Application-Specific Processor Design for Low-Complexity & Low-Power Embedded Systems

Jeremy Constantin, TCL, EPFL, Switzerland; Advisor: A. Burg (TCL); Collaboration: D. Atienza (ESL)

Low-Power Embedded Systems

Portable, autonomous devices:

- Highly resource constrained systems
- Wireless (sensor) nodes
- Limited battery life-time
- Application-specific use cases
- Flexibility & programmability desired

Embedded systems require... Low power consumption through Low computational complexity

Power Savings through Voltage Scaling

Supply voltage down-scaling:

- Active power: $P_{\Delta} = C \cdot V_{DD}^{2} \cdot f$
- Drastic power savings
- Near- and sub-V_T operation:
- Reliability issues (solvable with circuit-level techniques and custom embedded memories)
- Strong performance degradation

To enable aggressive voltage scaling, alleviate the performance degradation using

Low memory footprint

application-specific instruction set processors (ASIPs)

Custom Low-Power Processor

TamaRISC: custom RISC MCU

- Baseline processing core (< 10 kGE)
- 16-bit Harvard architecture
- 3-stage pipeline
- 24-bit instruction word
- 14 single word, single cycle instructions
- Minimalistic 16-bit ALU
- Addressing modes for efficient execution of signal processing applications
- Sleep mode, Interrupt, and basic HW-loop support
- Embedded real-time OS support
- Custom C-compiler

Design & Evaluation Flow

Rapid design space exploration based on single golden processor model

ASIP core architecture described in LISA (PD) Automatic generation:

- Software tool-chain
- Cycle-accurate ISS
- Synthesizable HDL

Accurate power analysis using vcd-based post-layout gate-level simulations

Application to Compressed Sensing

Application to Cryptography

Ultra-low-power ASIP: TamaRISC-CS [1]

- Low-complexity CS algorithm
- Instruction set extension (ISE) enables efficient random index generation
- 16-bit multi-step LFSR-based PRNG
- Drastically **reduced memory** footprint
- CS application **speedup**: **62x**
- Improved **power** consumption: **11.6x**
- ISE induces less than 3% area overhead

Instruction set extensions are key for sub-V_T operation

Cryptographic Hash Functions (SHA-3) [2,3]

- Individual ASIP cores, algorithm-specific ISE
 - Extension of computational units
 - Finite state machines for data address generation
 - Lookup table integration
- Average **speedup**: **172%**
- Average **memory** savings: **40%**
- Maximum core area overhead: 10%

ISE example : state row rotation memory to memory (64 bytes)							
	/	Reference ISA	ISE				
	Instructions:	124	4 2				
	Cycles:	126	4 37				
	Speedup:	1.0	1.4				
		hift by 1 hift by 3 hift by 5 hift by 7 hift by 0 hift by 2 hift by 4 hift by 6	FSM-based memory address pattern generation				

Algorithm	PIC24 [cycles/byte]	PIC24 + ISI [cycles/byt	E e]	Speedup	Area Overhead
BLAKE	155.2	102	.9	1.51	~ 0%
Grøstl	462.3	57	.6	8.03	+10%
JΗ	463.8	383	.5	1.21	+10%
Keccak	188.3	131	.7	1.43	~ 0%
Skein	157.6	112	.6	1.40	~ 0%
Algorithm	Data PIC24 [byte]	Data +ISE	PIC	Text C24 [byte]	Text +ISE
Algorithm BLAKE	Data PIC24 [byte] 488	Data +ISE -59%	PIC	Text C24 [byte] 1,028	Text +ISE -20%
Algorithm BLAKE Grøstl	Data PIC24 [byte] 488 982	Data +ISE -59% -78%	PI	Text C24 [byte] 1,028 2,619	Text +ISE -20% -69%
Algorithm BLAKE Grøstl JH	Data PIC24 [byte] 488 982 1,550	Data +ISE -59% -78% -87%	PI	Text C24 [byte] 1,028 2,619 4,649	Text +ISE -20% -69% -53%
Algorithm BLAKE Grøstl JH Keccak	Data PIC24 [byte] 488 982 1,550 448	Data +ISE -59% -78% -87% -21%	PIC	Text C24 [byte] 1,028 2,619 4,649 3,480	Text +ISE -20% -69% -53% -31%

No significant additions to the processor datapath necessary

Application to Biomedical Signal Analysis

Wearable Online Health Monitoring Systems [4,5,6]

- TamaRISC integrated into single- and multi-core architectures for multi-lead ECG signal analysis
- Custom processor optimizations and extensions

Conclusion

Considerable speedup, memory footprint reduction and in turn power-savings, enabled by small but dedicated instruction set extensions with extremely low hardware overhead.

tailored to ultra-low-power multi-core operation

Banked shared memories • Crossbar interconnects • Virtual addr-space, MMU Data & instr. broadcast • Core synchronization for efficient SIMD execution

Parallel computing architectures provide better power efficiency for medium to high workloads (> 2 MOp/s)

Operation in near- and sub-V $_{T}$ regime is feasible, even for more demanding online real time signal processing tasks, when combined with custom tailored ASIP systems.

[1] Constantin, J., et al., "TamaRISC-CS: An Ultra-Low-Power Application-Specific [4] Dogan, A., et al., "Low-power Processor Architecture Exploration for Online Processor for Compressed Sensing," 20th IFIP/IEEE International Conference on Biomedical Signal Analysis," IET Circuits, Devices & Systems, 2012 [5] Dogan, A., et al., "Multi-Core Architecture Design for Ultra-Low-Power Wearable Very Large Scale Integration (VLSI-SoC), 2012 [2] Constantin, J., et al., "Instruction Set Extensions for Cryptographic Hash Health Monitoring Systems," Design, Automation & Test in Europe Conference & Functions on a Microcontroller Architecture," 23rd IEEE International Conference on Exhibition (DATE), 2012 [6] Dogan, A., et al., "Synchronizing Code Execution on Ultra-Low-Power Application-specific Systems, Architectures and Processors (ASAP), 2012 [3] Constantin, J., et al., "Investigating the Potential of Custom Instruction Set Embedded Multi-Channel Signal Analysis Platforms," Design, Automation & Test in Extensions for SHA-3 Candidates on a 16-bit Microcontroller Architecture," Europe Conference & Exhibition (DATE), 2013 Cryptology ePrint Archive, 2012

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Telecommunications Circuits Laboratory

