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Abstract The discovery of aperiodic crystals is perhaps one of the most im-
portant event which has changed our vision on crystalline architectures since
the discovery of diffraction hundred years ago. It was the merit of a dutch crys-
tallographer, P.M. de Wolff, to interpret their diffraction pattern as a three
dimensional projection of a higher dimensional reciprocal lattice, idea which
led directly to the generalization of the concept of crystal. Aperiodic crystals
are currently described as periodic objects in higher-dimensional space, i.e.
the superspace and their structures can be described in terms of 3-d cuts.
Incommensurate structures, composite structures and quasicrystals all belong
to aperiodic structures.

Many interesting properties of superspace have been discovered which are
also directly applicable to crystals in the conventional sense, i.e. crystals with
3-d periodicity. In particular the concept of structure type can be extended
for a better understanding of structure relations. The notion of solid solution
has also benefited from superspace considerations. Moreover, superspace is a
very powerful tool for a better understanding of structure-property relations
in material science, e.g. luminescence properties could be directly associated
to the description of structures in superspace. Recently, this concept has been
used for the prediction of new structural modifications including polytypes
and even polytypic modifications of a well known pharmaceutical product.

G. Chapuis

Laboratoire de cristallographie, BSP/Cubotron, EPFL, 1015 Lausanne, Switzerland
Tel.: +41-21-6930630

Fax: +41-21-6930634

E-mail: gervais.chapuis@epfl.ch

A. Arakcheeva
Phase Solutions Ltd, ch. des Mésanges 7, 1012 Lausanne, Switzerland

1 This contribution is the written, peer-reviewed version of a paper presented at the
conference “The Centennial of X-Ray Diffraction (1912-2012)”, held at Accademia Nazionale
dei Lincei in Rome on May 8 and 9, 2012.



2 Gervais Chapuis, Alla Arakcheeva

Keywords Aperiodic crystals - Incommensurately modulated crystals -
Composite crystals - Quasicrystals

PACS 61.44.Fw - 61.44.Br - 77.84.Lf - 61.50.Ah

1 Introduction and historical summary

The celebration of the hundredth anniversary of the discovery of diffraction
by crystalline solids (1912-2012) gives us an excellent opportunity to look
at the impressive contribution of diffraction methods towards our knowledge
on the structure of matter. The enormous progress is due to theoretical and
experimental advances and today, even the finest structural details of large
objects like ribosomes are accessible by diffraction methods.

The three dimensional periodicity of crystalline structures is a fundamen-
tal concept which is at the basis of the theoretical model which has been so
successful for diffraction. However, already in the late 1920’s, the three dimen-
sional concept of lattice periodicity was already put into doubt on the basis
of diffraction diagrams of laminated metals. Dehlinger [1] explained the line
broadening of Debye-Scherrer diagrams by periodic perturbation and invented
the name of Gittergeister to characterize the additional lines appearing on
the diagrams. Preston [2] later introduced the term satellites to character-
ize the additional lines observed on aluminium copper alloys. Shortly after,
Kochendorfer [3] calculated the intensities of Debye-Scherrer lines resulting
from a sinusoidal wave of atomic displacements. Daniel and Lipson [4] fur-
ther developed the theory of periodic perturbation on the basis of Co-Ni-Fe
alloy diffractograms. They were however not able to conclude on the nature
of the perturbation, was it a scattering modulation or a lattice modulation?
Hargreaves [5] extended their work by considering rectangular modulations in
Cu-Ni-Fe and postulated that

the magnetic properties of the alloys are systematically affected by the
development of the modulated structure.

The existence of satellite reflections was not only observed in metal alloys but
also in felspars [6].

The most significant advance in the theory of periodic distortions in crys-
talline structures is due to Korekawa [7]. In his habilitation thesis, he presented
a complete series of possible distortions by combining transversal or longitudi-
nal displacement waves along with density waves and estimated the intensities
of the satellite reflections consequently to the amplitude of the periodic per-
turbations. His theoretical work was illustrated with two real cases, namely
the structures of the mineral labradorite and an organic copper containing
complex. This work was published in German and not easily accessible and
consequently its diffusion was limited. Another limitation was due to the lack
of symmetry considerations regarding the theory of satellites.

The real breakthrough came later in 1972 when de Wolff [8] and Janner [9]
presented independently their work in the IUCr conference in Kyoto on the
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four-dimensional space group of YNasC O3 respectively the symmetry groups
of lattice vibrations. Both presenters realized that they were using symmetry
groups with the same properties and thus the tools for the complete symme-
try description of periodically distorted crystal structures were established.
The introduction of an additional space dimension to describe the structure of
vNaoCOs3 was justified by the existence of a periodic distortion, i.e. a modu-
lation component which is independent of the classical 3-d lattice periodicity.
The term incommensurate structure was later introduced to describe modula-
tions with irrational wave vector components.

An additional kind of structural complexity was described when Makovicky
and Hyde published their work on misfit layer structures [10]. They considered
incommensurate structures in the form of alternating layers possessing two in-
dependent periodicities and introduced the term incommensurate composites.
It could be shown later that the symmetry of composites could perfectly well
be described with the same higher dimensional groups introduced by de Wolff
and Janner. Perhaps the most spectacular discovery in the structural departure
of purely 3-d periodicity appeared when Shechtman and coworkers published
their work on a metallic phase with long-range order but no translational
symmetry [11]. The diffractograms of this phase exhibited perfect icosahe-
dral symmetry which is obviously incompatible with 3-d periodicity. The term
quasicrystal (QC) was then introduced to describe crystalline structures with
similar diffraction patterns [12]. Here again, it was soon realized that addi-
tional dimensions were necessary to describe the structural and symmetrical
properties of QC.

In this article we shall first present a common concept, the so called super-
space to describe the structures and symmetries of aperiodic crystals, which
include incommensurate and composite structures as well as QC. Some exam-
ples of aperiodic structures will be presented and finally, we shall present an
application of the superspace formalism in the field of materials science.

2 Aperiodic structures and the superspace concept

Let us first consider a diffraction layer of an incommensurate crystal as repre-
sented in fig. 1. We observe that the reflections at the intersection of the grid
lines are all accompanied with satellite reflections along parallel directions to
the modulation vector q. It would be an impossible task to find a smaller
reciprocal cell which would allow the indexing of all the spots with only two
integers, knowing that the magnitude of the modulation vector q might change
with temperature or pressure. It is thus natural to select an additional integer
m and index each spot on the layer with three integers as in eq. (1). This
is also justified by the fact that the diffracted intensities decrease with the
magnitude of the integer m.

H = hia] + hoa; + mq (1)
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Fig. 1 Diffraction layer of an incommensurate crystal. Main reflections are located at the
intersection of the grey lines whereas the satellite reflections are located along the darker
lines at distances mq with integer m

the number of integers which are necessary to completely characterize a
diffraction diagram are in the most general case given by eq. (2). The number
of integers n to fully characterize a diffraction diagram is called the rank and
is different from the space dimension in which the corresponding structure is
described.

H= hla“{ + hga;‘ + hga§ + -4 hnafl (2)

We can now easily introduce the following definition:

Definition. H describes a periodic crystal if its space is equal to its rank. H
describes an aperiodic crystal if its rank is larger than its space.

Aperiodic crystals have been observed in all types of crystalline materials
including minerals, metals, alloys (quasicrystals), organic and inorganic ma-
terials, macromolecules. They also appear in pressure or temperature induced
phase transitions [13,14].

The introduction of additional integers for the characterization of aperiodic
crystals is associated with additional space dimensions in reciprocal space. Fig.
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Fig. 2 Embedding of the reciprocal space in higher dimensional space, i.e. superspace.
The satellite reflections along aj are extended into two components, e} and q, to form the
reciprocal lattice vector aj,

2 illustrates the embedding of the reciprocal space in a space of higher dimen-
sion. We shall call this type of embedding superspace and use the subscript S
to characterize the corresponding reciprocal lattice vectors. For reasons which
are beyond the scope of this presentation, the additional dimensions used to
describe aperiodic crystals have some special properties. We therefore prefer
to use the expression (34+1)d to emphasize the additional dimension for the
description of a three dimensional structure of rank 4.

Given the basis vectors of an aperiodic crystal in reciprocal space, the next
task is to find the corresponding vectors in direct space. For this purpose, we
can use the scalar product relating direct and reciprocal basis vectors as in
equation 3

ag, = (af,0) as1 = (a;, —q-ap)
aZ'Q = (33»0) * agy = (a27 —-q- aZ)

2 — ag; -ag; = 0;; — 3
gz = (a§70) 5 S Y ags = (a37 —-q- a3) ( )
ag, = (q,1) asgs = (0,1)

0;; is the Kronecker symbol which is one if 7 and j are equal and zero
otherwise. The direct space components of the lattice have two parts, the
external respectively the internal components. In the former we recognize the
conventional lattice vectors whereas in the latter, the scalar product of the
modulation vector with the lattice vectors.

In order to get more insight into the superspace representation of aperi-
odic crystals, let us apply a periodic longitudinal displacement along a to a
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Fig. 3 a) Periodic longitudinal distortion with wavelength X applied to an array of grid
points. b) Representation in superspace of the corresponding distortion in the section
asi,asq.

Fig. 4 Modulation functions can have many different shapes. a) Step function which might
characterize atomic displacements over two sites. b) Example of a layer structure where one
layer might choose either the A or B or C position.

periodic array as represented in fig. 3a. The modulation wave is parallel to
a; with wavelength A which is independent of the lattice periodicity. The cor-
responding representation of this modulation is illustrated in fig. 3b for the
section (agi,ag4). This two dimensional periodic array is given by the grey
motif. The position of a single atom is given by the sinusoidal wave with a
given amplitude. The components of the basis vectors in superspace accord-
ing to relation (3) are indicated on the figure. The physical structure is given
by the intersection of the periodic distortion with the horizontal line labelled
"real crystal” which reproduces the deformation of fig. 3a. As the periodicity
along as is not modulated, the corresponding representation of an atom in the
section (agz,ag4) is obviously a straight line.

Since the introduction of superspace, many different types of modulation
functions in addition to the harmonic modulation represented in fig. 3 have
been introduced in order to improve the description of aperiodic crystals. Fig.
4 for example gives two functions which are frequently used. Fig. 4a charac-
terizes a displacement of an atom onto two possible positions whereas fig. 4b
illustrates layer displacements between the three possible layers positions A,
B or C. This list is not exhaustive and additional examples can be found e.g.
in [13]
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Fig. 5 Schematic representation of the reciprocal space indicating the essential differences
between incommensurate, composite and quasi-crystals according to Yamamoto [16]. Note
the positions of the reflections relative to the external and internal components of reciprocal
space for each type of aperiodic structure.

The treatment of symmetry of aperiodic crystals is beyond the scope of
this article. We can just mention that the resolution of aperiodic structures
follows the same scheme as for conventional structures. The list of all possible
superspace groups of e.g. (3+1)d has been established along with their cor-
responding systematic absences (see for example [15]). It is the task of the
structure specialist to delimit the right superspace group and the correspond-
ing modulation functions that best fit the observed intensities of the aperiodic
structure under considerations.

Before ending this section, we would like to give some precisions about the
various types of aperiodic crystals which we introduced in section 1. What
are the essential differences between incommensurate, composite and quasi-
crystals. Fig. 5 is inspired from the publication of Yamamoto [16] and uses
the decomposition in external and internal components of reciprocal space to
illustrate their main characteristics. Fig. 5a is nothing else than the extension
already presented in fig. 2 for a modulated crystal. In this case, only the
main reflections are contained along the external space dimension whereas the
satellite reflections have both external and internal components. Composite
crystals show essentially two main directions indicated by c¢i and ¢} as in
fig. 5b. Satellite reflections are located on the grid points formed by these two
directions but close to them. Finally, the representation for quasicrystals given
in fig. 5c indicates that the reflections are located at the intersection of a grid,
independently of the external and internal components.

3 Examples of incommensurate structures

For space limitations, we shall limit ourselves to a small selection of aperi-
odic structures namely incommensurate structures. Our first example is the
structure of v-NasCOg3 which is incommensurate over a large temperature do-
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Fig. 6 a) Schematic representation of the incommensurate YNaaCOs3 in terms of graphite
like layers. O atoms are omitted. b) Section of the incommensurate structure lying on the
mirror plane mys. c¢) Section of the same structure along a different direction. In all three
representations, we observe the unique role of Na3.

main, including room temperature. This is the first structure which was solved
in the superspace formalism by de Wolff and his team [17]. The structure is
represented in fig. 6a. For our purpose, we shall neglect the O atoms forming
triangles around the C atoms. Thus, the structure consists of graphite like
layers composed of C and Na3 stacked in the third dimension and in between,
we find the Nal and Na2 atoms. From the chemical point of view, it is in-
teresting to note that Na3 has a completely different chemical environment
than the two other Na atoms and can thus be reinterpreted as a different kind
of atom for the structure characterization. At higher temperature, NagCOj is
hexagonal with the hexagonal axis along c. At lower temperature, a monoclinic
distortion occurs along b. Fig. 6b shows a (asi,ags) section where all atoms
lie on the mirror plane mp;. The monoclinic deformation can occur along three
equivalent directions in the high temperature phase and only one is realized.
The other two directions my are frustrated and attempt to establish a similar
equilibrium environment as in the mp;. This can only be accomplished by the
introduction of a modulation which is illustrated in fig. 6¢c. We can see that the
environment found in mj, is only very partially realized in the my direction.
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Fig. 7 Left: ab projection of a portion of the aperiodic structure KSm(MoO4)2 resulting
from the structure refinement. Large circles represent the K and Sm whereas the edges
represent the MoQOy4 tetrahedra. Right: 2-d sections resulting from the refinement of the
incommensurate structure in superspace. The curves characterize the positions of the Sm
and K atoms and their occupations.

The second example concerns the incommensurate structure KSm(MoOy)s
based on synchrotron powder diffraction measurements [18]. Although the ra-
tio K/Sm is purely stoichiometric, the resulting structure represented on the
left of fig. 7 is remarkable. We observe slanted zones (relative to the lattice
vectors) of Sm and MoQy alternating with zones of K and MoO4 normal to the
direction of the modulation vector. In 3-d, the structure consists of alternating
K respectively Sm slabs, the origin of which is not yet explained. This struc-
ture results from the (3+1)d refinement illustrated on the right of fig. 7 where
three (ag;,ag4) sections of the K and Sm positions and their occupation are
illustrated. The shape of the curves are obtained by successive approximations
and the specialists dispose of a selection of them (see e.g. fig. 4) to apply in
their refinements. It is worth mentioning that the model obtained by powder
refinement fits perfectly well with the corresponding HREM images.

Up to this point, we have only presented the geometrical characteristics
of aperiodic structures. The interesting aspects of structural investigations
only start once their resolutions are completed. In the following section, we
shall describe an interesting application of the superspace formalism relating
structural and physical properties.

4 Application

The series of compounds NaIEu(2 2)/3M0O4 (0 < 2 < 1/2) belong to the same
structural type as presented in section 3. Eu containing compounds exhibit in-
teresting luminescent properties and one of the main task of material scientists
is to optimize these properties according to some adjustable parameters like
composition or other. For many years, scientists have vainly attempted to
correlate the luminescence efficiency, in particular by the Na/Eu3" content.
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Fig. 8 Schematic ab projections of various incommensurate structures. Only Eu (black
circles) and Na (grey circles) are represented along with vacancies (white stars). Eu dimers
are indicated by ellipses. The last structure is fully disordered.

Having recently found that these types of compounds, i.e. scheelites, often
form aperiodic structures, we have prepared a series of eight compounds in
the given range in order to find a direct correlation between the luminescence
characteristics and the structural properties [19]. Six out of eight members of
the series exhibit incommensurate structures which have been solved in the
superspace formalism. A schematic representation of six structures is given in
fig. 8 in the form of 2-d sections. Here again we observe alternating domains
of Na and Eu rich slabs roughly parallel to the diagonal of the basic cells. In
addition we also observe isolated clusters of Eu-pairs, the number of which is
independent of the Na/Eu®* ratio. It turns out the luminescence efficiencies
are directly related to the number of Eu binary clusters as can be seen from
fig 9. This interesting result explains why previous attempt to correlate the
structures and properties failed because the identification of binary clusters
can only be found by solving the structures in superspace (and not by us-
ing of a 3-d approximation as is often the case). The second interesting point
relates to the optimization of the luminescence (or any other physical) prop-
erties by material engineering. Once the superspace symmetry characteristics
are identified, it is an easy task to explore the superspace and simulate the
best composition which maximize e.g. the number of clusters.

5 Conclusion

The discovery of aperiodic structures has changed our vision of the crystalline
state and has revealed a more complex organization of matter with long range
order different from 3-d periodicity. Thus since more than four decades a new
paradigm of structural characteristics had to be introduced in order to ex-
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Fig. 9 Various indicators for luminescence efficiencies (quantum yield, lifetimes and in-
trinsic quantum yield) in relation to the relative amount of Eu3t dimers for the series of
aperiodic structures NazEu?QJiz)/:,’MoOA;.

tend the classical view of 3-d periodic crystals. Every year sees an increasing
number of aperiodic structures in every kind of material. The introduction
of the superspace formalism has greatly contributed to the rapid evolution of
the field and many new possible applications are introduced. In this limited
space, only a single example of superspace applications has been presented.
Many more have been proposed in the specialized literature. See for example
[20-23].

The role of aperiodic structures in structural sciences can no longer be ig-
nored. The availability of synchrotrons and up-to-date detectors has changed
the scope of the field. Superspace is a powerful tool not only for the descrip-
tion of aperiodic structures but also for conventional structures and families
of structures with common features. It closes the gap between periodic and
aperiodic structures. One should also bear in mind that structures which were
considered as disordered in the past appears very often to be fully ordered but
aperiodic. In other words, they possess long range order There is thus a great
potential for superspace in material research sciences for a better understand-
ing of structure-property relations.

Since the discovery of diffraction hundred years ago, our perception of
the state of crystalline matter has greatly evolved. The discovery of aperiodic
structures has probably done most to the evolution of this perception. The
basic tools for their studies being in place, we shall certainly see in the future
an increased number of developments which will contribute to the resolution
of structural problems not accessible with classical methods.
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