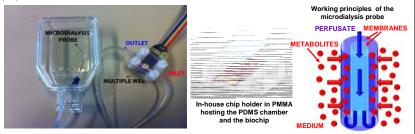
Carbon Nanotubes-Based Biosensors for Metabolite Monitoring in Cell Culture Medium


Cristina Boero, Sandro Carrara, and Giovanni De Micheli

EPFL – Lausanne - Switzerland

The poor knowledge about cell processes and differentiation mechanisms requires novel technologies to monitor the depletion of nutrients and the production of endogenous metabolite medium. The present research aims to develop a self-contained platform of integrated amperometric biosensors to the real-time measurement of different metabolites over the cell cultur immobilization of different oxidases onto carbon nanotubes (CNTs) confers high selectivity and sensitivity to the developed biosensor.

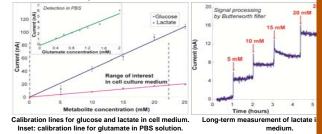
Some conventional techniques can be adapted to develop novel nanotechnology-based systems, leading to hybrid solution for new types of biosensors. ✓ Automatic spotting of CNTs is performed with a commercial non-contact spotter (sciFLEXARRAYER DW by Scienion). Spotter is typically used for DNA printing and microarrays. CNTs are diluted in Nafion, low aliphatic alcohols and water. Non-contact spotting system for CNTs 100 +31 nr and enzyme deposition ✓ Enzymes adsorb onto carbon nanotubes wall Electrochemical cell with multiworking electrodes 120 WORKING 100 ELECTRODES SEM image of glutamate COUNTER REFERENC 4.9 ± 0.2 r oxidase adsorbed onto CNTs ELECTROD ELECTRODE

The fluidic system is used for two main purposes: to ensure a continuous recycle of fresh solution at the electrode surface, while products are removed; to dilute the culture medium, to perform proper electrochemical measurements.

The microdialysis probe plays the role of a layer diffusion barrier. Such membranes with 6 kDa cutoff significantly extend the linear range of the biosensor, so that it is possible to cover the whole range of concentration of the investigated metabolites.

CONCLUSION

•We developed an integrated platform of amperometric biosensors for real-time metabolic monitoring of cell cultures.


We immobilized different enzymes onto carbon nanotubes-modified electrodes.
We calibrated the platform for independent detection of glucose, lactate and glutamate.
We achieved to measure real-time metabolite variations in cell culture medium.

22nd Anniversary World Congress on Biosensors

15 – 18 May 2012 - Cancun - Mexico

CNT-based biosensors are characterized in typical cell culture medium (DMEM/ gl Bovine Serum) in continuous flow. Each working electrode is functionalized with a to be sensitive to a specific metabolite.

Sensors are calibrated for the detection of three metabolites interesting to det culture. Glucose and lactate detections are characterized in DMEM, while glutarr in Phosphate Buffer Saline (PBS). The three metabolites are also detected over test the biosensor stability.

Glucose and lactate biosensors show 10 times higher sensitivity compared to modification reported in literature. On the other hand, concentration range for glu is much higher than what presented in other researches, even if the sensitivity magnitude lower than for the other reported biosensor.

	Technique	Sensitivity	Linear range	
Glucose	MWCNT/Nafion + GOD [1]	4.7 µA/mM cm ⁻²	0.025 - 2 mM	
	MWCNT + GOD [2]	14.2 µA/mM cm ⁻²	0.05 – 13 mM	
	MWCNT/Nafion + GOD	55.5 µA/mM cm ⁻²	0 – 1 mM	
Lactate	MWCNT + sol-gel/LOD [3]	2.1 µA/mM cm ⁻²	0.3 – 1.5 mM	
	Au/Nafion/TNT + LOD [4]	0.24 µA/mM cm ⁻²	0.5 – 14 mM	
	MWCNT/Nafion + LOD	25.0 µA/mM cm ⁻²	0 – 1 mM	
Glutamate	PU/MWCNT + Glod/PP/Pt [5]	384 µA/mM cm ⁻²	0 – 0.14 mM	
	MWCNT/Nafion +Glod	0.9 µA/mM cm ⁻²	0 – 2 mM	

[1] Tsai et al. Langmuir 2005, 21, 3653 - 3658

- [2] Wang et al. Electrochemistry Communications 2003, 5, 800 803
- [3] Huang et al. Materials Science and Engineering C 2007, 27, 29 34
- [4] Yang et al. Nanotechnology 2008, 19, 075502
- [5] Ammam et al. Biosensors and Bioelectronics 2010, 25, 1597 1602

Research works

 Boero et al., "Targeting of multiple metabolites in neural cells monitored by using proteinbased carbon nanotubes", Sensors and Actuators B 2011, 157 (1), 216 – 224 Boero et al., "Highly sensitive carbon nanotube-based sensing for lactate and glucose monitoring in cell culture", *IEEE Transactions on Nanobioscience* 2011, 10 (1), 59 – 67 Boero et al., "New technologies for nanobiosensing and their applications to real-time monitoring", *in IEEE BioCAS Conference* 2011, November, San Diego CA, USA

similar papers Foetal a oxidase core. the cell

asured

ours to

View metadata

citation

and

.ac.uk

NIOUE

SANNE

culture

1. The

ÉCOLE POLY

FÉDÉRALE D

е

brought to you by

E

CORE

Neu

cell

rat (SN56

tude 20X).