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Refractive and diffractive
properties of planar micro-optical elements

M. Rossi, R. E. Kunz, and H. P. Herzig
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The refractive and the diffractive properties of planar micro-optical elements are investigated. The
transition between purely refractive and purely diffractive planar microlenses is numerically simulated
for the example of differently designed phase-matched Fresnel elements. Results obtained from
numerical simulations and experiments show that the refractive and diffractive types exhibit a distinctly
different behavior in the presence of small fabrication errors or wavelength deviations. Based on these
results, design rules for various applications, including low- and high-numerical-aperture lenses and
hybrid refractive–diffractive elements, are derived. For a high-numerical-aperture 1 f @# 5 1.02 lens the
experimental characterization of the irradiance distribution in the image space is presented and shown to
agree well with theoretical predictions.
1. Introduction

Classical lenses andmirrors consisting of macroscopic
surface-relief structures are designed by use of the
laws of geometrical optics, which treat light propaga-
tion by the refraction and the reflection of geometrical
rays at optical interfaces. The eikonal equation as
the basis of geometrical optics can be derived from
Maxwell’s equations in the limit where the wave-
length tends to zero.1 Therefore no wavelength-
dependent properties, apart from those that are due
to material dispersion are observed. However, ow-
ing to the large structure size, these elements are
often not appropriate for the integration in optical
and optoelectronical microsystems. One possibility
for miniaturization is the classical Fresnel lens, ob-
tained by a simple dissection of the geometrically
calculated profile. Although the eikonal equation
yields a locally correct phase distribution, the laws of
geometrical optics do not consider the interference
effects of the waves emanating from the different
segments. Owing to the resulting incoherent super-
position of different waves, the resolution of a classi-
cal Fresnel lens is limited by the size of individual
segments.
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In contrast, holographic optical elements and dif-
fractive optical elements 1DOE’s2 do consider these
effects. In general, DOE’s are designed based on the
wave nature of light, expressed by the laws of wave
optics. An example of such an element is the Fresnel
zone plate. The diffraction-limited focusing func-
tion of these binary phase or amplitude gratings can
be explained only by the coherent superposition of
different waves. Because diffraction effects are
strongly dependent on the wavelength of light, the
imaging properties of DOE’s typically suffer from
severe chromatic aberrations. To obtain a high effi-
ciency in one or several specific grating diffraction
orders, DOE’s require a precisely controlled phase
profile.
Therefore the optical properties of planar micro-

optical elements consisting of grating structures com-
bined with continuous surface-relief profiles between
the grating lines are of great interest. Depending on
the sizes of the surface-relief features, the laws of
geometrical optics can also be adequate for the descrip-
tion of their behavior. Our purpose is to show under
which conditions the effects of refraction and diffrac-
tion are dominant. We especially concentrate on the
consequences of typical fabrication inaccuracies and
wavelength deviations and give some fabrication-
related design rules.
The analysis is carried out on phase-matched Fres-

nel elements2 1PMFE’s2 because they offer a general-
ized approach for the design and the fabrication of
planar micro-optical elements. In particular they
offer degrees of freedom for choosing the weights of
the refractive and the diffractive contributions to the
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overall optical properties. In Section 2 we outline
the concept of the PMFE design, which is based on
both geometrical and wave optics. The mathemati-
cal models for the numerical simulation of the refrac-
tive and the diffractive properties of PMFE’s are
introduced in Section 3. In Section 4 the optical
behavior of differently designed planar micro-optical
elements in the presence of fabrication errors and
illumination-wavelength deviations are treated for
examples of lenses with numerical apertures NA 5
0.05 1 f @# 5 102 and NA 5 0.45 1 f @# 5 1.02. In order
to demonstrate the feasibility of the PMFE design and
fabrication, we present an experimental spot charac-
terization on an NA5 0.45 lens. As a special combi-
nation of refraction and diffraction, the limits of
operation for a hybrid achromat are derived.

2. Phase-Matched Fresnel-Element Concept

For the combination of refractive and diffractive
properties a general approach for the design is chosen.
The following discussions concentrate on imaging
elements; however, the PMFE concept is not limited
to this class of elements. We start with the state-
ment that a PMFE is equivalent to a segmented
microrelief structure.2
Each segment acts as a transmissive or a reflective

facet; thus an incoming primary wave u0 is split into
secondary wavelets uj. In a first approximation we
do not consider the calculation of the exactmathemati-
cal form of the secondary wavelets uj, which would
require rigorous diffraction theory. The surface-
relief profile of each segment is designed to perform
the desired optical function in the sense of geometri-
cal optics. An equivalent formulation of this condi-
tion is that the optical path lengthWj 1Ref. 32 between
the object and the image points for any ray rj that
crosses the segment sj is constant 1cf. Fig. 12. For
the calculation of the optical path length Wj the
dispersive refractive indices n0, n8, and n in the object
space, the image space, and the PMFE layer, respec-
tively, have to be taken into account. In this paper,
n0 and n8 are set to the constant value of 1. The size
and the relative arrangement of the individual seg-
ments are determined by additional design require-
ments and constraints that originate from fabrication
techniques.

Fig. 1. Definitions of PMFE segments and focal points of different
orders.
For the calculation of the segment boundaries the
wave nature of light is taken into account. In the
sense of a modified Huygens–Fresnel principle, which
gave rise to the use of Fresnel in the term phase-
matched Fresnel elements, the amplitude of the opti-
cal field in the far field is given by the superposition of
all secondary wavelets uj 1Ref. 22. In order to take
advantage of interference effects 1be it constructive or
destructive2 of these wavelets, we establish a con-
trolled phase relation between the wavelets emanat-
ing from all segments, using phase-sensitive ray-
tracing algorithms3 with the concept of geometrical
wave fronts. As an example, we consider the imag-
ing of a point source O into an image point P, where
the object distance l is taken to be infinite, as shown in
Fig. 1. This is achieved by choice of the segment
boundaries in a manner that the optical phase differ-
ence DWj in L8 5 P of two rays rj and rj11, crossing
neighboring segments sj and sj11, is an integer mul-
tiple Mj of 2p 1cf. Fig. 12. The equivalent expression
for the optical path length is

DWj 5 W1OSj11P2 2 W1OSjP2 5 Mjl, 112

where l is the wavelength in air. The fact that the
integer Mj, called the phase-matching number, may
be locally different from one boundary to another is an
important degree of freedom for the design of these
elements.
Because the approach presented in the previous

paragraph is a rather general one, the width wj and
the depth hj of the segments and the exact form and
position of their boundaries are not uniquely deter-
mined. Specific design strategies are characterized
by the alignment of the segments and the local values
of the phase-matching numberMj. The choice of the
alignment of the segments, e.g., top or bottom aligned
1cf. Fig. 22, is influenced by the fabrication technology
and becomes relevant in the high-NA regions of
planar lenses. The value ofMj determines the width
and the depth of the segments. One possible strat-
egy is to choose Mj so that the segment width wj
remains above a minimal value wmin for a given
fabrication technology.4 This special case corre-
sponds to the approach used by Futhey5 in the design
of superzone diffractive lenses and by Marron et al.6
for their higher-order kinoforms. Besides the aspect
of segment width and depth, the refractive and the
diffractive properties are a function of the number of
illuminated segments. With the variation of Mj the
element can behave in the two extreme cases as a
purely diffractive 1Mj 5 M 5 1 with the number of
illuminated segments Q : 12 or refractive 1with M
large enough to obtain only one segment, i.e., Q 5 12
element.
The design procedure presented here, which locally

optimizes the surface relief, does not rely on any
approximations other than the validity of the scalar
theory. Particularly, good results can be obtained
for lenses with a high NA4 because the calculations
are not restricted to the paraxial domain.7 Because
of the direct calculation of a locally optimized surface
10 September 1995 @ Vol. 34, No. 26 @ APPLIED OPTICS 5997



relief instead of a phase function in a plane, no
complex corrections for the profile are required as,
e.g., in Ref. 8.
The approach of using a segmented surface-relief

structure for interfering and phase matching the
secondary wavelets in the image space can also be
interpreted as representing a miniature implementa-
tion of an optical phased array.9
The PMFE microstructures can be fabricated by

any technology that enables one to produce the seg-
ments with a sufficient accuracy. The segments can
be formed as continuous surface reliefs by means of
direct laser10 or electron-beam writing,11 or as binary
optical12 structures. In this paper we concentrate on
elements fabricated by direct laser writing in photore-
sist.

3. Theoretical Description

For the theoretical description of the PMFE behavior
two different models are used. In a first approach
the diffraction patterns are calculated in the Fresnel
diffraction regime. These calculations give reliable
results for lenses with NA # 0.05 1 f @# $ 102 1Ref. 72
and give a good intuition for the basic processes.
More precise results can be obtained from the subse-
quent calculations in the Rayleigh–Sommerfeld ap-
proximation. These numerical simulations take also
into account the finite thickness of the PMFE surface
relief and determine the diffraction pattern of the
structures designed by use of the algorithms in Sec-
tion 2.
The PMFE concept combines geometrical and wave

optics in a way that the segment boundary pattern
acts locally as a diffraction grating having the Mjth-

Fig. 2. Schematic design examples for 1a2 top-aligned and 1b2
bottom-aligned PMFEmicrostructures.
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order focus at the position l8 5 LM and that the
segment relief shape is optimized for the geometrical
optical refraction of light rays into the point L8.
Besides this main focal point L8 of the diffraction
grating, there exist additional positions LN on the z
axis where the optical-path difference DWj is an
integer multipleN of l withN . Mj orN , Mj 1cf. Fig.
12. We can obtain the values LN for these higher and
lower diffraction orders by solving Eq. 112 with Mj
replaced byN. A plot of these positions LN for lenses
with NA 5 0.05 and different values of Mj is given in
Fig. 3. The density of higher and lower diffraction
orders on the optical axis apparently rises with increas-
ing values of Mj and is an important factor for the
behavior of planar micro-optical elements in the pres-
ence of surface distortions and wavelength devia-
tions.
Whereas the above calculations determine the posi-

tions where constructive interference of the different
secondary wavelets uj occurs, the surface-relief profile
of the segments determines the amount of light at
these positions. A first estimation of the intensity
distribution among these various diffraction orders
can be obtained if we assume that a paraxial descrip-
tion7,13 is valid. In this case, Eq. 112 can be trans-
formed to

rj
2 5 2 jMjl0l8, 122

where rj is the distance of the segment boundary from
the origin and l0 is the design wavelength in air.
The phase shift introduced by the continuous surface-
relief segments at an arbitrary position r is approxi-
mated by a quadratic function.

Fj1r2 5 aMj2p1 j 2
r2

2Mjl0l82 , rj # r # rj11, 132

where the parameter

a 5
l03n1l12 2 14

l13n1l02 2 14
142

quantifies the phase delay for an illumination wave-
length l1 fi l0 1cf. Ref. 72. In addition to chromatic

Fig. 3. Axial position of higher- and lower-order foci for PMFE’s
with different phase-matching numbers.



effects we also treat the influence of fabrication
inaccuracies in the form of relief-profile scaling errors.
A typical distortion of an original surface-relief profile
h1r2 is expressed by a term µ as

h81r2 5 µh1r2. 152

Because the required phase shift is realized by a
surface-relief profile with the relation

h1r2 5
l0

2p3n1l02 2 14
F1r2, 162

we also introduce the multiplicative factor µ in Eq. 132
for modeling relief-height errors.
We now introduce a new variable j 5 r2@2l0l8. The

segment transmission function t1j2 5 exp3iF1j24 is then
periodically extended and describes a Fresnel lens
with an infinite number of segments and a constant
phase-matching number Mj 5 M. t1j2 is a periodic
function with a period T 5 1 and can be approximated
by a Fourier series

t1j2 5 o
N52`

`

exp32ip1aµM 2 N24sinc1aµM 2 N2

3 exp12i2pNj2 172

or

t1r2 5 o
N52`

`

exp32ip1aµM 2 N24sinc1aµM 2 N2

3 exp32 ipNr2

Ml0l84 , 182

where the sinc function is defined as

sinc1x2 5
sin1px2

px
. 192

Expansion 182 requires a large number of segments j
for being valid. The following numerical simula-
tions in Subsections 4.B. and 4.C. indicate that,
already for four illuminated segments, the optical
behavior of a microlens can be described by Eq. 182
with a good accuracy. As a comparison, the transmis-
sion function for a lens with only one segment,
designed for a focal length f and a wavelength l1, is
given by14

t1r2 5 exp12 ipr2

l1 f 2 . 1102

This equation describes a purely refractive lens with
one single focal point and a wavelength dependence
given by the material dispersion n1l2 3cf. Eq. 1624; we
have set n0 ; 1 and n8 ; 1. If we compare Eqs. 182
and 1102, the transmission function of a paraxial
Fresnel lens can then be interpreted as a summation
over the transmission functions of a series of lenses
with focal lengths

lN 5
Ml8

N

l0

l1

. 1112

The normalized energy in these focal points is propor-
tional to the squared modulus of the Fourier coeffi-
cient:

hN 5 sinc21aµM 2 N2. 1122

If the illumination wavelength l1 is not equal to the
design wavelength l0, the position of the focal points
lN and their efficiency hN change according to Eqs. 1112
and 1122 A profile-height error 1µ 2 12 fi 0 does not
affect the position of the foci lN but alters the energy
distribution among them. From the sinc function in
Eq. 1122 follows that only two diffraction orders N
simultaneously can have an efficiency of more than
5%, independent of the values of a, µ, and M. This
fact that only two values of hN are in the central sinc
lobe is similar to the behavior of blazed gratings
working in higher diffraction orders,15 which can be
interpreted as special, nonfocusing cases of PMFE’s.
As a further consequence of Eq. 1122, the probability

that an order other than the designed diffraction
orderM is the most efficient one, i.e., hN . hM for N fi

M, increases for higher values ofM. This can also be
explained with refraction-based considerations. Be-
cause the higher and lower diffraction orders N move
nearer to the nominal focal point L8 for higher values
of M 1cf. Fig. 32, it takes smaller profile deviations to
refract the light at these positions LN of constructive
interference and therefore to increase their efficiency hN.
The existence of additional focal points and their

behavior under wavelength or fabrication inaccura-
cies are the most important differences in the proper-
ties of purely refractive and diffractive lenses. The
following investigations concentrate on these effects
in the transition region between the two extremes.
As a consequence, we encounter cases in which the
assumption of a high number of segments j in Eq. 182 is
no longer fulfilled. In addition, these paraxial equations
are not suited for the numerical simulation of high-NA
lenses. Therefore theRayleigh–Sommerfelddiffraction
formulas16 are used here for the quantitative evalua-
tion of these PMFE diffraction patterns:

u21x, y2 5 e e
2`

`

u11xe, ye21
z12
ilr12

2 2exp1 jkr122dxedye

5 e e
2`

`

u11xe, ye2

3

exp5ikz1231 1 1x 2 xe
z12 2 1 1y 2 ye

z12 2
2

4
1@2

6
ilz1231 1 1x 2 xe

z12 2 1 1y 2 ye
z12 2

2

4
3 dxedye. 1132
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The variable u11xe, ye2 is the complex-amplitude distri-
bution in the tangential plane 1xe, ye2 to the micro-
optical surface relief 1cf. Fig. 12 and is calculated by
our taking into account both the phase shift of the
PMFE relief and the refraction of the rays at the
curved surface. With this equation the finite depth
of the surface-relief profile is correctly taken into
account. The complex-amplitude distribution in some
plane 1x, y2, that fulfills the Rayleigh–Sommerfeld
conditions 1z12 : l2 is given by u21x, y2; z12 is the
distance of the planes 1xe, ye2 and 1x, y2. Because the
radial distribution of the relief data points resulting
from the PMFE design is dependent on the local
profile structure, we did not make use of fast Fourier
algorithms for the evaluation of Eq. 1132 and solved it
by direct numerical integration.

4. Experiments and Numerical Simulations on the
Refractive–Diffractive Behavior

A. General Remarks

In Section 2 it was shown that the phase-matching
number Mj and the strategy of its variation over the
element surface are the most important features of
the design procedure for PMFE’s. The valueMj1xe, ye2
determines essentially the width and the depth of the
microlens segments. One important way of using
this parameter is the adaptation of the segment size
to the limits imposed by the fabrication technology.
Moreover, the optical characteristic of microlenses
also can depend on the phase-matching number.
Especially when small fabrication errors occur or
when the micro-optical element is illuminated by a
wave with a wavelength l1 fi l0, where l0 is the
design wavelength, the irradiance distribution and
the efficiency of the microlenses depends on the
number and the size of the illuminated segments.
We first show some basic effects concerning the
refractive and the diffractive behavior of planarmicro-
lenses at representative examples. At the end of this
section we give a summary and list some design rules
for typical applications.
The following numerical simulations were per-

formed on a series of eight different PMFE’s, which
focus a collimated He–Ne laser beam 1wavelength
lHe–Ne 5 l0 5 632.8 nm2 at a distance l8 5 4.0 mm.
These lenses have a numerical aperture NA 5 0.05
1 f @# 5 102; their phase-matching numbers 1Mj 5 M 5
constant2 are varied fromM 5 1 toM 5 8. The PMFE
withM 5 1 consists of Q 5 8 segments 1cf. Fig. 42, and
because of the 2p phase steps, it represents the purely
diffractive case.17 Owing to the clamped finite aperture,
the case of a purely refractivemicrolens is reached by the
element withM5 8. According to the increasing size of
contiguous surface-relief areas and the decreasing num-
ber of segment boundaries, the elements with phase-
matching numbers in the range fromM5 2 toM5 7 can
be described as having both refractive and diffractive
attributes. The elementwithM5 2 hasQ5 4 complete
segments; the one with M 5 4 has Q 5 2 complete
segments. The PMFE’s withM5 5 toM5 7 all include
6000 APPLIED OPTICS @ Vol. 34, No. 26 @ 10 September 1995
exactly one segment boundary, and the area of the
second, outer segment decreases relative to the area
of the inner segment. All these PMFE’s are compat-
ible with fabrication technologies such as laser-beam
writing,10 although resist films thicker than 5 µm
require nonstandard processing.

B. Monochromatic Applications

Provided that the wavelength l1 of the monochro-
matic illumination wave is equal to the design wave-
length l0, the microlens performance is determined
mainly by the fabrication accuracy. The lateral pat-
tern of the microlenses, i.e., the position of the seg-
ment boundaries, can be realized with very small
tolerances by use of photolithographic fabrication
techniques such as laser or electron-beam writing.
Interferometric control of the writing stages and
modern mask aligners that are used for binary optics
guarantee a very high lateral precision for the seg-
ment boundaries. The vertical shape of the surface-
relief profile is more difficult to fabricate with a good
reliability. For the fabrication of the elements by
direct laser-beam writing, relief-height errors in the
range of several percent, owing to irregularities of the
photoresist films, the exposure dose, and the wet
etching process, are typical. We analyze the conse-
quences of surface-relief errors by considering ele-
ments whose original relief depth is multiplied by a
constant factor µ.
In order to demonstrate the most important effects,

we chose a relatively high surface-relief error of 10%
1µ 5 0.92. The results obtained with the Rayleigh–
Sommerfeld integrals are shown in Figs. 51a2–51e2.
For each microlens the irradiance on the optical axis
and the energy encircled by a disk with the Airy
radius qa of the undistorted lens 1qa < 1.22l8l0@
2a < 7.7 µm, with lens aperture 2a 5 400 µm2 are
plotted as a function of the distance z12 from the
micro-optical element on the optical axis. Irradiance
and energies of the distorted PMFE’s were normal-
ized by the corresponding values obtained for µ 5 1.0.
For this ideal case, all different design variants
showed identical diffraction patterns. The bold ver-
tical lines in Figs. 51a2–51d2 indicate the position and

Fig. 4. PMFE surface-relief elements for numerical simulations.



Fig. 5. Calculated distributions of irradiance 1dashed curves2 and encircled energy 1solid curves2 along the optical axis z 5 z12 for PMFE’s
with 1a2M 5 1, 1b2M 5 2, 1c2M 5 4, 1d2M 5 6, and 1e2M 5 8, all with a depth scaling factor of µ 5 0.9; 1f 2 the curves for an element withM 5 4
and NA5 0.1. The vertical lines show the positions and the efficiencies of the focal points calculated with Eqs. 1112 and 1122.
the efficiency of the discrete focal points, which are
calculated under the assumption of a large number of
illuminated segments with Eqs. 1112 and 1122.
The irradiance distribution along the optical axis is

governed by two effects: 1i2 the variations with a
sinc2 dependence for one single focal point as de-
scribed in Refs. 18 and 19 and 1ii2 the diffraction of
light in higher-order focal points introduced by the
surface-relief distortions.
When the surface-relief profile is distorted by a

factor µ 5 0.9, the focus point calculated by the
refraction of rays is at Lr < 4440 µm for all different
design variants. However, wave optics determines
where constructive interference between the second-
ary wavelets of the different segments occurs. For
the purely diffractive lens 1M 5 1, Q 5 82 there is no
lower-order focus point near this refractive focus Lr
1cf. Fig. 32. Consequently, no additional focus with
notable efficiency occurs exactly as predicted by the
paraxial equations for diffractive lenses. The same
applies for the PMFE with M 5 2, where Q 5 4
segments are illuminated. This proves that a PMFE
with only four segments still shows the properties of a
diffractive optical element. For higher values of M,
and consequently lower numbers of Q, two types of
consequences become relevant. First, the axial den-
sity of higher- and lower-order focal points is increas-
ing. In the presence of surface-relief errors this can
10 September 1995 @ Vol. 34, No. 26 @ APPLIED OPTICS 6001



lead to a change in the focal length of the element, i.e.,
an order other than the Mth diffraction order can
become the most efficient one 3cf. Fig. 51d24. In the
purely refractive case 1here for M 5 82 there is again
only one single focus point observed, with an effi-
ciency that approaches 100% 3cf. Fig. 51e24. Its posi-
tion is shifted byDz5 440 µm, which coincides exactly
with the value obtained by fitting of a spherical lens
through the distorted relief and subsequent calcula-
tion of the geometrical optical focus.
The second consequence of a high phase-matching

number is that, in the transition region between
refractive and diffractive elements, the assumption of
a high Q for expansion 182 is no longer fulfilled. This
leads to deviations of the Rayleigh–Sommerfeld dif-
fraction patterns from the results obtained by Eqs.
1112 and 1122, which are drawn as vertical lines in Figs.
51a2–51d2. Particularly, a deviation of the axial posi-
tion of maximum encircled energy from the focal point
Lpar calculatedwith the paraxial equations is observed.
For the case with M 5 1 and Q 5 8 the position of
maximum energy LRS, obtained with the Rayleigh–
Sommerfeld integrals, exactly coincides with Lpar.
ForM 5 2 1Q 5 42 the position of maximum energy is
shifted by Dz2 5 LRS 2 Lpar 5 30 µm in the direction
toward the refractive focus Lr. These deviations
increase for lower numbersQ of illuminated segments
1e.g., Dz4 5 100 µm and Dz6 5 2180 µm, both having
Q 5 22.
To demonstrate that the transition between refrac-

tive and diffractive behavior depends on the number
of illuminated segments only, we performed the same
simulations for an element withM 5 4 and a doubled
aperture size 1i.e., Q 5 42. The axial diffraction pat-
tern and energy distribution of this PMFE with four
illuminated segments are compared with those of the
element with M 5 4 and Q 5 2 3cf. Figs. 51c2 and 51f24,
whereas in the case Q 5 2 the behavior differs
significantly from the one of a diffractive lens; forQ 5
4 a good coincidence with the results of a paraxial
diffractive lens is obtained.
In contrast to the energy and the axial position of

their maxima, the width of the focal spots showed no
change. In Table 1 the FWHM values of the foci for

Table 1. Focus Width 1FWHMa values2 for Phase-Matched Fresnel

Elements with Varying Values forM and m

Phase-
matching
NumberM

Focus
Position
1µm2

Depth
Scaling
Factor µ

Focus
Width
1FWHM2

1b 4000 1.00 6.7
1 4006 0.90 6.7
2 4026 0.90 6.7
3 4038 0.90 6.7
4 4108 0.90 6.9
8 4436 0.90 7.5
8c 4440 1.00 7.5

aThe theoretical FWHM value for anAiry disk with qa 5 7.7 µm is
qFWHM < 6.6 µm.

bPMFE with µ 5 1.0.
cPMFE withM 5 8, designed for l8 5 4440 µm.
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different PMFE’s are compared. The widths forM 5

1 are equal in the two cases µ 5 1.0 and µ 5 0.9. For
higher values of M an increasing spot width is ob-
served besides the focal shift. But a comparison with
the FWHM of an undistorted element that was de-
signed for the shifted focus position proves that this
spot broadening occurs soley because of longer focal
length.

C. Brief Discussion of Polychromatic Applications

The treatment of polychromatic applications is lim-
ited to the case of l1 fi l0. A full discussion of the
behavior under broad-band illumination would go
beyond the scope of this paper. In the paraxial
domain, Eqs. 1112 and 1122 are with a factor a given by
Eq. 142. The positions LN of constructive interference
and especially the designed diffraction order M are
shifted on the z axis owing to the chromatic aberra-
tions of diffraction gratings. The refractive focus,
which would be obtained by geometrical optics and
which determines the energy distribution among the
different diffraction orders, remains at the originally
designed position, apart from a small deviation that is
due to material dispersion. In analogy to the case of
surface distortions, this mismatch results in a reduc-
tion of the efficiency in the main focal point and a rise
of the energy in the higher or lower diffraction orders.
According to previous considerations, the focal point
LN situated nearest to the refractive focus will be the
most efficient one.
For small values of wavelength deviations Dl 5

l1 2 l0, only a small decrease of efficiency will occur in
all various design variants. A value of Dl 5 70 nm
would be needed for a factor a 5 0.9 in order to change
significantly the energy distribution among the differ-
ent diffraction orders. More important is the axial
chromatic aberration, which is linear to Dl for small
values of a. Numerical simulations similar to those
presented in Subsection 4.B revealed that this diffrac-
tive effect became dominant as soon as more than two
secondary wavelets interfered. Figure 61a2 shows
that the transition between the purely diffractive and
the purely refractive chromatic behavior occurs be-
tween the cases of M 5 4 and M 5 7, i.e., when only
two segments are illuminated. Furthermore, the
encircled energy in a focal point decreases, the higher
the absolute value of Dl is 3cf. Fig. 61b24. As in Section
3, it could be demonstrated that the transition effects
shown in Fig. 6 depend only on the number of
illuminated segments and not on the absolute value of
M.
For the case of a high number of illuminated

segments 1i.e., Q $ 42 the efficiency in the higher or
lower diffraction orders can be calculated with Eq.
1122. For a suitable choice of the values of Dl, M,
and N the diffraction orders can be moved to the
originally designed focal point L8with 100% efficiency.
This case was described under the name multiple-
order diffractive lenses in Ref. 20 and allows the
achromatization of planar lenses for a series of dis-
crete wavelengths. The achromatization for a con-



tinuous, broad-band wavelength range with diffrac-
tive optics is described in Subsection 4.D.

D. Achromatization of Classical Lenses

The previous paragraphs showed that the refractive
properties of planar microlenses become important
when only a few segments are illuminated and when
the incoming light has an extended spectrum. An
example inwhich the exact distinction between refrac-
tive and diffractive behavior is of great importance is
the hybrid achromat, which combines a refractive
lens with a diffractive lens. The two lenses can be
combined in one lens, as shown in Fig. 7. The

Fig. 6. Wavelength dependence of 1a2 focal length l8 and 1b2
encircled energy. The dashed line in 1a2 shows the values for a
purely diffractive lens calculated with Eq. 1112.

Fig. 7. Hybrid 1refractive–diffractive2 lens.
advantage of such a system is that the axial chromatic
aberration of the refractive component can be cor-
rected by a diffractive component with positive focus-
ing power owing to the negative dispersion of the
DOE. In a traditional achromatic doublet a refrac-
tive element with negative focusing power is needed.
Consequently, the required focusing power of the
refractive component is greatly reduced in the case of
the hybrid lens, thus reducing the magnitude of the
higher-order aberrations.
The design of a hybrid achromat is based on geo-

metrical ray tracing. For calculating the influence of
the diffractive surface the law of refraction is replaced
by the law of grating diffraction.21 This approach
implies that the diffractive element shows a purely
diffractive chromatic behavior, as it corresponds to
the curves M 5 1 and M 5 2 in Fig. 6. In the
following we use paraxial equations for estimating
the critical dimensions of a hybrid achromat.
The focal length f of a thin doublet is given by22

1

f
5
1

fr
1
1

fd
, 1142

where in our case fr and fd are the focal lengths of the
refractive and the diffractive lenses, respectively.
The condition for an achromat is then23

frnr 1 fdnd 5 0, 1152

where the dispersions of the refractive lens and the
diffractive lens are characterized by the Abbe num-
bers nr and nd, respectively. For a refractive lens the
Abbe number is given by

nr 5
n1 2 1

n2 2 n3
, 1162

where ni are the refractive indices for the wave-
lengths li. Equation 1152 requires that the focal
length f of the achromat be the same for the wave-
lengths l2 and l3. The central wavelength is l1.
The definition requires that l2 , l1 , l3. In the case
of a diffractive lens the optical power is proportional
to the wavelength; therefore theAbbe number is given
by

nd 5
l1

l2 2 l3

. 1172

The Abbe number of a refractive lens is positive, i.e.,
nr . 0, whereas for a diffractive lens nd , 0.
From Eqs. 112 and 122we can calculate fd as

fd 5 f 11 2
nr

nd
2 . 1182

The phase function F1r2 of a thin diffractive lens with
focal length fd is described by

F1r2 5
2p

l1

r2

2fd
. 1192
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For a lens of radius a the number Q of illuminated
segments is then given by

Q 5
F1a2

2pM
5

1

l1

a2

2fdM
. 1202

FromEqs. 1182 and 1202we obtain an estimation for the
number Q of illuminated segments of the diffractive
component. Q is a function of the focal length f and
the f-number 1 f @# 5 f @2a2 of the hybrid lens, namely,

Q 5
f

8lM1 f@#22
nd

nd 2 nr

. 1212

Figure 8 shows a graphical representation of Eq. 1212.
The example uses an optical glass BK7 and is de-
signed for the wavelength range of 650 nm 6 25 nm,
i.e., l1 5 650 nm, l2 5 625 nm, and l3 5 675 nm. If
only a few segments of the achromat are illuminated,
then the achromat will not work properly because the
achromatization is based on purely diffractive behav-
ior of the diffractive component. As can be seen in
Fig. 61a2, the chromatic aberrations of an element
start to differ from the purely diffractive case when
less than four segments are illuminated. The num-
ber of illuminated segments depends on both the
phase-matching number M and the aperture of the
element. Figure 8 shows that, even for M 5 1,
problems occur already for focal lengths shorter than
10–20 mm. The main reason for the low number of
segments Q is that the dispersion of a refractive
component is much smaller than the dispersion of a
diffractive component 1nr < 10nd2. Consequently, the
diffractive lens needs only a low optical power to
compensate the chromatic aberrations of the refrac-
tive component 3see Eq. 11524. Another reason for
preferring low values of M in a hybrid achromat is
given by efficiency considerations. Owing to the
broadband illumination, some light will be diffracted
in the unwanted diffraction orders of the diffractive
lens. Using Eq. 1122 with a2 5 1.04 and a3 5 0.96, we
see that the efficiency in unwanted diffraction orders
will rise for higher values ofM.

Fig. 8. Hybrid achromat 1M 5 12: number of diffractive seg-
ments versus focal length.
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D. Experimental Results for High-Numerical-Aperture
Lenses

So far, we have treated the case of low-NA lenses, in
which the number of illuminated segments can be
very low and the purely refractive case is a solution
still relevant for planar fabrication techniques. To
demonstrate the potential of the PMFE approach, we
investigate the effects of small surface distortions for
the example of a PMFE with NA 5 0.45 1 f@# 5 1.02.
The same design wavelength l0 5 632.8 nm as in
Subsection 4.4 was chosen; the focal length was set to
l8 5 2.0 mm.
Although the PMFE design procedure is not limited

to the paraxial domain, as with many other ap-
proaches, and inherently includes the effects of the
profile depth, the theoretical maximum efficiency will
not reach 100%, as predicted by scalar theory. If we
chose Mj 5 M 5 1 for the whole PMFE, a minimum
segment width of wmin < 1.3 µm would result at the
aperture edges. Owing to results based on electro-
magnetic theory,24 structures designed by scalar theory
will no longer yield high efficiencies in this regime,
and an optimization would need very computing
intensive rigorous diffraction calculations. This effi-
ciency reduction also occurs for the larger but deeper
segments of an element with M . 1 and is not yet
taken into account in the design procedure.
As in the previous subsections, different design

variants were investigated. For the fabrication by
laser-beam writing a design strategy was chosen that
started with a value of Mj 5 1 in the center of the
PMFE and increased the phase-matching numberMj
each time when the minimum segment size for laser-
beam writing 1here, wmin 5 5 µm2 was reached.4 A
maximum value of Mj 5 4 resulted at a radius of a 5
1.0 mm. The diffraction pattern of such a PMFE,
fabricated by laser-beam writing in photresist, is
shown in Fig. 9. It was measured by scanning of a

Fig. 9. Measured irradiance distribution in the image space of an
f @1 PMFE.



photodiode masked with a small slit in the x direction
at various distances z from the micro-optical element.
The FWHM of the spot at a distance of z12 5 z 5 2.0
mm was measured to be ,1.5 µm, compared with the
theoretical value of 1.0 µm obtained with numerical
simulations. We performed the spot-diameter mea-
surements by scanning a pinhole of 2 µm 3 2 µm size
in the focal plane imaged by a 203 microscope objec-
tive. The deviation of the experimental from the
theoretical beam diameter can be explained by inaccu-
racies in this measurement setup. A maximum effi-
ciency of ,70% was measured for these PMFE’s.
The second, small peak at z < 4.0 mm in Fig. 9 occurs
because of deviations in the surface-relief profile and
corresponds to a lower diffraction order of the struc-
tures withMj . 1 in the outer regions of the PMFE.
The most important differences in the behavior

compared with low-NA lenses can be summarized as
follows: First, well-defined higher- and lower-order
focal points no longer occur in the irradiance distribu-
tion on the optical axis for a and@or µ fi 1.0. As an
illustration, the axial energy distribution of a PMFE
withM5 4 is shown in Fig. 10. Adepth scaling error
of µ 5 0.9 leads to the diffraction of light in the
third-order focus, which is spread out on the z axis.
The main reason for these large aberrations is that
the points LN, which fulfill optical phase condition 112
between rays rj and rj11, depend on the radial distance
of the rays for lenses with a high NA. An aberration-
free focal point results only for the designed diffrac-
tion orderM at the design wavelength l0 and a perfect
surface relief. In addition, steep surface-relief slopes
that occur at large radii are much more sensitive to
depth errors. With geometrical optical consider-
ations one can see that the focal shift caused by a
certain depth error is a monotonically increasing
function of the relief slope. Asecond difference to the
behavior of paraxial lenses is that the energy
reduction in the main focus owing to a and@or µ fi 1.0

Fig. 10. Calculated axial distribution of the encircled energy of an
f @1 lens with a depth scaling factor of µ 5 0.9.
is much higher than predicted by the paraxial equa-
tions. In the example of Fig. 10, Eq. 1122 would give
an efficiency of hM 5 0.57 for an error factor µ 5 0.9,
whereas numerical simulations with the Rayleigh–
Sommerfeld integrals result in a value of hM < 0.41.

E. Discussion

The results of the above investigations show that
diffraction effects are dominant as soon as at least two
independent segments of a micro-optical surface re-
lief are illuminated. The laws of wave optics deter-
mine the points in the image space where the diffrac-
tion at some segment boundary pattern leads to
constructive interference. The energy distribution
among these diffraction orders is controlled by the
phase shift introduced by the relief structure between
the segment boundaries and can be obtained by
solving the wave equations, e.g., in the Rayleigh–
Sommerfeld approximation. Nevertheless, the laws
of geometrical optics can be used to obtain a rough
estimation on the effect of typical fabrication inaccura-
cies.
In the PMFE design the refractive and the diffrac-

tive behavior of planar microlenses can be adjusted by
means of the phase-matching number Mj, mainly in
the sense that the size of contiguous surface relief
elements can be varied over the elements’ area.
Elements with differentMj, whose theoretical optical
functions are identical, behave differently when small
fabrication errors occur or polychromatic applications
are considered. Therefore the design of a specific
element has to take into account fabrication con-
straints, as well as the most important requirements
of an application. Some design rules can be given for
different ranges of numerical apertures, as follows.
For low numerical apertures, elements with a con-

stant Mj and M can be designed that have either
purely refractive or purely diffractive properties.
In the paraxial approximation the number Q of
illuminated segments is given by

Q <
l81NA22

2Ml0

. 1222

Therefore with a suitable choice of M both types of
behavior are accessible: either a refractive element
with low chromatic aberrations, but with a focus
position that is strongly dependent on the exact
surface-relief profile, or a diffractive planar optical
element showing large chromatic aberrations, but
with a focus position that is not very sensitive on the
surface-relief profile. For any practical realization
the upper limit for M is given by the maximum
available profile depth, whereas the lateral resolution
imposed by the fabrication technology determines the
minimum value ofM. The different design examples
of a NA5 0.05 lens with l8 5 4 mm that are presented
in this section represent the actual limits for the
fabrication by direct laser-beam writing.
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As soon as more than a few segments of planar
microlenses are illuminated 1a typical number is
Q $ 42, their behavior under typical fabrication and
wavelength inaccuracies corresponds to a diffractive
optical element. Nevertheless, the variation of the
parameter Mj offers some important perspectives for
the fabrication and also for the design of new types of
elements. As an advantage of the diffractive behav-
ior, the focal position of such microlenses is not
affected by small surface-relief errors, whereas chro-
matic aberrations are very strong. However, ele-
ments with a high M have an increased density of
possible focal points along the z axis and therefore can
react with an axial shift of the most efficient focal
point in the presence of fabrication errors concerning
the relief depth. Nevertheless, these designs are not
necessarily worse than the case of M 5 1. The most
important consequences of a design with a high value
of M are the larger lateral feature sizes and conse-
quently the lower lateral resolution required for their
realization. For many technologies, e.g., laser-beam
writing, the fabrication of high-NA elements is made
possible only with the PMFE concept. In addition, a
reduction of optical losses may be achieved by the
lower number of segment boundaries, which are the
main sources for stray light. Apotential drawback of
elements that use the full depth available by a highM
may be the need for a higher relative fabrication
accuracy in the vertical dimension. Because for all
interference effects 1be it in the first or theMth order2
the relative optical path differences in fractions of the
wavelength l0 are relevant, each profile step at a
segment boundary requires the same absolute depth
accuracy.

5. Conclusions

The refractive and the diffractive properties of planar
micro-optical elements were investigated for the ex-
ample of phase-matched Fresnel elements. Their
design optimizes locally the surface-relief profile,
takes into account the finite profile depth, and is
limited only by the validity of the scalar theory. By
the variation of the phase-matching number the
width and the depth of the surface-relief segments
can be adjusted locally. The optical properties of a
series of design variants were compared. By varia-
tion of the number of illuminated segments at a
constant numerical aperture the transition between
purely refractive and diffractive lenses was numeri-
cally simulated. While all these designs perform
exactly the same optical function in theory, their
refractive or diffractive characteristic becomes obvi-
ous when fabrication inaccuracies or wavelength de-
viations occur. The main result of the numerical
simulations in the Rayleigh–Sommerfeld approxima-
tion is that the diffractive behavior of a planar
microlens is dominant when more than approxi-
mately four segments are illuminated. In the par-
axial region their behavior under typical fabrication
and application conditions can then be described by
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the use of a Fourier series, which is identical to a sum
over refractive lenses with different focal points and
efficiencies. For a number of different applications,
including low- and high-NA lenses and hybrid achro-
mats, fabrication-oriented design rules have been
given.
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