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Abstract. We present a comparison of some of the most used iterative
Fourier transform algorithms (IFTA) for the design of continuous and
multilevel diffractive optical elements (DOE). Our aim is to provide optical
engineers with advice for choosing the most suited algorithm with re-
spect to the task. We tackle mainly the beam-shaping and the beam-
splitting problems, where the desired light distributions are almost binary.
We compare four recent algorithms, together with the historical error-
reduction and input-output methods. We conclude that three of these
algorithms are interesting for continuous-phase kinoforms, and two,
namely the three-step method proposed by Wyrowski and the over-
compensation of Prongué, still perform well with multilevel- and binary-
phase DOE. © 2004 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction real improvement. We aim at giving some advice for this
choice, based on our experience with several of the varia-

Since the invention of digital holography, many algorithms tions of the IETA.

have been proposed to ;olve_the proplem of_de5|gn|ng an Among the several uses of the CGH, three are of par-
element _to trar.]Sf(.)rm.a given light q|str|but|o_n into anot_her ticular interest in digital holography: beam shaping, beam
desired Ilgh't dlstrlbgtloﬁ.An mtere;tmg candidate for thls splitting, and pattern or image generation. Although they
challenge is the iterative Fourier transform algorithm gare three aspects of the same design problem, they differ by
(IFTA). This term was introduced to characterize a family the merit functions used to characterize their performance.
of algorithms that bounce back and forth between two For example, image generation will not in general require
spaces related by a Fourier transfdfffiThe first IFTA, the  the highest possible light throughput from the optical ele-
error-reduction algorithm, was proposed for digital holog- ment, while beam shaping tasks will. Similarly, beam split-
raphy in the early seventi@s.Gerchberg and Saxton 1ing is usually used to divide a light beam into several
adapted it for phase retrieval problefhand the error- sub-beams of equal power while image generation requires

reduction algorithm is consequently also referred to as the PIX€!S of different intensity levels. This article aims at com-
Gerchberg-Saxton algorithm in the literature. The error- paring various algorithms for beam shaping. Beam shaping

i I in high- I licati
reduction algorithm was extensively studied by Fienup who !SSUQF]OSt ggmm%régrusegr;r:]dilr?g engrrgy Sﬁg{oﬁ&%ggﬁ)ﬁg’

introduced the input-output class of algorithms to speed up jjjymination”* These applications often require minimal

convergencé® However, both the error-reduction and the energy losses, implying the use of phase-only elements,
input-output algorithms were not suited for elements with such as lenses and kinoforms.

discrete phase valudbinary or multilevel DOE. For the In Sec. 2, we describe the various algorithms we have
design of phase-only computer-generated hologramstested. The criteria we use to quantify their relative perfor-
(CGH) such as the kinoform, various improvements to mance and the beam shaping design problem we utilize are
IFTA were proposed in the last 20 yedrs? °As a con- tackled_in Sec. 3. Then, in Sec. 4, we present the _results
sequence, the optical engineer facing a design problem nowcomparing the raw performance of the algorithms. Finally,
has the delicate task of choosing the most suited variant of.sec' 5 furthers the discussion for each algorithm, Cof‘s'def'
the IFTA. Algorithms with more parameters sometimes al- ing ease of use, speed of convergence, and stagnation.
low an improved convergence speedwise, but mostly allow

avoiding being trapped into local minima. However, this 2 Description of the Algorithms

wider choice of parameters is also synonymous to addedThe first IFTA variant, the error-reduction algorithm, is
complexity for the optical engineer. The designer needs well known and will be used here as a reference. Its prin-
more experience to master convergence and to pick theciple is explained in Fig. 1. At iteratiolk, the complex
best-suited algorithm instead of the most primitive ones amplitude of the light field in the signal plag, is back-
such as input-output and error-reductf§rConsequently, it propagated to the CGH plane, leading to the complex am-
is important to identify which added complexity brings a plitude a,. The CGH constraints are then applied to pro-
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Fig. 2 Soft quantization on four levels of phase in the complex
plane. At the beginning, the phases are spread over the entire an-
gular interval of 27 (a). They are progressively projected onto the
four phase levels (b) until the quantization process is ended (c).

Fig. 1 The principle of the iterative Fourier transform algorithm. The
dashed box denotes the input-output kernel.
outside this area can be arbitrarily chosen by the designer.
This possibility is referred to as amplitude freedom. Fur-
duce a new amplitude, . CGH constraints depend on the thermore, in most applications, the phase of the generated
fabrication technology. In general, for kinoforms, the |ight diStI’ibUtiOﬂ can also be c_hosen arbitrarily by the de-_
modulus of the amplitudga;| is identified to the modulus ~ Signer. This second freedom is called phase freedom. Fi-
of the incident illumination. Additionally, for muliilevel ~ nally, in some applications where the fidelity of the gener-

and binary elements, the phaseagfhas to be quantized. ated signal matters more than the level of light throughput,

The new amolitudea’ is propacated to the sianal plane & scale factor can be utilized by the designer to adjust the
P k 1S Propag 9 P power repartition between the signal and noise areas. This

leading to a complex amplitudd, . The goal to achieve  gcaje factor freedom is the basis of the tuning of the algo-
beingAgoai, the signal plane constraints are now enforced, rithms by a technique called over-tensing, which will be
i.e.,| Ayl is replaced byAyy, to produceA . ;, which is the covered at the end of this section.
start of a new iteration. Fienup has shown that, for continu-  The three freedoms presented above are not specific to
ous phase elements, this algorithm succeeded in reducingliscrete phase design, but happen to be more necessary in
the errors at every iteration in their respective plane, hencethis case. A most noticeable additional improvement spe-
the name error-reductich. cific to discrete phase design is the soft-quantization con-
If the CGH constraints are enforced strictly, the error in cept proposed by WyrowsRiSoft-quantization consists, as
the CGH space is not relevant, and only the error in the shown in Fig. 2, in quantifying progressively the phase val-
resulting signal is of interest. The two propagation steps ues ofa, in the element plane. At a given iteration, only the
and the application of the CGH constraints can be groupedpoints whose phase is contained inside intervals centered
in the input-output algorithm kernéf symbolized by the  around the discrete phase levels are quantized. The inter-
dashed box in Fig. 1. Among the variants of the input- vals are progressively enlarged until all the phases are cov-
output algorithm, we have chosen the one given by B)s.  ered and the CGH is treated. Most of the time, this algo-
and(10) of Ref. 7. Fienup called this variant output-output rithm is not used alone, but as the final step of a more
in a later articlé® The signal orders are changed from itera- general scheme that we will refer to here as the three-step
tion k to k+ 1 according to algorithm. The complete design process starts by generat-
ing a continuous CGH where all the power is constrained to
A+ 1=A+t BAAgiving (1) be in the signal(use of phase freedom onlyThen, the
amplitude freedom is introduced, allowing the signal qual-
with ity to increase at the expense of the apparition of noise
outside the signal. This results in an optimized continuous
AAgriving k= |Agoal {2 €XHi- arg Ay) ] CGH. Then only, the soft-quantization process is applied to
_ obtain the discrete phase CGH. A recent variant was intro-
—expli-arg A I} — A, (2 duced in which the soft quantization is partially performed,

) and repeated several times, the last time leading always to a
where 3 is a free parameter, usually chosen close to one. complete quantizatiolf: This variant introduces new pa-
The input-output family is specially designed to give high ameters to adjust the convergence of the IFTA.
efficiency and improved convergence, speedwise. The tWo A fourth algorithm of interest is the over-compensation
othe_r a_Igorlthms of the _famll_y are the input-output and the algorithm proposed by Pronguéor continuous beam-
hybrid input-output, which will be mentioned in Sec. 5. gpjitting element2? Although originally introduced as a fi-

The two previous algorithms are known to give poor | step to optimize further results obtained by the simplex
performance when the CGH is constrained to discrete phasegjownhill method, over-compensation can be used alone
levels. They have a tendency to converge to the nearest, ;v good result€® The amplitudesa,, in the signal win-

local optimum, failing to find the desired global optimum. o .
To overcome this failure, many improvements have been dow of the output plane are modified 8., according to

introduced. Studies have been carried out on the role of

design freedoms in the performance of the CBRiIf the (AL
desired light distribution is only constrained in a limited [A,, |=|A——, ©)
region of space, the value of the complex amplitutle |A
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where (|A;]) is the average of théA;|. Thus, the low
power orders are set to higher values and the high power
orders are attenuated. This technique requires taking care of
the conservation of the power, by re-normalizing the total
power at every iteration. Also, one has to avoid the cases
where the denominator tends toward zero and implies di-
vergence of the corresponding valug Af . ;| in Eq. (3). It

has to be noted that the amplitudes in E8). can be re-
placed by intensities, without changing much the conver-
gence properties of the algorithihThis algorithm is re-
stricted to binary signal distributions, but can be easily
extended to general distributions, by changing &).to

|AgoaJ
| A

A=A (4)

Fig. 3 The signal window W (in gray) defines the area of the output

Quercompensatin was alsa proased SimUlaneausly by e a vt fame i andaro v
Farrf! and has been rediscovered recently by ¥iu. Signal’area WAW, (dashed), 0

Another variation of the IFTA worth of interest was pro-
posed by Arriza.1? The author originally introduced it for
para-geometrical and continuous solutions, i.e., continuous
profiles that are close to solutions designed by means of
geometrical optics and whose phase can be unwrapped
However, we have found it interesting to include it in our
tests, even leh dlscr'ete phase !evels, and rand_om start3 Test Pattern and Performance Criteria
phase distributions. It is characterized by the possibility to
reduce the desired energy within the signal, i.e., to use theThe study of the various algorithms has been realized for a
scale freedom. Whenever the uniformity is not improving Very simple situation, the shaping of a uniform wave into a
enough during an iteration, the efficiency goal is slightly square light distribution of uniform intensity. This corre-
decreased, allowing the uniformity error to be lowered. The sponds to a pattern &4, 15X 15 orders. We have re-
algorithm stops when a given uniformity goal is reached, or duced the study to a small CGH composed of only 128
in the case of stagnation. We have chosen in our test to stopx128 points per unit cell. The start phase of the algorithms
when a uniformity error of 0.5% was reached. was random, but the same for every computation to allow a

Lastly, we studied another recent algorithm proposed by relevant comparison. We had the option to impose a frame
Johansson for continuous profile CGH, called of zeros around the square pattern. In this case, the signal
up-scaling?®?3This algorithm is based on a concept similar window W contained a sub-windoW,, as show in Fig. 3.
to over-compensation. Two real-valued thresholds are de-The results we present here were obtained without zero

convergence. Over-compensation was not tuned, but we re-
tained the configurations of best efficiency and best
uniformity.

fined in the signal space, a lowA,, and a highe’\, ., frame, but we tackle the topic in Sec. 5. Since efficiency is
around the desired real signal vaig,,. The signal orders ~ an important requirement of beam-shaping tasks, the ele-
are changed according to ment was a kinoform, i.e., a phase-only element. The task

was to design such an element with continuous, eight-level,
A it [ALl<An and binary .profiles._AIthOl_Jgh we chose this problem wi@h
max K min beam shaping in mind, this also corresponds to a classical
|Aci1/=1 Amin if |Al=Amax (5) beam splitting situation, where the incoming light is di-
vided into 225 spots of equal intensity, located on &15
grid of points. Consequently, this study is also valid for
beam splitting applications.
The noise orders are not modified in the original algorithm. Different criteria are usua”y encountered in the litera-
IFTA as described here does not seem to be tunable,ture for measuring the performance of illumination designs.
with the exceptions of the variations proposed by Amizo At a given iterationk, the generated complex amplitude is
and Fienup. However, the designer usually utilizes a tech- composed of pixels that we denote by the injlekor the
nique called over-tensing, which can bring some flexibility sake of simplicity, we omit the iteration number and note
to error-reduction and its derivatives. This technique eX- the complex amplitudd\; . The most interesting for beam
ploits the scale factor freedom mentioned earlier. Instead of shaping is often the efficiency, the ratio
replacing the signal amplitudd, by Ay, to generate

2Ag0a—|A| otherwise

Ay 1, the signal orders are replaced # ., Whereyis a i cww, IA,-IZ
scalar. Ify is superior to one, the IFTA is said to be over- 5= —02 (6)
tensed, and if inferior to one, under-tensed. We have used 3|Al

this technique in order to make the error-reduction, the up- ' ' _ . ' _
scaling, and the three-step algorithms adjustable. For theof light in the signal window\\W, to the total light in the
input-output, we have used th@ parameter to tune the output space. The intensity present in the zero fralfe
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leads to a parasitic noise that cannot be accounted in therithms, such as downhill simplékor direct binary search

efficiency and is measured by the zero noise (DBS).?” However, in all these cases, the IFTA step influ-
ences strongly the final results, and the conclusions of this

S cw | Al? study are still relevant. On the other hand, combining dif-

= —OJ_ ) ferent families of algorithms requires more experience from
Si|Al2 the engineer. Combinations limited to IFTA are thus more

interesting from an engineering point of view.
For beam-splitting elements, which are often designed to
generate equally intense orders, the uniformity of the set of

. ) X ) ) 4 Results of the Various Algorithms
orders is often measured by its min-to-max uniformity error

We now tackle the quantitative results obtained for the de-
! e i sign prqblem described in _S_ec. 3 yvith the algorithms pre-
U=s —, (8) sented in Sec. 2. The efficiency is plotted versus the
masct | min uniformity errorU for the resulting optimized solution. For
) . each algorithm, the different points correspond to different
wherel;=[A;[* andl y,=min(;) andl na=max(;) are the  values of the tuning parameter, most often the over-tensing
intensities of the weakest and the strongest orders of dif- factor y. The figures illustrate the overall performances of
fractions respectively. This error measure is also commonly the algorithms and their flexibility. In such a plot, the data
used in general illumination design. Another measure of the Corresponding to the best results are located in the top-|ef[
uniformity is the normalized standard deviation of the in- ¢orner.
tensity of the diffraction orders in the signal With respect to the conditions of computation, two
points have to be stated. First, as previously mentioned,
[Zj cww, (1]~ I mean every optimization process started from the same random
o= S I 9 configuration. Second, we ran the same number of itera-
JeW\Wo' | tions (1200 for each algorithm. This number, quite large
for IFTA, was chosen to ensure that every algorithm would
wherel meanis the mean of the signal intensities W, . reach a stable state. An exception was made when stagna-
Additionally, in the literature, one can find other criteria tion was encountered, and the algorithm was exited to
such as the signal-to-noise rafeNR) or the mean squared  avoid useless computations. For the three-step algorithm,

error E. However, they are mostly useful in design of CGH we divided the total number of iterations equally between
for image generation producing light distributions with sev- the three steps.

eral levels of intensity. We will thus not use them in our
study. For beam shaping elements generating a binary in- .
tensity pattern such as the ones we are interested in, we*-1 ~Continuous Phase
prefer the efficiency, uniformity error, and the zero noise. The resulting efficiency and uniformity error for a continu-
In general, a merit function can be built up from the ous phase CGH are presented in Fig. 4. As seen, most of
previous formulas for any specific design task. When com- the algorithms perform well. It is noticeable that since soft-
pared to direct optimization technigues, such as simulatedquantization is not used, the second and third stages of the
annealing® or direct binary searcf, it is noticeable that  three-step algorithm are actually equivalent to error-
IFTA cannot use the merit function to accept or reject a reduction. However, the presence of the first phase-
change in the optical element, and consequently cannot usesynthesis stage improves significantly the performance of
it to reliably control the convergence. The merit function is the algorithm. This emphasizes the role of choosing or
mostly a measure of the evolution of the IFTA process. building a good start distribution for IFTA, which the first
Attempts have however been made to influence the algo-stage realizes.
rithm based on the merit function when it is composed of A further look at the curves shows that three algorithms
antagonistic criteria, such as efficiency and uniformity er- are performing very well. Over-compensation, the three-
ror, or efficiency and SNRY328|n this situation, one can  step algorithm, and the variation by Arfizaare reaching
approximately relate the value of the merit function to the high efficiency with low uniformity error. Concerning the
value of the over-tensing factoy. These algorithms are last one, it should be noted that the points are located
however difficult to master and reliable only for some spe- aroundU =0.5%. This is due to our design choice, which
cific merit functions. Additionally and more simply, it is was, as stated in Sec. 2, to target 0.5% for this criterion.
possible to monitor the merit function during the optimiza- Up-scaling, three-step method, and error-reduction appear
tion process and to retain the configuration of the best it- to be very tunable, with the presence of a clear trade-off
eration, which can be different from the ultimate iteration. between efficiency and uniformity error.
Of course, this strategy is only applicable with algorithms
where the complete set of constraints is satisfied at every .
iteration, which is not the case for the three-step algorithm 4-2  Eight-Level Phase
because of the soft-quantization nature. Figure 5 presents the plots of efficiency versus uniformity
If the result of the IFTA is not satisfying, one can im- error for the design of an eight-level element. The differ-
prove the process by chaining various algorithms. One canence with the continuous case is obvious for most algo-
associate several IFTA such as in the three-step m&thod rithms. Both the algorithms aimed at continuous phase de-
or the recent variation of the over-compensation by Piu.  sign (up-scaling and Arrizo's varian} and the first-
One can also associate IFTA to another family of algo- generation algorithmsgoutput-output and error-reductipn

2] 1/2
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continuous phase design
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Fig. 4 Comparison of efficiency and uniformity error of a continuous profile design with various algo-
rithms; (b) is a magnification of (a).

fail in optimizing the uniformity error. We may, however, uniformity by sacrificing the other criterion. Additionally,
note that all the algorithms still perform well from the ef- up-scaling now seems to be the second-best algorithm for
ficiency point of view. overall performance.

Two algorithms are now clearly apart: over- An interesting property can be observed in Fig. 6 and to
compensation and three-step with soft-quantization. We a lesser extent also in Fig. 5. The algorithms using the scale
will not draw conclusions from this curve about their rela- freedom exhibit curves with chaotic behaviors, especially
tive performance. The difference is not significant, and we when compared to the regularity seen for continuous pro-
have observed opposite results for a different prof®@m. files. This illustrates the fact that modifying the scale factor
However, we observe that the three-step algorithm allows (over-tensing and under-tensing not a completely reli-
us to balance uniformity versus efficiency, which can be an able parameter to tune the IFTA, as previously mentioned
interesting feature for the optical designer. The conclusion in Sec. 3.
is that they both out-perform the other algorithms, and _ i
achieve similar results. 5 Discussion

In this section, we discuss in more details the results for
each algorithm, and try to take into account the ease of use
With drastically reduced design freedoms, the convergenceand flexibility in our appreciation. Most of the conclusions
of the optimization process is no longer straightforward. found here are not new and have already been stated in the
The multiplicity of local optima usually traps the process, literature. We merely want to reassert them with respect to
and most of the algorithms stagnate after a few iterations. our test.

This is obvious from Fig. 6, where the gap between over- .

compensation and the other algorithms has increased.>-1 Geéneral Observations

Among the not-optimal algorithms, the three-step one still From the previous curves, two general conclusions can be
presents the option to allow either good efficiency or good drawn. First, the role of the start phase is important to reach

4.3 Binary Phase

8-level phase design

100 90
B o s SURRELNE | A S T L
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20 |~ Wyrowski 85 H
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Uniformitv error (%) Uniformitv error (%)

(a) (b)

Fig. 5 Comparison of efficiency and uniformity error of an 8-level profile design with various algo-
rithms; (b) is a magnification of (a).
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binary phase design
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Fig. 6 Comparison of efficiency and uniformity error of a binary profile design with various algorithms;
(b) is a magnification of (a).

a good solution. It is responsible for the difference between 5.3 Over-Compensation

error-reduction and the three-step algorithm for continuou_s Over-compensation has constantly shown a remarkable per-

phase. In practice, the designer will benefit from the possi- ¢, mance in this test. It is noticeable, however, that this
bility to launch several optimization processes with differ- io-pnique has not often been used in practice. We attribute

ent start phases. He will then compare the results andpis mainly to lack of knowledge, due to the low number of
choose the best configuration. Building a good start phase

i< al ility. P rical soluti >“articles where it was described. Nevertheless, over-
IS also a possibiiity. Fara-geometrical Solulions, as Seen INgcompensation exhibits some drawbacks that are not out-
Arrizon’s original article, usually result in a higher

fici 1228 lined by the test we have performed here.
ethciency. - First, there are design situations where over-
Second, the use of the scale factor to tune the eff'c'ency'compensation does not achieve high performance. Indeed,

uniformity trade-off is very effective. For phase elements, gq (3) giverges when the value of the denominator is close
since the amount of energy is conserved, this scale factor is;y ;g Consequently, over-compensation is often not effi-

easily integrated in the algorithm by the over-tensing tech- giont o imposing zero or low-intensity values inside the
nique. In general, over-tensing implies increasing effi- giqna) window. Thus, over-compensation is well suited for
ciency, while under-tensing means increasing uniformity. flat-top beam shaping and beam splitting, but not for image
The three algorithms that use this technique, namely eITor- generation. Also, it is not optimal for sha[ping a beam to a
reduction, three-step technique, and up-scaling, are the alisipytion with areas of low energy such as a Gaussian
gorithms presenting the highest variability of efficiency and profile.

uniformity in our test. Additionally, an advantage of the Furthermore, over-compensation is not good at imposing
over-tensing is that it allows better convergence for multi- \indows of zero energy, such as the one illustrated in Fig.
level structures. 3. The zero noisé\ is usually stronger for this algorithm,

especially when compared to the three-step algorithm.

5.2 Input-Output Family
As we can see from the simulations, choosing the param-

eter B in Eq. (1) to tune the performance of the output- 95.5;

output algorithm is not effective. Most of the results are e %L;)‘St“_tggt“p‘ﬁ;"

similar, with high efficiency and poor uniformity, with val- 95 \ —a— hybrid input—outputO

ues of B ranging from 0.5 up to 500. Also, the results are _ 945

similar for the three types of DOE, which suggests that the £

algorithm is not able to take advantage of the additional z 94

design freedoms of the continuous profile. 5
As mentioned in Sec. 2, we chose the variation called 293'5

output-output. The reason of this choice is illustrated in U ggl ey

Fig. 7, where we compare the performance of the three

variations. While the overall behavior is the same, the 92.5;

output-output exhibits a slightly better efficiency in the ‘ ‘ . ® ‘

three tests. 9%5 40 45 50 55 60
Input-output algorithms are usually good for speed of Uniformitv error (%)

.convergenc.e, and were fan appreuable Improvement WhenFig. 7 Comparison of the results of the three variants of Fienup’s
mtroduped in the garly eighties. However., they should not aigorithm, namely input-output, output-output, and hybrid output-
be seriously considered anymore for design tasks. output.
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Lastly, over-compensation is insensitive to the use of phase is quantized. We advise the optical engineer to avoid
over-tensing, and we still have to see a parameter that canoutdated algorithms and to concentrate on these three vari-
allow easy tuning. This restricts the freedom of the optical ants in order to have fast and effective design processes
engineer. Since with respect to uniformity the final iteration when aiming at beam shaping and beam splitting.
is not guaranteed to be the best iteration, we recommend Additionally, we have stressed the need to take some
the use of a merit function during the optimization process, care in the choice of the start point of the IFTA, and have

in order to retain the best iteration of all.

shown the possibility to adjust the variants, which is an

important parameter for the designer.

5.4 IFTA Variation by Arrizon

The conclusion drawn from the test is that this algorithm is
only to be used for continuous phase, which is the field it
was proposed for. Nevertheless, our test shows that in ad
dition to the para-geometric start phase of the original ar-
ticle, it works also with a random start phase. We think that
it is worth implementing this algorithm, since it gives a

simple control to the designer on the evolution of the opti-
mization process. The central idea of the algorithm is that

It must be noted that the problem we have used exhib-
ited a low degree of design freedom, due to the small num-
ber of pixels used. In practice, the designer should increase
the number of pixels for such a design to obtain better
“results. We chose this situation as it outlines the capability
of the algorithms to perform well with drastic design con-
straints.
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