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Abstract

We consider the problem of actively learning multi-index functions of the form
f(x) = g(Ax) =

∑k
i=1 gi(a

T
i x) from point evaluations of f . We assume that

the function f is defined on an `2-ball in Rd, g is twice continuously differen-
tiable almost everywhere, and A ∈ Rk×d is a rank k matrix, where k � d. We
propose a randomized, active sampling scheme for estimating such functions with
uniform approximation guarantees. Our theoretical developments leverage recent
techniques from low rank matrix recovery, which enables us to derive an estima-
tor of the function f along with sample complexity bounds. We also characterize
the noise robustness of the scheme, and provide empirical evidence that the high-
dimensional scaling of our sample complexity bounds are quite accurate.

1 Introduction

Learning functions f : x → y based on training data (yi,xi)
m
i=1: R× Rd is a fundamental problem

with many scientific and engineering applications. Often, the function f has a parametric model,
as in linear regression when f(x) = aTx, and hence, learning the function amounts to learning the
model parameters. In this setting, obtaining an approximate model f̂ when d� 1 is challenging due
to the curse-of-dimensionality. Fortunately, low-dimensional parameter models, such as sparsity and
low-rank models, enable successful learning from dimensionality reduced or incomplete data [1, 2].

Since any parametric form is at best an approximation, non-parametric models remain as important
alternatives where we also attempt to learn the structure of the mapping f from data [3–15]. Unfortu-
nately, the curse-of-dimensionality problem in non-parametric function learning in high-dimensions
is particularly difficult even with smoothness assumptions on f [16–18]. For instance, learning
functions f ∈ Cs (i.e., the derivatives f ′, . . . , f (s) exist and are continuous), defined over compact
supports, require m = Ω((1/δ)d/s) samples for a uniform approximation guarantee of δ � 1 (i.e.,
‖f− f̂‖L∞ ≤ δ) [17]. Surprisingly, even infinitely differentiable functions (s =∞) are not immune
to this problem (m = Ω(2bd/2c)) [18]. Therefore, further assumptions on the multivariate functions
beyond smoothness are needed for the tractability of successful learning [13, 14, 16, 19].

To this end, we seek to learn low-dimensional function models f(x) = g(Ax) that decompose as

Model 1: f(x) =

k∑
i=1

gi(a
T
i x) |Model 2: f(x) = aT1 x +

k∑
i=2

gi(a
T
i x), (1)

thereby constraining f to effectively live on k-dimensional subspaces, where k � d. The models in
(1) have several important machine learning applications, and are known as the multi-index models
in statistics and econometrics, and multi-ridge functions in signal processing [4–7, 20–24].

In stark contrast to the classical regression setting where (yi,xi)
m
i=1 is given a priori, we posit the

active learning setting where we can query the function to obtain first an explicit approximation of
A and subsequently of f . As a stylized example of the active learning setting, consider numerical
solutions of parametric partial differential equations (PDE). Given PDE(f,x) = 0, where f(x):
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Ω → R is the implicit solution, obtaining a function sample typically requires running a computa-
tionally expensive numerical solver. As we have the ability to choose the samples, we can minimize
the number of queries to the PDE solver in order to learn an explicit approximation of f [13].

Background: To set the context for our contributions, it is necessary to review the (rather ex-
tensive) literature that revolve around the models (1). We categorize the earlier works by how the
samples are obtained (regression (passive) vs. active learning), what the underlying low-dimensional
model is (low-rank vs. sparse), and how the smoothness is encoded (kernels vs. Cs).
Regression/low-rank [3–7]: We consider the function model f(x) = g(Ax) to be kernel smooth
or Cs. Noting the differentiability of f , we observe that the gradients ∇f(x) = AT∇g(Ax) live
within the low-dimensional subspaces of AT . Assuming that ∇g has sufficient richness to span k-
dimensional subspaces of the rows of A, we use the given samples to obtain Hessian estimates via
local smoothing techniques, such as kernel estimates, nearest-neighbor, or spline methods. We then
use the k-principal vectors of the estimated Hessian to approximate A. In some cases, we can even
establish asymptotic distribution of A estimates but not finite sample complexity bounds.

Regression/sparse [8–12]: We add sparsity restrictions on the function models: for instance, we
assume only one coordinate is active per additive term in (1). To encode smoothness, we restrict
f to a particular functional space, such as the reproducing kernel Hilbert or Sobolev spaces. We
employ greedy algorithms, back-fitting approaches, or convex regularizers to not only estimate the
active coordinates but also the function itself. We can then establish finite sample complexity rates
with guarantees of the form ‖f − f̂‖L2

≤ δ, which grow logarithmically with d as well as match the
minimax bounds for the learning problem. Moreover, the function estimation incurs a linear cost in
k since the problem formulation affords a rotation-free structure between x and gi’s.

Active learning [13–15]: The majority of the (rather limited) literature on active non-parametric
function learning makes sparsity assumptions on A to obtain guarantees of the form ‖f−f̂‖L∞ ≤ δ,
where f ∈ Cs with s > 1.1 For instance, we consider the form f(x) = g(Ax), where the rows
of A live in a weak `q ball with q < 2 (i.e., they are approximately sparse).2 We then leverage
a prescribed random sampling, and prove that the sample complexity grows logarithmically with
d and is inversely proportional to the k-th singular value of a “Hessian” matrix Hf (for a precise
definition of Hf , see (7)). Thus far, the only known characterization for the k-th singular value of
Hf is for radial basis functions, i.e., f(x) = g(‖Ax‖2). Just recently, we also see a low-rank model
to handle f(x) = g(aTx) for a general a (k = 1) with a sample complexity proportional to d [15].

Our contributions: In this paper, which is a summary of [26], we take the active learning per-
spective via low-rank methods, where we have a general A with only Cs assumptions on gi’s.

Our main contributions are as follows:

1. k-th singular value of Hf [14,15]: Based on the random sampling schemes of [14,15], we
rigorously establish the first high-dimensional scaling characterization of the k-th singular
value of Hf , which governs the sample complexity in both sparse and general A for the
multi-index models in (1). To achieve this result, we introduce an easy-to-verify, new
analysis tool based on Lipschitz continuous second order partial derivatives.

2. Generalization of [13–15]: We derive the first sample complexity bound for the Cs func-
tions in (1) with arbitrary number of linear parameters k without the compressibility as-
sumptions on the rows of A. Along the way, we leverage the conventional low-rank mod-
els in regression approaches and bridge them with the recent low-rank recovery algorithms.
Our result also lifts the sparse additive models in regression [8–12] to a basis-free setting.

3. Impact of additive noise: We analytically show how additive white Gaussian noise in the
function queries impacts the sample complexity of our low-rank approach.

1Not to be confused with the online active learning approaches, which “optimize” a function, such as finding
its maximum [25]. In contrast, we would like to obtain uniform approximation guarantees on f , which might
lead to redundant samples if we truly are only interested in finding a critical point of the function.

2As having one known basis to sparsify all k-dimensions in order to obtain a sparse A is rather restrictive,
this model does not provide a basis-free generalization of the sparse additive models in regression [8–12].
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2 A recipe for active learning of low-dimensional non-parametric models

This section provides the preliminaries for our low-rank active learning approach for multi-index
models in (1). We first introduce our sampling scheme (based on [14, 15]), summarize our main
observation model (based on [6, 7, 14, 15]), and explain our algorithmic approach (based on [15]).
This discussion sets the stage for our main theoretical contributions, as described in Section 4.

Our sampling scheme: Our sampling approach relies on a specific interaction of two sets: sam-
pling centers and an associated set of directions for each center. We denote the set of sampling
centers as X = {ξj ∈ Sd−1; j = 1, . . . ,mX }. We form X by sampling points uniformly at random
in Sd−1 (the unit sphere in d-dimensions) according to the uniform measure µSd−1 . Along with
each ξj ∈ X , we define a directions vector Φj = [φ1,j | . . . |φmΦ,j ]

T , and construct the sampling
directions operator Φ for j = 1, . . . ,mX , i = 1, . . . ,mΦ, and l = 1, . . . , d as

Φ =

{
φi,j ∈ BRd

(√
d/mΦ

)
: [φi,j ]l = ± 1

√
mΦ

with probability 1/2

}
, (2)

where BRd
(√

d/mΦ

)
is the `2-ball with radius r =

√
d/mΦ.

Our low-rank observation model: We first write the Taylor series approximation of f as follows

f(x + εφ) = f(x) + ε 〈φ,∇f(x)〉+ εE(x, ε, φ); E(x, ε, φ) =
ε

2
φT∇2f(ζ(x, φ))φ, (3)

where ε � 1, εE(x, ε, φ) is the curvature error, and ζ(x, φ) ∈ [x,x + εφ] ∈ BRd(1 + εr). Substi-
tuting f(x) = g(Ax) into (3), we obtain a perturbed observation model (∇g(·) is a k × 1 vector):〈

φ,AT∇g(Ax)
〉

=
1

ε
(f(x + εφ)− f(x))− E(x, ε, φ). (4)

We then introduce a matrix X := ATG with G := [∇g(Aξ1)|∇g(Aξ2)| · · · |∇g(AξmX )]k×mX .
Based on (4), we then derive the following linear system via the operator Φ : Rd×mX → RmΦ

y = Φ(X) + ε; yi = ε−1
mX∑
j=1

[f(ξj + εφi,j)− f(ξj)] , (5)

where y ∈ RmΦ are the perturbed measurements of X with [Φ(X)]j = trace
(
ΦTj X

)
, and ε =

E(X , ε,Φ) is the curvature perturbations. The formulation (5) motivates us to leverage affine rank-
minimization algorithms [27–29] for low-rank matrix recovery since rank(X) ≤ k � d.

Our active low-rank learning algorithm Algorithm 1 outlines the main steps involved in our
approximation scheme. Step 1 constructs the operator Φ and the measurements y, given mΦ, mX ,
and ε. Step 2 revolves around the affine-rank minimization algorithms. Step 3 maps the recovered
low-rank matrix to Â using the singular value decomposition (SVD) and rank-k approximation.
Given Â, step 4 constructs f̂(x) = ĝ(Âx) as our estimator, where ĝ(y) = f(ÂTy).

Algorithm 1: Active learner algorithm for the non-parametric model f(x) = g(Ax)

1: Choose mΦ, mX , and ε and construct the sets X and Φ, and the measurements y.
2: Obtain X̂ via a stable low-rank recovery algorithm (see Section 3 for an example).
3: Compute SVD(X̂) = ÛΣ̂V̂T and set ÂT = Û(k), corresponding to k largest singular values.
4: Obtain an approximation f̂(x) := ĝ(Âx) via quasi interpolants where ĝ(y) := f(ÂTy).

Remark 1. We uniformly approximate the function ĝ by first sampling it on a rectangular grid:
hZk ∩ (−(1 + ε̄), (1 + ε̄))k with uniformly spaced points in each direction (step size h). We then
use quasi-interpolants to interpolate in between the points thereby obtaining the approximation ĝh,
where the complexity is exponential in k (see the tractability discussion in the introduction). We
refer the reader to Chapter 12 of [17] regarding the construction of these operators.
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3 Stable low-rank recovery algorithms within our learning scheme

By stable low-rank recovery in Algorithm 1, we mean any algorithm that returns an X̂ with the
following guarantee: ‖X−X̂‖F ≤ c1‖X−Xk‖F +c2‖ε‖2, where c1,2 are constants, and Xk is the
best rank-k approximation of X. Since there exists a vast set of algorithms with such guarantees, we
use the matrix Dantzig selector [29] as a running example. This discussion is intended to expose the
reader to the key elements necessary to re-derive the sample complexity of our scheme in Section 4
for different algorithms, which might offer additional computational trade-offs.

Stable embedding: We first explain an elementary result stating that our sampling mechanism
satisfies the restricted isometry property (RIP) for all rank-k matrices with overwhelming probabil-
ity. That is, (1−κk) ‖Xk‖2F ≤ ‖Φ(Xk)‖2`2 ≤ (1 +κk) ‖Xk‖2F , where κk is the RIP constant [29]).
This property can be used in establishing stability of virtually all low-rank recovery algorithms.

As Φ in (5) is a Bernoulli random measurement ensemble, it follows from standard concentration in-
equalities [30,31] that for any rank-k X ∈ Rd×mX , we have P(| ‖Φ(X)‖2`2−‖X‖

2
F | > t ‖X‖2F ) ≤

2e−
mΦ
2 (t2/2−t3/3), t ∈ (0, 1). By using a standard covering argument, as shown in Theorem 2.3 of

[29], we can verify that our Φ satisfies RIP with isometry constant 0 < κk < κ < 1 with probability
at least 1− 2e−mΦq(κ)+k(d+mX+1)u(κ), where q(κ) = 1

144

(
κ2 − κ3

9

)
and u(κ) = log

(
36
√

2
κ

)
.

Recovery algorithm and its tuning parameters: The Dantzig selector criteria is given by

X̂DS = arg min
M
‖M‖∗ s.t. ‖Φ∗ (y − Φ(M))‖ ≤ λ, (6)

where ‖·‖∗ and ‖·‖ are the nuclear and spectral norms, respectively, and λ is a tuning parameter. We
require the true X to be feasible, i.e., ‖Φ∗(ε)‖ ≤ λ. Hence, the parameter λ can be obtained via

Proposition 1. In (5), we have ‖ε‖`mΦ
2
≤ C2εdmXk

2

2
√
mΦ

. Moreover, it holds that ‖Φ∗(ε)‖ ≤ λ =

C2εdmXk
2

2
√
mΦ

(1 + κ)1/2, with probability at least 1− 2e−mΦq(κ)+(d+mX+1)u(κ).

Proposition 1 is a new result that provides the typical low-rank recovery algorithm tuning parameters
for the random sampling scheme in Section 2. We prove Proposition 1 in [26]. Note that the
dimension d appears in the bound as we do not make any compressibility assumption on A. If the
rows of A are compressible, that is (

∑d
j=1 |aij |

q
)1/q ≤ D1 ∀ i = 1, . . . , k for some 0 < q <

1, D1 > 0, we can then remove the explicit d-dependence in the bound here.

Stability of low-rank recovery: We first restate a stability result from [29] for bounded noise in
Theorem 1. We then exploit this result in Corollary 1 along with Proposition 1 in order to obtain the
error bound for the rank-k approximation X̂

(k)
DS to X in step 4 of our Algorithm 1:

Theorem 1 (Theorem 2.4 in [29]). Let rank(X) ≤ k and let X̂DS be the solution to (6). If κ4k <
κ <
√

2−1 and ‖Φ∗(ε)‖ ≤ λ, then we have with probability at least 1−2e−mΦq(κ)+4k(d+mX+1)u(κ)∥∥∥X̂DS −X
∥∥∥2

F
≤ C0kλ

2,

where C0 depends only on the isometry constant κ4k.

Corollary 1. Denoting X̂DS to be the solution of (6), if X̂
(k)
DS is the best rank-k approximation to

X̂DS in the sense of ‖·‖F , and if κ4k < κ <
√

2− 1, then we have∥∥∥X− X̂
(k)
DS

∥∥∥2

F
≤ 4C0kλ

2 =
C0C

2
2k

5ε2d2m2
X

mΦ
(1 + κ),

with probability at least 1− 2e−mΦq(κ)+4k(d+mX+1)u(κ).

Corollary 1 is the main result of this section, which is proved in [26]. The approximation guarantee
in Corollary 1 can be tightened if other low-rank recovery algorithms are employed in estimation of
X. However, we note again that the Dantzig selector enables us to highlight the key steps that lead
to the sample complexity of our approach in the next section.
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4 Main results
Overview: Below, we study mΦ, mX , and ε that together achieve and balance three objectives:

mX : Sampling centers X are chosen so that the matrix G has rank-k. This is critical in ensuring
that G explores the full k-dimensional subspaces as spanned by AT lest X is rank deficient.

mΦ: Sampling directions Φ (2) are designed to satisfy the RIP for rank-k matrices (cf., Section
3). This property is typically key in proving low-rank recovery guarantees.

ε: The step-size ε in (3) manages the impact of the curvature effects E in the linear system
(5). Unfortunately, this leads to a collateral damage of amplifying the impact of noise if the
queries are corrupted. We provide a remedy below based on sampling the same data points.

Assumptions: We explicitly mention our assumptions here. Without loss of generality, we assume
A = [a1, . . . ,ak]T is an arbitrary k × d matrix with orthogonal rows so that AAT = Ik, and the
function f is defined over the unit ball, i.e., f : BRd(1) → R.3 For simplicity, we carry out our
analysis by assuming g to be a C2 function. By our set up, g also lives over a compact set, hence all
its partial derivatives till the order of two are bounded as a result of the Stone-Weierstrass theorem:

sup|β|≤2

∥∥Dβg
∥∥
∞ ≤ C2; Dβg =

∂|β|

∂yβ1

1 . . . ∂yβkk
; |β| = β1 + · · ·+ βk,

for some constant C2 > 0. Finally, the effectiveness of our sampling approach depends on whether
or not the following “Hessian” matrix Hf is well-conditioned:

Hf :=

∫
Sd−1

∇f(x)∇f(x)T dµSd−1(x). (7)

That is, for the singular values of Hf , we assume σ1(Hf ) ≥ · · · ≥ σk(Hf ) ≥ α > 0 for some α.
This assumption ensures X has full rank-k so that A can be successfully learned.
Restricted singular values of multi-index models: Our first main technical contribution provides
a local condition in Proposition 2 that fully characterizes α for multi-index models in (1) below. We
prove Proposition 2 and the ensuing Proposition 3 in [26].
Proposition 2. Assume that g ∈ C2 : BRk → R has Lipschitz continuous second order partial
derivatives in an open neighborhood of the origin, Uθ = BRk(θ) for some fixed θ = O

(
d−(s+1)

)
,

and for some s > 0:∣∣∣∣ ∂2g
∂yi∂yj

(y1)− ∂2g
∂yi∂yj

(y2)

∣∣∣∣
‖y1 − y2‖`k2

≤ Li,j ∀y1,y2 ∈ Uθ,y1 6= y2, i, j = 1, . . . , k.

Denote L = max1≤i,j≤k Li,j . Also assume, ∂
2g(y)
∂y2

i

∣∣∣
y=0

6= 0 ∀i = 1, . . . , k for Model 1 and

∀i = 2, . . . , k for Model 2 in (1). Then, we have α = Θ(1/d) as d→∞.

The proof of Proposition 2 also leads to the following proposition for tractability of learning the
general set f(x) = g(Ax) without the particular modular decomposition as in (1):
Proposition 3. With the same Lipschitz continuous second order partial derivative assumption as
in Proposition 2, if∇2g(0) is rank-k, then we have α = Θ(1/d) as d→∞

Sampling complexity of active multi-index model learning: The importance of Proposition 2
and Proposition 3 is further made explicit in our second main technical contribution as Theorem 2
below, which characterizes the sample complexity of our low-rank learning recipe in Section 2 for
non-parametric models along with the Dantzig selector algorithm. Its proof can be found in [26].

3Unless further assumptions are made on f or gi’s, we can only identify the subspace spanned by the rows of
A up to a rotation. Hence, while we discuss approximation results on A, the reader should keep in mind that our
final guarantees only apply to the function f and not necessarily for A and g individually. Moreover, if f lives
in some other convex body other than BRd(1), say L∞-ball, our analysis can be extended in a straightforward
fashion (cf., the concluding discussion in [14]). We also assume that an enlargement of the unit ball BRd(1) on
the domain of f for a sufficiently small ε̄ > 0 is allowed. This is not a restriction, but is a consequence of our
scheme as we work with directional derivatives of f at points on the unit sphere Sd−1.
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Theorem 2. [Sample complexity of Algorithm 1] Let δ ∈ R+, ρ � 1, and κ <
√

2 − 1 be

fixed constants. Choose mX ≥
2kC2

2

αρ2 log(k/p1), mΦ ≥
log(2/p2) + 4k(d+mX + 1)u(κ)

q(κ)
, and

ε ≤ δ
C2k

5/2d(δ + 2C2

√
2k)

(
(1− ρ)mΦα

(1 + κ)C0mX

)1/2

. Then, given m = mX (mΦ + 1) samples,

our function estimator f̂ in step 4 of Algorithm 1 obeys
∥∥∥f − f̂∥∥∥

L∞
≤ δ with probability at least

1− p1 − p2.

Theorem 2 characterizes the necessary scaling of the sample complexity for our active learning
scheme in order to obtain uniform approximation guarantees on f with overwhelming probability:

mX = O
(
k log k
α

)
, mΦ = O(k(d + mX )), and ε = O

(
α√
d

)
. Note the important role played

by α in the sample complexity. Finally, we also mention that the sample complexity can be written
differently to trade-off δ among mX , mΦ, and ε. For instance, we can remove δ dependence in the
sampling bound for ε: let δ < 1, then we just need to scale mX by δ−2, and mΦ by δ−4.
Remark 2. Note that the sample complexity in [14] for learning compressible A is m =

O
(
k

4−q
2−q d

2
2−q log(k)

)
with uniform approximation guarantees on f ∈ C2. However, the authors

are able to obtain this result only for a restricted set of radial basis functions. Surprisingly, our
sample complexity for multi-index models (1) not only generalizes this result for general A but fea-
tures a better dimensional dependence for q ∈ (1, 2) : m = O

(
k3d2(log(k))2

)
. Of course, we

require more computation since we use low-rank recovery as opposed to sparse recovery methods.

Impact of noisy queries: Here, we focus on how α impacts ε in particular. Our motivation is to
understand how additive noise in function queries, a realistic assumption in many applications, can
impact our learning scheme, which will form the basis of our third main technical contribution.

Let us assume that the evaluation of f at a point x yields: f(x) + Z, where Z ∼ N (0, σ2). Thus
under this noise model, (5) changes to y = Φ(X) + ε + z, where z ∈ RmΦ and zi =

∑mX
j=1

zij
ε .

Assuming independent and identically distributed (iid) noise, we have zij ∼ N (0, 2σ2), and zi ∼
N
(

0, 2mXσ
2

ε2

)
. Therefore, the noise variance gets amplified by a factor of 2mX

ε2 .

In our analysis in Section 3, recall that we require the true matrix X to be feasible. Then, from
Lemma 1.1 in [29] and Proposition 1, it follows that the bound below holds with high probability.

‖Φ∗(ε+ z)‖ ≤ 2γσ

ε

√
2(1 + κ)mXmΦ +

C2εdmXk
2

2
√
mΦ

(1 + κ)1/2, (γ > 2
√

log 12). (8)

Unfortunately, we cannot control the upper bound λ on ‖Φ∗(ε+ z)‖ by simply choosing smaller ε,
due to the appearance of the (1/ε) term. Hence, unless σ isO(ε) or less, (e.g., σ reduces with d), we
can only declare that our learning scheme with the matrix Dantzig selector is sensitive to noise unless
we resample the same data points O(ε−1)-times and average. If the noise variance σ2 is constant,
this would keep the impact of noise below a constant times the impact of the curvature errors,
which our scheme can handle. The sample complexity then becomes m = O

(√
d/α

)
mX (mΦ +

1), since we choose mX (mΦ + 1) unique points, and then re-query and average the same points
O
(√

d/α
)

-times. Unfortunately, we cannot qualitatively improve the O
(√

d/α
)

-expansion for
noise robustness by simply changing the low-rank recovery algorithm since it depends on the relative
ratio of the curvature errors ‖ε‖2 to the norm of the noise vector ‖z‖. As Φ satisfies the RIP
assumption, we can verify that this relative ratio is approximately preserved in (8) for iid Gaussian
noise.

5 Numerical Experiments

We present simulation results on toy examples to empirically demonstrate the tightness of the sam-
pling bounds. In the sequel, we assume A to be row orthonormal and concern ourselves only with
the recovery of A upto an orthonormal transformation. Therefore, we seek a guaranteed lower
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bound on
∥∥∥AÂT

∥∥∥
F
≥ (kη)1/2 for some 0 < η < 1. Then it is possible to show, along the lines of

the proof for Theorem 2 (see [26]), we would need to pick ε as follows:

ε ≤ 1

C2k
2d(
√
k(1− η) +

√
2)

(
(1− ρ)mΦα(1− η)

(1 + κ)C0mX

)1/2

. (9)

Logistic function (k = 1) We first consider f(x) = g(aTx) where g(y) = (1 + e−y)−1 is the
logistic function. This case allows us to explicitly calculate all the necessary parameters within
our paper. For instance, we can easily verify that C2 = sup|β|≤2

∣∣g(β)(y)
∣∣ = 1. Furthermore we

compute the value of α through the approximation: α =
∫ ∣∣g′(aTx)

∣∣2 dµSd−1 ≈ |g′(0)|2 = (1/16),
which holds for large d. We require |〈â,a〉| to be greater then η = 0.99. We fix values of κ <

√
2−1,

ρ ∈ (0, 1) and ε = 10−3. The value of mX (number of points sampled on Sd−1) is fixed at 20 and
we vary d over the range 200–3000. For each value of d, we increase mΦ till |〈â,a〉| reaches
the specified performance criteria of η. We remark that for each value of d and mΦ, we choose ε
according to the derived equation (9) for the specified performance criteria given by η.

Figure 1 depicts the scaling of mΦ with the dimension d. The results are obtained by selecting a
uniformly at random on Sd−1 and averaging the value of |〈â,a〉| over 10 independent trials using
the Danzig selector. We observe that for large values of d, the minimum number of directional
derivatives needed to achieve the performance bound on |〈â,a〉| scales approximately linearly with
d, with a scaling factor of around 1.45.

Figure 1: Plot of mΦ
d

versus d for mX = 20 , with mΦ chosen to be minimum value needed to achieve
|〈â,a〉| ≥ 0.99. ε is fixed at 10−3. mΦ scales approximately linearly with d where the constant is 1.45.

Sum of Gaussian functions (k > 1) We next consider functions of the form f(x) = g(Ax +

b) =
∑k
i=1 gi(a

T
i x + bi), where gi(y) = (2πσ2

i )−1/2 exp
(
−(y + bi)

2/(2σ2
i )
)
. We fix d = 100,

ε = 10−3, mX = 100 and vary k from 8 to 32 in steps of 4. For each value of k we are interested

in the minimum value of mΦ needed to achieve 1
k

∥∥∥AÂ
∥∥∥2

F
≥ 0.99. In Figure 2(a), we see that

mΦ scales approximately linearly with the number of Gaussian atoms k. The results are averaged
over 10 trials. In each trial, we select the rows of A over the left Haar measure on Sd−1, and the
parameter b uniformly at random on Sk−1 scaled by a factor 0.2. Furthermore we generate the
standard deviations of the individual Gaussian functions uniformly over the range [0.1, 0.5].

Impact of Noise (k > 1) We now consider quadratic forms, i.e. f(x) = g(Ax) = ‖Ax− b‖2
with the point queries corrupted with Gaussian noise. Here, we take α to be 1/d. We fix k = 5,
mX = 30, ε = 10−1 and vary d from 30 to 120 in steps of 15. For each dwe perturb the point queries
with Gaussian noise of standard deviation: 0.01/d3/2. This is the same as repeatedly sampling each
random location approximately d3/2 times followed by averaging. We then compute the minimum

value of mΦ needed to achieve 1
k

∥∥∥AÂ
∥∥∥2

F
≥ 0.99. We average the results over 10 trials, and in

each trial, we select the rows of A over the left Haar measure on Sd−1. The parameter b is chosen
uniformly at random on Sk−1. In Figure 2(b), we see that mΦ scales approximately linearly with d,
which follows our sample complexity bound for mΦ in Theorem 2.
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(a) k > 1 (Gaussian) (b) k > 1 (quadratic) with noise

Figure 2: The empirical performance of our oracle-based low-rank learning scheme (circles) agrees
well with the theoretical scaling (dashed). Section 5 has further details.

6 Conclusions

In this work, we consider the problem of learning non-parametric low-dimensional functions
f(x) = g(Ax), which can also have a modular decomposition as in (1), for arbitrary A ∈ Rk×d
where rank(A) = k. The main contributions of the work are three-fold. By introducing a new anal-
ysis tool based on Lipschitz property on the second order derivatives, we provide the first rigorous
characterization of the dimension dependence of the k-restricted singular value of the “Hessian” ma-
trixHf for general multi-index models. We establish the first sample complexity bound for learning
non-parametric multi-index models with low-rank recovery algorithms and also analyze the impact
of additive noise to the sample complexity of the scheme. Lastly, we provide empirical evidence
on toy examples to show the tightness of the sampling bounds. Finally, while our active learning
scheme ensures the tractability of learning non-parametric multi-index models, it does not establish
a lowerbound on the sample complexity, which is left for future work.
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Supplementary Material for Active Learning of Multi-Index Function Models

Analysis of active learning of low-dimensional non-parametric models

In this supplementary material, we provide a collection of technical proofs. The parameters involved
our derivations are the dimension d of x, the number of linear parameters k, the smoothness constant
C2 for the underlying function g, and the conditioning parameter 0 < α < kC2

2 for Hf in (7).

A Proof of Proposition 1

Proof. By definition:

‖ε‖2`mΦ
2

=
ε2

4

∑
i=1

mΦ

∣∣∣∣∣∣
mX∑
j=1

φTi,j∇2f(ζi,j)φi,j

∣∣∣∣∣∣
2
 .

Then, the following holds true:∣∣φTi,j∇2f(ζi,j)φi,j
∣∣ =

∣∣φTi,jAT∇2g(Aζi,j)Aφi,j
∣∣

≤
∥∥∇2g(Aζi,j)

∥∥
F
‖Aφi,j‖2lk2 ≤

k2C2d

mΦ
.

Therefore,

‖ε‖2lmΦ
2
≤ ε2

4

(
mΦ∑
i=1

(
mXk

2C2d

mΦ

)2
)

=
ε2

4

m2
Xk

4C2
2d

2

mΦ
.

Let B = Φ∗(ε). We have ‖Φ∗(ε)‖ = supv,w∈SmX−1 |〈v,Bw〉| .

〈v,Bw〉 = Tr(vTBw) = Tr(BwvT )

= Tr(Φ∗(ε)wvT ) =
〈
vwT ,Φ∗(ε)

〉
=

〈
Φ(vwT ), ε

〉
≤ ‖ε‖lmΦ

2

∥∥Φ(vwT )
∥∥
l
mΦ
2

.

Since
∥∥Φ(vwT )

∥∥2

l
mΦ
2
≤ (1 + κ1) holds with probability at least 1 − 2e−mΦq(κ1)+(d+mX+1)u(κ1),

we arrive at the stated bound on ‖Φ∗(ε)‖. The stated bound is also valid for κ > κ4k > κ1.

B Proof of Corollary 1

Proof. Proposition 1 in conjunction with Theorem 1 gives us the following bound on∥∥∥X− X̂DS

∥∥∥2

F
: ∥∥∥X− X̂DS

∥∥∥2

F
≤ C0C

2
2k

5ε2d2m2
X

4mΦ
(1 + κ). (10)

In general, we can have rank(X̂DS) > k, thus we consider the best rank k approximation to X̂DS ,
in the sense of ‖·‖F . We then obtain the following error bound:∥∥∥X− X̂

(k)
DS

∥∥∥
F
≤
∥∥∥X− X̂DS

∥∥∥
F

+
∥∥∥X̂DS − X̂

(k)
DS

∥∥∥
F
≤ 2

∥∥∥X− X̂DS

∥∥∥
F
.

Here,
∥∥∥X̂DS − X̂

(k)
DS

∥∥∥
F
≤
∥∥∥X− X̂DS

∥∥∥
F

as X̂
(k)
DS is the best rank k approximation to X̂DS in the

sense of ‖·‖F . Finally using (10) we arrive at the stated bound.
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C Proof of Proposition 2

Before the main proof, we first need to cover some preliminaries.

We define α to be a lower bound on the smallest singular value of Hf in (7). Therefore, α is also
the smallest singular value of the following matrix:

Hg :=

∫
Sd−1

∇g(Ax)∇g(Ax)T dµSd−1(x).

We now note that the uniform measure µSd−1 on the sphere Sd−1 is a rotation invariant measure. For
instance, if we were to project the standard rotation invariant Gaussian measure on Rd onto Sd−1

through: x 7→ x/ ‖x‖ ; x ∈ Rd/ {0}, then the resulting measure would also be rotation invariant,
whereby coinciding with µSd−1 . We also observe that if we were to project the measure µSd−1

through any k × d matrix A with orthonormal rows then the resultant measure µk is also rotation
invariant and does not depend on the choice of A.

It is a well known fact that the push-forward measure of µSd−1 on the unit ball BRk is given by

µk =
Γ(d2 )

πk/2Γ(d−k2 )
(1− ‖y‖2`k2 )

d−k−2
2 Lk.

A proof of the above can be found for example in Section 1.4.4 of (W. Rudin. Function theory in
the unit ball of Cn. Springer Verlag, New York - Berlin, 1980.), where the case Cn is considered,
which also covers the case Rn. Based on this argument, we now arrive at the following equivalent
expression for Hg:

Hg :=
Γ(d2 )

πk/2Γ(d−k2 )

∫
BRk

∇g(y)∇g(y)T (1− ‖y‖2`k2 )
d−k−2

2 dy.

If the dimension d→∞ and if k is fixed, the measure µk concentrates around 0 exponentially fast.
That is, for an open ball BRk(θ) for a fixed θ ∈ (0, 1), we have

µk(BRk(θ))→ 1, exponentially fast as d→∞.
This phenomenon is the classical concentration of the measure µSd−1 for large dimension d. Infor-
mally stated, the measure µSd−1 concentrates around the equator of Sd−1 as d → ∞. This in turn
results in the concentration of the measure µk around a ball of smaller and smaller radius in Rk.
We can therefore intuitively observe that the conditioning of the matrix Hg for large d would be
determined predominantly by the behavior of g in a open neighborhood around the origin. We are
now ready to prove the proposition:

Proof. Denote ∂g
∂yi

= g′i and ∂2g
∂yi∂yj

= g′′ij . By writing the Taylor’s series of g′i and g′j around 0

we obtain

g′i(y) = g′i(0) +

k∑
l=1

ylg
′′
il(ζ),

g′j(y) = g′j(0) +

k∑
l=1

ylg
′′
jl(ζ)

where ζ depends on y. Denote Hg
i,j as the (i, j)th entry of Hg . We now obtain the following

expression for Hg
i,j :

Hg
i,j = h1 + h2 + h3, (11)

where
h1 = g′i(0)g′j(0), (12)

h2 =
Γ(d2 )

πk/2Γ(d−k2 )
[g′i(0)

k∑
l2=1

∫
BRk

yl2g
′′
jl2(ζ)(1− ‖y‖2`k2 )

d−k−2
2 dy+

g′j(0)

k∑
l1=1

∫
BRk

yl1g
′′
il1(ζ)(1− ‖y‖2`k2 )

d−k−2
2 dy], (13)
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and

h3 =
Γ(d2 )

πk/2Γ(d−k2 )

k∑
l1,l2=1

∫
BRk

yl1yl2g
′′
il1(ζ)g′′jl2(ζ)(1− ‖y‖2`k2 )

d−k−2
2 dy. (14)

We first focus on the term h3. For some 0 < θ < 1, let Uθ = BRk(θ) denote an open neighbor-
hood of the origin. Then due to concentration of measure phenomenon, µk(Uθ) → 1 as d → ∞,
typically exponentially fast. Hence for large d we have the following approximation for h3, where
the approximation error decays exponentially fast with dimension (see the end of the proof for the
rates):

∴ h3 ≈
Γ(d2 )

πk/2Γ(d−k2 )

k∑
l1,l2=1

∫
Uθ
yl1yl2g

′′
il1(ζ)g′′jl2(ζ)(1− ‖y‖2`k2 )

d−k−2
2 dy

= Bd,k

k∑
l1,l2=1

Iil1,jl2(d, k) (15)

where Iil1,jl2(d, k) =
∫
Uθ yl1yl2g

′′
il1

(ζ)g′′jl2(ζ)(1 − ‖y‖2`k2 )
d−k−2

2 dy and Bd,k =
Γ( d2 )

πk/2Γ( d−k2 )
. Now

from the Lipschitz continuity of ∂2g
∂yi∂yj

(y) we have:∣∣g′′ij(y)− g′′ij(0)
∣∣ < θL; i, j = 1, . . . k, ∀y ∈ Uθ (16)

Using (16) it is easy to verify the following for y ∈ Uθ:

g′′il1(0)g′′jl2(0)− C ≤ g′′il1(y)g′′jl2(y) ≤ g′′il1(0)g′′jl2(0) + C, (17)

where C = L2θ2 + 2C2θL. We now proceed to upper bound h3 by first considering Iil1,jl2(d, k):

Iil1,jl2(d, k) =

∫
Uθ:yl1yl2>0

yl1yl2g
′′
il1(ζ)g′′jl2(ζ)(1− ‖y‖2`k2 )

d−k−2
2 dy +∫

Uθ:yl1yl2<0

yl1yl2g
′′
il1(ζ)g′′jl2(ζ)(1− ‖y‖2`k2 )

d−k−2
2 dy

Using (17) we arrive at the following upper bound:

Iil1,jl2(d, k) ≤
∫
Uθ
yl1yl2g

′′
il1(0)g′′jl2(0)(1− ‖y‖2`k2 )

d−k−2
2 dy +

2C

∫
Uθ:yl1yl2>0

yl1yl2(1− ‖y‖2`k2 )
d−k−2

2 dy

Plugging the above bound on Iil1,jl2(d, k) in (15) we get:

h3 . Bd,k

k∑
l1,l2=1

∫
Uθ
yl1yl2g

′′
il1(0)g′′jl2(0)(1− ‖y‖2`k2 )

d−k−2
2 dy +

2CBd,k

k∑
l1,l2=1

∫
Uθ:yl1yl2>0

yl1yl2(1− ‖y‖2`k2 )
d−k−2

2 dy

≤ Bd,k
k∑
l=1

g′′il(0)g′′jl(0)

∫
Uθ
y2
l (1− ‖y‖2`k2 )

d−k−2
2 dy +

2CBd,k

k∑
l1,l2=1

∫
Uθ

(y2
l1 + y2

l2)(1− ‖y‖2`k2 )
d−k−2

2 dy
(
(y2
l1 + y2

l2)/2 ≥ yl1yl2
)

=

(
1

k

k∑
l=1

g′′il(0)g′′jl(0) + 4Ck

)
Bd,k

∫
Uθ
‖y‖2 (1− ‖y‖2`k2 )

d−k−2
2 dy (18)
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Proceeding similarly one can obtain the following lower bound:

h3 &

(
1

k

k∑
l=1

g′′il(0)g′′jl(0)− 4Ck

)
Bd,k

∫
Uθ
‖y‖2 (1− ‖y‖2`k2 )

d−k−2
2 dy. (19)

We now focus on the term h2. Similar to before, we have the following approximation for h2, where
the approximation error decays exponentially fast with dimension.

h2 ≈
Γ(d2 )

πk/2Γ(d−k2 )
[g′i(0)

k∑
l2=1

∫
Uθ
yl2g

′′
jl2(ζ)(1− ‖y‖2`k2 )

d−k−2
2 dy+

g′j(0)

k∑
l1=1

∫
Uθ
yl1g

′′
il1(ζ)(1− ‖y‖2`k2 )

d−k−2
2 dy], (20)

Now it is easily verifiable that∫
Uθ
yl2g

′′
jl2(ζ)(1− ‖y‖2`k2 )

d−k−2
2 dy =

∫
Uθ:yl2>0

yl2g
′′
jl2(ζ)(1− ‖y‖2`k2 )

d−k−2
2 dy+∫

Uθ:yl2<0

yl2g
′′
jl2(ζ)(1− ‖y‖2`k2 )

d−k−2
2 dy

< 2θL

∫
Uθ:yl2>0

yl2(1− ‖y‖2`k2 )
d−k−2

2 dy (21)

where (21) follows by making use of (16). Through a similar process on the second summation term
in (20) and by using |g′i(0)| ,

∣∣g′j(0)
∣∣ < C2 one obtains the following upper bound on h2.

h2 .
Γ(d2 )

πk/2Γ(d−k2 )
[4kC2θL

∫
Uθ
‖y‖ (1− ‖y‖2`k2 )

d−k−2
2 dy] (22)

One can similarly verify the following lower bound on h2.

h2 &
−Γ(d2 )

πk/2Γ(d−k2 )
[4kC2θL

∫
Uθ
‖y‖ (1− ‖y‖2`k2 )

d−k−2
2 dy]. (23)

Lastly the integral term in the above bound can be bounded from above as follows.∫
Uθ
‖y‖ (1− ‖y‖2`k2 )

d−k−2
2 dy =

2πk/2

Γ(k2 )

∫ θ

0

rk(1− r2)(d−k−2)/2dr

<
2πk/2

Γ(k2 )

∫ 1

0

rk−1(1− r2)(d−k−2)/2dr

=
πk/2Γ(d−k2 )

Γ(d2 )
.

Using this in (22) and (23) we obtain:

−4kC2θL . h2 . 4kC2θL. (24)

By re-writing (18), (19), (24) and combining with (12) we obtain (11) in matrix form:

Hg - ∇g(0)∇g(0)T + 4kC2θL11T + 4CkCd,k11T +
Cd,k
k
∇2g(0)∇2g(0)T , (25)

Hg % ∇g(0)∇g(0)T − 4kC2θL11T − 4CkCd,k11T +
Cd,k
k
∇2g(0)∇2g(0)T (26)

(27)

where Cd,k := Bd,k
∫
Uθ ‖y‖

2
(1− ‖y‖2`k2 )

d−k−2
2 dy and 1 is a k × 1 vector of all ones.
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Now, we show that Cd,k = Θ(1/d) as d→∞. By the change of variables: r = ‖y‖, we obtain

Cd,k =
2Γ
(
d
2

)
Γ (k/2) Γ

(
d−k

2

) ∫ θ

0

rk+1(1− r2)
d−k−2

2 dr.

It can be checked that:∫ θ

0

rk+1(1− r2)
d−k−2

2 dr ≤
∫ 1

0

rk+1(1− r2)
d−k−2

2 dr =
1

2

[
Γ(d−k2 )Γ(k+2

2 )

Γ(d+2
2 )

]
. (28)

One can also verify that:∫ 1

θ

rk+1(1− r2)
d−k−2

2 dr ≤
∫ 1

θ

rk−1(1− r2)
d−k−2

2 dr ≤ e−( d−k−2
2 )θ2

⇒
∫ θ

0

rk+1(1− r2)
d−k−2

2 dr ≥ 1

2

[
Γ(d−k2 )Γ(k+2

2 )

Γ(d+2
2 )

]
− e−( d−k−2

2 )θ2

. (29)

From (28) and (29) we get the following bounds for Cd,k:

Cd,k ≤
k

d
, Cd,k ≥

(
k

d
−

2Γ
(
d
2

)
Γ (k/2) Γ

(
d−k

2

)e−( d−k−2
2 )θ2

)
.

In other words, Cd,k = Θ(1/d) as d→∞.4

In (25), we have a summation of four terms. Let us first consider Model 1, where the first three
terms are rank-1 matrices with the last two vanishing as d grows. The fourth term is a full rank
diagonal matrix by assumption. In this case, denote V as the summation of the diagonal matrix
D =

Cd,k
k ∇

2g(0)∇2g(0)T and the rank-1 matrix E = ∇g(0)∇g(0)T : V = D + E. Since both
matrices are symmetric positive semidefinite, we can use the singular value interlacing theorem for
rank-1 perturbations (W. So, Rank one perturbation and its application to the Laplacian spectrum of
a graph, Linear and Multilinear Algebra, 1999), which states

σ1(V) ≥ σ1(D) ≥ σ2(V) ≥ σ2(D) ≥ . . . ≥ σk−1(D) ≥ σk(V) ≥ σk(D). (30)

Therefore, the order of the k-th largest singular value of V is bounded by the (k−1)-th and the k-th
largest singular values of D, which scale as Cd,k. In other words, σk(V) = Θ(1/d).

Moreover, using results for eigenvalue bounds for symmetric interval matrices (J. Rohn. A handbook
of results on interval linear problems. Technical Report, Czech Academy of Sciences, Prague, Czech
Republic, 2005), we have the following bounds on the singular values of Hg:

σi(V)− 4Ck2Cd,k − 4C2θLk
2 ≤ λi(Hg) ≤ σi(V) + 4Ck2Cd,k + 4C2θLk

2. (31)

It is easy to see in (31) that with θ = O(d−(s+1)) for some s > 0, the k-th singular value of Hg

would scale as Θ(1/d). This leads to the claimed scaling α = Θ(1/d) as d→∞.

The same scaling follows for Model 2 in a straightforward fashion since the only difference is in
the diagonal matrix term whose first entry is now zero. Similar arguments as above establish the
claimed scaling result.

D Proof of Proposition 3

Proof. The interlacing argument within the proof of Proposition 2 still holds if ∇2g(0) is rank-k.
The scaling remains the same, which concludes the proof.

4In order to obtain the concentration µk(Uθ) → 1, one can verify via a similar integral that characterizes

Cd,k that we need θ = O
(√

k log d
d

)
. All we have to do is replace k + 1 with k − 1.
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E Proof of Theorem 2

To prove the main approximation theorem, we first establish the approximation guarantees of A.
We then leverage this guarantee to obtain the approximation guarantee on f .

E.1 Approximation of A

In Section 3, we derive a rank-k approximation X̂
(k)
DS of the original rank-k matrix X with a bound

on the approximation error
∥∥∥X̂(k)

DS −X
∥∥∥
F

. Here, we are interested in recovering an approximation

Â to the matrix A from X̂
(k)
DS . Trivially, this can be achieved by setting Â to the left singular

vector matrix of X̂
(k)
DS . The purpose of the analysis here is to theoretically characterize the ensuing

approximation error.

Let the SVD of X and X̂
(k)
DS be X = ATG = ATUGΣGVT

G = AT
1 ΣGVT

G and X̂
(k)
DS = ÂT Σ̂V̂,

respectively. Then, Σ = diag(σ1, σ2, . . . , σk) and Σ̂ = diag(σ̂1, σ̂2, . . . , σ̂k) are diagonal matri-
ces with σ1 ≥ σ2 ≥ . . . σk and σ̂1 ≥ σ̂2 ≥ . . . σ̂k, respectively. Moreover, UG is a k × k unitary
matrix. The columns of AT

1 ,V
T
G and Â, V̂ are the singular vectors of X and X̂

(k)
DS , respectively.

Finally, we have σi =
√
λi(GGT ) where λi denotes the ith eigenvalue of

GGT =

mX∑
j=1

(
∇g(Aξj)∇g(Aξj)

T
)
. (32)

We now show that if
∥∥∥X− X̂

(k)
DS

∥∥∥
F

is driven to be smaller than a threshold then it leads to a proba-

bilistic lower bound on
∥∥∥AÂT

∥∥∥
F

. Lemma 1 precisely states this fact.

Lemma 1. For a fixed 0 < ρ < 1, mX ≥ 1, mΦ < mXd if ε <

1
C2k

2d(
√
k +
√

2)

(
(1− ρ)mΦα

(1 + κ)C0mX

)1/2

, then with probability at least 1 − k exp
{
−mXαρ

2

2kC2
2

}
−

2 exp {−mΦq(κ) + 4k(d+mX + 1)u(κ)} we have∥∥∥AÂT
∥∥∥
F
≥

(
k − 2τ2

(
√

(1− ρ)mXα− τ)2

)1/2

,

where τ2 =
C0C

2
2k

5ε2d2m2
X

mΦ
(1 + κ) is the error bound derived in Corollary 1.

Before beginning the proof of Lemma 1 we first recall the following theorem by J. A. Tropp (User
friendly tail bounds for matrix martingales. ArXiv e-prints, 2010.), which provides bounds on
the deviation behavior of the largest and smallest eigenvalues of the sum of independent positive
semidefinite random matrices.
Proposition 4. (Matrix Chernoff) Consider X1, . . . ,Xm independent positive semidefinite random
matrices of dimensions k × k. Assume that λ1(Xj) ≤ C, where λ1(Xj) ≥ · · · ≥ λk(Xj) represent
the eigenvalues of Xj . Denote the eigenvalues of the sum of the expectations as

λmax = λ1

 m∑
j=1

E[Xj ]

 and λmin = λk

 m∑
j=1

E[Xj ]

 .

Then, we have the following so-called user-friendly bounds

P

λk
 m∑
j=1

Xj

 ≤ (1− ρ)λmin


 ≤ k exp

(
−λminρ

2

2C

)
,∀ρ ∈ (0, 1),

P

λ1

 m∑
j=1

Xj

 ≥ (1 + ρ)λmax


 ≤ k(1 + ρ

e

)−λmax(1+ρ)
C

,∀ρ ∈ ((e− 1),∞).
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We now provide the proof of Lemma 1 below. For the lemma, we need Weyl’ s inequality (H.
Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichun-
gen. Mathematische Annalen, 71, 1912) and Wedin’s perturbation bound (P. Wedin. Perturbation
bounds in connection with singular value decomposition. BIT, 12, 1972).

Proof. Observe that by Weyl’s inequality we have |σ̂l − σl| < τ . Assuming τ < σk we have

min
l
{σl, σ̂l} ≥ (σk − τ).

Thus by applying Wedins perturbation bound we obtain the following bound on
∥∥∥ATA− ÂT Â

∥∥∥
F

:∥∥∥AT
1 A1 − ÂT Â

∥∥∥
F

=
∥∥∥ATA− ÂT Â

∥∥∥
F
≤ 2

(σk − τ)

∥∥∥X− X̂
(k)
DS

∥∥∥
F
≤ 2τ

(σk − τ)
.

We also have the following simplified expression for
∥∥∥ATA− ÂT Â

∥∥∥
F

:∥∥∥ATA− ÂT Â
∥∥∥2

F
= 2k − 2Tr(ATAÂT Â) = 2k − 2

∥∥∥AÂT
∥∥∥2

F
.

This leads to the following lower bound on
∥∥∥AÂT

∥∥∥
F

:

2k − 2
∥∥∥AÂT

∥∥∥2

F
≤ 4τ2

(σk − τ)2
⇔
∥∥∥AÂT

∥∥∥
F
≥
(
k − 2τ2

(σk − τ)2

)1/2

. (33)

For a non-trivial bound on
∥∥∥AÂT

∥∥∥
F

, we require the following to hold true:

k − 2τ2

(σk − τ)2
> 0⇔

√
k

2
>

τ

(σk − τ)
⇔ τ <

σk

√
k
2

(1 +
√
k
2 )
. (34)

Applying Proposition 4 on (32) and observing that C = kC2
2 , we have with probability at least

1 − k exp

(
−mXαρ

2

2kC2
2

)
that λk

(∑m
j=1 E[Xj ]

)
≥ mXα or equivalently σk ≥

√
(1− ρ)mXα

holds true. Thus conditioning on the above event, we see that (34) is ensured if

τ <

(√
(1− ρ)mXαk√
k +
√

2

)
. (35)

Also, plugging the above bound on σk in (33) we obtain the stated bound on
∥∥∥AÂT

∥∥∥
F

. Lastly,
observe that (35) is ensured if

ε <
1

C2k
2d(
√
k +
√

2)

(
(1− ρ)mΦα

(1 + κ)C0mX

)1/2

.

E.2 Approximation of f

We now have the necessary background to state our main approximation result for the function f .

Proof. We first observe that: f̂(x) = f(ÂT Âx) = g(AÂT Âx).

∴
∣∣∣f(x)− f̂(x)

∣∣∣ =
∣∣∣g(Ax)− g(AÂT Âx)

∣∣∣ ≤ C2

√
k
∥∥∥(A−AÂT Â)x

∥∥∥
`k2

≤ C2

√
k
∥∥∥A−AÂT Â

∥∥∥
F
‖x‖`d2 .

Now it is easy to verify that:∥∥∥A−AÂT Â
∥∥∥2

F
= Tr((AT − ÂT ÂAT )(A−AÂT Â)) = k − Tr(ATAÂT Â) = k −

∥∥∥AÂT
∥∥∥2

F
.
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Using Lemma 1 and the fact that ‖x‖`d2 ≤ 1 + ε̄, we arrive at

∥∥∥f − f̂∥∥∥
L∞
≤ C2

√
k(1 + ε̄)

( √
2τ√

(1− ρ)mXα− τ

)
,

Finally, to establish the claim in terms of δ in Theorem 2, we work our way backwards from the
approximation guarantee and obtain the stated bounds.
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