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Abstract

Nectins are cell adhesion molecules that are widely expressed in the brain. Nectin expression shows a dynamic
spatiotemporal regulation, playing a role in neural migratory processes during development. Nectin-1 and nectin-3 and
their heterophilic trans-interactions are important for the proper formation of synapses. In the hippocampus, nectin-1 and
nectin-3 localize at puncta adherentia junctions and may play a role in synaptic plasticity, a mechanism essential for memory
and learning. We evaluated the potential involvement of nectin-1 and nectin-3 in memory consolidation using an emotional
learning paradigm. Rats trained for contextual fear conditioning showed transient nectin-1—but not nectin-3—protein
upregulation in synapse-enriched hippocampal fractions at about 2 h posttraining. The upregulation of nectin-1 was found
exclusively in the ventral hippocampus and was apparent in the synaptoneurosomal fraction. This upregulation was
induced by contextual fear conditioning but not by exposure to context or shock alone. When an antibody against nectin-1,
R165, was infused in the ventral-hippocampus immediately after training, contextual fear memory was impaired. However,
treatment with the antibody in the dorsal hippocampus had no effect in contextual fear memory formation. Similarly,
treatment with the antibody in the ventral hippocampus did not interfere with acoustic memory formation. Further control
experiments indicated that the effects of ventral hippocampal infusion of the nectin-1 antibody in contextual fear memory
cannot be ascribed to memory non-specific effects such as changes in anxiety-like behavior or locomotor behavior.
Therefore, we conclude that nectin-1 recruitment to the perisynaptic environment in the ventral hippocampus plays an
important role in the formation of contextual fear memories. Our results suggest that these mechanisms could be involved
in the connection of emotional and contextual information processed in the amygdala and dorsal hippocampus,
respectively, thus opening new venues for the development of treatments to psychopathological alterations linked to
impaired contextualization of emotions.
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Received November 28, 2012; Accepted January 15, 2013; Published February 13, 2013

Copyright: � 2013 Fantin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant from the European Union integrated project MEMSTICK (FP7-HEALTH-F2M-2007-201600; MemStick), the Swiss
National Science Foundation (310000-120791 and 31003AB-135710; Sinergia CRSIK3-122691; and the NCCR 0The synaptic basis of mental diseases0) as well as the
intramural funding from the EPFL. C.K. is supported by Public Health Service grants from the National Institutes of Health AI-097171 and DE-022137.The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have read the journal’s policy and have the following conflicts: Claude Krummenacher acts as academic editor for PLOS ONE.
This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: carmen.sandi@epfl.ch

. These authors contributed equally to this work.

Introduction

Nectins are immunoglobulin-like adhesion molecules that

connect cells. Four different nectin types, nectin 1–4, have been

described so far [1]. In the central nervous system, these cell

adhesion molecules aggregate in formations, termed puncta

adherentia junctions, which are mechanical adhesive sites that

connect pre- and postsynaptic membranes [2].

In the hippocampus, nectin-1 has been found to be preferen-

tially localized in axons, while its main heterophilic partner,

nectin-3, has been detected in axons and dendrites in both

neuronal cultures [3] and in vivo [4]. Nectin-1 and nectin-3

knockout (KO) mice have a reduced number of puncta adherentia

junctions and display abnormalities in the mossy fiber trajectories

of the CA3 region of the hippocampus [5]. Cultured neurons from

nectin-1 KO mice showed altered dendritic spine morphology [3].

Recently, it was shown that nectin-1 regulates spine density in

hippocampal neurons through ectodomain shedding [6]. The

spatiotemporal expression of Nectin-1 is dynamic; during the

neonatal period this cell-cell adhesion molecule is localized in

brain regions associated with inter-hemispheric connections

(corpus callosum, hippocampus, anterior commissure and associ-

ated cortical structures) while during adulthood its expression is

more restricted to limbic-related structures [7]. In the neonatal

brain, nectin-1 expressing cells found in the corpus callosum and

developing cerebral cortex display a typical migratory phenotype

and nectin-1 is therefore thought to be involved in migratory

processes during neurodevelopment [7,8].

Changes in hippocampal synaptic plasticity morphology have

been implicated in a number of learning paradigms, including

spatial navigation [9,10], passive avoidance [11] and contextual

fear conditioning (CFC) [12,13,14]. CFC takes place when a

neutral context is associated with an aversive unconditioned

stimulus. The unconditioned stimulus (e.g., a footshock) by itself

elicits a fear response, comprising both autonomic and behavioral
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(e.g., freezing) responses, and after conditioning, the context

becomes an aversive stimulus that predicts threat and induces a

conditioned state of fear and associated responses. CFC induces a

robust form of emotional memory that is dependent on intact

hippocampal and amygdala function. Importantly, while the

amygdala is also involved in unimodal conditioning, such as

auditory cue-shock associations, the role of the hippocampus has

been associated with multimodal context-shock associations

[15,16,17]. However, the hippocampus is not a unitary structure.

Increasingly, a functional, morphological and molecular segmen-

tation along the dorsal-ventral axis is being recognized [18,19].

Although some studies have pointed out the specific involvement

of the dorsal [20,21,22], but not ventral, hippocampus in

contextual fear memory formation [20,23], accumulated evidence

indicates a role for the ventral hippocampus in the formation

[24,25,26,27,28] and expression [20,29,30,31] of contextual fear

memory. The emerging view is that the respective roles of the

ventral and dorsal hippocampus in contextual fear conditioning

might differ, with the ventral part being particularly involved in

the processing of fear and anxiety processes, while the dorsal

hippocampus is involved in the temporal and contextual aspects of

event representation [28]. However, the molecular mechanisms

implicated in CFC at each hippocampal compartment are not yet

known.

Cell adhesion molecules of the immunoglobulin superfamily

have been implicated in memory formation [32,33,34] and stress

and memory interactions [35,36,37], with most of the work

focusing on NCAM, its polysialylated form (PSA-NCAM), and

L1CAM. In fear conditioning, NCAM KO mice show deficits in

contextual [38,39] and auditory [38,40] fear memories. Con-

versely, increased hippocampal expression of NCAM, PSA-

NCAM and L1NCAM was observed 24 h after CFC training in

rats [41,42,43]. CFC memory consolidation was found to be

impaired after the infusion of a synthetic peptide that interferes

with NCAM function [44], but it was found to be improved after

the infusion of another peptide that corresponds to the binding site

of NCAM for the fibroblast growth factor receptor 1 [45].

Although no information exists for NCAM or L1CAM regarding

their role in different hippocampal areas, modulation of PSA-

NCAM expression by CFC was found to be upregulated in the

dorsal, but not ventral, hippocampus at the 24 h post-training time

point, while PSA depletion in the dorsal, but not ventral,

hippocampus resulted in impaired CFC memory consolidation

[43].

Although the functional roles of nectins are largely unknown,

recent evidence suggests their potential involvement in hippocam-

pal function [46]. Given their role in hippocampal connectivity

(see above), we hypothesized a role for nectins in the hippocampus

in memory formation for CFC. To test this hypothesis, we

evaluated time-dependent changes in the total and synaptoneur-

osomal expression of nectin-1 and nectin-3 in both the dorsal and

ventral hippocampus at different time points following CFC.

Identified changes were followed by experiments addressed at

dissecting the nature of the changes from a behavioral point of

view (i.e., whether the context-shock association was required or

the separate components would suffice) and by pharmacological

interference with the function of the identified nectin to evaluate

the impact of such manipulation in CFC. Additional control

experiments were addressed to evaluate potential non-specific

memory effects induced by the pharmacological manipulation.

Materials and Methods

Animals
Male Sprague-Dawley rats (Charles River Laboratories; Lyon,

France)], weighing 250 g at the start of the experiments, were pair-

housed under light- (12 h light/dark cycle; lights on at 7:00 A.M.)

and temperature (2262uC)-controlled conditions. Food and water

were freely available. All experiments were conducted between

8:30 A.M. and 2:00 P.M. to minimize the influence of hormonal

fluctuations. All animals were handled for 2 min/d for the 3 d

preceding the first behavioral test or surgery and the two animals

from the same home-cage were tested simultaneously. Animal

procedures described were conducted in accordance with the

guidelines set by the European Community Council Directives

(86/609/EEC) and the Swiss Cantonal Veterinary Authorities

(Vaud, Switzerland), and approved by the Cantonal Veterinary

Office Committee for Animal Experimentation.

Fear conditioning
Training and testing took place in a rodent observation cage

(30637625 cm) that was placed in a sound-attenuated chamber.

The observation cage was made of stainless steel walls and a

Plexiglas door. The floor consisted of a wired mesh that was

connected to a shock generator (Panlab, Barcelona, Spain). Each

observation cage was cleaned with 0.1% acetic acid before and

after each session. Ventilation fans provided background noise of

68 dB, and a 20 W white light bulb illuminated the chamber. On

the conditioning/training and testing days, each rat was

transported from the colony room to an adjacent experimental

room and placed in an observation cage (i.e., the conditioning

chamber). The animals’ behavior was video recorded and later

scored by an observer blind to the treatment condition. Using a

time-sampling procedure every 2 s, each rat was scored blindly as

either freezing or active at the instant the sample was taken. Fear

was assessed as freezing behavior, defined as behavioral immobil-

ity except for movement needed for respiration.

In the experiments involving CFC, after 3 min of exposure to

the observation cage, rats received three 1-s footshocks (1 mA

intensity) with an inter-trial interval of 60 s. Rats were removed

from the conditioning chamber 30 s after the final shock

presentation and returned to their home cages. Therefore, the

conditioning session lasted 5.5 min. In experiments designed for

biochemical analyses that evaluated the impact of CFC in the

hippocampal expression of nectins, animals were sacrificed at

different times (0.5, 2. 6. 12 or 24 h) after training.

In the experiment performed to compare the impact of

exposure to ‘footshock,’ ‘context’ or ‘CFC’ training on nectin

expression in the hippocampus, to evaluate the effect of the shock

and minimize context exposure (‘shock’ condition), rats were given

one 2-s footshock (1 mA) immediately after being introduced in a

novel context and were quickly removed and returned to their

home cage. To assess the impact of the context (‘context’

condition), rats were allowed to explore the novel context for

5.5 min without receiving any additional stimulation. Animals

were sacrificed at 2 h after exposure to footshock, context or CFC.

In the pharmacological experiments that evaluated the impact

of anti-nectin-1 infusions in contextual fear memory formation,

animals were tested at different times after training; i.e., in one

experiment, animals were tested at both 2 and 7 days post-

training, while a follow-up study focused directly on the 7 days

post-training time point. Testing was performed by placing rats

back into the original training context for 8 min, in which no

footshock was delivered.

Hippocampal Nectins on Contextual Fear Memory
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One experiment evaluated the impact of anti-nectin-1 treatment

in acoustic fear conditioning. The training protocol was essentially

the same as for contextual fear training, with the exception that a

tone (85 dB sound lasting 20 s at 1000 Hz) preceded each

footshock. Assessment of tone fear memory was performed 7 days

post-training by placing animals into a novel context (same cages,

but with different walls, floor, illumination and background odor),

and after a 2 min and 40 s baseline period, rats were continuously

re-exposed to three 20-s tones (with intervals of 40 s) in the

absence of shocks.

Biochemistry
In the experiment that evaluated time-dependent changes in

hippocampal nectin expression following fear conditioning, rats

were sacrificed at 0.5, 2, 6, 12 or 24 h after training. In the

experiment that compared the effect of CFC training with that of

exposure to either the shock or the context separately, the animals

were sacrificed 2 h after exposure to each of these conditions. In

all cases, a control handled-only group was added for comparison.

The rats were decapitated, their brains were quickly extracted, and

the hippocampi were dissected and stored at 280uC. Synapto-

neurosomes and total fractions were prepared as described

previously [47] following the method of Hollingsworth et al. [48].

Tissue samples were homogenized in ice-cold homogenization

buffer (10 mm HEPES, 1.0 mM EDTA, 2.0 mM EGTA, 0.5 mM

dithiothreitol (DTT), 0.1 mM phenylmethanesulfonyl fluoride

(PMSF)) containing a freshly added protease and phosphatase

inhibitor cocktail (Complete EDTAfree, Roche Diagnostics

GmbH, Mannheim, Germany) with an Eppendorf homogenizer.

At this stage, aliquots of whole homogenates (total fraction) were

taken, solubilized with 1% NP-40, removed of debris with 10 min

of 1000 g centrifugation and stored at 280uC for future analysis.

The remaining homogenates were passed through two 100 mm-

pore nylon mesh filters and then further through two 5 mm-pore

filters. Filtered homogenates were centrifuged at 1000 g for

10 min at 4uC. Resultant pellets were resuspended in 100 mL of

1% sodium dodecyl sulfate, boiled for min and stored at 280uC.

Whole and synaptoneurosome hippocampal samples were quan-

tified using the detergent-compatible protein assay (Biorad). Equal

protein samples were prepared at a concentration of 0.75 mg/mL

in 33 mM NaCl, 70 mM Tris–HCl, 1 mM EDTA, 2% (w/v)

sodium dodecyl sulfate, 0.01% (w/v) bromophenol blue and 10%

glycerol, pH 6.8. Proteins were resolved on 10% polyacrylamide

gels and transferred to nitrocellulose membranes. Membranes

were blocked for 1 h at room temperature with 5% non-fat dry

milk in Tris-buffered saline (TBS)-0.1% Tween-20 buffer.

Membranes were then incubated with primary antibodies

(nectin-1, 1:5,000; SCBT H-62 sc-28639; nectin-3, 1:3,000,

Abcam ab63931; pan-actin 1:20,000, Sigma and GAPDH,

1:100,000, Abcam 6C5 ab8245) overnight at 4uC. The mem-

branes were washed three times in TBS-0.1% Tween-20 for

10 min and then incubated for 2 h at room temperature with the

appropriate secondary horseradish peroxidase-linked antibodies

diluted in blocking buffer. Following membrane washing with

TBS-0.1% Tween 20 buffer, the immunocomplexes were visual-

ized using a chemiluminescence peroxidase substrate (SuperSignal

West Dura Extended Duration Substrate), and immunoreactivity

was detected using the ChemiDoc XRS system (Biorad).

Densitometry analysis on the bands was calculated using Quantity

One 4.2.3 software (Biorad Laboratories AG, Switzerland). Each

band was normalized to GAPDH as determined in the

corresponding sample. On each gel, at least two naive controls

were used, and protein changes were represented as a percentage

of the normalized naive value. Protein measurements were

performed in the linear range for all immunoblot assays.

Surgery
Rats subjected to pharmacological experiments were implanted

with stainless steel guide cannulas aimed at the dorsal or ventral

hippocampus. The rats were anesthetized with a xylazine/

ketamine (10/80 mg/kg in a volume of 2 mL/kg) i.p. injection

and placed in a stereotaxic apparatus (David Kopf Instruments,

Tujunga, CA, USA). Small holes were drilled through the skull for

bilateral placement of a stainless steel 22 gauge guide cannulae

(Plastics One, Roanoke, VA, USA) fitted with a removable dummy

cannula, above the dorsal (3.8 mm posterior, 2.2 mm lateral, and

2.5 mm ventral) or ventral (5.20 mm posterior, 5.0 mm lateral,

and 6 mm ventral) hippocampus. Coordinates were based on the

atlas of Paxinos and Watson (1986) and are taken from bregma.

Cannulae were fixed to the skull with two anchoring screws and

dental acrylic (Duralay 2244; Reliance, Worth, IL). After surgery,

the animals were housed two per cage, with a separator that

allowed visual and odor contact but impeded physical contact in

order to preserve cannula implantation. After behavioral exper-

iments animals were sacrificed by i.p. pentobarbital injection and

correct cerebral cannulae placement was routinely verified with

Evans blue histology.

Pharmacological experiments involving nectin-1
inhibition

After recovery from surgery, the animals were handled and

habituated to the microinfusion procedure. The rats were wrapped

in a soft towel, the obturator was removed, and a 28-gauge

microinjector (Plastics One, Roanoke, VA, USA) extending

1.0 mm from the tip of the guide cannula attached to polyethylene

50 (cat n. 8010, Phymep, Paris, France) tubing was inserted

through the cannula. The distal end of the PE50 tubing was

attached to a 10 mL (Hamilton) syringe that was mounted on a

microinjection unit (model 5000; David Kopf Instruments,

Tujunga, CA, USA).

Infusion of R165 or ACSF was performed immediately after

CFC. Microinfusions were performed bilaterally with 1 ml per

brain region and were delivered over 2 min. The microinjector

remained in place for an additional 1 min following infusion to

allow proper diffusion.

The anti-nectin-1 rabbit polyclonal sera R165 used in the

studies that interfered with nectin-1 function were described

previously [49,50]. Anti-nectin-1 antibody rabbit polyclonal serum

R165 was obtained after immunization with purified human

nectin-1 ectodomain HveC(346t), which was produced in insect

cells [49]. The R165 serum recognizes the nectin-1 ectodomain

and the V-domain. Importantly for our purposes, R165 also

recognizes rat nectin-1 found at the surface of neurons [51].

Statistical analysis
Data are expressed as the mean 6 SEM. Behavioral observa-

tions were analyzed using an analysis of variance (ANOVA)

followed with Bonferroni post-hoc tests when appropriate. Two-

sample comparisons were analyzed using the two-tailed Student t-

test. Data were considered to be statistically significant when

p,0.05. n.s. denotes no significant difference.

Hippocampal Nectins on Contextual Fear Memory

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e56897



Results

Contextual fear conditioning leads to a time-dependent
increase of nectin-1 hippocampal expression in the
synaptoneurosomal fraction

Levels of hippocampal nectin-1 and nectin-3 were measured in

synaptoneurosomal and total fractions at different time points after

training rats in the CFC paradigm. Synaptic nectin-1 was

transiently increased in the hippocampus at 2 h, but it did not

differ from control values at 0.5, 6, 12, or 24 h after training

(ANOVA, F5,30 = 4.51, p,0.01 and Bonferroni post hoc tests;

p,0.01 at 2 h, n.s. for other time-points; Fig. 1A). The increase of

nectin-1 was specific for the synaptoneurosomal fraction; protein

levels of nectin-1 in the total fraction were not affected by training

(ANOVA, F5,30 = 0.28, p = 0.92; Fig. 1B). In contrast, hippocam-

pal expression of nectin-3 was not affected by fear conditioning

training at any of the time points examined, neither in the

synaptoneurosomal nor in the total fractions (synaptoneurosomal

fraction: ANOVA, F5,30 = 0.71, p = 0.62; total fraction: ANOVA,

F5,30 = 0.54, p = 0.74, Fig. 1C-D).

Nectin-1 synaptoneurosomal expression following
contextual fear conditioning is increased specifically in
the ventral hippocampus

Increased nectin-1 expression observed in the synaptoneuroso-

mal hippocampal fraction 2 h after training in the CFC paradigm

might be the result of the integrated CFC experience or induced,

independently, by exposure to the key element(s) involved in this

training; e.g., the shock and the context. Shock delivery shortly

after brief exposure to a new context does not lead to CFC [52]

but pre-exposure to the context before shock delivery enables the

emergence of CFC [52,53]. To understand the experimental

determinants leading to the hippocampal regulation of nectin-1,

we performed an experiment in which, in addition to training

animals in the CFC protocol, additional groups of animals were

exposed to either the shock with minimal context exposure or to

the context without shock stimulation. Samples were taken 2 h

after exposure to each of these experimental conditions. In order

to evaluate whether the observed increase in nectin-1 expression is

confined to a particular hippocampal subdivision, protein expres-

sion levels were assessed separately in the ventral and dorsal

hippocampus. Nectin-3 analyses were included for comparison.

In confirmation of the findings obtained in the previous

experiment, synaptoneurosomal nectin-1 levels were significantly

increased in the ventral hippocampus 2 h after CFC. However,

shock or context exposure alone did not significantly affect nectin-

1 protein levels in this hippocampal subdivision (Fig. 2A, ventral

hippocampus: ANOVA F3,32 = 4.94, p,0.006. Bonferroni post

hoc tests; p = 0.003 for CFC-group vs. control; p = 0.29 for

context-group vs. control and p = 0.21 for shock-group vs. control).

In the dorsal hippocampus, levels of synaptic nectin-1 at 2 h after

context, shock or exposure to CFC were not affected (Fig. 2B,

dorsal hippocampus: ANOVA F3,31 = 2.54, p = 0.07). In line with

our previous observations, synaptoneurosomal nectin-3 levels

remained unchanged at 2 h after CFC training or following

exposure to either context or shock only (Fig. 2C-D, ventral

hippocampus: ANOVA F3.34 = 0.06, p = 0.98; dorsal hippocam-

pus: ANOVA F3.34 = 0.99, p = 0.41).

Administration of a nectin-1 antibody in the ventral
hippocampus impairs contextual fear memory

Given the increase in nectin-1 synaptoneurosomal expression

that we found in the ventral hippocampus following training in the

CFC task in the previous experiments, we aimed to investigate the

involvement of nectin-1 in memory consolidation. For this

purpose, the anti-nectin-1 antibody R165 (see Materials and

Methods) was infused in the ventral hippocampus immediately

after training. As expected, before infusion, the groups did not

differ in the freezing response resulting from the shock during

contextual fear training (Fig. 3A, ventral-hippocampus t-test

t = 0.55, df = 12, p = 0.59, Fig. 3B, dorsal hippocampus t-test

t = 0.23, df = 12, p = 0.82). Next, the impact of anti-nectin-1

antibody R165 in the ventral hippocampus on contextual fear

memory was tested 2 and 7 days after training. Treatment with

R165 in the ventral hippocampus reduced contextual freezing

across the different testing times (Fig. 3A; two-way ANOVA with

repeated measures: main effect of treatment, F1,12 = 5.99, p = 0.03;

no interaction effect, F1,12 = 1.55, p = 0.24). When these animals

were tested the following day in a novel context (thus at 72 h and

8 d after CFC-training), freezing-levels did not differ between

vehicle and R165-treated animals (72 h, vehicle: 20.6+/26.7 s;

R165: 19.1+/24.9 s, t-test, t = 0.18, df = 11, p = 0.86 and at 8 d,

vehicle: 21.2+/25.4 s; R165: 17.5+/25.4 s, t-test, t = 0.48,

df = 12, p = 0.64), excluding the possibility that the treatment

would be inducing changes in context generalization.

Contrasting to the effects seen with R165 treatment in the

ventral hippocampus, infusion of the nectin-1 antibody in the

dorsal hippocampus did not affect subsequent contextual fear

memory tested at 2 and 7 days post-training (Fig. 3B; two-way

ANOVA with repeated measures: main effect of treatment,

F1,10 = 0.02, p = 0.88).

As a stronger effect of the treatment was observed at 7 days

post-training, it is possible that the global effect was due to

repeated testing in the same animals and, thus, to an interaction

between the drug treatment and potential extinction mechanisms.

To evaluate whether R165 administration would be enough to

induce a significant reduction in freezing levels when animals were

tested 7 days post-training, a follow-up experiment was performed

in which animals were infused with R165 in the ventral

hippocampus after training and were tested only at this latter

time point. We first confirmed that prior to infusion, the groups

did not differ in the amount of freezing upon shock (Fig. 4, t-test

t = 0.13, df = 12, p = 0.90). However, at 7 days after training, the

animals treated with R165 again showed impaired contextual fear

memory (Fig. 4, t-test t = 2.30, df = 12, p = 0.04). This experiment

further confirmed that interfering with nectin-1 in the ventral

hippocampus immediately after training reduces the strength of

the subsequent contextual fear memory formed in a long-lasting

manner.

To further assay for the specificity of the results observed in

CFC when the R165 antibody was administered into the ventral

hippocampus, we performed another experiment to investigate

whether the same treatment would influence the consolidation of

an acoustic fear memory. Rats were trained in the acoustic fear

conditioning protocol and then immediately infused with the R165

antibody into the ventral hippocampus. When tested for the tone

memory at 7 days post-training, no effect of the treatment was

observed (freezing response to tone, vehicle: 98.0+/21.3 s; R165:

97.6+/22.0 s, t-test: t = 0.19, df = 11, p = 0.86).

Administration of the nectin-1 antibody into the ventral
hippocampus does not affect anxiety-like behavior or
locomotor activity

The previous experiment indicated that when delivered into the

ventral hippocampus, the nectin-1 antibody impaired the forma-

tion of contextual fear memory. However, it could be argued that

the reduced freezing observed at testing could be due to potential

Hippocampal Nectins on Contextual Fear Memory

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e56897



non-specific memory effects, such as changes in anxiety-like

behavior and/or locomotor activity. To investigate these possibil-

ities, the animals were infused with either vehicle or the nectin-1

antibody into the ventral hippocampus and tested 7 d later with

the open field test ( 1 m for 10 min at 7 lux). Time spent in the

center or in the outer zone of the open field was not affected by the

infusion of R165 (Fig. 5A; t-test: center: t = 0.57, df = 31, p = 0.57;

rim: t = 1.01, df = 31, p = 0.32), indicating a lack of influence of

this treatment on anxiety-like behavior. In addition, locomotor

activity did not differ between treatment groups, as indicated by

the equal distance moved throughout the open field session

(Fig. 5B; t-test t = 0.69, df = 31, p = 0.49).

Discussion

This study identified a time-dependent upregulation of nectin-1

expression in the synaptoneurosomal, but not total, compartment

in the ventral hippocampus following CFC in rats. In contrast,

nectin-3 levels were not affected by CFC. The increase of nectin-1

was specifically found in the ventral part of the hippocampus at the

2 h post-training time point, with no changes observed in the

dorsal hippocampus at any of the post-training times examined

(0.5, 2, 6, 12 and 24 h). In line with these findings, interfering with

nectin-1 functioning by injecting a specific nectin-1 antibody in the

ventral hippocampus immediately after CFC training interfered

with memory for the context, whereas the same treatment given in

the dorsal hippocampus did not elicit an effect. Overall, these

Figure 1. Effect of contextual fear conditioning on nectin-1 (A, B) and nectin-3 (C, D) protein expression in synaptic and total
fractions. Synaptic nectin-1 expression was enhanced only at 2 h after CFC (A). Total fraction of nectin-1 (B) as well as synaptic- (C) or total nectin-3
(D) remained unaltered. Error bars represent standard error of the mean (n = 6 animals/group) (** p,0.01 vs. control group indicated by Bonferroni
post hoc test).
doi:10.1371/journal.pone.0056897.g001

Hippocampal Nectins on Contextual Fear Memory
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Figure 2. Effect of context, shock and contextual fear conditioning on nectin-1 (A, B) and nectin-3 (C, D) protein expression in
synaptic fractions of ventral and dorsal hippocampi. The increase of nectin-1 at 2 h after CFC was not seen after context- or shock exposure
alone and was restricted to ventral hippocampus (A). Nectin-1 levels in the dorsal hippocampus were not affected 2 h after shock, context or CFC (B).
Nectin-3 levels in both ventral- (C) and dorsal hippocampus (D) were unaffected 2 h after context, shock or CFC. Error bars represent standard error of
the mean (n = 7–10 animals/group) (*, p,0.05; ** p,0.01 vs. control group indicated by Bonferroni post hoc test).
doi:10.1371/journal.pone.0056897.g002

Figure 3. Effect of nectin-1 inhibition on fear memory consolidation. Prior to treatment, there was no difference in the freezing response
during CFC. Inhibition of nectin-1 by R165 infusion in the ventral hippocampus immediately after CFC reduced freezing as measured at 2 and 7 d after
contextual fear training (A). This effect was not seen for the dorsal hippocampus (B). Error bars represent standard error of the mean (n = 7 animals/
group) (n.s., no significant difference; *, p,0.05: treatment effect R165 vs. control indicated by two-way ANOVA).
doi:10.1371/journal.pone.0056897.g003
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results support a role for nectin-1 in the ventral hippocampus in

contextual fear-conditioned memory.

Evidence has been presented for two time periods of protein

synthesis that occur in the hippocampus and are required for

memory consolidation of fear-motivated learning: the first at about

the time of training and the second 3–6 h post-training [54].

Although the former would be compatible with the increased

expression of nectin-1 that we observed in the synaptoneurosomal

fraction of the ventral hippocampus, the fact that no changes were

detected in the whole homogenate fraction makes it unlikely that

the observed effect resulted from the de novo synthesis of nectin-1.

However, although our results would suggest that the observed

effects were due to the activity-dependent recruitment of nectin-1

toward the perisynaptic region, we cannot discard the involvement

of protein synthesis in the process (e.g., increased synaptoneur-

osomal expression of nectin-1 could be linked to the training-

induced synthesis of an interacting carrier or recruiting molecule).

Neuronal nectin-1 may bind functionally to nectin-1 to itself, to

nectin-3 or to the fibroblast growth factor receptor (FGFR) [4,55].

Nectin-3 and nectin-1 share a binding site on the first Immuno-

globulin-like domain (V-domain) of nectin-1 [56,57] and promote

cellular and synaptic adhesion. In contrast, FGFR interacts with

the third Ig like domain (C domain) of nectin-1, which results in

neurite outgrowth and neuron survival ex vivo [55]. The

polyclonal serum R165 contains antibodies to epitopes in each

nectin-1 domain and thus may interfere with binding of any of the

three ligands thereby affecting adhesion and signaling. In the

context of synaptic adhesion, it is unclear whether the antibody

can access nectin-1 when it is already engaged with a ligand and

disrupt established intercellular interactions in vivo. However,

nectin-1 antibodies can prevent ligand binding and the establish-

ment of interactions leading to cell adhesion [58]. Interestingly,

CFC leads to an increase of nectin-1 in the synaptoneurosomal

fraction rather than in the total neuronal fraction (Fig. 1). This

suggests that a ligand-free nectin-1 is recruited to the synapse

where it is retained by trans-interacting with a ligand, possibly

nectin-3. In this adhesion model, the antibody may interfere with

recruitment and/or ligand binding, thereby altering the adhesive

or signaling function of nectin-1 at synapses. In the context of

FGFR signaling, the antiserum may prevent nectin-1 binding to

FGFR, which activation by NCAM has been shown to promote

memory consolidation and synapse formation [45]. More specific

targeting of either function of nectin-1 is needed to identify the

mechanism of action of nectin-1 in CFC which will improve our

understanding of the molecular basis of contextual fear memory.

A key question to address is the temporal dynamics of the

observed effects. In fact, we should note that a typical feature

revealed by studies that addressed the involvement of cell adhesion

molecules in memory consolidation is the transient nature of their

involvement. The intracerebral infusion of antibodies against

specific cell adhesion molecules (e.g., integrins [59,60], NCAM

[61,62], PSA-NCAM [63]) or their interacting partners (e.g.,

cellular prion protein [64]) has proved to be a useful tool to

demonstrate a role for these molecules in memory consolidation.

For example, the intracerebroventricular infusion of an antibody

against NCAM was shown to inhibit the consolidation of a passive

avoidance task when administered in the 6–8 h post-training

period, but not at other time points [61]. PSA-NCAM was found

to be transiently increased in the hippocampus at about 12–

24 hours post-training, but not at earlier or later time points

[65,66,67]. Accordingly, the intracerebroventricular infusion of an

antibody against PSA-NCAM at 10 h post-training in a passive

avoidance task induced subsequent amnesia for the learned

response [63]. These results have been typically interpreted to

reflect late time windows of involvement of these molecules in the

mechanisms of memory consolidation. Our results, which showed

a transient increase of nectin-1 in the synaptoneurosomal fraction

in the ventral, but not dorsal, hippocampus and an amnestic effect

for the posttraining administration of a nectin-1 antibody when

infused in the ventral, but not dorsal, hippocampus, support the

involvement of this adhesion molecule in the early post-training

mechanisms that act in the ventral hippocampal subfield to

promote the consolidation of the contextual fear memory.

Although lesion and pharmacological studies have supported a

role for both ventral and dorsal hippocampal subfields in

contextual fear memory formation [24,25,27,28], the underlying

cellular and molecular mechanisms that participate in the

processing of contextual fear memory in each subfield are largely

unknown. An important reason for this lack of knowledge is that a

great majority of studies that have identified upstream and

downstream protein synthesis mechanisms have overlooked

potential differences in the different hippocampal parts

Figure 4. Effect of nectin-1 on fear memory consolidation
tested 7 d after training. Prior to treatment, there was no difference
in the freezing response during CFC. Inhibition of nectin-1 by R165
infusion in the ventral hippocampus immediately after CFC reduced
freezing when tested at 7d later (n = 7 animals/group) (n.s., no
significant difference; *, p,0.05 vs. control group, two-tailed Student
t-test).
doi:10.1371/journal.pone.0056897.g004

Figure 5. Effects of nectin-1 inhibition in the ventral hippo-
campus on anxiety-like behavior (A) and locomotor activity (B).
Inhibition of nectin-1 by infusion of R165 into the ventral hippocampus
did not affect time spent in the center, the rim area of the open field as
measured 7 d later (A). In addition, locomotor activity in the open field
was also not affected by R165 infusion 7 d before (B). Error bars
represent standard error of the mean (n = 14 for ACSF-treated animals,
n = 19 for R165-treated animals).
doi:10.1371/journal.pone.0056897.g005
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[41,68,69]. Recent evidence from studies that dissociate changes in

each hippocampal part supports the existence of both common

and subfield-specific mechanisms. Plasticity within both the dorsal

and ventral hippocampus has been shown to be required for the

acquisition and maintenance of contextual fear-conditioning

memory. Thus, the Arc gene and protein were found to increase

in both the dorsal and ventral hippocampus after CFC in rats, and

Arc knockdown using antisense oligodeoxynucleotide administra-

tion in either of these hippocampal subfields effectively impaired

contextual memory formation [70]. The involvement of Arc in

each hippocampal region was found to involve activation of

NMDA receptors [70,71]. However, the existence of region-

specific mechanisms is supported by a number of studies. For

example, nicotine facilitated CFC when infused in the dorsal

hippocampus but impaired CFC when given in the ventral

hippocampus [72]. Evidence was provided for the specific

involvement of PSA-NCAM in the dorsal, but not ventral,

hippocampus, as indicated by a specific training-induced increase

in the ventral part and by experiments involving the removal of

PSA-NCAM, effectively interfering with contextual fear memory

formation when given in the dorsal, but not ventral, hippocampus

[43]. Our findings clearly support the existence of hippocampal

subregion-specific mechanisms in the formation of contextual fear

memory by highlighting the importance of nectin-1 during the

early post-training period in the ventral but not dorsal hippocam-

pus.

Only the combination of context exposure and shock (i.e., the

putative CFC protocol) led to increased levels of synaptic nectin-1

in the ventral hippocampus, while context or shock exposure alone

only resulted in non-significant increases. The fact that context

exposure on its own did not induce the same effect as the full fear

conditioning experience is at odds with the molecular changes

observed in the hippocampus in previous studies using a similar

experimental protocol. Thus, although the shock alone was not

followed by changes in the parameters examined [73], exposing

animals just to the context was enough to induce similar activation

in the hippocampal expression of the immediate early genes c-fos

and Arc [74] and in dorsal hippocampus PSA-NCAM expression

[43] as that found for the full CFC experience. The fact that

nectin-1 molecular changes induced by CFC in the ventral

hippocampus were not reproduced by only context exposure

might be indicative of the type of computations that occur in this

hippocampal compartment as opposed to those relying in the

dorsal component. Given the close interconnections between the

ventral hippocampus and the amygdala [18], this hippocampal

part has been considered to be a gateway that transfers contextual

information between the dorsal hippocampus and the amygdala

[75]. The rapid involvement of nectin-1 in the post-training period

(as opposed to late post-training windows of involvement reported

for other adhesion molecules; see Introduction and Discussion

above) only when converging context and shock information is

processed would be in line with the role of the ventral

hippocampus in linking contextual information processed by the

dorsal hippocampus with emotional information processed by the

amygdala [18,19] in the aftermath of the conditioning experience.

Importantly, the specificity of the involvement of nectin-1 in the

ventral hippocampus in contextual fear memory was further

supported by a follow-up experiment in which memory for a tone

was not impaired by the post-training administration of the nectin-

1 antibody in the ventral hippocampus following training in the

auditory fear conditioning task.

The fact that most manipulations assessing the role of ventral

hippocampus involved lesions or pharmacological manipulations

that also resulted in increased anxiety and/or locomotor activity

[24,24,25,27,76] has complicated the understanding of the

functional role of this hippocampal region. In our study, in order

to exclude the possibility that the effects elicited by the infusion of

the antibody targeting nectin-1 on freezing behavior were

confounded by anxiety or locomotor activity, rats were infused

with the antibody in the ventral hippocampus and tested in the

open field. The treatment with the nectin-1 antibody did not affect

the time spent in the center or rim of the open field (but note that

the open field is not a test specific for anxiety and time spent in the

center by control animals was low which could have made difficult

the possibility to detect a further decrease in this measure by the

treatment), nor did this alter animals’ locomotor activity.

Importantly, the lack of effect of blockade of nectin-1 function in

the ventral hippocampus in anxiety or locomotion does not imply

a lack of involvement of this hippocampal subdivision in these

previously proposed functions [77,78,79]. Our findings only

suggest that nectin-1 seems not to be required for the alterations

in the parameters that were formerly described following specific

lesions to the ventral hippocampus.

In addition to a potential role on neural plasticity (see

introduction), Nectin-1 is also the main receptor used by herpes

simplex virus (HSV) to infect and spread between neurons [51,80].

Nectin-1 is highly expressed in murine hippocampus and other

areas susceptible to HSV infection [81,82]. In acute HSV

encephalitis (HSE) the virus causes necrotizing lesions in the

temporal lobes and limbic structures [83]. HSE lesions are also

commonly found in the hippocampus and amygdala [83] and may

result in impaired cognitive abilities [84,85,86]. Rats which

recovered from experimental HSE have impaired spatial recog-

nition memory in the absence of residual visible neuropathological

damage [84]. Since HSV causes nectin-1 downregulation [87,88],

one may speculate that, in addition to HSV neuropathy, transient

decrease of synaptic nectin-1 may affect long term cognitive

ability.

In summary, we have presented compelling evidence for a role

of nectin-1 in the ventral hippocampus in contextual fear memory

consolidation. Our results highlight this molecule as a potential

novel player in the specific mechanisms whereby the ventral

hippocampus connects emotional and contextual information

from the amygdala and dorsal hippocampus, respectively, and

open new venues to explore nectin-1 as a potential novel target for

the development of treatments to psychopathological alterations

that are linked to the impaired contextualization of emotions.
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