments from a set of possible updates U ⊆ A
and to quickly obtain f(x, ·) without having to recompute it “from scratch” after each change
to x. Suppose that for all 0 ≤ j < k and θ ∈ Θ× U j, the values ∆jf(x, θ) for the current x are
known (and, as required, ∆kf(·, ·) = 0). On update event xnew := xcurrent + u, we compute

∆jf(xnew, θ) := ∆jf(xcurrent, θ) + ∆j+1f(xcurrent, θ, u). (1)

This takes only additions of memoized ∆jf and ∆j+1f values. None of these values have to be re-
computed from their (function) definitions. If we compute the sums in order of increasing j, we do
not need to double-buffer but can update the values in place, i.e., set ∆jf(x, θ) += ∆j+1f(x, θ, u).

3

Example 1.1 (The polynomial ring R[x]) Consider the polynomial functions over the real
numbers f : R→ R. Then ∆f is a polynomial of degree one less than the degree of f , unless f
is constant. It follows that there is a finite k (the degree of polynomial f plus 1) such that the
k-th deltas of f are 0. So the technique just sketched is applicable.

Take f(x) = x2.

∆f(x, u1) := f(x+ u1)− f(x)

= (x+ u1)2 − x2 = 2u1x+ u2
1.

∆2f(x, u1, u2) :=
(
∆f(x+ u2, u1)

)
−∆f(x, u1)

= 2u1(x+ u2) + u2
1 − (2u1x+ u2

1) = 2u1u2.

∆3f(x, u1, u2, u3) :=
(
∆2f(x+ u3, u1, u2)

)
−∆2f(x, u1, u2)

= 2u1u2 − 2u1u2 = 0.

In the framework introduced above, A = A′ = R and Θ = {〈〉}. Let the set of possible updates
be U = {+1,−1}. Then we need to memoize |U |0 + |U |1 + |U |2 = 7 function values1, and initially
compute values for them from the definitions of f , ∆f , and ∆2f . That is, we compute these
seven values from their definitions only once, for the initial x value that we decide to start with
(e.g., 0). After that, the function definitions are not used anymore: We only perform additions
of the current seven values.

Figure 1 shows these values for x = −2,−1, 0, . . . , 4. At any point in time (for any current
x value), we hold one row of this table – with seven values – in memory. This is all we need to
increment or decrement x by one. For x = −1, . . . , 3 this corresponds to changing the memoized
row to its predecessor or successor in the table of Figure 1. We only need to add, to each
memoized value, one other memoized value. For example, let x = 3 and we increment x by 1.
Then f(·) += 7 = 16, ∆1f(·,+1) += 2 = 9, ∆1f(·,−1) += − 2 = −7, and ∆2f(·, ·, ·) += 0. 2

We can turn this memoization technique into an incremental view maintenance algorithm as
follows. The functions f from above are now queries, A is a domain of databases, and A′ is the
domain of query results. For this to work, the query language L must have two properties,

1. it has to be closed under taking applying deltas: for each query Q of L, ∆Q has to be
expressible in L, and L has to support the addition of a query and its delta.

2. for each query, there must be a k ∈ N such that the k-th delta query returns constantly
0A

′
(the empty database).

We simply apply the technique sketched above with the set of possible updates U fixed to
be the set of single-tuple insertions and deletions. Given a query f , this technique memoizes a
hierarchy of materialized views. The j-th view (0 ≤ j < k) consists of a tuple

〈θ, u1, . . . , uj,∆
jf(x, θ, u1, . . . , uj)〉

for θ ∈ Θ and u1, . . . , uj ∈ U . For the view to be finite, U has to be finite.2

1In fact, since the four ∆2 values are constant, only three values need to be kept up to date.
2If U is the active domain of the database, which may grow through updates, then initial values for view

entries that have not been incrementally maintained so far have to be computed. More will be said about this in
the body of the article.

4

Once the values ∆jf(·, θ, u1, . . . , uj) have been initialized and put into the materialized views,
the technique does not access the current database x itself. Indeed, ∆jf(x, θ, u1, . . . , uj) is a
placeholder for a value that is kept up to date and is identified by 〈j, θ, u1, . . . , uj〉 but not x. It
is not a function call that is ever evaluated, so the value of x is not needed.

If all we are interested in is the views, we do not need to store the database, unless it is
to check integrity constraints, such as that tuples that do not exist in the database are not
attempted to be deleted.

Example 1.2 Consider the following (somewhat artificial) SQL query over unary relation R
with schema A and multiset semantics:

Q(R) = select count(*) from R r1, R r2 where r1.A = r2.A

The delta queries for single-tuple insertions (denoted +R(a)) and deletions (denoted −R(a)) are

∆Q
(
R,±R(a)

)
= 1± 2 ∗ (select count(*) from R where R.A=a)

∆2Q
(
R,±1R(a1),±2R(a2)

)
=

{
±1 ±2 2 . . . a1 = a2

0 . . . otherwise

∆3Q(R, ·, ·, ·) = 0.

The above definitions give Q(∅) = 0 and ∆Q(∅,±R(·)) = 1. Let us start on the empty
database and perform some insertions and deletions. (Multiset relations are denoted by {| · |}.)

∆Q(R, ·)
Update R Q(R) +R(c) −R(c) +R(d) −R(d)

∅ 0 1 1 1 1
+R(c) {|c|} 1 3 −1 1 1
+R(c) {|c, c|} 4 5 −3 1 1
+R(d) {|c, c, d|} 5 5 −3 3 −1
+R(c) {|c, c, c, d|} 10 7 −5 3 −1
−R(d) {|c, c, c|} 9 7 −5 1 1
+R(c) {|c, c, c, c|} 16 9 −7 1 1
−R(c) {|c, c, c|} 9 7 −5 1 1

In the above table, ∆2Q is omitted for space reasons. It is constant (does not depend on the
database), and ∆2Q(R,+R(a),+R(a)) = ∆2Q(R,−R(a),−R(a)) = 2, ∆2Q(R,+R(a),−R(a)) =
∆2Q(R,−R(a),+R(a)) = −2, and ∆2Q(R,±1R(a1),±2R(a2)) = 0 for a1 6= a2.

We only evaluate queries (and access the database) to initialize the memoized values. After
that, we use the update rule from above (Equation (1)) to apply an update u. 2

This incremental view maintenance technique uses delta processing more aggressively than
classical approaches: Rather than being content with materializing view Q and using ∆Q to
update it, delta processing is performed recursively: We also materialize ∆Q, incrementally
maintain it using ∆2Q, materialize that, and so on.

5

1.2 Contributions of the Remainder of this Article

We are now left with the problem of finding a query language that has the two properties we
have required above. This is achieved in this article by the definition of a query language that
is in close analogy with the polynomials of Example 1.1. The language captures a large class of
SQL (aggregate) queries.

The first contribution of this article is to craft the algebraic structure of a ring of databases .
Its addition operation generalizes relational union, and multiplication generalizes the natural join.
The elements of the ring are generalizations of multi-set relational databases in which tuples can
have negative multiplicities (to model deletions). The article shows that the generalizations are
necessary and in a sense the unique solution that admits a full additive inverse (necessary for
delta processing) and distributivity (to yield polynomials).

This ring is the basis of the definition of an expressive aggregate query calculus, AGCA,
which inherits these key properties. For an AGCA query Q, ∆Q always exists and is structurally
strictly simpler than Q. We formalize this by the notion of the degree of a query. The k-th delta
of an AGCA query of degree k without nested aggregates has degree 0; a query of degree 0 only
depends on the update but not on the database.

Thus, the recursive delta processing technique sketched above is applicable to AGCA: Each
query can be incrementally maintained by a hierarchy of materialized views, requiring only basic
summations of values in adjacent layers of the view hierarchy to keep all views up to date. As we
have seen, only a single arithmetic operation is required per single-tuple update and per value
maintained in this hierarchy of views. For the purpose of aggregate query processing, these values
are numerical. In practice, such values are usually represented using fixed-size memory words
(e.g., 64-bit integers or floating point numbers). An easy argument shows that in this scenario,
updating the view hierarchy given a single-tuple update is in NC0.

Recall that the circuit complexity classes NC0 ⊆ AC0 (TC0 (cf. [20]) all represent constant-
time parallel computation using polynomial amounts of hardware. The difference lies in the types
of gates used. While NC0 uses only bounded fan-in gates, both AC0 and TC0 use unbounded
fan-in gates, which are unrealistic. AC0 and TC0 problems cannot be solved in constant parallel
time on any amount of bounded fan-in (“real”) hardware. In contrast, in an NC0 circuit, the
value of an output bit depends only on a constant number of input bits. NC0 problems admit
even more extreme parallelism than AC0 or TC0 problems. AC0 and TC0 problems ultimately
require a single computation node (or gate of a circuit) to compute a bit whose value depends
on, and is an aggregation of, an unbounded number of input bits. NC0 problems do not require
such an aggregation.

This article shows that, for a large class of aggregate queries, applying a fixed update to a
materialized view is in the complexity class NC0. In comparison, it is known that non-incremental
evaluation takes TC0 and AC0 for queries with and without aggregates, respectively (cf. e.g. [24]).
Since NC0 and TC0 have been separated [33], incremental evaluation is indeed provably easier
than nonincremental evaluation. Moreover, this shows that incremental query evaluation can
completely eliminate both aggregation and joins from a large class of aggregate queries!

A practical compilation algorithm. Having achieved theoretical success, a second goal is to
make this technique also practically useful. To achieve this, we have to address the question of
how to maintain finite active domains of the memoized functions, and how to extend these when
the updates require it.

6

Moreover, a j-th delta is a function of a j-tuple of update tuples, which means that its domain
and the (say, tabular) representation of the memoized function may become large. This is no
problem for the parallel complexity result, but it defeats the practical purpose of incremental
view maintenance (which is to gain performance).

In the article, we refine the aggressive recursive incremental view maintenance scheme by
employing query factorization and simplification of queries, which allows us to create small
representations of the materialized views. This, however, requires substantial refinements of the
technique. The article presents an algorithm for compiling queries to a simple low-level language,
NC0C. This is essentially a small fragment of the programming language C.

Example 1.3 (factorization of delta queries, cf. [3]) Consider the relational database sche-
ma R(A,B), S(C,D), T (E,F) and the query

Q = select sum(A*F) from R, S, T where B=C and D=E

Then

∆Q(±S(c, d)) = ±(select sum(A*F) from R, T where B=c and d=E)

= ± (select sum(A) from R where B=c)︸ ︷︷ ︸
(∆Q)1(c)

∗ (select sum(F) from T where d=E)︸ ︷︷ ︸
(∆Q)2(d)

This factorization is possible because the aggregate sum operator of SQL (with its multiset
semantics) is distributive over multiplication.

Thus, rather than maintaining ∆Q (which in general takes space quadratic in the active
domain size), we can maintain two linear size views (∆Q)1 and (∆Q)2 and update Q on update
event ±S(c, d) as Q ±= (∆Q)1(c) ∗ (∆Q)2(d) rather than as Q ±= ∆Q(c, d). 2

The article contains a proof that NC0C update triggers require only a constant number of
arithmetic operations (+ and ∗) per value updated in the materialized views (Proposition ??).
Moreover, each bit of the materialized representation can be incrementally maintained using an
NC0 circuit, which only reads from a constant number of input bits, assuming that numbers are
kept in fixed-size registers (Theorem ??).

In most traditional database query processors that perform incremental view maintenance,
the basic building blocks of delta queries are large-grained operators such as joins. By our
compilation approach we are instead able to eliminate all joins and evaluate queries without
resorting to classical query operators.

The article is structured as follows. After providing some algebraic foundations in Section 2,
we define a ring of multiset relations and discuss some of its properties in Section 3. We define
the aggregate query language AGCA in Section 4. Section 5 discusses the query language and
shows how to turn queries into polynomials and how to factorize monomials. Section 6 studies
delta processing. We give a construction for deltas and show that, for a large class of queries,
deltas are structurally simpler than the input queries. Section ?? introduces a low-level language,
NC0C, to which we later compile queries. NC0C admits massively parallel evaluation; we give
a circuit complexity characterization. Section ?? presents algorithms for compiling queries to
NC0C, starting with a simple algorithm that we subsequently refine. Section 8 discusses this
and related work.

7

The ring construction of this article allows for a streamlined and cleaner way of presenting
incremental view maintenance that clearly exposes the key ideas that render it possible. One
may hope and expect that future survey and textbook presentations of the broader topic will
profit from the foundational exposition provided below. To this end, portions of this article
that cover notions from mainstream mathematics that are rarely seen in the database context
(particularly, in Section 2) are presented in a succinct but essentially self-contained survey style.

2 Algebraic Foundations

We first fix some notational conventions in Section 2.1. After that, (1) in Section 2.2, we provide
basic definitions from abstract algebra and introduce monoid rings, which are structures that,
as we will see later, can accommodate joins in relational databases. (2) In Section 2.3, we
introduce an abstraction of monoid rings called avalanche rings that can deal with a form of
function composition (sideways binding passing in database query languages) and still retains a
ring structure. Support for sideways binding passing is needed for technical reasons, to support
the mechanics of query languages (operator chaining and range restriction) and to accommodate
limited interfaces with binding patterns (conditions and built-in functions). (3) In Section 2.4,
we provide a construction for deriving smaller structures from monoid and avalanche rings which
retain their key properties. (4) In Section 2.5, we show that there is essentially no other way
than monoid rings of obtaining rings whose multiplication operation generalizes joins: If we want
joins and rings, we have to go with monoid rings.

While the core problem studied in this paper – incremental view maintenance – calls for ring
structures, we generalize our results to semirings where easily possible; this generalization is
not needed in later sections, but renders our algebraic framework applicable to database query
processing with set semantics (cf. e.g. [13, 12]). The polynomial avalanche semirings, which are at
the same time an elegant algebraic structure and a database query language, are an application
of this.

In order to avoid cluttered notation at this point, we do not yet apply this framework to
databases, but defer this to Section 3. As a consequence, this section is devoid of (database)
examples, and the reader is asked for patience.

2.1 Notational Conventions

By convention, we superscript relations and functions with the name of the structure that they
belong to. For example, RA is the relation named R in database A and +Z is the addition
operation in the ring of integers Z. To avoid confusion with powers, names of structures are
never numbers, and are never represented by lower case variable names: thus, if f is a function,
fk denotes the k-th power of (the image of) f . We may omit these superscripts when they are
clear from the context.

We use the notations f : x 7→ v, f(x) := v, and f := {x 7→ v | x ∈ dom(f)} interchangeably
to define functions, with a preference for the latter when the domain dom(f) might otherwise
remain unclear. We write f |D to denote the restriction of the domain of f to D, i.e. f |D :=
{(x 7→ v) ∈ f | x ∈ D}. A function f : A → B is called surjective if, for all b ∈ B, there is an
a ∈ A such that f(a) = b.

8

2.2 (Semi)rings

Recall some basic definitions from algebra (cf. e.g. [23, 10]):

Definition 2.1 A semigroup is a pair (A, ◦) of a base set A and a binary total function ◦ : A×
A→ A (“the operation”) such that ◦ is associative, that is, for all a, b, c ∈ A, (a◦b)◦c = a◦(b◦c).
A semigroup is called commutative if a◦b = b◦a for all a, b ∈ A. A monoid (A, ◦, e) is a semigroup
that has neutral element e ∈ A, that is, a ◦ e = e ◦ a = a for all a ∈ A. A monoid is called a
group if for each a ∈ A there is an inverse element a−1 ∈ A such that a ◦ a−1 = a−1 ◦ a = e.

A semiring over base set A is a tuple (A,+, ∗, 0, 1) with two operations + and ∗ (called
addition and multiplication, respectively) such that (A,+, 0) is a commutative monoid, (A, ∗, 1)
is a monoid, 0∗a = a∗0 = 0 for all a ∈ A, and + and ∗ are distributive, that is, a∗(b+c) = a∗b+a∗c
and (a+ b) ∗ c = a ∗ c+ b ∗ c for all a, b, c ∈ A.

A ring over base set A is a tuple (A,+, ∗, 0) such that (A,+, 0) is a commutative group,
(A, ∗) is a semigroup, and + and ∗ are distributive. A ring with identity (A,+, ∗, 0, 1) is a ring
in which (A, ∗, 1) is a monoid. A (semi)ring is called commutative if ∗ is commutative.

Example 2.2 The integers Z and the rational numbers Q form commutative rings with identity
(Z,+, ∗, 0, 1) and (Q,+, ∗, 0, 1). The natural numbers N do not form a ring because there is no
additive inverse; for example, there is no natural number x such that 1 + x = 0; but they do
form a semiring. The booleans B = {true, false} form a semiring (B,∨,∧, false, true) in which
disjunction ∨ takes the role of addition and conjunction ∧ takes the role of multiplication. 2

Neutral elements 0 and 1 are named by analogy and are not necessarily numbers. For a group
with an operation +, we write −a to denote a−1 and use the shortcut a− b for a+ (−b). When
the operations + and ∗ are clear from the context, we will also use the name of the base set to
refer to the structure (e.g., Z for (Z,+, ∗, 0, 1)).

In a monoid, there is a unique identity element. In a group (A, ◦, e), there is a unique inverse
element a−1 for each element a ∈ A (cf. e.g. Proposition 1 in Chapter 1 of [10]). A (semi)ring is
uniquely determined by its base set and its operations + and ∗, and we do not need to explicitly
specify 0, 1, or the operation (·)−1 (but it will be done for the reader’s convenience). In a ring
with identity, 0 ∗ a = a ∗ 0 = a (thus it is a semiring) and (−a) ∗ b = −(a ∗ b) = a ∗ (−b) for all
a, b ∈ A.

Definition 2.3 Let A be a semiring and let G be a monoid. Let A[G] be the set of all functions
α : G→ A such that α(x) = 0 for all but a finite number of x ∈ G (that is, α has finite support).
We define addition and multiplication in A[G] as

α + β : x 7→ α(x) +A β(x)

α ∗ β : x 7→
∑

x=y ∗Gz

α(y) ∗A β(z).

We call A[G] the monoid semiring of G over A. If A is a ring with identity, A[G] is called the
monoid ring of G over A. If A is also commutative, then A[G] is called the monoid algebra of G
over A. 2

9

The neutral elements are 0 : x 7→ 0A and

1 : x 7→
{

1A . . . x = 1G

0A . . . x 6= 1G.

The following is well known (cf. e.g. p.104f of [23]):

Proposition 2.4 (1) A[G] is a semiring. (2) If A has an additive inverse, then A[G] is a ring
with identity. (3) If both A and G are commutative, then A[G] is commutative.

In particular, monoid semirings A[G] are closed under multiplication, i.e., any product α ∗ β
has finite support.

2.3 Avalanche semirings

We next define a structure of higher-order functions to accommodate binding passing in query
languages.

Definition 2.5 Let A[G] be the monoid semiring of monoid G over semiring A. Let
=⇒
A[G] be

the set of all functions G→ A[G]. We define addition and multiplication in
=⇒
A[G] as

f + g : b 7→ x 7→ f(b)(x) +A g(b)(x)

f ∗ g : b 7→ x 7→
∑

x=y ∗Gz

f(b)(y) ∗A g(b ∗G y)(z).

Then
=⇒
A[G] is called the avalanche semiring of G over A. 2

Theorem 2.6
=⇒
A[G] is a semiring. If A is a ring with identity, then

=⇒
A[G] is a ring with identity.

Proof. Define 0
=⇒
A[G] : · 7→ 0A[G] and 1

=⇒
A[G] : · 7→ 1A[G]; that is, these functions ignore their

argument and return 0A[G] and 1A[G], respectively.

The structure (
=⇒
A[G],+

=⇒
A[G], 0

=⇒
A[G]) inherits the property of being a commutative monoid resp.

commutative group from (A[G],+A[G], 0A[G]) if A is a semiring resp. ring with identity. It is easy

to see this: in particular, (f +
=⇒
A[G] g)(b) = f(b) +A[G] g(b), and +A[G] has the desired properties.

The structure (
=⇒
A[G], ∗

=⇒
A[G], 1

=⇒
A[G]) is a monoid.

=⇒
A[G] is closed under multiplication, so ∗ is

an operation. To verify this, we have to show that a product f ∗ g is a function that returns
on any input b an element (f ∗ g)(b) ∈ A[G]. That is, f(b) can be nonzero only on a finite

number of inputs from G. If we revisit the definition of ∗
=⇒
A[G], we see that there are only a finite

number of products x = y ∗ z of elements y, z for which f(b)(y) and g(b∗y)(z) are nonzero (since
f(·), g(·) ∈ A[G]).

10

Moreover, ∗
=⇒
A[G] is associative and 1

=⇒
A[G] is its identity element:(

f ∗ (g ∗ h)
)
(x0)(x123) :=

∑
x123=x1∗Gx23

f(x0)(x1)

∗A
∑

x23=x2∗Gx3

g(x0 ∗G x1)(x2) ∗A h(x0 ∗G x1 ∗G x2)(x3)︸ ︷︷ ︸
(g∗h)(x0∗Gx1)(x23)

=
∑

x123=x1∗Gx2∗Gx3

f(x0)(x1) ∗A g(x0 ∗G x1)(x2) ∗A h(x0 ∗G x1 ∗G x2)(x3)

=
∑

x123=x12∗Gx3

(∑
x12=x1∗Gx2

f(x0)(x1) ∗A g(x0 ∗G x1)(x2)
)

︸ ︷︷ ︸
(f∗g)(x0)(x12)

∗Ah(x0 ∗G x12)(x3)

=
(
(f ∗ g) ∗ h

)
(x0)(x123)

(1 ∗ f)(b)(x) :=
∑

x=y∗Gz

1A[G](y) ∗A f(b ∗G y)(z) = 1A[G](1G)︸ ︷︷ ︸
1A

∗Af(b ∗G 1G)(x) = f(b)(x)

(f ∗ 1)(b)(x) :=
∑

x=y∗Gz

f(b)(y) ∗A 1A[G](z) = f(b)(x) ∗A 1A[G](1G) = f(b)(x)

Recall: 1
=⇒
A[G](b)(x) = 1A[G](x) =

{
1A . . . x = 1G

0A . . . otherwise.
It only remains to be shown that distributivity holds:(

f ∗ (g + h)
)
(b)(x) :=

∑
x=y∗Gz

f(b)(y) ∗A
(
g(b ∗G y)(z) +A h(b ∗G y)(z)

)
=

(
(f ∗ g) + (f ∗ h)

)
(b)(x)

This follows from the distributivity of A and the associativity and commutativity of +A. Ana-
logously, (f + g) ∗ h = f ∗ h+ g ∗ h. 2

Recall the following definitions:

Definition 2.7 A (semi)ring homomorphism is a function φ : R → S between two (semi)rings
R and S that commutes with + and ∗, i.e., φ(a ◦R b) = φ(a) ◦S φ(b) for ◦ ∈ {+, ∗} and all
a, b ∈ R, where φ(0R) = 0S, and where, for a semiring or a ring with identity, φ(1R) = 1S.
The set {r ∈ R | φ(r) = 0S} is called the kernel of φ. A (semi)ring isomorphism is a bijective
homomorphism.

Let R be a (semi)ring. A nonempty subset S of R is a sub-(semi)ring of R if S is a (semi)ring.
This is assured if S is closed under the operations +R, (−R,) and ∗R. 2

Note that
=⇒
A[G] in general is not a monoid semiring. However, the subset

=⇒
A[G]0 = {(· 7→ α) | α ∈ A[G]} ⊆

=⇒
A[G]

of functions from
=⇒
A[G] that ignore their input is:

11

Proposition 2.8 If A[G] is a monoid (semi)ring, then
=⇒
A[G]0 is a sub(semi)ring of

=⇒
A[G] and

isomorphic to A[G].

Proof. We need to show that
=⇒
A[G]0 is closed under application of +, ∗, and, for the case that

A has an additive inverse, −:

(· 7→ α) +
=⇒
A[G] (· 7→ β) : b 7→ x 7→ (· 7→ α)(b)(x) +A (· 7→ β)(b)(x)

= b 7→ x 7→ α(x) +A β(x) = · 7→ α +A[G] β

−
=⇒
A[G](· 7→ α) : b 7→ x 7→ −A(· 7→ α)(b)(x)

= b 7→ x 7→ −Aα(x) = · 7→ −A[G]α

(· 7→ α) ∗
=⇒
A[G] (· 7→ β) : b 7→ x 7→

∑
x=y ∗Gz

(· 7→ α)(b)(y) ∗A (· 7→ β)(b ∗G y)(z)

= b 7→ x 7→
∑

x=y ∗Gz

α(y) ∗A β(z) = · 7→ α ∗A[G] β

Moreover, 0
=⇒
A[G], 1

=⇒
A[G] ∈

=⇒
A[G]0. Thus,

=⇒
A[G]0 is closed under the operations of

=⇒
A[G] and the

function (· 7→ α) 7→ α is an isomorphism from
=⇒
A[G]0 to A[G]. 2

Proposition 2.4 is a corollary of Theorem 2.6 and Proposition 2.8.

2.4 Mutilating the monoids

There are applications of monoid and avalanche semirings in which it is desirable for some
elements to be excluded from the monoid. As shown next, we can do this and retain semirings
and their desirable properties.

Let (G, ∗) be a monoid. A subset G0 ⊆ G is called downward-closed if g ∗ h ∈ G0 implies
g, h ∈ G0 for all g, h ∈ G. In general, G0 is not (upward-)closed under ∗ and thus not a monoid
(i.e., there are g, h ∈ G0 such that g ∗ h 6∈ G0), but the complement G\G0 is closed under ∗ and
thus a semiring. Note that

g ∗ h, h ∗ g ∈ G\G0 for all g ∈ G and all h ∈ G\G0. (2)

We say that monoid G has a zero if there is an element 0 ∈ G such that 0 ∗ g = g ∗ 0 = 0 for all
g ∈ G. G\{0} is downward-closed.

Lemma 2.9 Let G be a monoid, G0 a downward-closed subset of G, and A a (semi)ring. Then
the following are (semi)ring homomorphisms:

1. from A[G]:
φA[G],G0 : α 7→ {x 7→ α(x) | x ∈ G0}

with kernel IA[G],G0 = {α ∈ A[G] | α(x) = 0A whenever x ∈ G0}.

12

2. from
=⇒
A[G]:

φ =⇒
A[G],G0

: f 7→ {b 7→ {x 7→ f(b)(x) | b ∗ x ∈ G0} | b ∈ G0}

with kernel I =⇒
A[G],G0

= {i ∈
=⇒
A[G] | i(b)(x) = 0A whenever b ∗ x ∈ G0}.

The semiring φA[G],G0(A[G]) consists of functions G0 7→ A and the semiring φ =⇒
A[G],G0

(
=⇒
A[G])

consists of functions f with domain G0 such that f(b) is a function {x ∈ G0 | b ∗ x ∈ G0} → A.
In other words, these semirings simply restrict the domains of their element functions as well as
the domains of variables that are introduced in the definitions of their multiplication operations
to G0. The definition of the operations + and ∗ remains syntactically unchanged compared to

A[G] and
=⇒
A[G].

Proof. Lemma 2.9 is straightforward to prove by verifying the axioms of (semi)ring homomor-
phisms. We do not do this here, but prove the case of rings using additional machinery that
provides further insight into their structure.

Definition 2.10 A sub-ring I of ring R is called a left respectively right ideal of R if (r ∗ i) ∈ I
respectively (i ∗ r) ∈ I for all r ∈ R and all i ∈ I, and an ideal if I is both a left and a right
ideal. A quotient ring R/I is (a ring isomorphic to) the image of a ring homomorphism from R
whose kernel is I. 2

To verify that I is an (left/right) ideal, we only need to check that I is closed under + and
satisfies r ∗ i ∈ I and/or i ∗ r ∈ I for and r ∈ R, i ∈ I. Observe the analogy among the definition
of two-sided ideals and the characterization of the complements of downward-closed subsets of
monoids given above, as (2). The sets IA[G],G0 and I =⇒

A[G],G0

defined above (already proclaimed to

be kernels of the two ring homomorphisms) are ideals:

Lemma 2.11 Let G be a monoid, G0 a downward-closed subset of G, and A a ring with identity.

Then (1) IA[G],G0 is an ideal of A[G] and (2) I =⇒
A[G],G0

is an ideal of
=⇒
A[G].

Proof. (1) It is easy to see that IA[G],G0 is closed under +A[G] (which is just elementwise addition).
Consider an arbitrary x ∈ G, an arbitrary r ∈ A[G], and an arbitrary i ∈ I. By definition,

(r ∗ i)(x) =
∑

x=y∗Gz

r(y) ∗A i(z) and (i ∗ r)(x) =
∑

x=y∗Gz

i(y) ∗A r(z).

Assume that x = y ∗ z ∈ G0, because otherwise (r ∗ i)(x) and (i ∗ r)(x) are unconstrained and
we are done. Then y, z ∈ G0 because of downward-closure. But then i(y) = i(z) = 0A, and as a
consequence, (r ∗ i)(x) = 0A. Thus, (r ∗ i), (i ∗ r) ∈ I, so I is an ideal of ring A[G].

(2) I =⇒
A[G],G0

is closed under +
=⇒
A[G], which again is just elementwise addition. To show that

r ∗ i, i ∗ r ∈ I for all r ∈
=⇒
A[G] and i ∈ I, recall that

(r ∗ i)(b)(x) =
∑
x=y∗z

r(b)(y) ∗A i(b ∗ y)(z), (i ∗ r)(b)(x) =
∑
x=y∗z

i(b)(y) ∗A r(b ∗ y)(z)

13

The interesting case is when b ∗ x ∈ G0 (here (r ∗ i)(b)(x) and (i ∗ r)(b)(x) must be 0A), because
otherwise elements of I are unconstrained. But if b ∗ x = b ∗ y ∗ z ∈ G0, then b, b ∗ y, z ∈ G0, and
thus i(b)(y) = i(b ∗ y)(z) = 0A. 2

The following converse of the first isomorphism theorem for rings now assures us that the
images of the ring homomorphisms of Lemma 2.9 are just the quotient rings A[G]/IA[G],G0 and

=⇒
A[G]/I =⇒

A[G],G0

, and the ring homomorphisms are the natural projections:

Lemma 2.12 (cf. Theorem 7(2) in Chapter 7 of [10]) Let R be a commutative ring and I
be an ideal of R. Then there is a surjective ring homomorphism from R to the quotient ring R/I,
the so-called natural projection of R onto R/I and I is the kernel of that homomorphism.

This concludes the proof of Lemma 2.9. 2

Subsequently, when it is understood what ∗G is, A[G]/IA[G],G0 and
=⇒
A[G]/I =⇒

A[G],G0

will be

referred to as A[G0] and
=⇒

A[G0], respectively.
The main reason for mutilating monoids in this paper is to exclude the zero. The application

for this will be obvious in Section 3.

The type of functions f ∈
=⇒

A[G0] is perhaps a little awkward to handle since the type of f(b)
depends on b. We can easily deal with this by extending the type of f(b) uniformly to A[G0] for
all b by requiring f(b)(x) = 0 for all b ∗ x 6∈ G0 and defining multiplication as

f ∗ g : b 7→ x 7→
∑

x=y ∗Gz, b∗y∈G0

f(b)(y) ∗A g(b ∗G y)(z).

One important application of the mutilation construction in the context of databases is to
exclude the element 0G from G, since monoid and avalance semirings would otherwise allow to
store information not associated with tuples (admitting the existence of many different “empty”
databases). Depending on the application, this may either be slightly undesirable or useful and
worthy of further study.3

2.5 Monoid rings as modules

Definition 2.13 Let A be a ring. A (left) A-module is a set M with a binary operation +
on M under which M is a commutative group, and an action A ×M → M , denoted am (the
scalar product), for all a ∈ A, m ∈ M , which satisfies for all a, b ∈ A (the scalars), m,n ∈ M :
(a +A b)m = am +M bm, (a ∗A b)m = a(bm), and a(m +M n) = am +M an. If A is a ring with
identity, we also require 1Am = m for all m ∈M .

An A-module M is said to be free on the subset G of M if for every nonzero element m of M
there exist unique nonzero elements a1, . . . , an ∈ A, g1, . . . , gn ∈ G, for some n ∈ N, such that
m = a1g1 + · · ·+ angn. In this case, we say that G is a basis or set of free generators for M .

Let A be a commutative ring. An A-algebra is an A-module M with a binary operation
[·, ·] : M × M → M that is bilinear, i.e., which satisfies [ax + by, z] = a[x, z] + b[y, z] and
[z, ax + by] = a[z, x] + b[z, y] for all scalars a, b ∈ A and all elements x, y, z ∈ M . An algebra is
called associative if [·, ·] is associative. 2

3It allows to record provenance information for pairs of tuples that fail a join condition.

14

Proposition 2.14 (1) Bilinearity implies distributivity, so every associative algebra is a ring.
(2) A distributive operation ∗ such that (ax) ∗ y = a(x ∗ y) = x ∗ (ay) for a ∈ A and x, y ∈M is
bilinear.

Proof. (1) Have a = b = 1A. (2) For a, b ∈ A and x, y, z ∈M , (ax+by)∗z = (ax)∗z+(by)∗z =
a(x ∗ z) + b(y ∗ z) and z ∗ (ax+ by) = z ∗ ax+ z ∗ by = a(z ∗ x) + b(z ∗ y); in both cases, the first
step applies distributivity and the second the precondition of statement (2) of the proposition.

2

Note that relational algebra (with union and natural join as addition and multiplication
operations) is not an algebra. (Union cannot be applied to every pair of relations.)

A key application of monoid rings is their use in formalizing polynomials. In that case, it is
natural to write the functions α of A[G] as sums

∑
g α(g)g. This provides us with an alternative

viewpoint of monoid rings as A-modules. These are a vehicle for showing that there is essentially
only one way4 of defining a distributive multiplication operation: the convolution product ∗A[G]

of monoid rings.
The following is known (e.g., [23], though in part implicit there), but a proof is given because

its notation will be used later:

Proposition 2.15 Let A[G] be a monoid ring. Then

1.
(
A[G],+A[G], (aα) 7→ x 7→ (a ∗A α(x))

)
is an A-module that is free on basis G.

2. If A is commutative5, then ∗A[G] is bilinear, so A[G] is an associative A-algebra.

Proof. (1) The fact that
(
A[G],+A[G], (aα) 7→ x 7→ (a ∗A α(x))

)
is an A-module follows im-

mediately from the fact that A is a ring and from the definition of +M as +A[G]. For instance,
(a +A b)α = x 7→ (a +A b) ∗A α(x) = x 7→ (a ∗A α(x)) +A (b ∗A α(x)) = aα +M bα by the
distributivity of A.

We write elements

x 7→
{

1 . . . x = g
0 . . . otherwise

of A[G] as χg and slightly abuse notation to write G for the set {χg | g ∈ G} ⊆ A[G]. Each
α ∈ A[G] can be written as a sum

∑
g∈Gα(g)χg. This sum is finite because A[G] guarantees that

α(g) is nonzero for only a finite number of g ∈ G. Since +A[G] is associative and commutative,
this sum is unique. Thus G generates A[G] and A[G] is an A-module that is free on G; G is the
basis of A[G].

(2) Because of the associativity and commutativity of ∗A, (aα) ∗A[G] β = a(α ∗A[G] β) =
α ∗A[G] (aβ). By Proposition 2.14 (2), ∗A[G] is bilinear. 2

A quotient ring A[G0] remains an A-module (an A-algebra if commutative) and is free on
basis G0.

Viewing A[G] as an A-module means to ignore its operation ∗. This is particularly clear for
Z[G]. Here the action aα, for a ∈ Z and α ∈ Z[G], can be expressed as a finite sum of elements

4For this we need the additive inverse, so A must be a ring.
5In this case we have called A[G] is a monoid algebra in Definition 2.3; and indeed, it is an algebra.

15

of G (with repetitions), i.e., ag = g + · · ·+ g︸ ︷︷ ︸
a times

for a ≥ 0 and (−a)g = −g · · · − g︸ ︷︷ ︸
a times

for (−a) < 0.

Thus we do not need the action aα or ∗Z[G] to implement it, and the additive group of Z[G] by
itself is a Z-module.

We say that an operation ◦ over Z[G] is conservative over ∗G if χg ◦ χh = χg ∗G χh for all
g, h ∈ G. If we accept the definition of the module Z[G] as natural, then the definition of ∗Z[G]

(which may feel less natural at first) is uniquely determined by distributivity, if we want ∗Z[G] to
be conservative over ∗G.

Proposition 2.16 The convolution product ∗Z[G] is the unique product operation that extends
the additive group (Z[G],+Z[G]) to a ring and is conservative over ∗G.

Proof. We use the sum notation from the proof of Proposition 2.15. Let ◦ be an arbitrary
multiplication operation on Z[G] that is distributive with +.

α ◦ β :=
(∑

g

α(g)χg

)
◦
(∑

h

β(h)χh

)
=
∑
g,h

(
α(g) ∗A β(h)

)(
χg ◦ χh

)
This follows from the distributivity of ◦ and the fact that α(g)χg and β(h)χh are actually sums.
Since ◦ is conservative over ∗G, χg ◦ χh = χg ∗G χh = χg∗Gh, and

(α ◦ β)(x) =
∑
g,h

(α(g) ∗ β(h))χg∗h(x) =
∑

g,h:g∗h=x

α(g) ∗ β(h),

as in Definition 3.1, so ◦ is ∗Z[G]. 2

It is appealing that our natural choice of + completely determines ∗ in any ring that extends
the additive group (Z[G],+Z[G]), and that the structure of a monoid algebra arises necessarily
and naturally.

3 Algebraic databases and queries

The goal of this section is to construct an analogon of multiset relational algebra – a starting
point for building aggregate queries – which has a full additive inverse, and so will allow us to
compute delta queries in a clean and compositional way. We extend this formalism to a ring
structure that allows for sideways binding passing, which is key to building an expressive query
language that admits condition checking within an algebraic framework (with key operations +
and ∗, but no selection operation, which would have to be higher-order).

3.1 Algebraic stores

Relational algebra, with union considered its addition, is not an algebra because union is not
total – two relations can only be combined by union if they have the same schema. Moreover,
even union in multiset relational algebra does not have an additive inverse. We now fix these
two problems.

We construct a (semi)ring of generalized multiset relations (gmrs) – collections of tuples
with multiplicities from a (semi)ring and possibly differing schemas. The operations + and

16

∗ are generalizations of multiset union and natural join, respectively, to total functions (i.e.,
applicable to any pair of gmrs). The schema polymorphism of tuples in gmrs serves the purpose
of accommodating such total operator definitions.

Let Σ be a vocabulary of column names and Adom an active domain of data values. A record
is a tuple with a schema of its own, and formalized as a partial function Σ → Adom. The set
of all records is denoted by T. We write {~t} to construct a classical singleton relation (without
multiplicities) from record ~t. The schema sch({~t}) of this singleton is dom(~t). The set of all
singletons is denoted by Sng.

Let Sng∅ = Sng ∪ {∅} be the set of singletons plus the empty relation. Then Sng∅ with the
natural join ./ forms a commutative monoid with 1-element {〈〉} and zero ∅. In particular, Sng∅
is closed under ./.

Definition 3.1 Fix a semiring (or ring with identity) A. A generalized multiset relation (gmr)
is a function R : T → A such that R(~t) 6= 0 for at most a finite number of tuples ~t. Such a
function indicates the multiplicity with which each tuple of T occurs in the gmr. If A is a ring,
tuples can have negative multiplicities. The set of all such functions is denoted by A[T].

The operations + and ∗ of A[T] are defined as follows. For R, S ∈ A[T],

R + S : ~x 7→
(
R(~x) + S(~x)

)
R ∗ S : ~x 7→

∑
{~x}={~y}./{~z}

R(~y) ∗ S(~z)

1 : ~x 7→
{

1 . . . ~x = 〈〉
0 . . . ~x 6= 〈〉

0 : ~x 7→ 0

and (−R) : ~x 7→ (−R(~x)) if A is a ring. 2

Example 3.2 Consider the three gmrs of A[T]

R A B
a1 7→ r1

a2 b 7→ r2

S C
c 7→ s

T B C
c 7→ t1

b c 7→ t2

over column name vocabulary Σ = {A,B,C} and value domain Adom = {a1, a2, b, c}. Only
entries with nonzero multiplicity are shown. For example, in multiset relation R, two tuples of
different schema have a multiplicity other than 0. These two tuples can be specified as partial
functions Σ→ Adom: {A 7→ a1} and {A 7→ a2;B 7→ b}. The values r1, r2, s, t1, t2 are from A.

Then S + T and R ∗ (S + T) are as follows:

S + T B C
c 7→ s+ t1

b c 7→ t2

R ∗ (S + T) A B C
a1 c 7→ r1 ∗ (s+ t1)
a1 b c 7→ r1 ∗ t2
a2 b c 7→ r2 ∗ (s+ t1) + r2 ∗ t2

The missing values should not be taken as SQL null values, and ∗ is not an outer join. 2

17

On classical multiset relations (where all multiplicities are ≥ 0 and all tuples with multiplicity
> 0 have the same schema), ∗ is exactly the usual multiset natural join operation. Definition 3.1 is
isomorphic to the definition of a mutilated monoid algebra A[Sng] (the mutilation is the removal
of the zero from the monoid Sng∅):

Proposition 3.3 If A is a (commutative) semiring respectively ring with identity, then so is
A[T].

Proof. Mutilate the monoid Sng∅ by removing ∅. By Lemma 2.9, A[Sng] is a commutative ring
with identity (Sng = Sng∅\{∅}).

The map θ : α 7→
(
~t 7→ α({~t})

)
from A[Sng] to A[T] is a ring isomorphism: The two rings

are really the same, with the minor notational difference that the domain of the latter is tuples,
while the domain of the former is the same tuples elevated to singleton sets. 2

By Proposition 2.15 and the remarks that follow it, A[T] is an A-module. The proof of Propo-
sition 2.16 also immediately applies to Z[T], so Z[T] is the smallest generalization of multiset
relational algebra to a ring.

3.2 Parametrized gmrs and binding passing

As for monoid (semi)rings, the monoid Sng∅ allows us to construct avalanche (semi)rings over
databases. Below, we continue to work with tuples rather than singletons, like in our choice of

A[T] rather than A[Sng∅] above. We construct a structure analogous to
=⇒

A[Sng∅] that excludes ∅
and maps tuples to A[T].

A parametrized gmr (pgmr) is a function f : T → A[T] such that f(~b)(~x) = 0A for any

inconsistent ~b, ~x ∈ T (i.e., {~b} ./ {~x} = ∅). The set of all pgmrs is denoted by
=⇒
A[T]. The

operations on
=⇒
A[T] are

f + g : ~b 7→
(
f(~b) +A[T] g(~b)

)
f ∗ g : ~b 7→ ~x 7→

∑
{~x}={~y}./{~z}, {~b}./{~y}6=∅

f(~b)(~y) ∗A g(~b~y)(~z)

0 : · 7→ 0A[T]

1 : · 7→ 1A[T]

Proposition 3.4 If A is a semiring respectively ring with identity, then so is
=⇒
A[T].

Example 3.5 Let R ∈ A[T], f ∈
=⇒
A[T] be the function · 7→ R that ignores its parameters and

returns R, and let g ∈
=⇒
A[T] be the function

~b 7→ ~x 7→
{

1A . . . ~x = 〈〉, A,B ∈ dom(~b), ~b(A) <~b(B)
0A . . . otherwise

18

By definition of ∗
=⇒
A[T], and since g(~y)(~z) = 0 unless ~z = 〈〉,(

f ∗
=⇒
A[T] g

)
(〈〉) : ~x 7→

∑
{~x}={~y}./{~z}

f(〈〉)(~y) ∗A g(〈〉~y)(~z)

= ~x 7→
∑

{~x}={~y}./{〈〉}

R(~y) ∗A g(~y)(〈〉)

= ~x 7→ R(~x) ∗A g(~x)(〈〉).
This “selects” those tuples of R that have A and B in their domain and satisfy the condition
A < B. The multiplicity of tuples ~x selected is that of R, R(~x). 2

4 Query Language

This section introduces the query language AGCA (which stands for AGgregation CAlculus). The
overall query language inherits the key properties of polynomial rings in that it has an additive
inverse, a normal form of polynomial expressions, and aggregates admit a form of factoriza-
tion. These properties will be the basis of delta processing and incremental query evaluation in
subsequent sections.

Syntax. AGCA expressions are built from constants, variables, relational atoms, aggregate
sums (Sum), conditions, and variable assignments (:=) using +, −, and ∗. The abstract syntax
can be given by the EBNF

q ::- q ∗ q | q + q | −q | Sum(q) | c | x | R(~x) | q θ 0 | x := q

Here x denotes variables, ~x tuples of variables, R relation names, c constants from A, and θ
denotes comparison operations (=, 6=, >, ≥, <, and ≤).

We will also write q θ q′ for (q − q′) θ 0. Note that x := q is a special condition essentially
equivalent to x = q, with one catch. Remember that in relational calculus, both variables x and
y are safe in φ ∧ x = y if at least one of them is safe in φ (the other variable can be assigned
the value of the safe variable from φ). In order to simplify the following semantics definition, we
make the distinction between the case where only one of the variables is safe from the left (:=)
and the case where both are safe (=) clear by syntax.

Semantics. The formal semantics of AGCA is given by an evaluation function [[·]] that, given

a query q and a database A, evaluates to an element [[q]](A) of
=⇒
A[T]:

[[q1 + q2]](A) := [[q1]](A) +
=⇒
A[T] [[q2]](A)

[[−q]](A) := −
=⇒
A[T][[q]](A)

[[q1 ∗ q2]](A) := [[q1]](A) ∗
=⇒
A[T] [[q2]](A)

[[Sum q]](A) := ~b 7→ ~x 7→
∑
~x∗~y=~y

[[q]](A)(~b)(~y)

[[c]](·) := · 7→ x 7→
{
c . . . x = 〈〉
0 . . . otherwise

[[q θ 0]](A) := ~b 7→ ~x 7→
{

1 . . . [[q]](A)(~b)(〈〉) θ 0, ~x = 〈〉
0 . . . otherwise

19

[[y := t]](A) := ~b 7→ ~x 7→
{

1 . . . ~x = {y 7→ [[t]](A)(~b)(〈〉)}
0 . . . otherwise

[[y]](·) := ~b 7→ ~x 7→


fail . . . y 6∈ dom(~b)
~b(y) . . . otherwise, if ~x = 〈〉
0 . . . otherwise

[[R(x1, . . . , xk)]](A) := ~b 7→ ~x 7→

 RA({Ai 7→ ~x(xi) | Ai ∈ sch(R)}) . . . {~b} ./ {~x} 6= ∅,
|dom(~x)| = |sch(R)|

0 . . . otherwise.

Recall that records are functions: {~b} ./ {~x} 6= ∅ asserts that the records ~b and ~x are

consistent, that is, for all y ∈ dom(~b) ∩ dom(~x), ~b(y) = ~x(y).
The definition of [[R(x1, . . . , xk)]] supports column renaming, which makes it a little lengthy.

Example 4.1 Let R be a database relation

RA a b
a1 b1 7→ r1

a2 b2 7→ r2

Then
[[R(x, y)]](A)({y 7→ b1}) x y

a1 b1 7→ r1

The query renames the columns (a, b) to (x, y) and selects on y since it is a bound variable. 2

Example 4.2 Let
[[R(x, y)]](A)(〈〉) x y

1 7→ a1

1 7→ a2

1 1 7→ a3

1 2 7→ a4

and a1, . . . , a4 ∈ Z. Then

[[R(x, y) ∗ (x < y)]](A)(〈〉) x y
1 2 7→ a4

[[R(x, y) ∗ (x = y)]](A)(〈〉) x y
1 1 7→ a1 + a2 + a3

For example, [[R(x, y) ∗ (x = y)]](A)(〈〉)({x 7→ 1; y 7→ 1}) =∑
{x 7→1;y 7→1}={~y}./{~z}

[[R(x, y)]](A)(〈〉)(~y) ∗A [[x = y]](A)(~y)(~z)

= [[R(x, y)]](A)(〈〉)({x 7→ 1}) ∗A [[x = y]](A)({x 7→ 1})({x 7→ 1; y 7→ 1})
+ [[R(x, y)]](A)(〈〉)({y 7→ 1}) ∗A [[x = y]](A)({y 7→ 1})({x 7→ 1; y 7→ 1})
+ [[R(x, y)]](A)(〈〉)({x 7→ 1; y 7→ 1}) ∗A [[x = y]](A)({x 7→ 1; y 7→ 1})({x 7→ 1; y 7→ 1})
= a1 + a2 + a3.

2

20

Example 4.3 For gmr R of Example 4.1,

[[Sum(R(x, y) ∗ 3 ∗ x)]](A)(〈〉)(〈〉) =
∑
~x,~y,~z

[[R(x, y)]](A)(〈〉)(~x) ∗ [[3]](A)(~x)(~y) ∗ [[x]](A)(~x ∗ ~y)(~z)

= r1 ∗ 3 ∗ [[x]](A)({x 7→ a1, y 7→ b1})(〈〉)
+ r2 ∗ 3 ∗ [[x]](A)({x 7→ a2, y 7→ b2})(〈〉)
= r1 ∗ 3 ∗ a1 + r2 ∗ 3 ∗ a2.

2

Example 4.4 AGCA is powerful enough to construct gmrs from scratch:

[[(x := x1) ∗ (y := y1) ∗ z + (x := x2) ∗ (−3)]](·)({x1 7→ a1; y1 7→ b1;x2 7→ a2; z 7→ 2})

defines the gmr
x y
a1 b1 7→ 2
a2 7→ −3

2

Note that [[·]] indeed maps to elements of
=⇒
A[T]; in particular, the image elements are functions

T→ T→ A whose images are in A[T], i.e., are nonzero on at most a finite number of inputs.
The evaluation of variables x using [[x]] fails if they are not bound at evaluation time. We will

consider a query in which this may happen illegal, and will subsequently exclude such queries
from AGCA. A definition of range-restriction completely analogous to that for relational calculus
(cf. [1]), with ∧ and ∨ replaced by ∗ and +, respectively, allows to statically verify that such
runtime failures do not happen.

5 Properties of AGCA

In this section, we first discuss the relationship between AGCA and SQL, relational algebra, and
the relational calculus. Then we show how AGCA queries can be turned into polynomials, how
monomials admit factorization, and how unnecessary variables can be eliminated from queries.

AGCA on classical and multiset relations. A gmr R ∈ Z[T] is a multiset relation if
all of its tuples ~t with nonzero multiplicity have consistent schema dom(~t) (which is called the
schema of R, sch(R)) and no tuple has negative multiplicity.

Let R, [[α]]F (A,~b), [[β]]F (A,~b) ∈ Z[T] be multiset relations. Then

[[R(x1, . . . , xsch(R))]](A)(~b) := σ~x7→({~b}./{~x}6=∅)(ρsch(R)→(x1,...,xsch(R))R
A)

[[α ∗ β]](A)(~b) := [[α]](A)(~b) ./ [[β]](A)(~b)

[[α + β]](A)(~b) := [[α]](A)(~b) ∪ [[β]](A)(~b)

(α and β have consistent schema)

[[φ ∗ (t θ 0)]](A)(~b) := σ~x7→([[t]](A)(~b~x)(〈〉) θ 0)([[φ]](A)(~b))

21

are multiset relations. Here ρ, σ, ./, ∪ are the tuple renaming, selection, natural join, and
multiset union operators of multiset relational algebra. Selection is of the form σT→Boolean, i.e.,
the subscript is not a condition but a function that evaluates the condition for a given tuple.
(This allows for a clean way to specify nested aggregates.)

Remark 5.1 Throughout this paper, “−” does not refer to the difference operation of relational
algebra, but to the additive inverse in A[T]: for instance, ∅+ (−R) = −R in A[T], while ∅−R in
relational algebra results in ∅. It is more appropriate to think of a gmr −R as a deletion, where
deleting “too much” results in a database with negative tuples.

From SQL to the calculus. A SQL aggregate query

SELECT ~b, SUM(t) FROM R1 r11, R1 r12, . . . , R2 r21, . . . WHERE φ GROUP BY ~b

is expressed in AGCA as

Sum(R1(~x11) ∗R1(~x12) ∗ · · · ∗R2(~x21) ∗ · · · ∗ φ ∗ t)

with bound variables ~b. While Sum(·) computes exactly one number, we can think of an SQL

aggregate query with group by clause as a function ~b 7→ [[Sum(·)]](A)(~b) that maps each group
to its aggregate value.

Example 5.2 Relation C(cid, nation) stores the ids and nationalities of customers. The SQL
query

SELECT C1.cid, SUM(1)

FROM C C1, C C2

WHERE C1.nation = C2.nation

GROUP BY C1.cid;

asks, for each cid, for the number of customers of the same nation (including the customer
identified by cid). This query translates to AGCA as

Sum
(
C(c, n) ∗ C(c′, n′) ∗ (n = n′) ∗ 1

)
with bound variable c. Let v be a company id. Since C is a multiset relation,

[[C(c, n)]](A)({c 7→ v}) = σc=v(ρ(cid,nation)→(c,n)C
A)

[[C(c′, n′)]](A)({c 7→ v}) = ρ(cid,nation)→(c′,n′)C
A

[[1]](·)(·) = {|〈〉|}
R := [[C(c, n) ∗ C(c′, n′) ∗ (n = n′) ∗ 1]](A)({c 7→ v})

= σn=n′
(
σc=v(ρ(cid,nation)→(c,n)C

A)× ρ(cid,nation)→(c′,n′)C
A)× {|〈〉|}

are multiset relations too, and R has schema {c, n, c′, n′}. We have

[[Sum(C(c, n) ∗ C(c′, n′) ∗ (n = n′) ∗ 1)]](A)({c 7→ v}) =
∑
~x

R(~x)

which is equivalent to
SELECT SUM(1) from C C1, C C2 WHERE C1.nation = C2.nation AND C1.cid = v. 2

22

6 Updates and Delta Queries

Our goal is, given an AGCA expression α, to construct a query ∆α that expresses the change
made to the database by the insertion respectively deletion of a single tuple. We write u to
denote an update. More explicitly, we write ±R(~t) to denote the insertion or deletion of a tuple
~t into/from relation R of the database. We write ∆uα or ∆±R(~t)α to denote the delta-query for
such an update.

∆u(α + β) := (∆uα) + ∆uβ

∆u(α ∗ β) := ((∆uα) ∗ β) + (α ∗∆uβ) + ((∆uα) ∗∆uβ)

∆u(−α) := −∆uα

∆uSum(α) := Sum(∆uα)

∆u(t θ 0) :=
((

(t+ ∆ut) θ 0
)
∗ (t θ̄ 0)

)
−
((

(t+ ∆ut) θ̄ 0
)
∗ (t θ 0)

)
∆ux := 0

∆uc := 0

∆±R(~t)

(
R(x1, . . . , xsch(R))

)
:= ±

|sch(R)|∏
i=1

(xi := ti)

∆±R(~t)

(
S(x1, . . . , xsch(S))

)
:= 0 (R 6= S)

where θ̄ is the complement of the comparison operator θ (i.e., 6= for =, ≥ for <, etc.) and sch(R)
is the schema of R – the set of its column names. We treat an assignment x := q like an equality
condition x = q.

Proposition 6.1 Given any database A and an update u = ±R(~t),

[[α]](A+ u) = [[α]](A) + [[∆uα]](A).

Proof. The proof is by a straightforward bottom-up induction on the abstract syntax tree of
AGCA expressions.

Case α◦β (for ◦ ∈ {+, ∗}): By definition of [[·]], [[α◦β]](B) = [[α]](B)◦ [[β]](B). Let B = A+u.
By the induction hypothesis, [[α]](B) ◦ [[β]](B) = ([[α]](A) + [[∆uα]](A)) ◦ ([[β]](A) + [[∆uβ]](A)) =
[[(α+ ∆uα) ◦ (β+ ∆uβ)]](A). Given our definition of ∆u, by the associativity and commutativity
of + and distributivity of ∗ over +, this is [[(α ◦ β) + ∆u(α ◦ β)]](A).

Case −α: Treat as (−1) ∗ α, where −1 is a constant, handled below.
Case Sum α:

[[Sum α]](A+ u)(~b)(~x) =
∑
~x∗~y=~y

[[α]](A+ u)(~b)(~y)

=
∑
~x∗~y=~y

[[α]](A)(~b)(~y) + [[∆uα]](A)(~b)(~y)

=
(∑
~x∗~y=~y

[[α]](A)(~b)(~y)
)

+
∑
~x∗~y=~y

[[∆uα]](A)(~b)(~y)

= [[Sum α]](A)(~b)(~x) + [[Sum ∆uα]](A)(~b)(~x).

23

Case φ = t θ 0. Informally, the delta to φ is +1 if the condition was previously false and
becomes true by the change, −1 if the condition was previosly true and now becomes false, and
0 otherwise. The variables of φ can be assumed bound from the outside, thus the multiplicity of
the tuple defined by φ is either 1 or 0. Consider the following truth table, which shows, for all
truth values of φ and φnew = (t+ ∆ut) θ 0, the value of ∆uφ as given in our definition:

(1) (2) (3) (4) (5)
φ φnew ¬φ ∧ φnew φ ∧ ¬φnew ∆uφ = (3)− (4)

1 1 0 0 0
1 0 0 1 −1
0 1 1 0 +1
0 0 0 0 0

It is easy to see that for all truth values of [[φ]](A)(~b) and [[φnew]](A)(~b), (5) = (2)− (1) in the

above table, thus [[∆uφ]](A)(~b) = [[φnew]](A)(~b)− [[φ]](A)(~b).
Cases R(~x) and S(~x): ∆±R(~t)R(~x) explicitly constructs the change to R: It evaluates to

±{~t} : ~y 7→
{
±1 . . . ~t = ~y

0 . . . otherwise.

∆±R(~t)S(~x) (for R 6= S) evaluates to 0A[T].
Cases of constants and variables: The values of these do not change as the database changes,

so their deltas are 0A[T]. Note that even a variable term x has this property: it depends on the
bound variables, but not on the database. 2

Example 6.2 Consider the AGCA query

q = Sum
(
C(c, n) ∗ C(c′, n)

)
with bound variable c which is a slightly simplified but equivalent query to the one in Example 5.2.
We abbreviate C(c, n) ∗C(c′, n) as α. Let us study the insertion respectively deletion of a single
tuple (c1, n1) to/from C. Since

∆±C(c1,n1)C(c, n) = ±(c = c1) ∗ (n = n1),

∆±C(c1,n1)C(c′, n) = ±(c′ = c1) ∗ (n = n1),

by the delta-rule for ∗,

∆±C(c1,n1)α = (±(c = c1) ∗ (n = n1)) ∗ C(c′, n)

+ C(c, n) ∗ (±(c′ = c1) ∗ (n = n1))

+ (±(c = c1) ∗ (n = n1)) ∗ (±(c′ = c1) ∗ (n = n1)).

For the overall query, we get ∆±C(c1,n1)q = Sum(∆±C(c1,n1)α). 2

AGCA is closed under taking deltas. Thus we can take deltas as often as we like – our
queries are, so to say, infinitely differentiable. Next we define a construction to characterize the
structural complexity of AGCA expressions and show that for a large class of expressions, taking
deltas makes the expressions strictly simpler.

24

Definition 6.3 Let the (polynomial) degree deg of an AGCA expression be defined inductively
as follows:

deg(α ∗ β) := deg(α) + deg(β)

deg(α + β) := max(deg(α), deg(β))

deg(−α) := deg(α)

deg(Sum(α)) := deg(α)

deg(α θ 0) := deg(α)

deg(R(~x)) := 1.

For all other kinds of expressions, deg(·) := 0. 2

The degree of a conjunctive query is the number of relation atoms joined together. In absence
of further knowledge about the structure of the query (e.g., tree-width) or the data, the data
complexity [34] of an AGCA query q given values for the bound variables (in other words,
evaluating the query for one group) is O(ndeg(q)).

An AGCA condition t θ 0 is simple if ∆t = 0 for all update events. This is in particular true
if t does not contain Sum subterms.

Theorem 6.4 For any AGCA expression α with simple conditions only,

deg(∆α) = max(0, deg(α)− 1).

Proof Sketch. The proof is a straightforward induction combining Definition 6.3 with the
definition of ∆. In particular, ∆R(~x) is a constant expression containing simple condition atoms
but no relational atom, so deg(∆R(~x)) = 0. 2

Example 6.5 Consider the query of Example 6.2 and its delta.

∆±C(c1,n1)q = Sum
(

(±(c = c1) ∗ (n = n1)) ∗ C(c′, n)

+ C(c, n) ∗ (±(c′ = c1) ∗ (n = n1))

+ (±(c = c1) ∗ (n = n1)) ∗ (±(c′ = c1) ∗ (n = n1))
)
.

We have deg q[c] = 2, deg ∆±C(c1,n1)q[c] = 1, and

∆±C(c2,n2)∆±C(c1,n1)q = Sum
(

(±(c = c1) ∗ (n = n1)) ∗ (±(c′ = c2) ∗ (n = n2))

+ (±(c = c2) ∗ (n = n2)) ∗ (±(c′ = c1) ∗ (n = n1))
)
,

so deg q′′[c] = 0. The definition of ∆ ensures that the delta of any query of degree 0 is 0, so the
value as well as the degree of any derivative of q higher than q′′ are 0, too. 2

Theorem 6.4 guarantees that, for any AGCA expression with simple conditions only and
a fixed k, the k-th delta-derivative has degree zero. Such an expression does not access the
database: it only depends on the update. This will be key in the compilation result presented
in Section ??.

25

7 Back to Recursive Incremental View Maintenance

Given the development of Section 1.1, we now only need to tie together some lose ends to obtain
the result that incremental maintenance of AGCA is in NC0.

We study data complexity, that is, we assume the query to be fixed. We consider AGCA
queries with simple conditions, for which Theorem 6.4 holds.

We have seen in Section 1.1 that for a fixed query and a kind of single-tuple update (the
insertion or deletion of a tuple into/from a relation), there is a trigger that consists of a sequence
of statements that increment a GMR by the result of an AGCA query over views that does not
use aggregation. Assuming multiplicities are stored as machine words and arithmetics is modulo
maximum word size, each output bit depends only on a fixed number of input bits, and thus
evaluating such a statement and the entire trigger given a single-tuple update is in NC.

Theorem 7.1 The incremental evaluation of AGCA using triggers obtained by recursive incre-
mental view maintenance is in NC0.

This separates incremental view maintenance from nonincremental evaluation of AGCA,
where output bits in general are the result of the aggregation of information from many input
tuples; nonrecursive AGCA– just like relational algebra on bag relations – takes TC0 complexity.

A formal version of this result is obtained along the lines sketched in [21].

8 Related Work

There is a large literature on the incremental view maintenance problem (e.g. [5, 32, 4, 31, 6, 15,
16, 14, 35, 9, 11, 7, 26, 27, 22]). Work in this tradition expresses the delta to a query as a query
itself, which is evaluated mostly using classical operator-based query evaluation techniques. The
ring A[T] of this paper adds to the state of the art in this area by simplifying and generalizing
the machinery for obtaining delta queries. Previous work in this area generally does not address
aggregates nested into conditions, while this paper does. The work closest to ours is that of
[15, 16], where a multiset semantics and a counting-based model of incremental computation are
proposed. None of the previous work, however, applies delta processing to deltas recursively as
done here.

Treatments of bag semantics based on an algebraic connection to counting also appear in
[25, 13, 12]. The goals of this paper are different from those of [25, 13, 12]. Z-relations [12]
are relations in which the tuples have integer (including negative) multiplicities and they are
used to study the equivalence, rewriting, and optimization of certain queries with negation, with
an application to incremental view maintenance. There is a fundamental technical difference
between the algebraic modeling of [13, 12] and the one in this paper, in that we consider untyped
relations which allows us to define union and join as total operations, yielding a ring structure.

There is a considerable body of work on incremental computation by the programming lan-
guages research community [8, 30, 2]. This work is different in spirit since it has the objective to
speed up Turing-complete programming languages, which is substantially harder. The restriction
to query languages with strong algebraic properties allows for delta processing in a form that is
not possible for general-purpose programming languages.

Classical complexity classes are not well suited for characterizing the complexity of incre-
mental query evaluation in databases. In the database theory literature, there is some work on

26

dynamic complexity classes such as DynFO [29, 9, 26, 27, 19, 18, 28], which fills this gap. DynFO
essentially captures the expressive power that relational calculus yields for incremental computa-
tion (for tuple insertions and deletes). DynFO is more powerful than FO used nonincrementally.
For example, it is well known that graph reachability cannot be expressed in FO; however, there
are representations of reachability in undirected graphs that can be incrementally maintained
using first-order interpretations (i.e., in DynFO). Graph reachability on directed graphs can be
incrementally maintained using TC0 – in DynTC0 [18]. In short, this thread of work studies
how much additional expressive power one obtains by using a classical query language (such as
FO) to compute increments. In a sense, we do the opposite – we ask with how much less power
(and cost) we can make do by incremental computation for the evaluation of queries in practical
languages. The main result of this paper suggests that DynFO relates to FO similarly as the
complexity class TC0 relates to NC0. No claim is made that such a relationship holds strictly,
i.e. that TC0 = Dyn-NC0, but it is plausible that a result in this spirit could be achieved.

9 Future work

We have come to expect that query algebras are based on cylindric algebras [17], on which
research is rather isolated from mainstream mathematics. The ring A[T] and the query language
AGCA, which is based on it, connect database queries with mainstream algebra. In future work,
it may be worth looking into applications of A[T] in the context of constraint, probabilistic, and
scientific databases, where a better integration of query languages with numerical computation
and the standard framework of abstract algebra is desirable.

Acknowledgments

This article creates a foundation for the author’s current project on practical query compila-
tion, DBToaster [3]. The author thanks Yanif Ahmad and Oliver Kennedy for many insightful
discussions and Val Tannen and the anonymous reviewers of PODS for their advice.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming. ACM Trans.
Program. Lang. Syst., 28(6):990–1034, 2006.

[3] Y. Ahmad and C. Koch. DBToaster: A SQL compiler for high-performance delta processing
in main-memory databases. PVLDB, 2(2):1566–1569, 2009.

[4] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa. Efficiently updating materialized views. In
Proc. SIGMOD Conference, pages 61–71, 1986.

[5] P. Buneman and E. K. Clemons. Efficient monitoring relational databases. ACM Trans.
Database Syst., 4(3):368–382, 1979.

27

[6] S. Ceri and J. Widom. Deriving production rules for incremental view maintenance. In
Proc. VLDB, pages 577–589, 1991.

[7] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey. Algorithms for deferred
view maintenance. In Proc. SIGMOD, pages 469–480, 1996.

[8] A. J. Demers, T. W. Reps, and T. Teitelbaum. Incremental evaluation for attribute gram-
mars with application to syntax-directed editors. In Proc. POPL, pages 105–116, 1981.

[9] G. Dong and J. Su. Incremental and decremental evaluation of transitive closure by first-
order queries. Inf. Comput., 120(1):101–106, 1995.

[10] D. S. Dummit and R. M. Foote. Abstract Algebra. John Wiley & Sons, 3rd edition, 2004.

[11] S. Ghandeharizadeh, R. Hull, and D. Jacobs. Heraclitus: Elevating deltas to be first-class
citizens in a database programming language. ACM Transactions on Database Systems,
21(3):370–426, Sept. 1996.

[12] T. J. Green, Z. Ives, and V. Tannen. Reconcilable differences. In Proc. ICDT, St. Petersburg,
Russia, 2009.

[13] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In Proc. PODS,
pages 31–40, 2007.

[14] T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In Proc.
SIGMOD, 1995.

[15] A. Gupta, D. Katiyar, and I. S. Mumick. Counting solutions to the view maintenance
problem. In Proc. Workshop on Deductive Databases, JICSLP, 1992.

[16] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In
Proc. SIGMOD Conference, pages 157–166, 1993.

[17] L. Henkin, J. Monk, and A. Tarski. Cylindric Algebras, Part I. North-Holland, 1971.

[18] W. Hesse. The dynamic complexity of transitive closure is in DynTC0. Theor. Comput.
Sci., 296(3):473–485, 2003.

[19] W. Hesse and N. Immerman. Complete problems for dynamic complexity classes. In Proc.
LICS, 2002.

[20] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, volume 1, chapter 2, pages 67–161. Elsevier Science Publishers
B.V., 1990.

[21] C. Koch. Incremental query evaluation in a ring of databases. In Proc. PODS, pages 87–98,
2010.

[22] Y. Kotidis and N. Roussopoulos. A case for dynamic view management. ACM Transactions
on Database Systems, 26(4):388–423, 2001.

28

[23] S. Lang. Algebra. Graduate Texts in Mathematics. Springer-Verlag, revised 3rd edition,
2002.

[24] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[25] L. Libkin and L. Wong. Some properties of query languages for bags. In Proc. DBPL, pages
97–114, 1993.

[26] L. Libkin and L. Wong. Incremental recomputation of recursive queries with nested sets
and aggregate functions. In Proc. DBPL, pages 222–238, 1997.

[27] L. Libkin and L. Wong. On the power of incremental evaluation in SQL-like languages. In
Proc. DBPL, pages 17–30, 1999.

[28] P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia. Complexity models for
incremental computation. Theor. Comput. Sci., 130(1):203–236, 1994.

[29] S. Patnaik and N. Immerman. Dyn-FO: A parallel, dynamic complexity class. J. Comput.
Syst. Sci., 55(2):199–209, 1997.

[30] W. Pugh and T. Teitelbaum. Incremental computation via function caching. In Proc. POPL,
1989.

[31] N. Roussopoulos. An incremental access method for viewcache: Concept, algorithms, and
cost analysis. ACM Transactions on Database Systems, 16(3):535–563, 1991.

[32] O. Shmueli and A. Itai. Maintenance of views. In B. Yormark, editor, Proc. SIGMOD,
pages 240–255. ACM Press, 1984.

[33] R. Smolenski. Algebraic methods in the theory of lower bounds for boolean circuit com-
plexity. In Proc. STOC, pages 77–82, 1987.

[34] M. Y. Vardi. The complexity of relational query languages. In Proc. STOC, pages 137–146,
May 1982.

[35] W. P. Yan and P.-Å. Larson. Eager aggregation and lazy aggregation. In Proc. VLDB,
pages 345–357, 1995.

29

