	du	
000		

Automatic Detection of Applause in the Montreux Jazz Festival Concerts

Patrick Marmaroli¹ Lucas Doméjean¹ Hervé Lissek¹ Alain Dufaux² Alexandre Delidais³

¹Laboratory of Electromagnetism and Acoustics (LEMA)

²MetaMedia Center (CMM)

³Vice Presidency for Innovation and Technology Transfer (VPIV)

 2^{nd} Workshop on Standards and Technologies in Multimedia Archives and Records

Methodology	Results	Conclusion

- Context
- Objectives
- Applause

2 Methodology

- General approach
- Example

8 Results

- Database
- Results
- Demo

• Conclusion, difficulties and perspectives

Introduction	Methodology	Results	Conclusion

Section 1

Introduction

Introduction	Methodology	Results	Conclusion
000	00	000	00
Context			

Montreux Jazz Festival in numbers :

- audio and video recordings since 1966,
- 5000 hours of audio and video,
- 15 different recording formats.

Introduction	Methodology	Results	Conclusion
000	00	000	00
Objectives			

Montreux Jazz Digital Project @ MetaMedia Center :

- Archive digitization,
- Preservation and perpetuation of the archives,
- Valorization of the archives.

Introduction	Methodology	Results	Conclusion
000	00	000	00
Objectives			

Montreux Jazz Digital Project @ MetaMedia Center :

- Archive digitization,
- Preservation and perpetuation of the archives,
- Valorization of the archives.

Introduction O • O	Methodology OO	Results 000	Conclusion OO
Objectives			
Montreux Jazz I • Archive digit • Preservation • Valorization	Digital Project @ MetaMo ization, and perpetuation of the a of the archives.	edia Center : archives,	
LEMA : • applause, • speech		digitalizing t	he full archives
 speech, audio cuts, pops and clic clipping. 	:ks,		1
		metadata inclusi audio signal prod	on through digital cessing techniques

Introduction O • O	Methodology OO	Results 000	Conclusion OO
Objectives			
Montreux Jazz Archive dig Preservation 	Digital Project @ MetaMe itization, n and perpetuation of the a	edia Center :	
 Valorization 	of the archives.		Carlo
		digitalizing t	he full archives
LEMA :			
 applause, 			
 speech, 			
 audio cuts, 			1
 pops and cl 	icks,		
• clipping.		↓	
		metadata inclus audio signal pro	ion through digital cessing techniques

Introduction	Methodology	Results	Conclusion
000	00	000	00
Interests of app	lause sounds		

 $1^{\rm h} \, 30$

Introduction	Methodology OO	Results 000	Conclusion OO
Interests of ap	plause sounds		
	How many tracks	? Where are they ?	
		le par la participa de la particip	

 $1^{h}30$

Applause sound position : -> help-to-decision for automatic/manual track partitioning.

Introductio	n
000	

Interests of applause sounds

Methodology	Results	Conclusion

Section 2

Methodology

	Methodology	Results	Conclusion
000	0	000	00
Frame by frame	analysis		

Applause or Music?

	Methodology	Results	Conclusion
000	•0	000	00
Frame by fram	e analysis		

Binary classification problem

What is required :

- Audio features (spectral, temporal, spectro-temporal,...)
- Classifier (SVM, GMM, Decision Tree, Neural Network,...)

Introduction	Methodology	Results	Conclusion
000	•0	000	00
Frame by fram	e analysis		

Binary classification problem

What is required :

- Audio features (spectral, temporal, spectro-temporal,...)
- Classifier (SVM, GMM, Decision Tree, Neural Network,...)

Working philosophy :

- The least features as possible,
- The simplest classifier as possible

Introduction	Methodology	Results	Conclusion
000	•0	000	00
Frame by fram	e analysis		

Binary classification problem

What is required :

- Audio features (spectral, temporal, spectro-temporal,...)
- Classifier (SVM, GMM, Decision Tree, Neural Network,...)

Working philosophy :

- The least features as possible,
- The simplest classifier as possible

How?: Kullback-Leibler divergence-based features optimization

Introduction	Methodology	Results	Conclusion
000	00	000	00
Example			
Spectral gravity center (SGC, in Hz)			
fmar			

$$SGC[q] = \frac{\sum_{f_{min}}^{f_{max}} f |\mathbf{Y}_q(f)|^2}{\sum_{f_{min}}^{f_{max}} |\mathbf{Y}_q(f)|^2},$$

- q : frame number,
- f : frequency (in Hz),
- $\mathbf{Y}_q(f)$: Fourier transform of the q^{th} frame.

Introduction	Methodology	Results	Conclusion
000	00	000	00
Example			
Spectral gravity	center (SGC in Hz)		

$$SGC[q] = \frac{\sum_{f_{min}}^{f_{max}} f |\mathbf{Y}_q(f)|^2}{\sum_{f_{min}}^{f_{max}} |\mathbf{Y}_q(f)|^2},$$

standard definition

•
$$f_{max} = f_s/2$$
 Hz.

- q : frame number,
- f : frequency (in Hz),
- $\mathbf{Y}_q(f)$: Fourier transform of the q^{th} frame.

OOO	Methodology ○●	Results 000	OO
Example			
Spectral gravit	y center (SGC, in Hz)		
$SGC[q] = \frac{\sum_{f_{min}}}{\sum_{f_{min}}}$	$\sum_{i=1}^{n} \frac{\left \mathbf{Y}_{q}(f)\right ^{2}}{\left \mathbf{Y}_{q}(f)\right ^{2}},$	 q : frame number, f : frequency (in Hz), Y_q(f) : Fourier transform of the qth f Music — Applause 	rame.
standard defini • $f_{min} = 0$ • $f_{max} = f_s$	ition Hz, ./2 Hz.	Normalization of the second se	

00

 $f_s/2$

Frequency [Hz]

0	00 00	000	00
E	xample		
	Spectral gravity center (SGC, in Hz)	1	
	$\sum_{r=1}^{f_{max}} f \mathbf{Y}_{c}(f) ^{2}$	• a : frame number	

 $SGC[q] = \frac{\overbrace{f_{min}}^{f_{min}}}{\sum_{j=1}^{f_{max}} \left|\mathbf{Y}_q(f)\right|^2}$

Methodology

standard definition

•
$$f_{max} = f_s/2$$
 Hz.

 f_{min}

fine-tuning

•
$$f_{min} = f_1^{opt}$$
 Hz,
• $f_{max} = f_2^{opt}$ Hz.

- *f* : frequency (in Hz),
- $\mathbf{Y}_q(f)$: Fourier transform of the q^{th} frame.

Introduction 000	Methodology ○ ●	Results 000	Conclusion OO
Example			
Spectral grav	vity center (SGC, in Hz)		
$SGC[q] = \frac{f}{f}$	$\sum_{\substack{min\\f_{max}\\f_{max}}}^{max} f \mathbf{Y}_q(f) ^2,$	 q : frame number, f : frequency (in Hz), Y_q(f) : Fourier transform of the	$e \ q^{th}$ frame.
standard def • $f_{min} =$	inition 0 Hz,	KL div. = 1.17	

•
$$f_{max} = f_s/2$$
 Hz.

•
$$f_{min} = f_1^{opt}$$
 Hz,
• $f_{max} = f_2^{opt}$ Hz.

Methodology	Results	Conclusion

Section 3

Results

	Methodology	Results	Conclusion
000	00	000	00
Database			

Style	Length	Size
Нір Нор	39 min	440 Mo
Cuban music	1 h 08 min	766 Mo
Soul / Blues	1 h 02 min	709 Mo
Reggae	1 h 20 min	908 Mo
Salsa	1 h 12 min	813 Mo
Funk	1 h 32 min	702 Mo
Jazz / Bossa Nova	1 h 02 min	702 Mo
Experimental music	1 h 34 min	1064 Mo
Jazz	1 H 53 min	1271 Mo
Blues	45 min	515 Mo

	Methodology	Results	Conclusion
000	00	000	00
Database			

Γ	Style	Length	Size
	Нір Нор	39 min	440 Mo
	Cuban music	1 h 08 min	766 Mo
	Soul / Blues	1 h 02 min	709 Mo
	Reggae	1 h 20 min	908 Mo
	Salsa	1 h 12 min	813 Mo
	Funk	1 h 32 min	702 Mo
	Jazz / Bossa Nova	1 h 02 min	702 Mo
Experimental music		1 h 34 min	1064 Mo
Jazz		1 H 53 min	1271 Mo
Blues		45 min	515 Mo

	Methodology	Results	Conclusion
000	00	000	00
Database			

Style	Length	Size
Нір Нор	39 min	440 Mo
Cuban music	1 h 08 min	766 Mo
Soul / Blues	1 h 02 min	709 Mo
Reggae	1 h 20 min	908 Mo
Salsa	1 h 12 min	813 Mo
Funk	1 h 32 min	702 Mo
Jazz / Bossa Nova	1 h 02 min	702 Mo
Experimental music	1 h 34 min	1064 Mo
Jazz	1 H 53 min	1271 Mo
Blues	45 min	515 Mo

Test database

	Methodology	Results	Conclusion
000	00	000	00
Database			

Style	Length	Size
Нір Нор	39 min	440 Mo
Cuban music	1 h 08 min	766 Mo
Soul / Blues	1 h 02 min	709 Mo
Reggae	1 h 20 min	908 Mo
Salsa	1 h 12 min	813 Mo
Funk	1 h 32 min	702 Mo
Jazz / Bossa Nova	1 h 02 min	702 Mo
Experimental music	1 h 34 min	1064 Mo
Jazz	1 H 53 min	1271 Mo
Blues	45 min	515 Mo

Test database

Training database

Frame size (in samples / in ms)	2048 / 42
Frames «applause»	12 757
Frames «music»	399 500

	Methodology	Results	Conclusion
000	00	000	00
Database			

Style	Length	Size
Нір Нор	39 min	440 Mo
Cuban music	1 h 08 min	766 Mo
Soul / Blues	1 h 02 min	709 Mo
Reggae	1 h 20 min	908 Mo
Salsa	1 h 12 min	813 Mo
Funk	1 h 32 min	702 Mo
Jazz / Bossa Nova	1 h 02 min	702 Mo
Experimental music	1 h 34 min	1064 Mo
Jazz	1 H 53 min	1271 Mo
Blues	45 min	515 Mo

Test database

Training database

Frame size (in samples / in ms)	2048 / 42
Frames «applause»	12 757
Frames «music»	399 500

Test database

Frame size (in samples / in ms)	2048 / 42
Frames «applause»	29 288
Frames «music»	425 516

	Methodology		Results	Conclusion
000	00		000	00
Classification	results			
	Spectral Gravity Center	True Detection: 94 False Alarm: 3%	1%	

	Methodology	Results	Conclusion
000	00	000	00
Video demo			

START STOP

Methodology	Results	Conclusion

Section 4

Conclusion

Introduction	Methodology	Results	Conclusion
000	00	000	•0
Conclusion			

- light and robust applause sound detection system,
- KL-based optimization features,
- implemented on a real-time Matlab environment.

Introduction	Methodology	Results	Conclusion
000	00	000	0
Conclusion			

- light and robust applause sound detection system,
- KL-based optimization features,
- implemented on a real-time Matlab environment.

Remaining difficulties

	Methodology	Results	Conclusion
000	00	000	•0
Conclusion			

- light and robust applause sound detection system,
- KL-based optimization features,
- implemented on a real-time Matlab environment.

Remaining difficulties

applause within song (break,...),

	Methodology	Results	Conclusion
000	00	000	•0
Conclusion			

- light and robust applause sound detection system,
- KL-based optimization features,
- implemented on a real-time Matlab environment.

Remaining difficulties

applause within song (break,...), brutal changes of songs (no applause),

	Methodology	Results	Conclusion
000	00	000	•0
Conclusion			

- light and robust applause sound detection system,
- KL-based optimization features,
- implemented on a real-time Matlab environment.

Remaining difficulties

applause within song (break,...), brutal changes of songs (no applause), speech + applause and other events.

	Methodology	Results	Conclusion
000	00	000	•0
Conclusion			

- light and robust applause sound detection system,
- KL-based optimization features,
- implemented on a real-time Matlab environment.

Remaining difficulties

Perspectives

applause within song (break,...), brutal changes of songs (no applause), speech + applause and other events.

Introduction	Methodology	Results	Conclusion
000	00	000	0
Conclusion			

- light and robust applause sound detection system,
- KL-based optimization features,
- implemented on a real-time Matlab environment.

Remaining difficulties

Perspectives

applause within song (break,...), brutal changes of songs (no applause), speech + applause and other events. song difference analyser,

	Methodology	Results	Conclusion
000	00	000	•0
Conclusion			

- light and robust applause sound detection system,
- KL-based optimization features,
- implemented on a real-time Matlab environment.

Remaining difficulties

Perspectives

applause within song (break,...), brutal changes of songs (no applause), speech + applause and other events. song difference analyser,

	Methodology	Results	Conclusion
000	00	000	•0
Conclusion			

- light and robust applause sound detection system,
- KL-based optimization features,
- implemented on a real-time Matlab environment.

Remaining difficulties

Perspectives

applause within song (break,...), brutal changes of songs (no applause), speech + applause and other events. song difference analyser,

investigate more complex classifiers.

Methodology	Results	Conclusion
		00

Thanks for your attention !