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Abstract. We present a comparison of some of the most used iterative
Fourier transform algorithms (IFTA) for the design of continuous and
multilevel diffractive optical elements (DOE). Our aim is to provide optical
engineers with advice for choosing the most suited algorithm with re-
spect to the task. We tackle mainly the beam-shaping and the beam-
splitting problems, where the desired light distributions are almost binary.
We compare four recent algorithms, together with the historical error-
reduction and input-output methods. We conclude that three of these
algorithms are interesting for continuous-phase kinoforms, and two,
namely the three-step method proposed by Wyrowski and the over-
compensation of Prongué, still perform well with multilevel- and binary-
phase DOE. © 2004 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1804543]
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1 Introduction

Since the invention of digital holography, many algorithm
have been proposed to solve the problem of designing
element to transform a given light distribution into anoth
desired light distribution.1 An interesting candidate for thi
challenge is the iterative Fourier transform algorith
~IFTA!. This term was introduced to characterize a fam
of algorithms that bounce back and forth between t
spaces related by a Fourier transform.2–4The first IFTA, the
error-reduction algorithm, was proposed for digital holo
raphy in the early seventies.5 Gerchberg and Saxto
adapted it for phase retrieval problems,6 and the error-
reduction algorithm is consequently also referred to as
Gerchberg-Saxton algorithm in the literature. The err
reduction algorithm was extensively studied by Fienup w
introduced the input-output class of algorithms to speed
convergence.7,8 However, both the error-reduction and th
input-output algorithms were not suited for elements w
discrete phase values~binary or multilevel DOE!. For the
design of phase-only computer-generated hologra
~CGH! such as the kinoform, various improvements
IFTA were proposed in the last 20 years.3,4,9–15As a con-
sequence, the optical engineer facing a design problem
has the delicate task of choosing the most suited varian
the IFTA. Algorithms with more parameters sometimes
low an improved convergence speedwise, but mostly al
avoiding being trapped into local minima. However, th
wider choice of parameters is also synonymous to ad
complexity for the optical engineer. The designer nee
more experience to master convergence and to pick
best-suited algorithm instead of the most primitive on
such as input-output and error-reduction.16 Consequently, it
is important to identify which added complexity brings
Opt. Eng. 43(11) 2549–2556 (November 2004) 0091-3286/2004/$15.00
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real improvement. We aim at giving some advice for th
choice, based on our experience with several of the va
tions of the IFTA.

Among the several uses of the CGH, three are of p
ticular interest in digital holography: beam shaping, be
splitting, and pattern or image generation. Although th
are three aspects of the same design problem, they diffe
the merit functions used to characterize their performan
For example, image generation will not in general requ
the highest possible light throughput from the optical e
ment, while beam shaping tasks will. Similarly, beam sp
ting is usually used to divide a light beam into seve
sub-beams of equal power while image generation requ
pixels of different intensity levels. This article aims at com
paring various algorithms for beam shaping. Beam shap
is most commonly used in high-energy laser applicatio
such as laser branding or photolithograph
illumination.17,18 These applications often require minim
energy losses, implying the use of phase-only eleme
such as lenses and kinoforms.

In Sec. 2, we describe the various algorithms we ha
tested. The criteria we use to quantify their relative perf
mance and the beam shaping design problem we utilize
tackled in Sec. 3. Then, in Sec. 4, we present the res
comparing the raw performance of the algorithms. Fina
Sec. 5 furthers the discussion for each algorithm, consid
ing ease of use, speed of convergence, and stagnation

2 Description of the Algorithms

The first IFTA variant, the error-reduction algorithm,
well known and will be used here as a reference. Its pr
ciple is explained in Fig. 1. At iterationk, the complex
amplitude of the light field in the signal planeAk is back-
propagated to the CGH plane, leading to the complex a
plitude ak . The CGH constraints are then applied to pr
2549© 2004 Society of Photo-Optical Instrumentation Engineers
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duce a new amplitudeak8 . CGH constraints depend on th
fabrication technology. In general, for kinoforms, th
modulus of the amplitudeuak8u is identified to the modulus
of the incident illumination. Additionally, for multileve
and binary elements, the phase ofak has to be quantized
The new amplitudeak8 is propagated to the signal plan
leading to a complex amplitudeAk8 . The goal to achieve
beingAgoal, the signal plane constraints are now enforc
i.e., uAk8u is replaced byAgoal to produceAk11 , which is the
start of a new iteration. Fienup has shown that, for conti
ous phase elements, this algorithm succeeded in redu
the errors at every iteration in their respective plane, he
the name error-reduction.7

If the CGH constraints are enforced strictly, the error
the CGH space is not relevant, and only the error in
resulting signal is of interest. The two propagation ste
and the application of the CGH constraints can be grou
in the input-output algorithm kernel,7,8 symbolized by the
dashed box in Fig. 1. Among the variants of the inp
output algorithm, we have chosen the one given by Eqs.~9!
and~10! of Ref. 7. Fienup called this variant output-outp
in a later article.8 The signal orders are changed from iter
tion k to k11 according to

Ak115Ak81bDAdriving,k ~1!

with

DAdriving,k5uAgoalu$2 exp@ i•arg~Ak8!#

2exp@ i•arg~Ak!#%2Ak , ~2!

whereb is a free parameter, usually chosen close to o
The input-output family is specially designed to give hi
efficiency and improved convergence, speedwise. The
other algorithms of the family are the input-output and t
hybrid input-output, which will be mentioned in Sec. 5.

The two previous algorithms are known to give po
performance when the CGH is constrained to discrete ph
levels. They have a tendency to converge to the nea
local optimum, failing to find the desired global optimum
To overcome this failure, many improvements have be
introduced. Studies have been carried out on the role
design freedoms in the performance of the CGH.9,19 If the
desired light distribution is only constrained in a limite
region of space, the value of the complex amplitudeAk

Fig. 1 The principle of the iterative Fourier transform algorithm. The
dashed box denotes the input-output kernel.
2550 Optical Engineering, Vol. 43 No. 11, November 2004
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outside this area can be arbitrarily chosen by the desig
This possibility is referred to as amplitude freedom. F
thermore, in most applications, the phase of the gener
light distribution can also be chosen arbitrarily by the d
signer. This second freedom is called phase freedom.
nally, in some applications where the fidelity of the gen
ated signal matters more than the level of light throughp
a scale factor can be utilized by the designer to adjust
power repartition between the signal and noise areas. T
scale factor freedom is the basis of the tuning of the al
rithms by a technique called over-tensing, which will b
covered at the end of this section.

The three freedoms presented above are not specifi
discrete phase design, but happen to be more necessa
this case. A most noticeable additional improvement s
cific to discrete phase design is the soft-quantization c
cept proposed by Wyrowski.4 Soft-quantization consists, a
shown in Fig. 2, in quantifying progressively the phase v
ues ofak in the element plane. At a given iteration, only th
points whose phase is contained inside intervals cente
around the discrete phase levels are quantized. The in
vals are progressively enlarged until all the phases are c
ered and the CGH is treated. Most of the time, this alg
rithm is not used alone, but as the final step of a m
general scheme that we will refer to here as the three-
algorithm. The complete design process starts by gene
ing a continuous CGH where all the power is constrained
be in the signal~use of phase freedom only!. Then, the
amplitude freedom is introduced, allowing the signal qu
ity to increase at the expense of the apparition of no
outside the signal. This results in an optimized continuo
CGH. Then only, the soft-quantization process is applied
obtain the discrete phase CGH. A recent variant was in
duced in which the soft quantization is partially performe
and repeated several times, the last time leading always
complete quantization.14 This variant introduces new pa
rameters to adjust the convergence of the IFTA.

A fourth algorithm of interest is the over-compensati
algorithm proposed by Prongue´ for continuous beam-
splitting elements.10 Although originally introduced as a fi
nal step to optimize further results obtained by the simp
downhill method, over-compensation can be used al
with good results.20 The amplitudesAk8 in the signal win-
dow of the output plane are modified forAk11 according to

uAk11u5uAku
^uAk8u&

uAk8u
, ~3!

Fig. 2 Soft quantization on four levels of phase in the complex
plane. At the beginning, the phases are spread over the entire an-
gular interval of 2p (a). They are progressively projected onto the
four phase levels (b) until the quantization process is ended (c).
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where ^uAk8u& is the average of theuAk8u. Thus, the low
power orders are set to higher values and the high po
orders are attenuated. This technique requires taking ca
the conservation of the power, by re-normalizing the to
power at every iteration. Also, one has to avoid the ca
where the denominator tends toward zero and implies
vergence of the corresponding value ofuAk11u in Eq. ~3!. It
has to be noted that the amplitudes in Eq.~3! can be re-
placed by intensities, without changing much the conv
gence properties of the algorithm.20 This algorithm is re-
stricted to binary signal distributions, but can be eas
extended to general distributions, by changing Eq.~3! to

uAk11u5uAku
uAgoalu

uAk8u
. ~4!

Over-compensation was also proposed simultaneously
Farn21 and has been rediscovered recently by Liu.15

Another variation of the IFTA worth of interest was pro
posed by Arrizo´n.12 The author originally introduced it fo
para-geometrical and continuous solutions, i.e., continu
profiles that are close to solutions designed by mean
geometrical optics and whose phase can be unwrap
However, we have found it interesting to include it in o
tests, even with discrete phase levels, and random
phase distributions. It is characterized by the possibility
reduce the desired energy within the signal, i.e., to use
scale freedom. Whenever the uniformity is not improvi
enough during an iteration, the efficiency goal is sligh
decreased, allowing the uniformity error to be lowered. T
algorithm stops when a given uniformity goal is reached
in the case of stagnation. We have chosen in our test to
when a uniformity error of 0.5% was reached.

Lastly, we studied another recent algorithm proposed
Johansson for continuous profile CGH, call
up-scaling.22,23This algorithm is based on a concept simil
to over-compensation. Two real-valued thresholds are
fined in the signal space, a lowerAmin and a higherAmax,
around the desired real signal valueAgoal. The signal orders
are changed according to

uAk11u5H Amax if uAk8u<Amin

Amin if uAk8u>Amax

2Agoal2uAk8u otherwise

. ~5!

The noise orders are not modified in the original algorith
IFTA as described here does not seem to be tuna

with the exceptions of the variations proposed by Arriz´n
and Fienup. However, the designer usually utilizes a te
nique called over-tensing, which can bring some flexibil
to error-reduction and its derivatives. This technique
ploits the scale factor freedom mentioned earlier. Instea
replacing the signal amplitudeAk8 by Agoal to generate
Ak11 , the signal orders are replaced bygAgoal whereg is a
scalar. Ifg is superior to one, the IFTA is said to be ove
tensed, and if inferior to one, under-tensed. We have u
this technique in order to make the error-reduction, the
scaling, and the three-step algorithms adjustable. For
input-output, we have used theb parameter to tune the
r
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y

f
.
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p
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,

f

convergence. Over-compensation was not tuned, but we
tained the configurations of best efficiency and b
uniformity.

3 Test Pattern and Performance Criteria

The study of the various algorithms has been realized fo
very simple situation, the shaping of a uniform wave into
square light distribution of uniform intensity. This corre
sponds to a pattern ofNorders515315 orders. We have re
duced the study to a small CGH composed of only 1
3128 points per unit cell. The start phase of the algorith
was random, but the same for every computation to allo
relevant comparison. We had the option to impose a fra
of zeros around the square pattern. In this case, the si
window W contained a sub-windowW0 , as show in Fig. 3.
The results we present here were obtained without z
frame, but we tackle the topic in Sec. 5. Since efficiency
an important requirement of beam-shaping tasks, the
ment was a kinoform, i.e., a phase-only element. The t
was to design such an element with continuous, eight-le
and binary profiles. Although we chose this problem w
beam shaping in mind, this also corresponds to a class
beam splitting situation, where the incoming light is d
vided into 225 spots of equal intensity, located on a 15315
grid of points. Consequently, this study is also valid f
beam splitting applications.

Different criteria are usually encountered in the liter
ture for measuring the performance of illumination desig
At a given iterationk, the generated complex amplitude
composed of pixels that we denote by the indexj. For the
sake of simplicity, we omit the iteration number and no
the complex amplitudeAj . The most interesting for beam
shaping is often the efficiency, the ratio

h5
( j PW\W0

uAj u2

( j uAj u2
~6!

of light in the signal windowW\W0 to the total light in the
output space. The intensity present in the zero frameW0

Fig. 3 The signal window W (in gray) defines the area of the output
space where the constraints are applied. For beam-shaping pur-
poses, it is often decomposed in a zero frame W0 and a non-zero
signal area W\W0 (dashed).
2551Optical Engineering, Vol. 43 No. 11, November 2004
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leads to a parasitic noise that cannot be accounted in
efficiency and is measured by the zero noise

Z5
( j PW0

uAj u2

( j uAj u2
. ~7!

For beam-splitting elements, which are often designed
generate equally intense orders, the uniformity of the se
orders is often measured by its min-to-max uniformity er

U5
I max2I min

I max1I min
, ~8!

whereI j5uAj u2 andI min5min(I j) andI max5max(I j) are the
intensities of the weakest and the strongest orders of
fractions respectively. This error measure is also commo
used in general illumination design. Another measure of
uniformity is the normalized standard deviation of the
tensity of the diffraction orders in the signal

s5
@( j PW\W0

~ I j2I mean!
2#1/2

( j PW\W0
I j

~9!

whereI meanis the mean of the signal intensities inW\W0 .
Additionally, in the literature, one can find other criter

such as the signal-to-noise ratio~SNR! or the mean square
errorE. However, they are mostly useful in design of CG
for image generation producing light distributions with se
eral levels of intensity. We will thus not use them in o
study. For beam shaping elements generating a binary
tensity pattern such as the ones we are interested in
prefer the efficiency, uniformity error, and the zero nois

In general, a merit function can be built up from th
previous formulas for any specific design task. When co
pared to direct optimization techniques, such as simula
annealing24 or direct binary search,25 it is noticeable that
IFTA cannot use the merit function to accept or rejec
change in the optical element, and consequently cannot
it to reliably control the convergence. The merit function
mostly a measure of the evolution of the IFTA proce
Attempts have however been made to influence the a
rithm based on the merit function when it is composed
antagonistic criteria, such as efficiency and uniformity
ror, or efficiency and SNR.11,13,26In this situation, one can
approximately relate the value of the merit function to t
value of the over-tensing factorg. These algorithms are
however difficult to master and reliable only for some sp
cific merit functions. Additionally and more simply, it i
possible to monitor the merit function during the optimiz
tion process and to retain the configuration of the bes
eration, which can be different from the ultimate iteratio
Of course, this strategy is only applicable with algorithm
where the complete set of constraints is satisfied at ev
iteration, which is not the case for the three-step algorit
because of the soft-quantization nature.

If the result of the IFTA is not satisfying, one can im
prove the process by chaining various algorithms. One
associate several IFTA such as in the three-step meth4,9

or the recent variation of the over-compensation by Liu15

One can also associate IFTA to another family of alg
2552 Optical Engineering, Vol. 43 No. 11, November 2004
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rithms, such as downhill simplex10 or direct binary search
~DBS!.27 However, in all these cases, the IFTA step infl
ences strongly the final results, and the conclusions of
study are still relevant. On the other hand, combining d
ferent families of algorithms requires more experience fr
the engineer. Combinations limited to IFTA are thus mo
interesting from an engineering point of view.

4 Results of the Various Algorithms

We now tackle the quantitative results obtained for the
sign problem described in Sec. 3 with the algorithms p
sented in Sec. 2. The efficiencyh is plotted versus the
uniformity errorU for the resulting optimized solution. Fo
each algorithm, the different points correspond to differe
values of the tuning parameter, most often the over-tens
factor g. The figures illustrate the overall performances
the algorithms and their flexibility. In such a plot, the da
corresponding to the best results are located in the top
corner.

With respect to the conditions of computation, tw
points have to be stated. First, as previously mention
every optimization process started from the same rand
configuration. Second, we ran the same number of ite
tions ~1200! for each algorithm. This number, quite larg
for IFTA, was chosen to ensure that every algorithm wou
reach a stable state. An exception was made when sta
tion was encountered, and the algorithm was exited
avoid useless computations. For the three-step algorit
we divided the total number of iterations equally betwe
the three steps.

4.1 Continuous Phase

The resulting efficiency and uniformity error for a contin
ous phase CGH are presented in Fig. 4. As seen, mos
the algorithms perform well. It is noticeable that since so
quantization is not used, the second and third stages o
three-step algorithm are actually equivalent to err
reduction. However, the presence of the first pha
synthesis stage improves significantly the performance
the algorithm. This emphasizes the role of choosing
building a good start distribution for IFTA, which the firs
stage realizes.

A further look at the curves shows that three algorith
are performing very well. Over-compensation, the thre
step algorithm, and the variation by Arrizo´n are reaching
high efficiency with low uniformity error. Concerning th
last one, it should be noted that the points are loca
aroundU50.5%. This is due to our design choice, whic
was, as stated in Sec. 2, to target 0.5% for this criteri
Up-scaling, three-step method, and error-reduction app
to be very tunable, with the presence of a clear trade
between efficiency and uniformity error.

4.2 Eight-Level Phase

Figure 5 presents the plots of efficiency versus uniform
error for the design of an eight-level element. The diffe
ence with the continuous case is obvious for most al
rithms. Both the algorithms aimed at continuous phase
sign ~up-scaling and Arrizo´n’s variant! and the first-
generation algorithms~output-output and error-reduction!
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Fig. 4 Comparison of efficiency and uniformity error of a continuous profile design with various algo-
rithms; (b) is a magnification of (a).
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fail in optimizing the uniformity error. We may, howeve
note that all the algorithms still perform well from the e
ficiency point of view.

Two algorithms are now clearly apart: ove
compensation and three-step with soft-quantization.
will not draw conclusions from this curve about their rel
tive performance. The difference is not significant, and
have observed opposite results for a different problem28

However, we observe that the three-step algorithm allo
us to balance uniformity versus efficiency, which can be
interesting feature for the optical designer. The conclus
is that they both out-perform the other algorithms, a
achieve similar results.

4.3 Binary Phase

With drastically reduced design freedoms, the converge
of the optimization process is no longer straightforwa
The multiplicity of local optima usually traps the proces
and most of the algorithms stagnate after a few iteratio
This is obvious from Fig. 6, where the gap between ov
compensation and the other algorithms has increa
Among the not-optimal algorithms, the three-step one s
presents the option to allow either good efficiency or go
.

.

uniformity by sacrificing the other criterion. Additionally
up-scaling now seems to be the second-best algorithm
overall performance.

An interesting property can be observed in Fig. 6 and
a lesser extent also in Fig. 5. The algorithms using the s
freedom exhibit curves with chaotic behaviors, especia
when compared to the regularity seen for continuous p
files. This illustrates the fact that modifying the scale fac
~over-tensing and under-tensing! is not a completely reli-
able parameter to tune the IFTA, as previously mention
in Sec. 3.

5 Discussion

In this section, we discuss in more details the results
each algorithm, and try to take into account the ease of
and flexibility in our appreciation. Most of the conclusion
found here are not new and have already been stated in
literature. We merely want to reassert them with respec
our test.

5.1 General Observations

From the previous curves, two general conclusions can
drawn. First, the role of the start phase is important to re
Fig. 5 Comparison of efficiency and uniformity error of an 8-level profile design with various algo-
rithms; (b) is a magnification of (a).
2553Optical Engineering, Vol. 43 No. 11, November 2004
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2554 Optical Engi
Fig. 6 Comparison of efficiency and uniformity error of a binary profile design with various algorithms;
(b) is a magnification of (a).
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a good solution. It is responsible for the difference betwe
error-reduction and the three-step algorithm for continu
phase. In practice, the designer will benefit from the po
bility to launch several optimization processes with diffe
ent start phases. He will then compare the results
choose the best configuration. Building a good start ph
is also a possibility. Para-geometrical solutions, as see
Arrizón’s original article, usually result in a highe
efficiency.12,28

Second, the use of the scale factor to tune the efficien
uniformity trade-off is very effective. For phase elemen
since the amount of energy is conserved, this scale fact
easily integrated in the algorithm by the over-tensing te
nique. In general, over-tensing implies increasing e
ciency, while under-tensing means increasing uniform
The three algorithms that use this technique, namely er
reduction, three-step technique, and up-scaling, are the
gorithms presenting the highest variability of efficiency a
uniformity in our test. Additionally, an advantage of th
over-tensing is that it allows better convergence for mu
level structures.

5.2 Input-Output Family

As we can see from the simulations, choosing the par
eter b in Eq. ~1! to tune the performance of the outpu
output algorithm is not effective. Most of the results a
similar, with high efficiency and poor uniformity, with val
ues ofb ranging from 0.5 up to 500. Also, the results a
similar for the three types of DOE, which suggests that
algorithm is not able to take advantage of the additio
design freedoms of the continuous profile.

As mentioned in Sec. 2, we chose the variation cal
output-output. The reason of this choice is illustrated
Fig. 7, where we compare the performance of the th
variations. While the overall behavior is the same,
output-output exhibits a slightly better efficiency in th
three tests.

Input-output algorithms are usually good for speed
convergence, and were an appreciable improvement w
introduced in the early eighties. However, they should
be seriously considered anymore for design tasks.
neering, Vol. 43 No. 11, November 2004
-

s

-
l-

-

n

5.3 Over-Compensation

Over-compensation has constantly shown a remarkable
formance in this test. It is noticeable, however, that t
technique has not often been used in practice. We attrib
this mainly to lack of knowledge, due to the low number
articles where it was described. Nevertheless, ov
compensation exhibits some drawbacks that are not
lined by the test we have performed here.

First, there are design situations where ov
compensation does not achieve high performance. Ind
Eq. ~3! diverges when the value of the denominator is clo
to zero. Consequently, over-compensation is often not e
cient at imposing zero or low-intensity values inside t
signal window. Thus, over-compensation is well suited
flat-top beam shaping and beam splitting, but not for ima
generation. Also, it is not optimal for shaping a beam to
distribution with areas of low energy such as a Gauss
profile.

Furthermore, over-compensation is not good at impos
windows of zero energy, such as the one illustrated in F
3. The zero noiseN is usually stronger for this algorithm
especially when compared to the three-step algorithm.

Fig. 7 Comparison of the results of the three variants of Fienup’s
algorithm, namely input-output, output-output, and hybrid output-
output.
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Lastly, over-compensation is insensitive to the use
over-tensing, and we still have to see a parameter that
allow easy tuning. This restricts the freedom of the opti
engineer. Since with respect to uniformity the final iterati
is not guaranteed to be the best iteration, we recomm
the use of a merit function during the optimization proce
in order to retain the best iteration of all.

5.4 IFTA Variation by Arrizón

The conclusion drawn from the test is that this algorithm
only to be used for continuous phase, which is the field
was proposed for. Nevertheless, our test shows that in
dition to the para-geometric start phase of the original
ticle, it works also with a random start phase. We think t
it is worth implementing this algorithm, since it gives
simple control to the designer on the evolution of the op
mization process. The central idea of the algorithm is t
since uniformity and efficiency are competing, and sin
over-tensing the IFTA increases efficiency at the expens
uniformity ~and vice versa!, the over-tensing is decrease
progressively until acceptable uniformity is reached. T
idea could be applied to other algorithms, at the condit
that they are affected by over-tensing.

5.5 Three-Step with Soft-Quantization

This algorithm exhibits very interesting capabilities. Wh
it is comparable to the over-compensation in performan
it can be applied for a much wider range of designs, suc
image generation, since it is not sensitive to the presenc
signal orders of low value.

On the other hand, a typical drawback of this techniq
is the presence of isolated pixels in the CGH pattern. A
plication of filters such as the median filter has been p
posed to overcome this issue.29 The over-compensation, o
the other hand, seems to be naturally immune to this de
and generally generates more symmetrical patterns.

We have mentioned in Sec. 2 the existence of a rec
variation of the soft-quantization step, proposed in the fi
of image generation. We have tested this algorithm in
beam shaping problem, and have not found it to prod
significantly better CGH. Since it introduces two supp
mentary parameters with no straightforward physical sig
fication and thus requires much more experience, we ad
optical engineers to consider the three-step algorithm w
soft-quantization as a better candidate for beam sha
and beam splitting problems. The comparison for ima
generation is the subject of Ref. 14.

Finally we would like to point out that our experience
that the three-step algorithm performs very well with r
spect to the noiseN of Eq. ~7! when a window of zerosW0
is imposed, as illustrated in Fig. 3.

6 Conclusions

We have compared various variations of the iterative F
rier transform algorithm in order to give the optical eng
neer advice for the choice of the most suited procedur
design phase-only computer generated holograms. T
algorithms have shown good performances for continu
phase elements, namely Arrizo´n’s variant, three-step with
soft-quantization, and over-compensation. The last two
also the only ones that exhibit good performances when
n

-

f

,

f

,

t

e

e

phase is quantized. We advise the optical engineer to a
outdated algorithms and to concentrate on these three
ants in order to have fast and effective design proces
when aiming at beam shaping and beam splitting.

Additionally, we have stressed the need to take so
care in the choice of the start point of the IFTA, and ha
shown the possibility to adjust the variants, which is
important parameter for the designer.

It must be noted that the problem we have used exh
ited a low degree of design freedom, due to the small nu
ber of pixels used. In practice, the designer should incre
the number of pixels for such a design to obtain bet
results. We chose this situation as it outlines the capab
of the algorithms to perform well with drastic design co
straints.
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