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Alessandro Daducci∗, Erick Jorge Canales-Rodrı́guez, Maxime Descoteaux, Eleftherios Garyfallidis, Yaniv Gur,
Ying-Chia Lin, Merry Mani, Sylvain Merlet, Michael Paquette, Alonso Ramirez-Manzanares, Marco Reisert,
Paulo Reis Rodrigues, Farshid Sepehrband, Emmanuel Caruyer, Jeiran Choupan, Rachid Deriche, Mathews
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Abstract—Validation is arguably the bottleneck in the diffu-
sion MRI community. This paper evaluates and compares 20
algorithms for recovering the local intra-voxel fiber structure
from diffusion MRI data and is based on the results of the
“HARDI reconstruction challenge” organized in the context of
the “ISBI 2012” conference. Evaluated methods encompass a
mixture of classical techniques well-known in the literature such
as Diffusion Tensor, Q-Ball and Diffusion Spectrum imaging,
algorithms inspired by the recent theory of compressed sensing
and also brand new approaches proposed for the first time
at this contest. To quantitatively compare the methods under
controlled conditions, two datasets with known ground-truth
were synthetically generated and two main criteria were used to
evaluate the quality of the reconstructions in every voxel: correct
assessment of the number of fiber populations and angular
accuracy in their orientation. This comparative study investigates
the behavior of every algorithm with varying experimental condi-
tions and highlights strengths and weaknesses of each approach.
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This information can be useful not only for enhancing current
algorithms and develop the next generation of reconstruction
methods, but also to assist physicians in the choice of the most
adequate technique for their studies.
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comparison, validation, synthetic data

I. INTRODUCTION

D IFFUSION MRI (dMRI) is a powerful magnetic reso-
nance imaging modality which is sensitive to the Brow-

nian motion of water molecules in living tissues. This peculiar
feature is exceptionally effective in the brain as it permits
to investigate the structural wiring of the nervous system in
vivo and non-invasively. In fact, in the white matter, these
microscopic random movements are highly hindered by the
coherent organization in bundles of the neuronal tissue [1]
and it is possible to infer the architecture of the neuronal
connections by properly characterizing the distribution of the
displacements. The richer and more detailed this description is,
the more accurate any subsequent global connectivity analysis
will be. In fact, all fiber-tracking algorithms [2], [3] (see [4]
and references therein for a more complete list) rely on a
suitable characterization of the diffusion process within each
voxel as they attempt to estimate the most likely fiber tracts
connecting different regions of the brain.

The first approach to model the anisotropic nature of the dif-
fusion process in biological tissues has been Diffusion Tensor
Imaging [5] (DTI), which is based on the Gaussian assumption
on the displacements. Despite providing useful diagnostic
information with very fast acquisitions, DTI is unable to
resolve multiple fiber populations within a voxel. To overcome
this limitation, Diffusion Spectrum Imaging [6] (DSI) has been
proposed. DSI is a model-free technique exclusively based on
the Fourier relationship [7] between the signal acquired in a
Cartesian grid and the 3D displacement spectrum, also known
as the Ensemble Average Propagator (EAP). DSI provides
probably the most detailed description of diffusion within each
voxel, but it requires hundreds of measurements which are
not compatible with the normal acquisition time admitted in
clinical protocols. To this aim, a large number of alternative
reconstruction techniques have been developed to recover both
the angular and radial component of the diffusion process.
Among them, to mention a few, we can cite the models
based on multiple [8]–[11] or higher-order tensors [12]–[14],
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the Q-Ball Imaging (QBI) [15] and its variant computed in
constant solid angle [16], [17], the Persistent Angular Structure
MRI (PAS-MRI) [18], the Composite Hindered And Restricted
Model of Diffusion (CHARMED) [19], the Diffusion Ori-
entation Transform (DOT) [20], [21], the Hybrid Diffusion
Imaging (HIDY) [22], the Generalized Q-sampling Imaging
(GQI) [23] and all the algorithms based on spherical decon-
volution [24]–[29]. Multi-compartment models have been also
proposed in the literature to explain the measured dMRI signal
more accurately; see [30] for a detailed survey. All these
techniques are characterized by fitting advanced and more
descriptive models of diffusion (e.g. intra- and extra-axonal
space) to get access to important micro-structure parameters
such as axonal diameter and density. Lately, the advent of
compressed sensing [31], [32] inspired new approaches to
solve the reconstruction problem whose main goal is to dras-
tically reduce the acquisition time [33]–[39]. This list is not
exhaustive and many other algorithms exist in the literature;
see [40]–[42] for a more comprehensive list of available
techniques. All these methods differ in a great deal of aspects,
like for instance the acquisition scheme adopted (number and
position of the diffusion gradients), the targeted feature of the
diffusion process to estimate, e.g. EAP, diffusion Orientation
Distribution Function (ODF) or Fiber Orientation Distribution
(FOD), and the assumptions made in the reconstruction. A
direct comparison among techniques is hence very difficult.

Another source of confusion when comparing the ap-
proaches proposed in the literature stems from the different
choices of the framework used to validate the reconstructions.
Validation frameworks can be divided into three categories:
biological phantoms, physical phantoms and numerical simu-
lations. In the first case, the fiber configurations estimated from
dMRI are compared with the results of histological or tracer-
injection studies [43]–[46], either in vivo or ex vivo, performed
on the same biological sample. In particular, an emerging
technique called three-dimensional Polarized Light Imaging
(3D-PLI) [47] is capable of providing the directionality of the
axons in postmortem human brains at ultra-high resolution,
i.e. sub-millimeter scale. All these techniques offer exquisite
insights of the brain structure but they are very invasive and,
more importantly, allow to investigate only a few specific
axonal tracts or sample slices at once. On the other hand, with
physical phantoms [48]–[57] it is possible to build specific
arrangements of synthetic fibers that mimic bending, crossing
and kissing configurations usually observed in the real brain
anatomy and thus validate the algorithms in more complex
scenarios. However, the construction of a realistic phantom
is an extremely challenging task as the dimension and the
complexity of the fiber architecture which is possible to
achieve with current technologies are orders of magnitude
different from the real nervous system. Moreover, all publicly
available phantoms have normally been scanned only a limited
number of times, hence providing images corresponding to a
very limited number of sampling schemes and with only an
intrinsic acquisition noise. Therefore they are not suitable for
testing the performances of an algorithm in different scenarios.
By contrast with the two previous validation frameworks,
numerical simulations offer a simple and versatile way to

assess the performances of a reconstruction algorithm with a
broader set of experimental conditions, e.g. signal models [8],
[58], fiber configurations, sampling schemes and noise levels.
Interestingly, Tournier et al. [48] have shown that numerical
simulations performed using these models agree well with
physical phantoms but, as already mentioned, they represent an
over-simplification of what happens in the white matter. Even
though the level of complexity they offer is way too simplistic
with respect to the real architecture of the nervous system,
they actually constitute the validation framework of choice
for the majority of the algorithms proposed in the literature,
as in [8], [17], [20], [23], [27], [28], [33], [34], [37], [59],
[60] to mention a few. Unfortunately, when a new algorithm
is proposed, the performances are normally assessed with
ad-hoc synthetic data and evaluation criteria, and comparing
different approaches can be difficult. This lack of consensus
on the validation framework is particularly crucial in a clinical
perspective, as the availability of a comprehensive comparison
of the most common techniques might help clinicians in the
choice of the most adequate method for a specific application.

With these considerations in mind, the aim of this work is to
provide all researchers in this field with a common validation
framework to assess the performances of their own algorithms
for the intra-voxel fiber recovery and fairly compare their
results against other approaches under controlled conditions. It
is not an intention of this work to determine the most suitable
technique to adopt in a clinical study, as the choice highly
depends both on the interests (e.g. research question or intra-
voxel feature to extract) and possibilities (e.g. available scan
time) of the study itself. Nor it is likely that an algorithm
outperforms all the others in all possible scenarios. This study
should be intended as a comprehensive set of analyses report-
ing strengths and weaknesses of a large selection of state-of-
the-art techniques in a wide range of experimental conditions.
The focus is on the angular component of the recovered
diffusion profiles. Because of the large number of techniques
proposed in the literature to this end, the evaluation presented
in this work is not exhaustive. Nonetheless, to date and to the
best of our knowledge it represents the comparison study with
the largest number of different reconstruction techniques and
the most heterogeneous set of experimental conditions.

The rest of the manuscript is organized as follows. In
section II we present the challenge, describing in detail its
organization, the ground-truth synthetic data and the evalua-
tion criteria used, and the reconstruction methods that were
considered in the study. The results of the comparison are
presented and discussed in section III. We conclude this paper
with general considerations and some take-home messages.

II. MATERIALS AND METHODS

In this section we describe in detail the organization of the
contest, the reconstruction methods considered in this study
and the evaluation framework that we used to quantitatively
compare all the algorithms, i.e. synthetic datasets with known
ground-truth and evaluation criteria. More information can be
found on the challenge website1.

1hardi.epfl.ch/static/events/2012 ISBI

http://hardi.epfl.ch/static/events/2012_ISBI
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A. Contest organization

The diffusion MRI reconstruction challenge was organized
in the context of the 9th IEEE International Symposium on
Biomedical Imaging (ISBI) conference, which was held in
Barcelona (Spain) in May 2012. The purpose of this contest
was to evaluate and compare different reconstruction methods
for recovering the intra-voxel fiber structure, i.e. number and
orientation of the fibers populations present in each voxel,
from dMRI acquisitions, using the same ground-truth data and
under controlled conditions.

Training data was released prior to the contest in order
for the contestants to practice with the data format, test their
methods and identify the setting providing the best results, e.g.
acquisition protocol and specific parameters of the algorithm.
For the final evaluation of the performances of each method,
though, another set of testing data was used. In order to grant
the maximum flexibility for the acquisition scheme required by
each reconstruction algorithm, while still keeping the ground-
truth of the testing data unknown to the contestants, we
adopted the following single-blind procedure for the genera-
tion of the dMRI signal. Each participant had the possibility to
probe the signal corresponding to the ground-truth dataset only
once by submitting to the organizers an acquisition scheme
specifying the sampling coordinates in q-space, i.e. direction
and strength of the diffusion gradients. The minimum and
maximum number of samples which was possible to probe
was fixed to 6 and 257, respectively, corresponding to standard
DTI and DSI acquisitions on one hemisphere, assuming central
symmetry in the diffusion signal. There were no restrictions,
however, on the position of the samples in the q-space.

The signal was then numerically simulated in every voxel
of the dataset by the organizers (see next section) according
to the gradient list received from each team. This is the only
information the contestants knew about the common dataset.
For teams participating with more than one method, data
sharing between the algorithms was not allowed. At this point,
the participants could apply their proposed reconstruction
algorithms on the data received from the organizers in order
to recover the underlying fiber configuration. Any combination
of algorithms, signal processing techniques and available soft-
ware was allowed, with the only constraint that the outcomes
of the proposed methodology must be reproducible.

B. Synthetic data

1) Signal simulation: To simulate the dMRI signal intensity
in a voxel with M fiber populations and corresponding to the
application of a diffusion-sensitizing gradient we adopted the
classical Gaussian Mixture Model proposed by [8]:

S(q) = S0

M∑
i=1

fi exp
(
−buT D(i) u

)
, (1)

where q is the coordinate vector in q-space accounting for
the direction and strength of the diffusion gradient, u ∈ S2

is a unit vector in 3D with q = qu = |q|u, b = 4π2q2t is
the b-value corresponding to q and diffusion time t and S0

is the signal without diffusion weighting (i.e. b = 0). Each
fiber population can be characterized by a tensor D(i) and

a non-negative volume fraction fi such that
∑M
i=1 fi = 1.

Each D(i) can be expressed as a rotated version of a tensor
D = diag(λ1, λ2, λ3) as RT DR, R being the rotation matrix
rotating the main axis of D to the direction of a given
fiber population. Diagonal elements of D are the diffusivities
along the main axis of the fiber (λ1) and in the plane
perpendicular to it (λ2, λ3). In this contest, the diffusivities
were generated from the following ranges typically observed
in the human brain [60]: λ1 ∈ [1, 2] × 10−3 mm2/s and
λ2 = λ3 ∈ [0.1, 0.6]×10−3 mm2/s. Also, we assumed S0 = 1
without loss of generality.

2) Noise simulation: To be consistent with previous studies
presenting new reconstruction methods, in this work the signal
S has been corrupted by Rician noise [61] as follows:

Snoisy =
√

(S + η1)2 + η22 (2)

with η1, η2 ∼ N (0, σ2) and σ = S0/SNR controls the level
of the noise, which is reported here as the signal-to-noise
ratio (SNR) on the S0 image. In our simulations the only
source of artifact is Rician noise and the performances of the
reconstruction methods have been evaluated as function of its
magnitude for three different noise levels, i.e. SNR = 10, 20,
30. The study of the quality of the reconstructions as function
of other realistic imaging artifacts such as eddy currents,
B0-field inhomogeneity and subject motion, was beyond the
scope of this work.

3) Phantoms: In order to adequately evaluate the perfor-
mances of each algorithm with different experimental condi-
tions we created two separate synthetic phantoms.

Fig. 1. Structured field synthetic dataset. The 5 different fiber bundles
(A-E) are reported separately. In each voxel, the directions of the fiber
populations are color-coded depending on their orientation (x-axis, y-axis,
z-axis). Subplot F shows a representative slice with the corresponding ODFs
computed analytically from the equation (1) as in [15], [60].

The structured field dataset (hereafter SF) consists of a
16 × 16 × 5 volume attempting to simulate a realistic 3D
configuration of tracts occurring in reality. As shown in Fig. 1,
this dataset comprises five different fiber bundles which give
rise to non-planar configurations of bending, crossing and
kissing tracts. All fiber tracts are characterized by having a
fractional anisotropy between 0.75 and 0.90. The diffusion
properties have been generated from the diffusivity ranges
previously described and were kept constant along the full
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trajectory of each bundle. The dataset contains the following
proportion of voxel configurations: 35% with a single fiber
population, 35% with two and 30% with three. In voxels with
multiple fiber populations, then, the crossing angles between
the fiber directions were distributed as follows: 27% smaller
than 30◦, 35% in the range 31◦–60◦ and 38% above 61◦. The
purpose of this dataset was to test the average performance
of each algorithm with plausible fiber configurations. More-
over, we used this dataset to investigate the ability of each
algorithm to exploit additional information from neighboring
voxels for possibly improving the reconstruction of the fiber
configuration at a given position.

On the other hand, the isolated voxels dataset (hereafter
IV) consists of a set of 9100 independent voxels with no
spatial coherence among them. Each voxel contains a given
configuration of 2 fiber populations crossing at specific an-
gles, with 100 repetitions of every given configuration. The
diffusion properties of each population have been randomly
generated by means of uniform distributions in the ranges
previously described, but the two fiber populations do not
necessarily share the same values. As for the SF dataset,
the fractional anisotropy was maintained between 0.75 and
0.90. For completeness, the analysis of the performance of
each reconstruction algorithm is provided in the full range of
crossing angles, 0◦–90◦, as in [17], [38], [48]. The purpose of
this dataset is to explore more in detail the behavior of each
approach as some experimental conditions change.

C. Evaluation criteria

To assess the quality of the reconstructions we have focused
our attention on two main criteria: (i) correct assessment of
the number of fiber populations present in each voxel and
(ii) angular accuracy in their orientation. We have purposely
adopted evaluation metrics widely used in the literature, e.g.
[26], [29], [36]–[38], [62], [63], with the aim to simplify
and standardize the comparison of our results with previously
reported findings. To compute these metrics we have compared
the fiber populations (also referred to as fiber compartments
in this work) of the ground-truth with the directions estimated
by each reconstruction algorithm. There was not consensus,
though, in the strategy to estimate these directions: some teams
used peak-finding procedures on the recovered ODFs while
others extracted them directly in the reconstruction problem
(e.g. DTI), some used a threshold to filter out small peaks
and some other did not. More information on each method’s
strategy can be found on the challenge website.

In order to assess the correct estimation of the number of
fiber compartments we employed the success rate, hereafter
reported as SR, which is defined as the proportion of voxels
in which a reconstruction algorithm estimates correctly the
right number of fiber populations. To understand the reasons
of an incorrect assessment, we also used the following two
quantities, n+ and n−, which explicitly count the number
of over-estimated and under-estimated fiber populations in
a voxel, respectively. Furthermore, in order to distinguish
between the estimated fiber populations that are close enough
to the real ones, i.e. true positives, and those which are clearly

spurious, i.e. false positives, we recomputed the previous
metrics using a tolerance cone as suggested in [26], [63].
These three additional measures, namely SR∠, n+

∠ and n−
∠ ,

are defined as before but an estimated direction is considered
“resolved” only if it falls within a tolerance cone around a
real fiber population in the voxel. In this work the tolerance
was set to 20◦. Noteworthy, in this study we have employed
both versions of these metrics, i.e. with and without tolerance
cone, as this provided more insight into the reconstructions.

The angular accuracy in the orientation of the estimated
fiber compartments was assessed by means of the average error
(in degree) between the estimated fiber directions and the true
ones present in a voxel:

θ =
180

π
arccos( |dtrue · destimated| ), (3)

where the unitary vectors dtrue and destimated are, respec-
tively, a true fiber population in the voxel and the closest of the
estimated directions; then · denotes the dot product. The final
value in the voxel is the average computed by first matching
the directions estimated by the algorithm to the ground-truth
in order to minimize the error.

D. Reconstruction methods

Table I gives an overview of the 20 algorithms considered in
this work. For more details about each reconstruction method
(not reported here for conciseness), please refer to the proceed-
ings of the workshop on the challenge website. In addition to
the 13 submissions received during the contest, in this study
we also considered 7 additional well-established reconstruc-
tion algorithms with the aim to have a more comprehensive
comparison. To prevent unfair comparisons among methods
using so different acquisition protocols, the algorithms have
been grouped into four different classes depending on the
characteristics of the sampling scheme adopted.

The DTI-like class includes approaches based on clinical
acquisition protocols with less than 15 samples and maximum
b-value equal to 1000 s/mm2. In addition to the classical
Diffusion Tensor Imaging [5] (DTI), this class comprises a
novel approach named DTIneigh [64] which aims at improving
the reconstructions by means of contextual enhancement of the
spherical diffusion functions based on the notion of context.

In the HARDI-like class we grouped those methods based
on acquisition schemes with one or multiple shells using
a maximum b-value of 3000 s/mm2. Six well established
techniques have been included: Diffusion Orientation Trans-
form [20] (DOT), analytical Q-Ball Imaging [59] (QBI), Q-Ball
Imaging with Spherical Wavelet Transform [66] (QBISWT), Q-
Ball Imaging in Constant Solid Angle [17] (QBICSA), Non-
negativity Constrained Super-resolved Spherical Deconvolu-
tion [27] (CSD) and the Sharpening Deconvolution Trans-
form [29] (SDT). In addition, two novel algorithms have been
considered: STD, a spherical deconvolution approach based on
Symmetric Tensor Decomposition, and SPIRAL, an innovative
technique based on spiral sampling which exploits the periodic
pattern of the signal in the gradient direction domain for de-
noising and estimating the intra-voxel fiber configuration.
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TABLE I
SUMMARY OF THE RECONSTRUCTION ALGORITHMS EVALUATED IN THIS STUDY. THE METHODS HAVE BEEN GROUPED INTO FOUR DIFFERENT CLASSES,

DEPENDING ON THE SAMPLING SCHEME ADOPTED: DTI-like (VIOLET), SPARSE-like (GREEN), HARDI-like (YELLOW-RED) AND DSI-like (BLUE).
THE COLORS USED HERE WILL BE USED COHERENTLY THROUGHOUT THE MANUSCRIPT TO IDENTIFY EACH ALGORITHM.

METHOD ACQUISITION BRIEF DESCRIPTION OF THE ALGORITHM SPATIAL FILTER

DTI

one-shell
b = 1000
6 samples

Diffusion Tensor Imaging (DTI) [5] none

DTIneigh

one-shell
b = 1000

12 samples

Contextual enhancing of spherical diffusion functions for improving DTI recon-
structions, based on the notion of context to extrapolate additional information
about the underlying fiber structure [64]

regularization

L2-L1-DL
one-shell
b = 2000

15 samples

A parametric dictionary is learnt from a set of training diffusion data, providing
a highly sparse representation of the diffusion signal and enabling to analytically
recover important diffusion features as the ODF with a small number of measure-
ments [39]

none

L1-L1
one-shell
b = 750

24 samples

Sparse reconstruction using the `1 norm both in the data fidelity term and the
sparsity regularization with a Gaussian diffusion profile dictionary none

L2-L1-TV
one-shell
b = 1200

30 samples

Sparse reconstruction with combined q-space and k-space with Total Variation
regularization in the spatial domain [65] regularization

L2-L2
one-shell
b = 3333

37 samples

Multi-tensor fitting guided by ODF estimation, to obtain the true diffusivities
corresponding to each different fiber population in the voxel. In the estimation
process, the number, orientations and relative intensities of fiber populations were
assumed to be known and equal to the values determined from the ODF maxima
computed as in [21]

smoothing

NN-L2
one-shell
b = 1500

48 samples

Diffusion Basis Functions + selective spatial smoothing based on FA and diffusion
orientation similarity [33] smoothing

L2-L1-TGV
multi-shell

b∈{1500,2500}
64 samples

`1-based constrained spherical deconvolution with Total Generalized Variation
regularization optimized by a first-order primal-dual approach regularization

DOT

one-shell
b = 3000

60 samples

Diffusion Orientation Transform (DOT) [20] with the following parameters: Spher-
ical Harmonics (SH) order `max = 8 and EAP evaluated at radius R = 15 µm none

QBI

one-shell
b = 3000

60 samples

Analytical Q-Ball Imaging (QBI) [59] with the following parameters: SH order
`max = 6 and regularization parameter λ = 0.006

none

QBISWT

one-shell
b = 3000

60 samples

Q-Ball imaging with Spherical Wavelet Transform [66] with the following param-
eters: SH order `max = 8

none

QBICSA

one-shell
b = 3000

60 samples

Q-Ball imaging in Constant Solid Angle [17] with the following parameters: SH
order `max = 6 and regularization parameter λ = 0.006

none

CSD

one-shell
b = 3000

60 samples

Non-negativity constrained super-resolved spherical deconvolution (CSD) [27]
with the following parameters: SH order `max = 8 and diffusion profile of
[1.7, 0.3, 0.3]× 10−3 mm2/s

none

SDT

one-shell
b = 3000

60 samples

Sharpening Deconvolution Transform [29] with the following parameters: SH order
`max = 6 and diffusion profile of [1.7, 0.3, 0.3]× 10−3 mm2/s

none

STD

one-shell
b = 3000

64 samples
Spherical deconvolution via Symmetric Tensor Decomposition [67] none

SPIRAL

spiral
b = 1200

82 samples

Gradient directions were set on a spherical spiral curve resulting in voxel-wise
diffusion signal periodicity. The periodic pattern of the signal in the gradient
direction domain was exploited for de-noising and fiber orientation estimation

none

DSI

cartesian
b ≤ 8000

257 samples

Diffusion Spectrum Imaging (DSI) [6] with the following parameters: zero-padded
35 × 35 × 35 grid for the EAP reconstruction, Hanning filtering before discrete
Fourier transformation and ODF integration over the full radius range

none

DSILR

cartesian
b ≤ 8000

257 samples

General framework based on Lucy-Richardson deconvolution to rectify the EAP
reconstructed with DSI, taking into account the blurring introduced in the Fourier
inversion due to the discrete and finite support of q-space measurements [68]

none

DSISWT

cartesian
b ≤ 8000

257 samples

Multi-resolution approach based on 3D Stationary Wavelet Transform (3D-SWT)
to de-noise the propagator reconstructed with DSI none

GQI2

cartesian
b ≤ 8000

257 samples

Extension of the Generalized Q-sampling Imaging [23] to analytically reconstruct
the ODF with solid angle consideration. As it is expressed as a direct linear
transform of the raw signal, it is faster to compute than DSI

none
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The DSI-like class encompasses reconstruction methods
based on q-space Cartesian sampling and maximum b-value of
8000 s/mm2. The standard Diffusion Spectrum Imaging [6]
(DSI) is studied in comparison to three additional methods that
aim at improving its known weaknesses. First, the method
DSILR [68] employs the Lucy-Richardson deconvolution to
rectify the EAP reconstructed taking into account the blurring
effect introduced in the Fourier inversion by standard DSI due
to the discrete and finite support of q-space measurements. The
second algorithm, DSISWT, is a multi-resolution approach based
on the 3D Stationary Wavelet Transform (3D-SWT) whose
aim is de-noising the propagator reconstructed with DSI to
obtain sharper ODFs. At last, GQI2 extends the Generalized
Q-sampling Imaging [23] to analytically reconstruct the ODF
with solid angle consideration. Furthermore, as GQI2 is for-
mulated as a efficient linear transform of the raw signal, it is
sensibly faster than standard DSI to reconstruct the EAP and,
consequently, the ODF.

In the last class, that we term SPARSE-like, we have eval-
uated six different dictionary-based reconstruction approaches
inspired by the recent theory of compressed sensing [31],
[32]. These methods are generally formulated as convex
optimization problems and exploit various sorts of priors.
NN-L2 [33] and L2-L2 [21], for example, represent two ex-
tensions to already published works and the corresponding
formulations are based on `2 norm priors. On the other
hand, the remaining four algorithms are all based on the `1
norm for promoting sparsity. Notably, these approaches were
proposed for the first time at the contest. L1-L1 is based on
a Gaussian dictionary estimated directly from the acquired
diffusion data and exploits the `1 norm both in the data and
the sparsity regularization terms; this `1–`1 formulation had
never been used in local diffusion estimation before. L2-L1-DL
uses the more common `2–`1 paradigm of the reconstruction
problem [31], [32], but implements an efficient strategy to
learn a parametric dictionary from a set of training data. Such
estimated dictionary enables highly sparse representations
of the diffusion signal and allows to analytically estimate
important diffusion features, such as EAP and ODF, with
a very limited number of measurements [39]. The last two
approaches, L2-L1-TV [65] and L2-L1-TGV, both use the same
`2–`1 problem formulation but they implement two different
spatial regularization schemes based on Total Variation and
Total Generalized Variation, respectively. It should be noted
that in case of the IV dataset, for which no spatial coherence
exists among voxels, these two algorithms do not make use of
these spatial regularization schemes. In this scenario they can
be considered two different implementations, but conceptually
equivalent, of a reconstruction algorithm based on the classical
`2–`1 paradigm and no spatial regularization, as for instance
[34], [38]. Hence, we can assume that we have also evaluated
in this comparison, for free, an additional reconstruction
algorithm, which might be called L2-L1 for consistency, whose
performances can always be assumed equivalent to those of
L2-L1-TV and L2-L1-TGV on the IV phantom.

In contrast to many previous studies, the comparison pro-
vided in this work is as fair as possible as the majority of
the reconstructions were tested using the original implemen-

tations provided by their own developers. We used in-house
implementations for the additional 7 classical techniques we
evaluated, with the exception of DTI and CSD whose recon-
structions were computed using FSL [9] and MRTRIX [69],
respectively.

As last remark, we point out a few notes concerning some
algorithms and their corresponding results. As the method
DTIneigh needs to have access to the neighborhood of a voxel
to work properly, only the reconstructions relative to the SF
dataset were submitted. For this reason, this algorithm was
evaluated only for this phantom whereas its performances
on the IV dataset can be assumed, as a reference, as good
as those of DTI. On the other hand, the method SPIRAL

internally fixed a priori the number of directions to extract and
it always reconstructed two fibers. As this inevitably biases all
the corresponding evaluations, the reader should keep in mind
this fact throughout the manuscript.

III. RESULTS AND DISCUSSION

The reader is recommended to keep the Table I at his
fingertips while examining the following results. In fact, two
methods might have obtained similar results but using radically
different acquisitions schemes, which makes a direct compar-
ison very difficult. To this aim, as already said, the algorithms
have been grouped into four separate sampling classes and, to
further simplify the reading, are listed in Table I and in all the
plots with increasing number of samples.

A. Overall reconstruction quality

To provide the reader with a first impression of the algo-
rithms with plausible fiber configurations likely to happen in
real human brain data, we assessed the overall quality of the
reconstructions in every voxel of the SF dataset in a scenario
with a mild level of noise. Fig. 2 reports the summary of
the two metrics SR and θ corresponding to the simulations
performed with a SNR=30. The robustness to noise of each
algorithm will be investigated in detail later in the paper.

The first result to meet the eye is the expected inability
of DTI to distinguish multiple fiber populations in a voxel,
as clearly reflected in the lowest SR among all methods and
high θ values. Also the enhancement proposed by DTIneigh
did not seem capable of overcoming this intrinsic limitation
of DTI. DTIneigh can extrapolate additional information about
the underlying fiber structure in a voxel (e.g. infer a crossing)
by looking at adjacent voxels, and the best results are obtained
when in the neighborhood there are single fiber profiles point-
ing at that voxel. Hence, the compact configuration of bundles
present in the SF dataset might have limited its performance.

Despite the wide variety of sampling schemes employed,
all remaining approaches were characterized by moderate
results in the estimation of the number of fiber populations,
with SR always between 50% and 70%, but with very good
performances in terms of angular accuracy, with θ always
below 10◦. At the extreme side of the sampling panorama,
DSI-like methods showed reconstructions with the topmost
quality (highest SR and lowest θ values) and remarkably
stable (fewer outliers, i.e. red dots). These approaches are
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Fig. 2. Overall performances on the SF dataset. On the left panel, the success rate SR obtained by each algorithm in all voxels of the SF phantom is
reported using the same color conventions as in Table I. On the right panel, the distributions of the angular accuracy θ are presented as box-and-whisker
diagrams. In each box, the edges of the box represent the 25th and 75th percentiles, while the mean and the median are reported as “star” and “circle” marks,
respectively. The whiskers extend to the smallest and largest observations in the data, with the values considered as outliers individually plotted as red dots.
Results refer to the simulations with SNR=30.

characterized by a very dense acquisition of the signal (257
samples) and the price to pay is a very long scan time which
is normally not suitable in a clinical environment.

A sensible reduction in the number of samples (64 to 82)
is possible with HARDI-like techniques. However, the recon-
structions looked very unstable and presented many outliers
which inevitably deteriorated the average performance. The
algorithm SPIRAL showed particularly poor scores, but these
are compatible with the previous remark on the number of
estimated orientations fixed a priori. As an exception the STD

method, which is based on symmetric tensor decomposition,
obtained very interesting performances rivaling with those of
DSILR, but using only a quarter of the samples. In particular,
these high performances seem to be driven especially by its
superior ability to correctly identify the right number of fiber
populations in each voxel, as reflected by the highest success
rate among all methods (SR ≈ 70%).

SPARSE-like methods not only made it possible to further
reduce the number of samples (15 to 64) but, interestingly,
these algorithms exposed reconstructions with quality compa-
rable to those of DSI-like approaches. In this case, however,
despite the fact that SR values were in line with all other
methods, the orientation of the fiber populations turned out to
be as accurate as more demanding and complex techniques.
Considering that SPARSE-like methods only require between
6% and 25% the number of samples needed by DSI-like ones,
these results can be considered a remarkable achievement
which opens the way to attain the quality of HARDI/DSI
acquisitions at the price of DTI.

For sake of completeness, during the contest we had also
compared the reconstructions with respect to the accuracy in
the estimation of the ODF. However, not all the algorithms
directly recover an ODF; Fig. 5 shows some representative
diffusion profiles estimated by each reconstruction method.
Consequently, we decided not to report the results of this
analysis in the manuscript as this evaluation did not add any
informative value to the comparison. The interested reader can
find more information on the challenge website.

B. Number of fiber populations

Fig. 3 presents the detailed performance of each method
with respect to the estimation of the number of fiber popu-
lations in a voxel. The average values of the three metrics
SR, n+ and n− are reported as a function of the crossing
angle, where the angle between the two fiber populations
was increased from 0◦ to 90◦. Results refer to the numerical
simulations performed on the IV dataset with a SNR=30.

At a first glance, it is apparent that the main source of
inaccuracy for all reconstruction methods is mainly due to
under-estimation other than over-estimation. Over-estimated
directions are rather mild, with n+ always below 0.20–
0.25, and happen mostly at high rather than low crossing
angles. On average, fiber compartments started to be under-
estimated at 60◦ and a plateau was reached at about 30◦.
Above and below these thresholds all algorithms performed
essentially the same. Surely DTI always under-estimates one
of the two fiber populations and n− is always 1. In the
mid-range of crossing angles, DSI-like approaches behaved
very well (52% < SR < 80%), while the algorithms in
the HARDI-like class, especially DOT and all those based on
Q-Ball Imaging, appeared to suffer more (SR ≈ 25–30%)
and the effects of under-estimation started at higher crossing
angles. Concerning spherical deconvolution methods, we can
see that results are quite heterogeneous. CSD was found to
be the method suffering the most from under-estimation in
the HARDI-like class (SR ≈ 20%), while SDT appeared
moderately more robust (SR ≈ 45%). STD, on the contrary,
performed very well and exhibited the best success rate among
all methods (SR ≈ 88%), which is linked to a remarkably
low rate of under-estimation (n− ≈ 0.05). This method
implemented an iterative heuristic to accurately assess the
number of compartments in each voxel: a configuration with
one fiber population was first reconstructed, then with two etc,
and finally the configuration best fitting the data was retained.
This procedure, in combination with spherical deconvolution,
appeared particularly effective and was able to reliably resolve
two fiber populations down to a crossing angle of 30◦–35◦,
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Fig. 3. Estimation of the number of fiber populations as a function of the crossing angle, without using a tolerance cone. The metrics SR, n+ and n−

are reported as the average value across all fiber configurations in the IV dataset crossing at a given angle, in the range 0◦–90◦ (leftmost plots). To help
the reader in highlighting differences and similarities among the algorithms, rightmost plots summarize the performances in three separate ranges of crossing
angles: 0◦–30◦ (downward triangles), 31◦–60◦ (squares) and 61◦–90◦ (upward triangles). Results correspond to SNR=30.

with SR ≈ 90% at 35◦.

In light of the significant under-sampling rates they
permit, SPARSE-like methods exhibited impressive perfor-
mances. Overall, all algorithms performed at least as good
as HARDI-like approaches, with the scores of NN-L2, L1-L1
and L2-L1-TGV competing even with those of DSI (SR ≈
65–70%). Remarkably, L1-L1 and L2-L1-TGV showed the low-
est number of under-estimated compartments at low crossing
angles, even better than DSI-like methods. L1-L1 appeared
to have some difficulties at large crossing angles, where it
showed a higher number of over-estimated compartments.
This behavior is most probably linked to the `1 norm used
as goodness measure for the data term in the optimization
procedure. Overall, though, these methods performed as good
as DSI-like ones but, and it is important to emphasize this
aspect, they required only 9%–25% of the samples.

Interesting observations can be made by repeating the pre-

vious analysis and considering a tolerance cone around each
ground-truth fiber population, i.e. SR∠, n+

∠ and n−
∠ metrics.

Comparing Fig. 4 with Fig. 3 we confirm what previously
noted, in that differences among algorithms are restricted
only to the mid-range of crossing angles, see SR∠ plot in
30◦–60◦, and that the main source of inaccuracy is caused
by under-estimation (n−

∠ plot). However, in this case both
n+
∠ and n−

∠ scores reach much higher values than before,
respectively up to 0.7 and 1.7. As we spotted that the tendency
is to under-estimate and n− is at worst 1, this means that
the single estimated direction must be outside both tolerance
cones around the true fiber orientations: this behavior is in
fact captured both as missing either of them (increased n−

∠
values) and also as recovering a spurious one (increased n+

∠
values). DTI is the archetype of this situation: it obtained in
fact the highest n+

∠ score, almost 1 for crossing angles above
50◦, which is clearly counter-intuitive for the nature of the
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Fig. 4. Estimation of the number of fiber populations as a function of the crossing angle, using a tolerance cone. The metrics SR∠, n+
∠ and n−

∠ are reported
as the average value across all fiber configurations in the IV dataset crossing at a given angle, in the range 0◦–90◦ (leftmost plots). To help the reader
in highlighting differences and similarities among the algorithms, rightmost plots summarize the performances in three separate ranges of crossing angles:
0◦–30◦ (downward triangles), 31◦–60◦ (squares) and 61◦–90◦ (upward triangles). Results correspond to SNR=30.

technique, but in accordance with the estimation of one single
direction which lies somewhere between the two real ones.
As before, the method STD achieved superb performances,
with SR∠ always above 90% for all crossing angles. Also
the performances of SPIRAL seemed almost independent from
the crossing angle but, in comparison, its scores were rather
modest (SR∠ ≈ 70%), once more probably caused by the
hard-constraint set internally. Curiously, L1-L1 and L2-L1-TGV
turned out to have the lowest SR∠ scores in the crossing
range 0◦–30◦ even though, in the same range, they showed
the highest SR, which was mainly driven by a reduced rate of
under-estimation, n−, and no over-estimation, n+. However,
both algorithms showed also a higher n+

∠ rate, ≈ 0.2, which
is an indication that one of the two directions estimated is not
close to the corresponding true one and is considered spurious.

We conclude this section by noting two drawbacks of
this latter set of metrics, i.e. SR∠, n+

∠ and n−
∠ . First, for

configurations with crossing angle less than 40◦ these indices
become ambiguous, as in this case the tolerance cones of the
two fiber populations unavoidably overlap. However, above
40◦ they essentially describe the same trends. Second, they
are very dependent on the used threshold, 20◦ in this study.
For these reasons and for compactness of the exposition, we
decided to report in the remaining only the measures without
tolerance cone, i.e. SR, n+ and n−, as they appeared to us
more intuitive and sufficiently informative for the scope of this
work. All evaluations are available online.

C. Angular accuracy

Fig. 6 compares all reconstruction methods with respect
to the accuracy in the orientation of the estimated fiber
populations, θ, as a function of the crossing angle. Results
refer to the simulations performed with a SNR=30.
DTI is easily recognizable. The fact that θ is approximately
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Fig. 5. Estimated diffusion features. One representative diffusion profile as reconstructed by each algorithm (e.g. ODF or FOD) is shown for four different
crossing configurations (90◦, 60◦, 45◦, 30◦). Results correspond to the reconstructions on the IV dataset with a SNR=30. As these data were not available
for method DTIneigh, the corresponding profiles are not shown.
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Fig. 6. Accuracy in the orientation of the estimated fiber compartments as
a function of the crossing angle. The metric θ is reported (in degrees) as
the average value across all fiber configurations in the IV dataset crossing
at a given angle, in the range 0◦–90◦ (top plot). As for Fig. 3 and Fig. 4,
the average performance is also reported in three separate ranges of crossing
angles (bottom plot): 0◦–30◦ (downward triangles), 31◦–60◦ (squares) and
61◦–90◦ (upward triangles). Results correspond to SNR=30.

half of the angle separating the two ground-truth directions,
together with the observations in the previous paragraph, is
compatible with the reconstruction of a single orientation lying
in the middle of them and, in practice, it identifies a boundary
under which the technique is unable to resolve multiple
directions. This limit was reached by all the methods as the
crossing angle between the two fiber populations decreased:
it happened at 48◦ for the CSD algorithm while the limit was
25◦ in the case of STD and DSILR.

Despite quite heterogeneous results obtained concerning the
estimation of the number of fiber populations, these variations
translated only to fairly small differences between methods
with regard to the orientation of the estimated directions. All
tested algorithms exposed very high angular accuracy both
at low and high crossing angles (θ ≈ 3◦–7◦), while in the
mid-range the performances quickly deteriorated. The largest
difference between algorithms was observed at a crossing
angle of 48◦, where θ varied between 4◦ in case of both
STD and DSILR and 21◦ for CSD. The observed tendency of
the L1-L1 algorithm to over-estimate compartments at high
crossing angles had quite a severe impact on the angular
accuracy of the corresponding reconstructions (θ ≈ 13◦), three
times higher than the average performance of all the other
algorithms (θ ≈ 4◦). At low crossing angles, on the other
hand, the θ values for both L1-L1 and L2-L1-TGV were higher
than the average angular error of all other methods, even

thought they previously had shown the best under-estimation
behavior (n− ≈ 0.8) and over-estimation was almost absent
(n+ ≈ 0). Inspecting the corresponding reconstructions we
could observe that both algorithms normally recovered one
fiber lying halfway the two true peaks like all others algorithms
but, additionally, they reconstructed very often a spurious
fiber direction (captured in n+

∠ plots). This extra compartment
explains both the reduced under-estimation rate exposed by
these algorithms and, as it was normally orientated randomly,
the drop in the average angular accuracy of the reconstructions.

Special reference needs to be made about the algorithm
SPIRAL, as the angular error appeared to be in the average
range but almost independent from the crossing angle. The
reasons for this trend are not clear, but it might be a side
effect of the procedure used to recover their orientations.
The authors used in fact the 82 sampling directions both to
represent the signal and estimate the fiber directions, and thus
the granularity of this grid (the points are separated by about
20◦) might have hampered the performances of their method.

D. Robustness to noise

Fig. 7 compares the algorithms with respect to the sensitivity
to noise of the corresponding reconstructions, reported in the
plots as the variation of the three metrics θ, n+ and n− as the
acquisition SNR decreases. The performances obtained at a
SNR=30 are taken as reference and the variation of the scores
is reported for SNR=20 and SNR=10, which resemble more
closely the typical SNR in real dMRI data. Positive values
mean a degradation of the performances.

As expected, the angular resolution of the reconstructions
gradually deteriorated as the noise increased, with no clear
differences among the algorithms. Yet, methods with higher
number of samples seemed to be in general more stable. DTI
and SPIRAL appeared the most robust to noise (∆θ < 4◦)
while DSI the most susceptible, especially at SNR=10 where
it degraded abruptly showing a ∆θ ≈ 21◦. However, it is
worth noting how the enhancements implemented in DSILR
and DSISWT allowed a significant boost in the robustness to
noise in methods based on Cartesian signal sampling, turning
standard DSI from the most susceptible to noise method to
the most robust. Also CSD showed very stable performances,
appearing to suffer only at high crossing angles, despite no
significant worsening in under- and over-estimation rates.

In general, all methods showed the highest susceptibility to
noise and, correspondingly, the major drop in the performances
at medium-high crossing angles (boxes and upward triangles),
with drops in the angular accuracy ∆θ of the reconstructions
up to 8◦–11◦. In particular, this degradation seemed driven
mostly by over-estimation, as easily visible in the ∆n+ plot.
This observation is in accordance with the tendency of all
methods, previously observed in Fig. 3, to recover spurious
compartments at high, more than at low, crossing angles. On
the other hand, high noise levels induced an opposite behavior
in algorithms using highly under-sampled acquisition schemes,
like L2-L1-DL, L1-L1 and L2-L1-TV, with less than 30 samples.
In fact, these methods did not show an increased rate of over-
estimated compartments but, on the contrary, an higher number
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Fig. 7. Overall performances as a function of the noise level. For each
method, the variations of the estimated number, n+ and n−, and orientation,
θ, of the fiber populations are reported as the noise level changes. The first
mark of every bar corresponds to the difference between the scores at SNR=30
and those at SNR=20, while the second mark between SNR=30 and SNR=10.
Results refer to the simulations performed on the IV datasets and, as usual,
are reported separately for three crossing angle ranges: 0◦–30◦ (downward
triangles), 31◦–60◦ (squares) and 61◦–90◦ (upward triangles).

of missed fibers. The method STD showed the same tendency to
under-estimate more with higher noise levels and it resulted the
most prone to under-estimation at SNR=10. Interestingly, the
ability of STD to under-estimate less than all other algorithms
in the medium range of crossing angles was the reason behind
its exquisite performances (n− plot in Fig. 3). STD performed
very well with low noise, but unfortunately this robustness
to missing fibers rapidly degraded as the noise increased.
Curiously, the ∆n− plot in Fig. 7 shows that most of the
algorithms got some benefit (∆n− < 0) from higher noise
levels at low-medium crossing angles (boxes and downward
triangles), with DSI being the most “beneficial”. However, this
strange behavior is a side-effect of over-estimation. In fact,
at SNR=30, all methods were shown to suffer heavily from
under-estimation for crossing angles below 60◦ (see n− plot
in Fig. 3). Higher noise levels caused an increased rate of
spurious fiber compartments recovered, which not only were

clearly captured by the positive values in the ∆n+ plot, but
also by negative ∆n− values.

The observed tendency to recover spurious compartments
as the noise increases can be explained, in part, by the fact
that all the algorithms considered in this work are based on the
assumption that the distribution of the noise follows a Gaussian
distribution with zero mean. However, the noise corrupting
the data follows a Rician distribution and the deviation from
Gaussianity is particularly evident at low SNR values [61].
Rician noise produces, on average, a net increase in the signal
which is different along every gradient direction. As a result,
reconstructions assuming zero-mean Gaussian noise tend to
produce small spurious fibers to explain this discrepancy.

As last remark, the results obtained in our study are strictly
valid only for single-channel or SENSE multi-channel acquisi-
tions [70] and they should not be extrapolated to other parallel
techniques such as GRAPPA [71], where the noise follows a
noncentral-χ distribution. Please note however that nearly all
reconstruction methods proposed to date were tested only on
Rician-corrupted data, i.e. using the same assumption, and thus
our results are consistent with previous literature.

Fig. 8. Effects of using information from neighboring voxels on the quality
of reconstructions. For each method, the distribution of the average angular
errors θ obtained on the IV phantom (left bar) are compared with those
corresponding to SF (right bar). Results are reported for two noise levels:
SNR=30 (top) and SNR=10 (bottom).

E. Spatial neighborhood

Fig. 8 investigates the effect of using additional information
from neighboring voxels on the quality of reconstructions. For
each method, we compared the distributions of the average an-
gular errors θ obtained on the IV (left bar) and SF (right bar)
phantoms. To be sensitive to this effect only, we considered a
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subset of voxels with two fiber populations from both datasets
and we matched the distributions of the crossing angles. We
compared the results corresponding to low and high noise
levels, respectively with SNR=30 (top) and SNR=10 (bottom).

The algorithms reported in Table I to exploit additional
information from neighboring voxels in some form, either per-
forming spatial smoothing on the DWI images or employing a
regularization scheme, are clearly identifiable. For these meth-
ods, in fact, the angular accuracy of the reconstructions clearly
benefitted (smaller θ errors) from the spatial coherence among
voxels present in the SF phantom (right bar in each method’s
results) if compared to the results obtained on the IV dataset
(left bar), which indeed consists of un-correlated voxels. These
de-noising approaches appeared definitely more effective on
data corrupted with higher noise levels, as apparent in the plot
corresponding to SNR=10, where improvements in the angular
accuracy up to 7◦–8◦ can be appreciated. On the other hand,
with high quality data the regularization-based approaches
appeared more effective than those using spatial smoothing. In
this case, in fact, these latter did not seem to give any benefit
(see performances of L2-L2 and NN-L2 at SNR=30) while
methods using spatial regularization schemes, i.e. L2-L1-TV
and L2-L1-TGV, still provided a 3◦–4◦ improvement in the
average angular accuracy.

Surprisingly, even though we did not expect any significant
variation for those methods not exploiting any spatial coher-
ence in the data, a curious behavior can still be observed in the
figure. In fact, some of the approaches in the HARDI-like class
showed a performance reduction when recovering the intra-
voxels structure in the SF dataset, which is sort of counter-
intuitive. One possible speculation for this odd behavior can
be attributable to different settings for the parameters used
in the two datasets. As the structure of the SF dataset did
include voxels with more than two crossing fibers (even though
these configurations were excluded from the evaluation), more
tolerant thresholds have been probably used in this case.

F. Signal-to-noise ratio and voxel-size

Because of the assumption on S0 we made in section II-B,
in our experiments we have implicitly considered a constant
echo-time (TE) for all acquisition protocols, hence neglecting
the additional dependence of the signal on the damping factor
exp (−TE/T2), where T2 is the spin-spin relaxation time of
the tissue. However, in clinical systems, increasing the b-value
inevitably implies a longer TE which, in turn, negatively im-
pacts the effective SNR of the acquisitions. To obtain images
with adequate SNR, thus, clinical protocols typically adapt the
spatial resolution and use a rather large voxel-size for high b-
value sequences such as DSI, e.g. 2.5×2.5×2.5 mm3, whereas
DTI is normally acquired with 1.8×1.8×1.8 mm3 resolution.

Fig. 9 shows a further comparison between the recon-
structions performed on the original data and those repeated
after adjusting the noise level to account for the specific TE
of each sequence. For compactness the results are reported
only for the most popular techniques, such as DTI, CSD and
DSI. The new adjusted SNRs reported in Table II have been
computed taking the protocol with the longest TE as reference

Fig. 9. Comparison between “uncorrected” and “adjusted” SNRs. The
overall SR and θ performances on the SF dataset are reported, for a subset of
the algorithms, before (left bar of each method) and after (right bar) correction
of the effective signal-to-noise ratio. Results are shown for two uncorrected
noise levels: SNR=30 (top) and SNR=10 (bottom).

and assuming the same spatial resolution, yielding reasonable
values commonly observed in real datasets. Realistic TE values
have been extracted from a clinical 3T scanner with maximum
gradient strength of 40 mT/m, and the T2 in the white matter
was assumed equal to 80 ms as found in [72].

TABLE II
ADJUSTED SNRS BY CONSIDERING EACH SEQUENCE ECHO-TIME (TE).

b-value 750 1000 1200 1500 2000 2500 3000 3333 8000
TE 80 84 87 91 98 107 114 118 162

83.6 79.5 76.6 72.9 66.8 59.7 54.7 52.0 30
SNR 55.7 53.0 51.1 48.6 44.5 39.8 36.4 34.7 20

27.9 26.5 25.5 24.3 22.3 19.9 18.2 17.3 10

The performances of DSI and DSILR are clearly constant as
their SNR remained fixed. Also the success rate of DTI did not
change, but this is due to the intrinsic limitation of the model.
As previously reported in Fig. 7, all methods can provide better
reconstructions when working on images with higher quality,
but they are characterized by different levels of robustness
to the noise. At a noise level typically observed in real
acquisitions (upper plots), in fact, no significant improvement
can be noted for any of the methods when increasing the
effective SNR to account for shorter TE, both in terms of
SR and θ. With very low image quality (bottom plots) the
methods with shorter TE ameliorate the reconstructions, even
though clearly the same trend of performances is preserved
across methods. Hence, for the scope of this study, the effect
of each sequence echo-time on the effective SNR of the data
did not seem to introduce significant bias in the results.
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G. Dependence on the signal model
During the contest some concerns arose with respect to

the Gaussian Mixture Model (1) that was used to simulate
the dMRI signal in place of the more precise expression
for particles diffusing in a restricted cylindrical geometry
given in [58]. Both models have been largely used in the
literature for validation of diffusion estimators, as well as
the use of physical phantoms. As already pointed out in the
introduction, all these models are undoubtedly simplifications
of the actual biophysical processes occurring in white matter.
In fact, for a more accurate synthetic simulation, it should be
taken into account the complex axonal structure, the membrane
permeability, the bi-exponential behavior of the signal with
respect to the b-value magnitude, the existence of slow and
fast pools etc. In the particular case of the contest, however,
the main concern was that our choice might have favored
the model-based reconstruction algorithms, such as those in
the SPARSE-like class, using implicitly or explicitly the same
Gaussian assumption.

To investigate any possible influence of this choice on
the reconstructions considered in our study, we simulated
the dMRI signal attenuation corresponding to a single fiber
configuration using both expressions: (i) Gaussian Mixture
Model [8] and (ii) Soderman’s Model [58]. Fig. 10 compares
the signal decay as predicted by the two models, named
MultiTensor and Soderman in the plot, as a function of
the b-value. For the latter, we used the following parameters as
reported in previous studies [20], [34]: L = 5 mm, ρ = 5 µm,
D0 = 2.02 × 10−3 mm2/s, but we set ∆ = 80 ms and
δ = 35 ms to resemble an acquisition with maximum b-value
of 4000 s/mm2 on a clinical 3T scanner with a maximal
gradient strength of 40 mT/m [68]. To simulate the signal
with the model (1) and match the diffusion pattern, a single
tensor was fitted to the data and the estimated parameters
were used for the simulation. The diffusivities along the three
main axes were found to be: λ1 = 2.3 × 10−3 mm2/s and
λ2,3 = 0.1× 10−3 mm2/s.

Fig. 10. dMRI signal attenuation of a single fiber configuration simulated
using two different models. The decays predicted by the MultiTensor [8]
(dashed lines) and the Soderman [58] (solid lines) models are plotted as a
function of the b-value. Results are reported at four different angles between
the diffusion gradient and the fiber population (0◦, 30◦, 60◦, 90◦).

As we can see, the signal decays predicted by the two
models, dashed lines for MultiTensor and solid for
Soderman, appear almost indistinguishable for b-values up
to 3000 s/mm2, with differences becoming appreciable (note

the logarithmic scale) above 4000 s/mm2, especially when the
diffusion gradient is parallel to the orientation of the fiber (red
curves). Interestingly, 16 of the 20 algorithms evaluated in this
study employed acquisition schemes with a maximum b-value
of about 3000 s/mm2. Furthermore, the remaining 4 methods
belonged to the DSI-like class and were all characterized by
model-free approaches for the reconstruction of the intra-
voxel fiber configuration. In light of these arguments, we
genuinely believe that for the scope of this study the choice
of the model (1) that we used in our numerical simulations
for the generation of the diffusion signal did not favor those
model-based approaches which made use of the same Gaussian
assumption and, for this reason, did not bias the comparison.

H. General observations
It is always difficult to draw general conclusions from

comparative studies without going into the details of every
single algorithm evaluated. This is particularly true in this
work as the evaluated approaches differ in a great deal of
aspects including acquisition scheme, assumptions made in
the modeling (i.e. model-free and model-based approaches
were included), numerical algorithms employed in the es-
timation process, descriptors used to characterize the intra-
voxel structure (i.e. diffusion ODF or FOD), as well as some
heuristic parameters such as the threshold used to select the
main ODF local maxima and the regularization parameters.
For this reason, during the “HARDI reconstruction challenge”
we decided not to provide a final ranking based on scores to
highlight a winner. This decision was mainly motivated due
to the lack of a fair quantitative model to integrate all the
different aspects involving each method.

In contrast, in order to help clinicians in the choice of the
most adequate technique for a specific application according
to their interests and possibilities, we summarize here the main
lessons we have learned from this study:

• None of the methods was found to outperform the others
in every experimental condition. On the contrary, results
suggest that a combination of techniques might be the
way to obtain optimal reconstructions.

• Overall, DSILR appeared the most accurate and stable (i.e.
fewer outliers), but the long scan time highly restricts its
applicability in clinical environments.

• Accurate reconstructions (comparable to those obtained
from HARDI/DSI) at the price of DTI acquisitions are
becoming possible thanks to SPARSE-like approaches,
which in general showed very interesting performances.

• With high quality data the main source of inaccuracy
for all the algorithms seemed to be caused by under-
estimation. On the other hand, for low/medium SNR
acquisitions the degradation of the performances was
mainly driven by over-estimation.

• Noise removal procedures, either in the form of image de-
noising or spatial regularization, are highly recommended
as results showed they can improve the performances up
to 30–40%. We did not observe any substantial difference
in the efficacy of the two approaches; nevertheless, spatial
regularization appeared to be effective also in low noise
regimes, while merely denoising the images did not.
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It is important to remark that the results presented in this
work are based on numerical simulations and, as previously
mentioned, there is no guarantee that these observations hold
true to the same extent also in case of real data.

IV. CONCLUSION

We have quantitatively evaluated and compared a large
selection of algorithms for recovering the local intra-voxel
fiber structure from diffusion MRI acquisitions. Considered
methods included a mixture of classical and well-established
techniques as well as novel approaches recently proposed in
the literature, in particular those based on compressed sensing
theory. Despite this study has been conducted on synthetic
dMRI data, results yet allowed to spot strengths and weak-
nesses of each approach and to draw interesting considerations
common to all the algorithms. We believe that this information
might be used both to improve current reconstruction methods
and also as a guidance for physicians to identify the most
adequate technique for their clinical studies.
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