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Application-Specific Processor Design
for Low-Complexity & Low-Power Embedded Systems

Low-Power Embedded Systems Power Savings through Voltage Scaling

Custom Low-Power Processor Design & Evaluation Flow

Application to Compressed Sensing Application to Cryptography

Application to Biomedical Signal Analysis Conclusion

Portable, autonomous devices:
• Highly resource constrained systems
• Wireless (sensor) nodes
• Limited battery life-time
• Application-specific use cases
• Flexibility & programmability desired

Embedded systems require…
Low power consumption through
• Low computational complexity
• Low memory footprint

Voltage

Supply voltage down-scaling:
• Active power: PA = C ∙ VDD

2 ∙ f
• Drastic power savings
Near- and sub-VT operation:
• Reliability issues (solvable with 

circuit-level techniques and 
custom embedded memories)

• Strong performance degradation

To enable aggressive voltage scaling,
alleviate the performance degradation using

application-specific instruction set processors (ASIPs)

TamaRISC: custom RISC MCU
• Baseline processing core (< 10 kGE)
• 16-bit Harvard architecture
• 3-stage pipeline
• 24-bit instruction word
• 14 single word, single cycle instructions
• Minimalistic 16-bit ALU
• Addressing modes for efficient execution 

of signal processing applications
• Sleep mode, Interrupt, and basic

HW-loop support
• Embedded real-time OS support
• Custom C-compilerTamaRISC
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ASIP core architecture 
described in LISA (PD)
Automatic generation:
• Software tool-chain
• Cycle-accurate ISS
• Synthesizable HDL
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Ultra-low-power ASIP: TamaRISC-CS [1]
• Low-complexity CS algorithm
• Instruction set extension (ISE) enables 

efficient random index generation
• 16-bit multi-step LFSR-based PRNG
• Drastically reduced memory footprint
• CS application speedup: 62x
• Improved power consumption: 11.6x
• ISE induces less than 3% area overhead

Instruction set
extensions are key

for sub-VT operation

for i := 1 → n do
sample := getSample()
for j := 1 → I do

index := getRandomIndex(1..k)
buffer[index] :=

buffer[index] + sample
end for

end for

Pseudocode of Reduced Complexity CS Algorithm
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Considerable speedup, memory footprint reduction and in turn
power-savings, enabled by small but dedicated instruction set
extensions with extremely low hardware overhead.

Operation in near- and sub-VT regime is feasible, even for more
demanding online real time signal processing tasks, when
combined with custom tailored ASIP systems.

Cryptographic Hash Functions (SHA-3) [2,3]
• Individual ASIP cores, algorithm-specific ISE
 Extension of computational units
 Finite state machines for data address generation
 Lookup table integration

• Average speedup: 172%
• Average memory savings: 40%
• Maximum core area overhead:  10%
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to the processor 

datapath necessary

Negligible total area
overhead due to ISE

Algorithm PIC24
[cycles/byte]

PIC24 + ISE
[cycles/byte] Speedup Area

Overhead
BLAKE 155.2 102.9 1.51 ~ 0%
Grøstl 462.3 57.6 8.03 +10%
JH 463.8 383.5 1.21 +10%
Keccak 188.3 131.7 1.43 ~ 0%
Skein 157.6 112.6 1.40 ~ 0%

Algorithm Data
PIC24 [byte]

Data
+ISE

Text
PIC24 [byte]

Text
+ISE

BLAKE 488 -59% 1,028 -20%
Grøstl 982 -78% 2,619 -69%
JH 1,550 -87% 4,649 -53%
Keccak 448 -21% 3,480 -31%
Skein 242 0% 5,734 -18%

ISE example: state row rotation
memory to memory (64 bytes)

Reference ISA ISE
Instructions: 124 2

Cycles: 126 37
Speedup: 1.0 3.4

FSM-based
memory
address pattern
generation

Wearable Online Health Monitoring Systems [4,5,6]
• TamaRISC integrated into single- and multi-core 

architectures for multi-lead ECG signal analysis
• Custom processor optimizations and extensions 

tailored to ultra-low-power multi-core operation

Parallel computing 
architectures 

provide better 
power efficiency

for medium to high 
workloads (> 2 MOp/s)

• Banked shared memories
• Crossbar interconnects
• Virtual addr-space, MMU
• Data & instr. broadcast
• Core synchronization for 

efficient SIMD execution


