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Abstract

Gabor features have been extensively used for facial im-
age analysis due to their powerful representation capabili-
ties. This paper focuses on selecting and combining multi-
ple Gabor classifiers that are trained on, for example, dif-
ferent scales and local regions. The system exploits cur-
vature Gabor features in addition to conventional Gabor
features. Final classifier is obtained by combining selected
classifiers using Sequential Forward Floating Search-based
selection mechanism. In addition, we combine classifiers
trained on different local representations at score-level by
learning the weights with partial least square regression.
The system is evaluated on Face Recognition Grand Chal-
lenge (FRGC) version 2.0 Experiment 4. The proposed sys-
tem achieves 94.16% verification rate @ 0.1% FAR, which
is the highest accuracy reported on this experiment so far
in the literature.

1. Introduction

Face recognition (FR) attracts attention from a wide va-
riety of fields, from psychology and neuroscience to com-
puter science. The problem has become popular in com-
puter vision due to both its scientific challenges and the
abundance of potential applications such as biometric iden-
tity authentication, video surveillance, smart cards, human
computer interfaces and e-services including e-home, e-
commerce and e-banking.

Within the past two decades, many FR algorithms have
been proposed. A widely recognized traditional method is
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subspace-based FR such as Eigenface (PCA) [20], Fisher-
face (FLD) [3] and Independent Component Analysis (ICA)
[2]. These methods attempt to represent a face image as a
linear combination of the basis images. Additionally, many
researchers propose to solve the problem in the frequency
domain by transforming a face image to the frequency do-
main and then, representing the image using the coeffi-
cients in the low frequency band. These spatial-frequency
methods use Fourier transform [11], [9] and discrete cosine
transform (DCT) [7], [17] to extract the features. On the
other hand, Gabor wavelet based methods have been pre-
ferred due to their power of representation. Typical Ga-
bor wavelet based methods include Elastic Bunch Graph
Matching (EBGM) [21], and Gabor representation with
Kernel Fisher Analysis (KFA) [10]. Later, researchers [18],
[19], [12] tended to combine different types of features and
classifiers with the help of increasing computational power.

Most of the studies using Gabor wavelets generate multi-
ple features and classifiers based on different scales, orien-
tations, and local regions -in case a local appearance-based
approach is applied. Although feature selection problem in
high-dimensional Gabor feature space has been addressed
before, no studies have been conducted on selecting and
combining multiple Gabor classifiers that are trained on dif-
ferent scales and local regions. Previous studies have per-
formed fusion mainly by simple sum rule and without utiliz-
ing classifier selection. However, these different classifiers
often contain complementary information that can improve
the performance, if it is exploited efficiently. In this paper,
we focus on this problem and employ classifier selection
and fusion to develop a robust face verification system.

We propose a local appearance-based FR framework
which uses Curvature Gabor (CG) features on spatially par-
titioned non-overlapping blocks on high-resolution (HR)
face images, and then downscale the resulting Gabor images
by averaging on grids. We use various parameter combina-
tions in order to acquire complementary information from
different curvature and scale spaces. Then, we apply princi-
pal component analysis (PCA) followed by linear discrim-
inant analysis (LDA) independently on each block to ob-
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tain CG classifiers besides further dimensionality reduction.
A CG classifier for an entire face image is the combina-
tion of block decisions with sum rule. After obtaining CG
classifiers, we improve each classifier’s performance with
log-likelihood ratio (LLR) based score conversion. Final
classifier is obtained by combining selected classifiers using
Sequential Forward Floating Search (SFFS)-based selection
mechanism. In addition, we combine classifiers trained on
different local representations at score-level by learning the
weights with partial least square regression (PLSR). The
proposed framework is evaluated on FRGC version 2.0 Exp.
4, which is a challenging experiment that requires match-
ing of images collected under controlled and uncontrolled
conditions. We achieved 94.16% verification rate (VR) @
0.1% false acceptance rate (FAR), which is the highest per-
formance reported on this experiment so far in the literature.

The rest of the paper is organized as follows: Related
work is reviewed in Section 2, and the proposed method
is introduced in Section 3. Experimental results and dis-
cussions are given in Section 4; followed by conclusion in
Section 5.

2. Previous Work
The release of FRGC database version 2.0 has sped up

the research in FR [15]. The most successful FR approaches
combine different types of features in different scales that
enable acquiring complementary information from each
feature type, and scale. For example, Tan and Triggs [19]
proposed to combine Gabor and LBP features. Su et. al.
[18] suggested a hierarchical framework combining holistic
Fourier classifier and local Gabor classifiers. Local classi-
fiers are obtained from local Gabor patches on HR images
while holistic classifier is obtained from Fourier features on
low-resolution (LR) images. Liu and Liu [12] proposed a
hybrid color-space based method. They combine local Ga-
bor patch classifiers obtained from HR images, LBP and
DCT classifiers obtained from LR images. Gao et al. [6]
introduced multi-resolution local appearance based method.
They combine local Gabor classifiers obtained from HR, LR
and medium resolution face images.

In addition to all above methods, curvelet-based meth-
ods [13], [8] are presented to show that curvelets have bet-
ter directional decomposition capabilities than wavelets for
face images due to the characteristics of facial components.
Recently, Hwang et. al. [8] introduced extended curva-
ture Gabor wavelet (ECG)-based FR method on LR im-
ages. They extend conventional Gabor wavelet by including
smaller frequencies, multiple Gaussian sizes, and different
curvature parameters for object representations. They em-
ploy AdaBoost for feature selection in order to reduce the
dimensionality of the extended features. Then, they learn
ECG classifiers by applying LDA on each extended filter.
Lastly, they merge a bunch of these classifiers using LLR-

based fusion.

3. Proposed Method
3.1. Gabor Wavelet

Gabor wavelets were inspired by 2D receptive field pro-
files of the mammalian cortical simple cells. They have
been recognized as one of the most successful local fea-
ture extraction methods for face representation. They show
desirable characteristics of spatial locality and orientation
selectivity, and are optimally localized in the space and fre-
quency domains.

The conventional Gabor wavelet is defined as follows:
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k2
ν,µ

σ2
e(−

k2ν,µ||~x||2

2σ2
)[e(ikν,µ~x) − e(−σ22 )] (1)
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)
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xcosφ+ ysinφ
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)
and e(ikν,µ~x) is

the oscillatory wave function, whose real part and imagi-
nary parts are the cosine and sine functions, respectively.
ν controls the scale of Gabor wavelet, which mainly deter-
mines the center of the Gabor filter in the frequency domain;
µ controls the orientation of the Gabor filters. In general,
Gabor wavelet with the following parameters is used for
face recognition: five scales ν ∈ {0, 1, 2, 3, 4} and eight
orientations µ ∈ {0, 1, .., 7} with Gaussian window size
σ = 2π.

3.2. Curvature Gabor (CG) Wavelets

A typical face image contains facial components such
as eyes, nose, cheeks, lips, and eyebrows. These compo-
nents show curved characteristics rather than straight ones.
Therefore, it is natural to represent a face image with cur-
vature kernels as well as straight ones.

Using CG wavelets, which are called as banana wavelets,
is one way of modeling curve-like features of a face image.
They are obtained by adding a curvature parameter to the
conventional Gabor formulation [14]. The CG wavelets are
defined as follows:

ψ(~x; ν, µ) =
k2
ν,µ

σ2
e(−

k2ν,µ||~x||2

2σ2
)[e(ikν,µx́) − e(−σ22 )] (2)

~x =

(
x́

ý

)
=

(
xcosφ+ ysinφ+ c(−xsinφ+ ycosφ)2)

−xsinφ+ ycosφ

)
(3)

where the curvature ratio c ∈ {0, 0.05, 0.1, 0.15, 0.2}.
CG wavelets do not have the orientation symmetry as in

conventional Gabor wavelet as shown in Fig. 1. Therefore,
if the curvature degree is not zero, the number of orienta-
tions used in CG wavelets increases to 16. For c = 0, it is
simply the conventional Gabor wavelet.

In addition, CG wavelets use different Gaussian sizes,
σ ∈ {0.5π, π, 1.5π, 2π}, for scale space utilization. Con-
sidering these parameter settings, we have 20 (= 5 × 4)
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Figure 1. Orientation asymmetry in CG wavelets c = 0.1 (middle
and bottom row) unlike conventional Gabor wavelet (top row).

different CG wavelets (Fig. 2) each consisting of 5× 16 or
5 × 8 discrete filters, resulting in 1440 filters (= 5 × 16 ×
4× 4 + 5× 8× 4).

Figure 2. CG wavelets’ real part representation with changing cur-
vature degrees and Gaussian sizes.

To sum up, in addition to conventional Gabor wavelets
which are good at representing coarse and straight struc-
tures, CG wavelets provide a way to model finer features
with smaller Gaussian sizes e.g. σ = {0.5π, π, 1.5π},
and curvature features with different curvature degrees e.g.
c = {0.05, 0.1, 1.5, 2}. CG wavelet modeling is supposed
to have stronger representation power of modeling facial
structures than the conventional Gabor wavelet.

3.3. Feature Extraction

Face registration is a crucial step for accurate FR. Reg-
istration parameters affect both the face region extracted
and the proportions of facial components. These parame-
ters can be adjusted to achieve better performance. We use
eye centers and inter-ocular distance as registration param-
eters. We consider the trade-off between information con-
tent and noise while determining the alignment parameters.
Face registration result on a sample input image is shown in
Fig. 3.

A critical issue in Gabor feature extraction is the selec-
tion of the resolution. Many face characteristics are fine
features; and would benefit from HR. However, using HR
images brings two disadvantages: First, dimensionality in-
crease brings computational load. Secondly, performance

of the system becomes very sensitive to landmark localiza-
tion and face registration errors. To prevent these setbacks
and still benefit from HR, we first perform full convolu-
tion of a CG wavelet with the HR face image to obtain the
CG magnitude images in different scales and orientations.
We then spatially partition each CG magnitude image into a
number of non-overlapping local blocks of size m×m (Fig.
3), and downscale the CG features in each block, by effec-
tively averaging the CG images. The spatial partitioning
overcomes the problem of local information loss, makes the
system robust to registration errors, and it also provides a
relatively lower dimensionality.

Figure 3. Feature extraction steps.

3.4. CG Classifiers

After obtaining CG features, we first perform Z-
normalization, defined in equation (4), prior to the subspace
analysis in order to centralize the data and normalize the
variance.

z = x́ =
x− µ
σ

(4)

where x is a feature vector, µ is the mean vector, and σ is
the standard deviation vector.

After the normalization, we perform PCLDA, that is ap-
plying PCA followed by LDA on each block’s normalized
features independently. Applying PCLDA results in N lo-
cal block classifiers based on nearest neighbor with normal-
ized cross correlation as distance metric. Then, the decision
of each block classifier, γi, is accumulated to form a single
image classifier as shown in equation (5).

Γ =
N∑
i=1

γi (5)

As stated in Section 3.2., there are 20 parameter con-
figurations by using combinations of 5 different curvature
degrees, c ∈ {0, 0.05, 0.1, 0.15, 0.2} and 4 different Gaus-
sian sizes, σ ∈ {0.5π, π, 1.5π, 2π}. For each parameter
setup, process described above is applied to generate 20 CG
classifiers.
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Figure 4. System block diagram.

3.5. Selection of CG Classifiers

Each of 20 CG wavelets is good at representing some
particular features; therefore, some classifiers have com-
plementary information when combined with others. This
means that fusing some of the CG classifiers can increase
classification performance. The optimal combination can
be found by exhaustive search, but this requires 220 tri-
als which is practically impossible. Another method is to
perform empirical selection that is simply fusing the clas-
sifiers with the highest VRs. However, it is important to
note that the VR of a classifier alone is not the best crite-
rion for determining the classifiers to be fused because the
idea is to find the best combination, providing as much com-
plementary information as possible. So we adapt a widely
used feature selection algorithm, Sequential Forward Float-
ing Search (SFFS) [16], for exploring this complementari-
ness.

SFFS-based classifier selection algorithm starts from a
null classifier set, and for each step, it adds the classifier
that maximizes the VR on the training set when combined
with the classifiers that have already been selected. The
algorithm also verifies the possibility of VR improvement
if a classifier is excluded.

SFFS-based classifier selection algorithm is as follows:

1. Initialization: Y0 = {∅}, V Rnew = 0, k = 0

2. While k < 20 and Ψ(Yk) ≤ V Rnew

• Inclusion of a classifier:
Γ+
LLR = argmax

ΓLLR /∈Yk
Ψ(Yk + ΓLLR)

If Ψ(Yk + Γ+
LLR) > V Rnew

– Update Yk+1 = Yk + Γ+
LLR

– V Rnew = Ψ(Yk + Γ+
LLR)

– k = k + 1

• Exclusion of a classifier (backtrack):
Γ−LLR = argmax

ΓLLR∈Yk
Ψ(Yk − ΓLLR)

If Ψ(Yk − Γ−LLR) > V Rnew

– Update Yk−1 = Yk − Γ−LLR
– V Rnew = Ψ(Yk − Γ−LLR)

– k = k − 1

3.6. Fusion of CG Classifiers

We perform log-likelihood ratio (LLR)-based score con-
version on the similarity scores of each individual classifier
to achieve a higher separability between matching and non-
matching classes. If the densities of these two distributions
are known, then LLR test achieves the highest VR for a
given FAR according to Neyman-Pearson Lemma [4]. Al-
though the real densities are not known, modeling them as
two Gaussian distributions with µdiff , Σdiff and µsame,
Σsame has proven to work successfully while fusing the
classifiers in [8]. In this study, we employ the same idea
for conversion of similarity scores as follows:

ΓLLR = log
N (Γ;µsame,Σsame)

N (Γ;µdiff ,Σdiff )
(6)

where the parameters, µdiff , Σdiff , µsame, Σsame, are
computed from the training set.

After LLR score conversion is applied on each of the
CG classifiers, the final classifier is obtained using simple
sum fusion of selected CG classifiers. In addition, we com-
bine classifiers trained on different local representations at
score-level by learning the weights with PLSR, a statistical
technique that generalizes and combines features from the
PCA and multiple regression [1]. We trained the PLSR on
a randomly generated subset of the training set.
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4. Experiments and Results

We evaluated our method on Face Recognition Grand
Challenge (FRGC) v2.0 database [15]. The training set
consists of 12,776 images from 222 individuals. We used
Exp. 4 protocol which is the most challenging experiment
because it contains uncontrolled conditions including large
illumination changes, out of focus, and partial occlusions.
The gallery and probe set of Exp. 4 consist of a single
still image per subject. It contains 8,014 uncontrolled query
images and 16,028 controlled target images from 466 sub-
jects. The performance measure is the VR at 0.1% FAR.
The performances are reported by three Receiving Opera-
tor Characteristic (ROC) curves which correspond to three
different time gaps. ROC I corresponds to the images col-
lected within a semester, ROC II within a year, and ROC III
between semesters.

FRGC dataset provides labels of salient facial features
such as eye centers and mouth corners. We use the pro-
vided eye labels to align the face images. More specifi-
cally, we align the face images into 128 × 160 pixels with
the eye distance being 72 pixels. After 2D CG filtering,
the resulting features are spatially partitioned into 20 non-
overlapping patches of 32×32 pixels. Since we use 5 scales
and 16 orientations, the dimensionality of each local block
is 32× 32× 5× 16 = 81, 920 (if c 6= 0), which is very high
compared to the number of subjects (222) in the training
set. So each local block is down-sampled by averaging the
magnitude values in an 8 × 8 grid, and the dimensionality
is reduced to 1280 (= 4 × 4 × 5 × 16). The resulting CG
features are Z-normalized before the subspace analysis.

4.1. Results on Individual CG Classifiers

As ROC III evaluates the matching with large time
gap (between semesters), we compared the ROC III per-
formance in the later experiments. The performances of
20 individual CG classifiers are shown in Fig. 5. The
best VR, 91.05%, is achieved by a conventional wavelet,
Γ(c=0.0,σ=π), while the worst VR, 81.36%, is achieved by
a curvature wavelet, Γ(c=0.2,σ=1.5π). The performances of
individual CG classifiers are comparable with most of the
existing systems. For example, the best individual CG clas-
sifier shows a better performance than the “T-shaped ECG
Classifier Bunch” (90.36%) [8], therefore, CG features with
local face modeling outperform the holistic CG features.

4.2. Results for Fusion of CG Classifiers

After LLR-based score conversion, which can improve
the performances of individual CG classifiers up to 0.4%, is
applied on each CG classifier, we select a set of them using
SFFS-based selection mechanism and fuse their similarity
scores with LLR fusion. Fig. 6 shows the effects of clas-
sifier selection and fusion. When there is no selection, that

Figure 5. The performances of individual CG classifiers and LLR-
based score conversion applied CG classifiers at Exp. 4.

is fusion of all 20 CG classifiers, we achieved 92.85% with
LLR fusion, 92.52% with simple sum fusion. When empiri-
cal selection, which is selecting the classifiers with the high-
est VRs, is used, the best VRs are 93.15% with LLR fusion
of 15 classifiers and 92.87% simple sum fusion of 4 clas-
sifiers. On the other hand, the best fusion performance is
achieved by SFFS-based classifier selection algorithm, and
we achieved 93.46% by LLR fusion of 8 classifiers.

Figure 6. Comparison of classifier selection and fusion methods.

We performed additional experiments to see whether a
different face representation provides complementary infor-
mation for verifying faces. We used another local face rep-
resentation based on discrete cosine transformation (DCT)
[5] as extra evidence. We combined the similarity matrix
obtained from this representation with our global CG clas-
sifier on score-level by performing weighted sum fusion.
Weights of final CG classifier and DCT classifier are learned
by PLSR analysis performed on the training data. In this
way, the VR is improved further to 94.16%.

4.3. Comparison with Previous Work

Table 4 summarizes the performances of previous stud-
ies under the same experiment. Earlier, holistic and homo-
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geneous approaches [9], [10] were proposed and their VRs
are 74%-76%. Then, researchers tended to combine dif-
ferent types of features and classifiers to improve the re-
sults. [19] introduced a method which utilizes DCT and
Gabor features, and [18] combined holistic Fourier and lo-
cal Gabor features. The best performances in the literature,
92.4%-92.5%, were achieved by [12] and [6]. [12] com-
bined 17 classifiers whose features were extracted by DCT,
LBP, and Gabor, separately. On the other hand, [6] com-
bined local Gabor classifiers obtained from different image
resolutions and a DCT classifier. In addition, [8] proposed
to boost holistic CG features on LR images with AdaBoost.

Method Features ROCIII(%)
[9]-2006 Holistic Fourier 74.33
[10]-2006 Holistic Gabor with KFA 76
[19]-2007 Holistic Gabor+LBP 83.6
[18]-2009 Holistic Fourier+Local Gabor 89
[12]-2009 Local Gabor+LBP+DCT 92.4
[6]-2010 Multi resolution Gabor+DCT 92.5
[8]-2011 Holistic ECG 90.36
Proposed Local CG 93.46
Proposed Local CG+Local DCT 94.16

Table 1. Performance comparison on FRGC v2.0 Exp.4 database.

Hence, our method outperforms all of the previous stud-
ies on the same dataset reported in the literature.

5. Conclusion

This paper presents a local appearance-based face verifi-
cation system that focuses on selecting and combining mul-
tiple Gabor classifiers that are trained on different scales
and local regions. Local facial appearance is modeled with
CG features in addition to conventional Gabor features. To
acquire complementary information in different scales, and
curvatures, we used different curvature ratios and Gaussian
sizes in feature extraction. Our final classifier is obtained
by combining selected classifiers using SFFS-based classi-
fier selection mechanism. In addition, we combine classi-
fiers trained on different local representations at score-level
by learning the weights with PLSR. The proposed system
was evaluated on FRGC v2.0 Exp. 4 data set. We achieved
94.16% VR @0.1% FAR, which is the best result reported
in the literature.
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