
A 3D-DCT Real-Time Video Compression System
for Low Complexity Single-Chip VLSI Implementation

Andreas Burg †, Roni Keller ‡, Juergen Wassner †, Norbert Felber †, Wolfgang Fichtner †

Integrated Systems Laboratory, Swiss Federal Institute of Technology (ETH) Zurich
† apburg, wassner, felber, fw@iis.ee.ethz.ch

‡ roni.keller@gmx.ch

Abstract:

This paper presents the first VLSI implementation
of a real-time color video compression/
decompression system, based on the three-
dimensional discrete cosine transform (3D-DCT).
Compared to motion-estimation/compensation
based algorithms, the 3D-DCT approach has three
major advantages:
• No motion estimation is required, greatly

reducing the number of en/decoding operations
per pixel.

• En- and Decoder are symmetric with almost
identical structure and complexity, which
facilitates their joint implementation.

• The complexity of the implementation is
independent of the compression ratio.

These factors are key issues for the realization of
mobile video compression systems.
We describe the system architecture and
implementation. Tradeoffs that facilitate the VLSI
implementation are emphasized and performance
results are presented.

Keywords: 3D-DCT, video compression, VLSI,
motion prediction

Introduction:

The increasing demand for portable digital video
applications as cellular video phones or fully digital
video cameras is pushing the need for highly
integrated real-time compression and
decompression solutions.
For these types of applications, efficient low-
cost/complexity implementation and low power
consumption are the most critical issues.
Most of today's established compression standards
like MPEG-2/4 and H263(+) rely on the so called
motion-estimation/compensation approach to
exploit interframe correlation. This is a highly
complex process, which requires a large number of
operations per pixel and is therefore less
appropriate for the implementation as real-time
compression in a portable recording- or
communication device. Moreover, even though
very efficient for scenes with a translatoric
character, the algorithm loses much of its efficiency
in scenes of morphological character or with
extremely fast moving objects.

An alternative approach to prediction-based
exploitation of interframe correlation is to use a
transform-based approach for the encoding of
subsequent frames. The goal hereby is to find an
appropriate transform that has the desired energy-
compaction property and therefore allows an
efficient subsequent entropy encoding. For the
compression of still images the Wavelet transform
and the 2D-DCT transform have been found to have
this property. Particularly the latter is widely used
in most modern image/video compression
algorithms in the spatial domain. The 2D-DCT has
the potential of easy extension into the third
dimension, i.e. 3D-DCT. The proposed solution is
based on this approach. It includes the time as third
dimension into the transformation and energy
compaction process.

In section 1 we review the basics of the 3D-DCT
compression algorithm. A more detailed
introduction can be found in [1,10]. Section 2
presents the complete system and the extensions
chosen to improve the compression ratio. It also
emphasizes the tradeoffs required for efficient
VLSI implementation. This is the main contribution
of this work. Section 3 gives an overview of the
ASICs architecture.
Results, obtained with a bit-true software
implementation of the chip, which is currently
being integrated, are given in section 4.
The last section concludes this paper with a short
summary.

Section 1: The 3D-DCT

Figure 1 shows an overview block diagram of the
compression and decompression process.

Figure 1 3D-DCT Flowgraph

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147992748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

First a sequence of 4 or 8 subsequent frames is
collected and partitioned into three-dimensional
video-cubes. The size of the cubes in our
implementation is chosen to be 8*8 pixels in the
spatial domain. On the time axis a depth of either 4
or 8 frames is being used. While deeper cubes lead
to higher compression ratios, they also increase the
latency of the compression process and the memory
requirements.
Secondly, the cubes are transformed into the
frequency domain, using a three-dimensional cosine
transform. The energy compaction property of the
cosine transform concentrates most of the
information in a few low-frequency components.
An example for the probability distribution after the
transformation is shown in Figure 2.
Subsequent quantization selectively removes
information that is less relevant to the observer.
This mostly affects the higher-frequency
components. The quantization process determines
the tradeoff between quality of the result and
compression ratio. As quantization has an impact
on spatial as well as on temporal components of the
sequence, an additional degree of freedom which
allows trading quality for compression ratio without
affecting the computational complexity is attained.
A detailed analysis of optimized quantization
matrices based on rate-distortion theory and
experiments can be found in [4,5] for the 2D case,
while [3] describes a statistical approach for the 3D
case. Other proposals have been made for 3D-DCT
quantization schemes [6,7]. However they mostly
aim at the compression of 3D images as found in
medical imaging applications and apply different
criteria for the quality measurement of the result.

Figure 2 Probability distribution after 3D-DCT

Finally, compression is performed in our approach
with a zero run-length encoder and subsequent
variable-length encoding.
For the reconstruction process the above steps are
just inverted and carried out in reverse order.
The similarity of the encoding and decoding
process is one of the interesting properties of the
3D-DCT compression since it greatly facilitates the
implementation of a joint en-/decoder.

Section 2: System description

This section gives a more detailed description of the
parts of the system outlined above. It also describes
some extensions of the basic algorithm that lead to
improved compression results. Tradeoffs are
presented that greatly simplify an efficient
implementation while only slightly degrading the
overall performance.

1. Color-space conversion:
As the human visual system is less sensitive to
color (chrominance) than to contrast (luminance),
the original RGB image is initially converted into
the YCbCr color space, separating the luminance
component (Y) of the signal from the two
chrominance components (Cb and Cr). This
separation allows to apply a more aggressive
quantization to the less sensitive color components
of the image sequence.

2. Differential Prediction:
Differential encoding is the simplest possible
prediction scheme. It proves especially efficient for
scenes with highly detailed static backgrounds.
Since the 3D-DCT intrinsically decorrelates
successive frames within individual video cubes,
differential encoding within cubes is inappropriate.
However, since the transform does not operate
across cube boundaries, differential prediction may
be used to remove some of the redundant
information in subsequent cubes. Hereto we employ
the last frame of the known cube as a predictor for
each frame in the following cube. As the same
predictor is used for every frame, this process only
affects the temporal DC-component in the
frequency domain. Especially in relatively static
scenes these components carry the highest amount
of information. The prediction process removes
redundant information from the DC-plane and
therefore greatly improves the achievable
compression ratio.
A major problem of combining differential
encoding with a lossy compression algorithm is the
fact that the original predictor is not perfectly
known in the receiver. A general solution to this
problem is to reconstruct the predictor in the
transmitter after quantization, just as it is seen by
the receiver, and to use this reconstruction instead
of the original frame. This is depicted in Figure 3.
The drawback of this approach is the need to
concurrently run encoding and decoding in the
transmitter, which nearly doubles complexity.

Figure 3 Feed-back prediction loop

To avoid this overhead our VLSI implementation
uses the feed-forward loop shown in Figure 4.

Figure 4 Feed-forward prediction loop

Figure 5 PSNR drop in a feed-forward encoded
sequence (Miss-America, 1:130)

This simplification introduces a 3dB quality loss in
all frames of differentially encoded sequences (D-
sequences). To prevent propagation of the
introduced error, only frames from sequences which
are not differentially encoded (I-sequences) are
used as predictors. This yields a step-like run of the
peak signal-to-noise ratio (PSNR) curve as shown
in Figure 5. Here, the additional PSNR drop after
frame 72 is caused by increased motion in the video
sequence.
A specific predictor can be used for many
subsequent D-sequences without introducing an
additional error, although the prediction becomes
less efficient as the similarity between the target
frames and the original predictor vanishes with
time.

3. DC-Prediction:
After the transformation into the frequency domain,
the information is concentrated in the low-
frequency coefficients. Looking across cube
boundaries in the spatial domain, it becomes
obvious that the DC-components of adjacent cubes
can be highly correlated, especially in scenes with
large monotonous areas. This correlation is again
not exploited by the 3D-DCT due to its limited
scope. A good prediction of the DC-component of
some cube could be obtained from a combination of
the DC-components of all its neighboring cubes.
However, with respect to the implementation, only
the previous cube to the left is used as a predictor,
with the DC-component of the first cube in every
row being encoded with its absolute value. This
corresponds to the feed-back prediction scheme in
Figure 3. Thus, error propagation is avoided for the
DC-components. In this case the introduced
overhead is marginal.

4. Quantization:
The quantization step allows the tradeoff between
quality and compression ratio. While in the 2D-case
quantization only offers two degrees of freedom to

trade spatial blur for compression ratio, it offers
three degrees of freedom in the 3D case.
Very little work has been done so far in exploring
the sensitivity of the human visual system to
quantization induced distortions of the temporal
frequency components. In our approach we simply
use an exponential degradation along the spatial as
well as along the temporal axis as quantization
pattern. Another approach to this problem is
described in [3] where statistical properties of the
original signal are used to derive the quantization
pattern.
An additional degree of freedom is provided by
independently quantizing the luminance and
chrominance channels, which can be treated
independently. In general the color information in
the Cb and Cr channels can be compressed much
more than the contrast information, without having
a noticeable effect on the observer.

5. Streaming:
The streaming process converts the 3D data
structure of the video cube into a linear data stream.
The stream order is essential for the subsequent
zero run-length encoder. To optimize its efficiency
the stream order has to maximize the average
number of subsequent zeros. As the statistical
properties of each component within a cube are
known, the optimum sequence can be determined
by sorting the components with their zero
probability in ascending or descending order.
If latency is not an issue, the streaming process can
be delayed until all cubes of the sequence are
compressed. The optimized stream order can then
be applied to the whole sequence. This, again,
increases the compression ratio and facilitates the
use of component-specific error protection
mechanisms for the transmission over lossy
channels and the use of variable data rate channels.
However, since the latency penalty and the
hardware effort to store the whole sequence are
very high, in this implementation each cube is
streamed out individually.
[9] suggests diagonal planes as good approximation
of an optimized stream order. A more complex
order, which is tightly coupled to the suggested
quantization pattern, has been described in [3]. Our
experiments show that using diagonal planes yields
good results for many different types of
quantizations. This approach also allows a simple
VLSI implementation without the need for area
consuming lookup tables or complex computations.
It is therefore used for the hardware
implementation.
An appropriate way to reorder the components of
the three color channels has to be found. Due to
more aggressive quantization of the two
chrominance channels they usually have a higher
probability of becoming zero than the
corresponding component in the luminance
channel. To accommodate this, the Y-channel is

I-Sequences D-Sequence

streamed out first, followed by the interleaved Cb
and Cr channel, as described below:

L

L

,,,,,,
,,,,,,

2211

54321

ACACACACDCDC

ACACACACACDC

CrCbCrCbCrCb
YYYYYY

6. Run-Length (RL) Encoding:
The first step in the actual compression process is
zero RL encoding. It combines runs of successive
zeros into 2-tuples of a leading zero and the number
of zeros in the run. With the knowledge of the
statistics of the non-zero components, the encoding
of the RL descriptors can be optimized for the
subsequent variable-length encoding. The
symmetric statistical distribution of the DCT
components in Figure 2 encourages the use of a
symmetrical encoding of the RL-descriptor:
encoding even runs with a positive number and odd
runs with a negative number. Shorter runs will be
encoded with shorter symbols, while longer RL-
descriptors are used for longer runs.

7. Entropy-Encoding:
A standard Huffman encoder is being used for the
variable-length encoding. As the probability
distribution of the signal is nearly symmetrical, a
fully sign-symmetrical code-book is chosen. Its size
is limited to a range of [-255,+255] to maintain a
reasonable size. All values that exceed the range of
the code-book are encoded with a unique prefix
code, followed by their actual value.
Our experiments show that the optimum code-book
is relatively independent of the type of scene that is
being compressed, while it is clearly subject to the
quantization level used. The en/decoder therefore
contains three built-in code-book ROMs for low,
medium and high compression ratios. An additional
sequential decoder with a programmable code-book
can be used when the system does not have to run
at its full speed. It is mainly intended for evaluation
purposes. The limited range of the code-book has
no noticeable influence on the compression
efficiency.

Section 3: VLSI Implementation

The goals for implementing the 3D-DCT algorithm
were threefold:
• Realize the first real-time VLSI implementa-

tion of this algorithm (to the best of our
knowledge).

• Provide a flexible test-bed for the algorithm by
leaving some degree of freedom to tune
different parameters and test their influence on
the compression results in a real-time
environment.

• Demonstrate that the 3D-DCT algorithm can in
fact be realized with a very moderate level of
complexity.

Figure 6 shows a simplified block diagram of the
design.

Figure 6 IC-Block Diagram

The front-end is designed to directly interface with
different standard PAL/NTSC en/decoders. It runs
at the clock rate of the video source, fully
asynchronous to the rest of the system. It performs
pre-/postprocessing like color-space conversion and
differential encoding. A standard SDRAM is being
used to store the number of frames required for the
3D-DCT sequence and to buffer the I-frames for
differential encoding. The 3D-DCT transformation
as well as subsequent quantization and entropy
coding is carried out at a 100MHz clock rate. This
provides enough speed for standard image
sequences with a resolution of 768*576 pixels at a
rate of 25 frames per second. The 3D-DCT
operation is realized as a sequence of optimized
1D-DCTs, which are again decomposed into so
called Butterfly operations. The similarity of the
DCT and its inverse enables reusing the complete
arithmetic for the decompression mode. This allows
a joint en/decoder implementation at virtually no
extra cost. The implementation works with cube
depths of 4 or 8 frames, offering the potential to
adapt to different latency requirements. For test
purposes the 2D-DCT is also supported.
The system is equipped with an on-chip memory
that holds the configurable quantization tables of
the three color components. For the Huffman
encoder it contains three built-in ROM code-books
for en/decoding at different quantization levels, and
an on-chip RAM for a programmable code-book.
For the configuration of the ASIC, a standard
SMBus interface has been implemented [11]. A
second high-speed synchronous serial interface
allows very fast reconfiguration of the compression
parameters at runtime.
Figure 7 shows the layout plot of the chip and Table
1 gives an overview of the functional and physical
data of the design.

Figure 7 Layout plot

Table 1 3D-DCT ASIC Overview
Functional data:
Compression & Decompression
Video Bandwidth up to 15MHz (>PAL/NTSC, 768*576*25Hz)
Cube-depth: 4 or 8 frames
Differential Encoding (1-256 D-sequences per I-Sequence)
DC-Prediction
Configurable Quantization tables for Y,Cb,Cr
Configurable VLC-code-book

Physical data:
Video Interface: Programmable 15 MHz, RGB/YcbCr
System Clock: 100 MHz
Transistors: 1,200,000
On-chip memory: 92 kbit
Chip Area: 27.5 mm2 (pad limited)
Process: 0.35 µm, 5-metal

Section 4: Results

This section gives a brief summary of results
obtained from bit-true simulation of the system
described above.
Table 2 presents PSNR and compression ratio for
the “Miss America” sequence [12] for medium and
strong quantization. It also shows the gain in
compression ratio achieved by the prediction of
DC-components, and the impact of differential
encoding on compression ratio and PSNR. Due to
its static nature and morphological character of the
motion the scene is well suited for the 3D-DCT and
can profit from DC-prediction and differential
encoding. The compression ratio that we could
achieve with an MPEG-2 encoder was 1:270 with a
PSNR of 30dB, which is less than the results
achieved with the 3D-DCT. Figure 9 shows a
comparison with the MPEG result on the left half of
the frames and the 3D-DCT result on the right half.

Table 2 Miss-America Sequence (10 fps)
3D-
DCT

+ Diff-
Encoding

+ DC-
Prediction

+both

Ratio(medium) 1:50 1:61 1:59 1:69
PSNR 36dB 35dB 36dB 35dB
Ratio(strong) 1:117 1:181 1:196 1:277
PSNR 33dB 32dB 33dB 32dB

Table 3 shows the corresponding results for the
“Carphone” [12] test sequence. It contains more
motion and a more detailed background.

Table 3 Carphone Sequence (10 fps)
3D-
DCT

+ Diff-
Encoding

+ DC-
Prediction

+both

Ratio(low) 1:8 1:10 1:9 1:11
PSNR 40dB 39dB 40dB 39dB
Ratio(strong) 1:73 1:92 1:82 1:102
PSNR 27dB 26dB 27dB 26dB

Figure 8 plots the PSNR versus compression ratio
of both test sequences for different quantization
patterns with and without prediction.

25

30

35

40

45

50

55

0 100 200 300C

P
S

N
R

/d
B

MissAmerica, no
prediction
Miss-America,
with prediction
Carphone, no
prediction
Carphone, with
prediction

Figure 8 PSNR for “Miss-America” & “Carphone”

Section 5: Conclusions

The straightforward transform-based approach and
the simplicity of the underlying algorithms greatly
facilitate an ASIC implementation. Compared to
motion estimation based encoders, for example the
H263 encoder implementation presented in [8], the
overall complexity of our final design is very low.
Reducing the numerous configuration options of
this particular implementation to a necessary
minimum would further significantly reduce the
implementation cost. When low complexity on the
compression side is a key issue the 3D-DCT
approach provides an interesting alternative to
today's more prevalent algorithms.
In this project only little effort has been put into the
optimization of power consumption of the ASIC
and into optimization of quantization patterns. The
second issue shall be addressed with the presented
implementation in a real-time environment.
Future work will have to address QoS aspects and
problems associated with the transmission over
lossy channels. Nevertheless we believe that the
3D-DCT is an interesting alternative to common
compression schemes, and still offers potential for
future development and improvements.

Acknowledgments

We would like to thank the Integrated Systems
Laboratory of the ETH-Zurich for funding this
project and C. Balmer for taking care of the layout
finishing and the backend verification of the
design.

References

[1] R. Westwater, B. Furth, “Real-time video compression”,
Boston Klumer Cop., 1993

[2] M.P. Servais, G. De Jager, “Video Compression using the
Three Dimensional Discrete Cosine Transform”, Proc.
COMSIG, 1997, pp. 27-32

[3] M. C. Lee, K. W. Chan, D. A. Adjeroh, “Quantization of 3D-
DCT coefficients and Scan Order for Video Compression”,
Journal of visual communication and image representation,
Vol. 8. No. 4, Dec, pp.405-422, 1997

[4] H. Lohscheller, “A subjective adapted image communication
system”, IEEE Trans. Comm. COM32-(12), Dec 1984

[5] H.A. Peterson, “An improved detection model for DCT
coefficient quantization”, SPIE Proceedings 1913, 1993,
pp.191-201

[6] H. Lee, Y. Kim, A. H. Rowberg, E. A. Riskin, “Statistical
distribution of 3D-DCT coefficients and their application
to interframe compression algorithm for 3-D medical
images”, IEEE Trans. on Medical Imaging, Sept. 1993

[7] V. Chameroy, R. Di Paola, “Towards multidimensional
medical image coding”, SPIE Vol. 1653, Image Capture,
formatting and Display, 1992,pp.261-269

[8] M. Harrand, J. Sanches, “A Single-Chip CIF 30-Hz, H261,
H263, and H263+ Video Encoder/Decoder with Embedded
Display Controller”, SSC Vol. 3, Nr. 11

[9] B.L. Yeo, B. Liu, “Volume rendering of DCT-based
compressed 3D scalar data”, IEEE Trans. on Visualization
and Computer Graphics, 1(1), March 1993, pp. 285-296

[10] A. Burg, R. Keller, “A Real-Time Video Compression
System Based on the 3D-DCT”, Diploma-Thesis,
Integrated Systems Laboratory ETH-Zurich, 1999/2000

[11] “System Management Bus Specification, Rev. 1.1”, Intel
Corp., http://www.sbs-forum.org

[12] Test-Sequences: ftp://sotka.cs.tut.fi/cost/Ossi/seq

MPEG 3D-DCT

8

MPEG 3D-DCT

12
MPEG 3D-DCT

16

MPEG 3D-DCT

20
Figure 9 Example: Miss-America frames 8,12,16,20. MPEG: left half of frames (1:270), 3D-DCT: right half

of frames (1:277)

