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Abstract

Location privacy is a major concern in pervasive networks where static device iden-

tifiers enable malicious eavesdroppers to continuously track users and their movements.

In order to prevent such identifier-based tracking, devices could coordinate regular iden-

tifier change operations in special areas called mix-zones. Although mix-zones provide

spatio-temporal de-correlation between old and new identifiers, depending on the po-

sition of the mix-zone, identifier changes can generate a substantial inconvenience (or

“cost”) to the users in terms of lost communications and increased energy consump-

tion. In this paper, we address this trade-off between privacy and cost by studying

the problem of determining an optimal set of mix-zones such that the degree of mixing

in the network is maximized and the overall network-wide mixing cost is minimized.

We follow a graph-theoretic approach and model the optimal mixing problem as a

generalization of the vertex cover problem, called the Mix Cover (MC) problem. We

propose three approximation algorithms for the MC problem and derive a lower bound

on the solution quality guaranteed by them. Additionally, we outline two other heuris-

tics for solving the MC problem. These heuristics are simple, but do not provide any

guarantees on the solution quality. By means of extensive empirical evaluation using

real data, we compare the performance and solution quality of these algorithms. The

combinatorics-based approach used in this work enables us to study the feasibility of

determining optimal mix-zones regularly and under dynamic network conditions.

∗An earlier version of this paper titled “Optimizing Mixing in Pervasive Networks: A Graph-Theoretic
Perspective” appeared in the Proceedings of the 16th European Symposium on Research in Computer Secu-
rity, Leuven, Belgium, September 12-14, 2011.
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1 Introduction

Rapid proliferation of embedded and portable wireless and mobile computing technology

has enabled a variety of pervasive and context-aware data-sharing applications including

vehicular safety messaging [53, 41], pervasive or local-area social networking [46, 4, 13],

dating [1, 2, 38], personal safety [44] and micro-blogging [23] applications. Wireless devices

in such networks, e.g., mobile phones or vehicle on-board units, can communicate directly

with each other using wireless peer-to-peer technology or they can communicate with each

other or third-party service providers by means of a deployed base station infrastructure.

Users of such pervasive applications continuously face location privacy risks at the hands

of malicious eavesdroppers and curious service providers. Users’ location information re-

vealed as a result of this threat can be used by malicious parties to track their movements

[12], preferences [22] or social affiliations [11]. It can be also used to identify users and their

availabilities by inferring their home/work locations [28], which can be later used for accom-

plishing malicious goals [3]. Third-party service providers, however, are generally trusted and

claim to utilize the collected personal and location information to further enhance context-

aware services but can inadvertently harm users’ privacy if the collected data is improperly

shared with commercial partners or leaked in an unauthorized fashion.

One frequently mentioned strategy to overcome these concerns, inspired by Chaum’s

seminal work on mix networks [16, 17], is to regularly mix [40] or change [34, 15] device

identifiers including application, IP and device MAC addresses. Most cellular networks

have adopted a similar approach; they identify a subscriber’s device with a Temporary

Mobile Subscriber Identity or TMSI which changes every time the subscriber moves to a

new geographical area.

In order to maximize location anonymity, mixing or changing of user identifiers should

occur in a spatiotemporal region, called mix-zone [9, 10]. While nodes are in the mix-zone,

they refrain from transmitting any information (or identifiers); on leaving the mix-zone,

communication resumes with a new identifier or pseudonym for each user or device. Mix-

zones serve to mix or provide de-correlation between pseudonyms and device associations,

which makes it difficult for an adversary to continuously track users by linking the device and

its pseudonym. In most real-life application scenarios, users move on a fixed (pre-defined)

network of roads, for example, vehicular or pedestrian hand-held networking scenarios. Thus,

it is important to study the effectiveness of mix-zone deployment from the perspective of

such road networks. Earlier research [14] has shown that mix-zones are most effective (in

protecting location privacy) when they are set at points with higher input and output ports,

such as road intersections.
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Although effective in improving the privacy of users, the pseudonym-change (or mix) op-

eration is not free and induces a cost on the network (and its users). This cost is determined

by factors such as the significance of the intersection (at which a mix-zone is located) to users

and the network, traffic intensity at the intersection (both entering and leaving) and inter-

section context, for example, time-of-day. This cost is primarily due to the communication

loss caused by routing disruptions [48] or silent periods [34] and the loss of computational

resources, such as energy, caused by the pseudonym change operation itself and its related

side-effects.

This results in an interesting trade-off between the number of mix-zones that can be

deployed on the road network for privacy enhancement and the resulting cost due to such

a deployment. An ideal situation from the privacy perspective, although infeasible from

the cost point-of-view, is to deploy a mix-zone at each and every intersection of the road

network under consideration. Such a deployment of mix-zones is trivial in theory, but difficult

to realize and sustain in practice due to the resulting costs. A more realistic and feasible

goal would be to maximize the coverage (of roads) of the deployed mix-zones, and hence the

privacy provided by them, and to minimize the associated costs due to such a deployment.

Moreover, the goal is not only to determine such an optimal and cost-efficient placement of

mix-zones, but also to study if there are algorithms that can find such a solution efficiently

(in computation time and space). As pseudonym change costs at intersections are highly

dynamic and depend on factors such as intersection context and traffic intensity, which

continuously change over time, there is a need to regularly determine the most cost-efficient

set of mix-zones. Before designing efficient algorithms, we first need to gain a thorough

theoretical understanding of the problem from a combinatorial perspective.

In this paper, we model the problem of optimal mix-zone placement as a graph-based

optimization problem where roads are represented as graph edges and intersections as ver-

tices. Each vertex is weighted based on the cost (per device) of mix-zone placement at the

corresponding intersection. Each edge is weighted based on the traffic intensity (or mix-zone

demand) of the corresponding road in each direction. The problem of optimal mix-zone

placement - we refer to it as the Mix Cover problem (MC) - is then to determine a set

of intersections (or vertices) for mix-zone placement, such that each road (connecting two

intersections) in the network is associated with at least one mix-zone and the network-wide

mixing cost due to such a placement of mix-zones is minimized. The mix cover problem is

a generalization of a well-known problem in combinatorics, called the Vertex Cover (VC)

problem [37]; The Facility Terminal Cover (FTC) problem discussed in [52] is a special

case of the mix cover problem. To the best of our knowledge, the mix cover generalization,

specifically in the setting of pervasive networks, has never been studied before. In this pa-
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per, we show that the Mix Cover problem is a combinatorially hard problem and propose

three bounded-ratio approximation algorithms for the same. The first algorithm is based

on a linear programming relaxation of an Integer Program (IP) formulation of the problem,

whereas the remaining two algorithms take advantage of the “divide and conquer” strategy

which was used in [52] to solve the FTC problem. We analytically study the solution quality

and running-time guarantees of these algorithms by deriving their worst-case approxima-

tion ratio and running-time, respectively. These algorithms are able to guarantee a solution

quality on specific graph instances of the Mix Cover problem, i.e., graph instances where the

demand values are greater than or equal to 2. But in the Mix Cover problem, as the demand

values of the graph instances are derived from (or represent) the traffic intensities on roads

connecting intersections, they can be accordingly scaled to meet this requirement. We also

outline two other heuristics for solving the mix-cover problem; the first is based on a greedy

strategy, while the second is based on a simulated annealing strategy. These heuristics are

straightforward implementation-wise and run much more efficiently, but do not provide any

guarantees on the solution quality. Finally, we perform an extensive comparative analysis of

the performance of the proposed algorithms by evaluating them on real road-traffic data of

three US states.

2 Background and Related Work

In the following section, we provide a brief overview of some concepts from complexity theory

and combinatorial optimization that we use throughout the paper. After that, we outline

other related research efforts on the optimal mix-zone placement problem.

2.1 Preliminaries: Combinatorial Hardness and Approximations

A decision problem S is said to have an efficiently verifiable proof system if there exists a

polynomial p and a polynomial-time verification algorithm V such that the following two

conditions hold:

• Completeness: For every input x ∈ S, there exists y of length at most p(|x|), i.e.,

polynomial in terms of the size of the input, such that V (x, y) = 1.

• Soundness: For every x /∈ S and every y, it holds that V (x, y) = 0.

The class NP is the class of decision problems that have an efficiently verifiable proof system.

A polynomial-time computable function f is called a Karp-reduction of S to S ′ (in other

words, S is Karp reducible to S ′) if, for every x, it holds that x ∈ S if and only if f(x) ∈ S ′.
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A set S is NP -complete if it is in NP and every set in NP is Karp-reducible to it. A

set S is NP -hard if every set in NP is Karp-reducible to it, but its membership within

NP is not known. It is not known whether every problem in NP can be efficiently (in

polynomial time) solved. But, if any single problem in the set of NP -hard problems can be

solved efficiently, then every problem in NP can also be solved efficiently. Thus, NP -hard

problems are considered “harder” than NP problems in general, and are believed to have no

polynomial-time exact solutions. Algorithms for such hard problems, also called optimization

problems, that run in polynomial time and produce a near-exact or sub-optimal solution are

called approximation algorithms. Approximation algorithms that can guarantee that the

solution output by them can be no more (if minimization problem) or less (if maximization

problem) than a factor σ times the optimal solution are called σ-approximation algorithms.

More details on these topics can be found in [24, 27].

2.2 Location Privacy and the Mix-Zone Placement Problem

The idea of using mix-zones as a means to improve the location privacy of mobile devices in

road networks has been well established in the literature [34, 14, 20]. Freudiger et al. [21]

were the first to study and formulate the problem of optimal mix-zone placement in road

networks. In their work, the authors measure the effectiveness of mixing by measuring the

probability of error of an adversary in correctly assigning exiting flows to their corresponding

entering flows at a mix-zone. By using linear programming, they determine an optimal set of

mix-zones that maximize the overall mixing effectiveness. In contrast, our model and solution

is more general as we study the trade-off between maximizing the coverage of mix-zones and

minimizing their deployment cost.

In another related effort, Alpcan and Buchegger [5] use game theory to model the attack

and optimal defense strategies of the adversary and users in vehicular networks. Humbert

et al. [36] also study the problem of optimal mix-zone placement from a game-theoretic

perspective. They model the problem of mix-zone placement as a game between mobile

users who want to protect their privacy and a local adversary who wants to track them by

strategically placing eavesdropping stations. In [36], the authors focus on deriving mix-zone

deployment strategies locally at each intersection, whereas in our work, we study the prob-

lem of achieving a globally optimal deployment strategy. Palanisamy et al. [43] propose a

framework and a suite of algorithms for mix-zone construction, which considers the inher-

ent characteristics of road networks. Similar to earlier results, these mix-zone deployment

strategies protect against specific adversarial attacks and only consider local intersection

parameters for mix-zone deployment.
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There has been extensive research on techniques for analyzing the extent and implica-

tions of location privacy loss from collected (or disclosed) location traces. For example,

Bindschaedler et al. [12] examine location traces collected from a real experiment consist-

ing of smartphone users in order to study the effect of deterministic identifier mixing on the

anonymity of user movements. One of the widely used metric to quantify the trace anonymity

of users’ is k-anonymity, which guarantees that a particular user’s location (or trace) is in-

distinguishable from k other users. Nergiz et al. [42] adopt the notion of k-anonymity (from

databases) to trajectories and propose a novel generalization-based approach for anonymiza-

tion of trajectories. They show that releasing anonymized trajectories in such a fashion may

still have some privacy leaks and propose a randomization-based reconstruction algorithm

in order to overcome those leaks. In another related effort, Hoh et al. [32] outline a new

metric for quantifying the location privacy of users in location traces which is based on the

length of time a user can be successfully tracked. They further propose a privacy-preserving

algorithm to maximize (based on this metric) the anonymity of users in the collected location

traces. In our work, contrary to the above approaches, we focus more on real-time privacy

guarantees rather than guarantees on collected location traces. Gedik et al. [25] propose a

system for guaranteeing a personalized level of anonymity in Location-based Services (LBS),

but their approach is restricted to real-time location-based queries whereas we focus on a

pervasive scenario where any communication sent by a user can be used to infer its position.

In this paper, we make the following novel contributions. We study the problem of optimal

mix-zone deployment from a global (network-wide) perspective. Our network model and

problem formulation is general enough and can be easily extended to include other privacy

metrics [49, 50], in addition to the basic mix-zone coverage guarantee. The analytical results

obtained in this paper would help shed light on the feasibility of determining an optimal

mix-zone deployment autonomously by mobile devices in dynamic real-time road-network

settings. Finally, the results presented in this paper are significant from the combinatorics

viewpoint.

3 Problem Statement

3.1 System Model

We consider a pervasive networking scenario where mobile users (or vehicles), equipped

with wireless communication devices that are capable of communicating both in ad-hoc

and infrastructure mode, obtain context-based services on their devices. Examples of such

networking systems include, but are not limited to, wireless peer-to-peer mobile-phone based
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social networking platforms, such as Nokia Instant Community (NIC) [46], and vehicle-based

wireless communication systems or VANETs [26]. Each mobile device in the network includes

some identifying information, such as a MAC address or an application-level identifier, in

all of its communications. Such identifiers or pseudonyms are used for identifying the device

and for routing communications within the network [45].

In order to prevent trivial tracking by an eavesdropping adversary, wireless devices regu-

larly change their identifiers or pseudonyms. Various techniques for privacy protection, which

use multiple pseudonyms or identifiers, have been studied in the literature [10, 40, 14, 15]. In

order to prevent trivial linkability of old and new pseudonyms and achieve spatio-temporal

de-correlation between users and their identifiers, devices must coordinate their pseudonym

changes with other physically co-located or neighboring devices. Such regions for achieving

spatial and temporal de-correlation of devices and (old and new) pseudonyms are also re-

ferred to as mix-zones [10]. In a mix-zone, spatial de-correlation is achieved by colocated

mobile device(s) changing their pseudonyms in a coordinated fashion while temporal de-

correlation is achieved by either (i) remaining silent for a short random period of time [34],

(ii) by encrypting communications after the pseudonym change operation [20], or (iii) by

means of a mobile proxy [47]. Mix-zones can be passive or active, depending on the actions

taken by the devices immediately after the pseudonym change operation [36]. We assume

that an off-line Certification Authority (CA), run by an independent trusted third-party,

loads the mobile devices with a set of pseudonyms prior to deployment.

Road intersections are considered as good spots for mix-zone deployment in road networks

because they provide higher spatio-temporal de-correlation as compared to other areas [21,

36]. However, mix-zones incur significant overhead [48] and must be optimally placed (with

appropriate parameters [35]) in order to reduce the cost induced on the end-users and to

provide high location privacy (or high user-identifier de-correlation). The cost of deploying

a mix-zone at any intersection can be a weighted sum of various factors, including the extra

resource requirements of devices for mixing and the resulting communication disruption due

to mixing at that intersection. We do not quantify these parameters in this work, but we

can use existing results in the literature for representing these costs [48, 36].

We assume that all the intersections, over the area under consideration, are connected

with each other by a network of road segments. Each road segment can be used to reach

either one of the intersection that it connects, i.e., there is a two-way movement of users (or

devices, vehicles, etc.) on the road. The demand for an intersection on a road segment is

the average number of users using that road segment to reach that particular intersection.

Thus, each road segment has two demands; one for each intersection connected by that

road segment. Accordingly, unidirectional roads have just one demand, i.e., the one in the
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direction of the intersection; the other demand is zero. For simplicity, we assume that

any two intersections are connected only by a single road segment; multiple roads between

any two intersection can be combined into a single road by simply adding their respective

demands.

3.2 Privacy Requirement

Given the system model outlined above, we want to address the problem of determining

an optimal selection of intersections for mix-zone deployment such that all the roads in the

network are covered and the overall cost due to mixing is minimized. In other words, we want

to determine the most effective and cost-efficient mixing strategy in large road networks. We

say that a road segment is fully-covered if and only if both the end points (intersections) of

the road segment have mix-zones deployed on it, i.e., there is mixing at both intersections

of the road. A network is said to be fully-covered (or has a full cover) if and only if all the

road segments in the network are fully-covered.

It is easy to see that in the system model discussed above, a full covering of the network

can only be achieved if and only if all the intersections in the network are selected for mixing

or mix-zone deployment. Such a mixing or full covering strategy is not only trivial but

also ideal from the privacy viewpoint. But from a cost perspective, such a covering may be

difficult to achieve (or even infeasible) due to the network size and the network-wide mixing

cost.

Let us now define a more general version of the full cover, called the mix cover. A network

is said to be mix covered if and only if each of the road segments in the network have at least

one of its intersections where a mix-zone is deployed. A fully-covered network is also mix

covered and some of the road segments in a mix covered network may be fully-covered, i.e.,

both the intersections of the road segment may have mix-zones deployed. From the privacy

perspective, a mix covered network can guarantee that any user (or device) traversing the

road network can traverse at most two road segments (or at most one intersection) without

encountering a mix-zone. From the practical standpoint, a mix cover is a reasonable mixing

strategy for most deployment scenarios and adversarial models. We focus on the problem of

determining a cost-efficient mix cover by modeling it as a graph-based optimization problem,

as discussed next.
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3.3 Graph-theoretic Framework and the Mix Cover (MC) Prob-

lem

Let us represent the road network described above by an undirected graph G ≡ (V,E,w, d).

Each intersection on the road network is represented by a vertex v ∈ V of G, and |V | = n

is the total number of intersections (vertices1) within the area of the road network under

consideration. Each road segment connecting any two intersections u and v is represented

by an undirected edge e ≡ (u, v) ∈ E, where E is the set of all edges (or roads) and |E| = m

is the total number of roads (edges). There exists only a single edge (u, v) between any pair

of vertices u and v in G. Given the undirected graph G, let w : V → R+ be the cost function

that assigns a positive cost to each vertex. The cost at each vertex represents the average

cost (per user) of mix-zone deployment (or mixing) at that intersection; the higher the cost,

the higher the amount of communication and device resources spent by each user for mixing

at that intersection is. We represent by wu the cost of a vertex u ∈ V . Let d : E → (R+,R+)

be the demand function that assigns a pair of positive demands to each edge where each

demand value in the pair represents the demand for a particular vertex connected by the

edge. This demand pair could represent, in the case of vehicular (or pedestrian) networks,

the average traffic (or pedestrian) intensity on the road segment in each direction. For any

edge e(u, v) ∈ E, we represent the demand as de = (due , d
v
e), where due , d

v
e is the demand on

edge e for intersections u and v, respectively. The value of due = 0 if u is not one of the end

points of the edge e.

Given the above graph representation of the road network, we are interested in the

problem of efficiently determining the optimal mix cover of the network. Each vertex chosen

in the mix cover should be able to handle the demands of all the edges it covers. In other

words, each intersection should be able to accommodate even the largest demand made at it;

we refer to this ability of each intersection as the capacity of the mix-zone at that intersection.

The capacity at a vertex is zero if there is no mix-zone at that vertex. The optimality criteria

is based on an assignment of capacities to vertices or intersections such that the demands of

all edges are met and the overall cost minimized. Formally, we can represent the problem

of determining the optimal mix cover, referred by us as the Mix Cover (MC) problem, in

the graph G ≡ (V,E,w, d) as a generalization of the Vertex Cover (VC) problem. VC is a

fundamental problem in graph theory and a vertex cover of an undirected graph G ≡ (V,E)

is a subset of vertices VC ⊆ V which contains at least one vertex of all the edges in E and the

VC problem is to determine a vertex cover VC of the smallest cardinality. The VC problem

1Readers should note that from this point on we will use “vertex” and “intersections” (similarly, “road
segment” and “edge”) interchangeably and the intended meaning will be implicit from the context.
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Figure 1: Mix Cover example on downtown Miami (FL). On the left, the dark circles indicate
all intersections where mix-zone placement is possible. The graph representation is shown in
the middle and a feasible mix cover is shown on the right, where the dark circles are included
in the solution and the shaded circles are not.

is NP -hard and the decision version of the same is known to be NP -complete [37]. The Mix

Cover (MC) problem can be formally defined as:

Mix Cover: Given an undirected graph G ≡ (V,E,w, d), where w is the cost function

associated with the set of vertices and d is the demand function associated with the set of

edges, determine a subset VMC ⊆ V and a capacity c(v) for each vertex v ∈ VMC such that

for each edge e ≡ (u, v) ∈ E at least one of the vertices u or v is in VMC and associated with

a capacity c(u) ≥ due or c(v) ≥ dve respectively, and the total weighted cost,
∑

x∈VMC
c(x)wx,

of all vertices in VMC is minimized.

Thus, given a graph G ≡ (V,E,w, d) of the road network, the MC problem determines a

mix cover of the network such that the overall (network-wide) weighted cost of the mix cover

is minimized. The total intersection cost at each intersection v is the intersection mixing

cost wv times the capacity c(v) at v. The capacity at any intersection v is at least the

maximum demand at that intersection from all roads covered by it. The overall (network-

wide) weighted cost of the mix cover is the sum of all the total intersection costs at each

intersection in the mix cover. Figure 1 shows one such feasible solution.

The MC problem is very similar to another generalization of the VC problem called the

Facility Terminal Cover (FTC) problem [52, 31], but there is an important difference between

the two problems. Given a graph G ≡ (V,E,w, d), where w : V → R+ and d : E → R+

(denoted as wv and de for vertex v and edge e, respectively), the FTC problem is to find
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a set VFTC ⊆ V and a capacity c(v) for each vertex v ∈ VFTC such that for each edge

e ≡ (u, v) ∈ E at least one of the vertices u and v is in VFTC and associated with a capacity

c(u) ≥ de, and the total weighted capacity
∑

x∈VFTC
c(x)wx is minimized. As we can see

from the FTC problem definition, the assumed graph model assigns only a single demand

value to every edge. As a result, the selected capacity for covering any edge depends only on

the demand value of the edge. This is different from the MC problem where each edge has

two demand values and the selected capacity for covering any edge depends on the (demand

value associated with the) vertex that is used to cover that edge. The FTC problem can

be considered as a special case of the MC problem, i.e., the MC problem reduces to the

FTC problem when both the demand values are equal for all the edges in the graph. The

formulation and algorithms of the FTC problem cannot be directly used to solve the much

more general MC problem; although we will use one of the solution strategies [52] of the

FTC problem for solving the MC problem.

There is another generalization of the VC problem called the minimum Generalized Ver-

tex Cover (GVC) problem [30]. In GVC, contrary to VC, an edge incurs a cost (or demand,

as in our case) depending on the number of its vertices that belong to the solution. Once

again, such a generalization of the VC is different from the one that we are interested. In

our case, the demand incurred by the edge does not depend on the number of its vertices in

the solution, rather it depends on which vertex is included in the solution. To the best of

our knowledge, this is the first paper to model and study the problem of optimal mixing or

mix-zone placement in pervasive networks as a generalization of the VC problem.

4 Algorithms and Combinatorial Results

Let us first understand the combinatorial hardness of the MC problem. We derive the

following result for the hardness of the MC problem.

Theorem 4.1 The MC problem is NP-hard.

The proof of Theorem 4.1 is straightforward, as we can easily reduce any instance of the

vertex cover (VC) problem to an instance of the MC problem in polynomial time. This can

be done by defining a simple demand function for the graph instance of the vertex cover

problem as de ≡ (due = 1, dve = 1),∀e, where e ≡ (u, v) is an edge of the graph instance. Each

vertex u ∈ V can be assigned a weight wu = 1 (or all vertices can also be assigned the same

weight value greater than 1). Thus, as the VC problem is NP-hard, we can claim that the

MC problem is also NP-hard. The MC problem also seems difficult to approximate and we

do not believe it has a Polynomial-Time Approximation Scheme (PTAS). This is because
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the VC problem itself, which is considered to be much simpler than the MC problem, is not

believed to have an approximation ratio within 1.3606 unless P = NP [18]. In the following

sections, we outline two approximation strategies for the MC problem. The first is based on

a linear programming formulation of the problem, whereas the other two algorithms employ

a “divide and conquer” strategy by utilizing the round and group approach for solving the

FTC problem [52].

4.1 Linear Programming Algorithm

The MC problem can be easily formulated as an Integer Program (IP), more specifically a

0-1 Program. Let zve be a binary decision variable for each edge e and its corresponding

vertex v which indicates whether the vertex v is included in the mix cover (solution) to cover

edge e or not, i.e., zve = 1 if edge e is covered by vertex v and zve = 0 if not. Let xv be

the decision variable indicating the capacity and wv indicate the cost of each vertex v ∈ V .

Then, the IP formulation of the MC problem can be obtained as follows:

min
∑
v∈V

wvxv

subject to zue + zve ≥ 1,∀e ≡ (u, v) ∈ E

xv ≥ zved
v
e ,∀v ∈ V, e ∈ E

zve ∈ {0, 1},∀v ∈ V, e ∈ E

Now, solving an Integer Program is a well-known hard problem [37]. But, efficient (poly-

nomial time) techniques [7] for solving a Linear Program (LP) relaxation of the Integer

Program exists. If the LP relaxation has an integral solution then that can also be the

solution to the above IP. In general, solving the LP relaxation of the problem can give a

fractional feasible solution, from which a feasible (and possibly non-optimal) solution to the

above IP can be obtained. The LP relaxation of the problem is as shown below:

min
∑
v∈V

wvxv

subject to dvexu + duexv ≥ dued
v
e ,∀e ≡ (u, v) ∈ E

xv ≥ 0,∀v ∈ V

Let (x̄, {z̄e|∀e ∈ E}) be an optimal solution to the above LP formulation, where ze,i = xi

die
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is the entry of the vector z̄e representing the value of the decision variable corresponding to

vertex i (to cover edge e), and xj is the jth entry of x̄ and represents the capacity value at

the vertex j. The value of ze,i = 0 if i is not a vertex in edge e. We can see that any optimal

solution (x̄, {z̄e}) produced by solving the above LP is a feasible fractional solution to the

MC problem. It is also clear that an optimal solution OPT to the MC problem is always a

feasible solution to the above LP formulation. Thus, the above LP relaxation for the MC

problem is correct. Based on this, we can prove the following bound on the approximation

quality for the MC problem.

Theorem 4.2 There exists a polynomial time 2-approximation for MC.

Proof for Theorem 4.2 For the sake of convenience, let us denote the IP formulation of

the MC problem as IP-MC and its LP relaxation as LP-MC. It is easy to see that any

optimal solution OPT to IP-MC is also a feasible solution to the LP-MC and has the same

objective function value. Moreover, LP-MC is indeed a relaxation of IP-MC and an optimal

solution (x̄, {z̄e}) to LP-MC is a feasible fractional solution to IP-MC. Thus, we can see that

the value of the objective function (as the objective functions for both the formulations are

the same) of an optimal solution (x̄, {z̄e}) to LP-MC is at most that of the optimal solution

OPT to IP-MC. Now, given the optimal solution (x̄, {z̄e}) to LP-MC, we know that for any

e ≡ (u, v) ∈ E, as ze,u + ze,v ≥ 1, at least one of the following ze,u ≥ 1
2

or ze,v ≥ 1
2

is true.

Let us apply the following transformation δ to (x̄, {z̄e}): If ze,i ≥ 1
2
, for any e and i, then

δ(ze,i) = 1 and if ze,i <
1
2

then put δ(ze,i) = 0. Also, δ(xi) = 2xi if for any i ∈ V there is

δ(ze,i) = 1.

It is easy to see that δ(x̄, {z̄e}) is a feasible solution to the IP-MC problem. Moreover,

the linearity of the objective function guarantees that the objective function value (or the

total weighted cost) of δ(x̄, {z̄e}) is at most twice the objective function value of (x̄, {z̄e}).
As the cost of (x̄, {z̄e}) is at most OPT , the cost of δ(x̄, {z̄e}) is at most two times the cost of

OPT , i.e., δ(x̄, {z̄e}) ≤ 2 · OPT . Thus, δ(x̄, {z̄e}) is a 2-approximation of the MC problem.

Moreover, as LP-MC can be solved in polynomial time [7], the proof follows.

Theorem 4.2 shows that a constant ratio approximation is possible for the MC problem.

Efficient algorithms for solving linear programs, such as Ye’s Interior Point method [54],

require polynomial (in number of constraints) number of iterations and work well in practice.

Traditional algorithm such as Simplex (or randomized Simplex) could also be used, but

Klee and Minty [39] showed that the number of iterations performed by some variants of

the simplex can be exponential. Moreover, there is always a possibility, depending on the

demand values, of the method producing an unbounded or an infinite number of solutions.
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To overcome these problems, we take advantage of a deterministic linear-time (in number of

edges) approach for FTC proposed by Xu et al. [52], as discussed next.

4.2 “Divide and Conquer” Algorithms

In their algorithm, Xu et al. divide the input graph instance into multiple subgraphs by first

rounding the edge demands and then grouping them based on the rounded edge values. They

then apply the Weighted Vertex Cover (WVC) algorithm on each subgraph to obtain the

solution to the FTC problem on the input graph. They show that their algorithm produces

a 8-approximation when a 2-approximation algorithm [8, 29] is used for WVC.

The main difference between the FTC and the MC problem is that in FTC the input

graph instance has all edges with a single demand value, whereas in the MC problem, each

edge has two demand values. The edge demand value used in the MC solution depends on

the vertex chosen to cover the edge in the solution. Moreover, the MC problem is not directly

reducible to the FTC problem unless the two demand values for each edge are equal. Below

we outline two algorithms for solving the MC problem; they utilize the round and group

strategy of [52]. In order to take advantage of their approach to solve the MC problem, we

first need to transform the input graph instance so that all edges have equal demand values.

4.2.1 Largest Demand First (LDF) Algorithm

In our first approach, we transform an input instance G ≡ (V,E,w, d) of the MC problem to

an instance G′ ≡ (V,E,w, d′) such that, for each edge in G′, both of the demand values are

equal to the larger of the two demand values of the corresponding edge in G. The intuition

behind such a transformation is that if a vertex is able to cover the larger demand, then it

will definitely be able to cover any demand smaller or equal to the larger demand. Then, the

final demand values of the edges in the new graph instance G′ are rounded off to the closest

power of 2 of the larger demand value chosen in the previous step. Lemma 4.3 shows that

any solution of the MC problem on such a transformed version (G′) of the original graph

(G) is also a feasible solution of the original graph. After obtaining G′, it is first divided into

subgraphs (Gk) based on the rounded edge demands (2k), with each subgraph containing

only edges of the same demand value. A known minimum WVC algorithm (such as [8, 29])

is then used to obtain the minimum weighted vertex cover for each subgraph Gk. The mix

cover is finally obtained by combining solutions from each of the individual subgraphs in the

previous step. The LDF algorithm is outlined in Algorithm 1.

Lemma 4.3 Any solution to the MC problem on the transformed graph instance G′ ≡
(V,E,w, d′) is also a feasible solution to the MC problem on the original graph instance G ≡
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Algorithm 1: Largest Demand First (LDF) Algorithm
input : A graph G ≡ (V,E,w, d).
output: A mix cover SMC ≡ (v, c(v)) of G, where v ∈ V and c(v) is the capacity assigned to v.

1 for all e ≡ (u, v) ∈ E do
2 d′e ≡ (d′ue = max{due , dve}, d′

v
e = max{due , dve});

3 if 2k−1 ≤ d′ue = d′ve ≤ 2k then
4 d′e ≡ (d′ue = 2k, d′ve = 2k);
5 end

6 end
7 Let G′ ≡ (V,E,w, d′);

8 Let Gk ≡ (Vk, Ek, w) be a subgraph of G′ induced by edges Ek = {e ∈ E|d′e = 2k};
9 for all Gk do

10 if Vk 6= ∅ then
11 SGk

= WVC-2Approx(Gk ≡ (Vk, Ek, w));
12 else
13 SGk

= ∅;
14 end

15 end
16 SMC = ∅;
17 for all SGk

such that SGk
6= ∅ do

18 c(v)← max{2k|∀k s.t. v ∈ SGk
};

19 SMC ← (v, c(v));

20 end
21 return SMC ;

(V,E,w, d). Moreover, for large demand values (specifically, ≥ 2), OPT (G′) ≤ 2αOPT (G),

where OPT (.) is the optimal solution and α = max{2,max{|due − dve| | ∀e ≡ (u, v) ∈ G}},
i.e., α is the greater of 2 or the maximum edge demand difference over all edges.

Proof for Lemma 4.3 The first part of the lemma is straightforward. As the vertex and

edge sets of both G and G′ are the same, a cover for G′ (that covers all edges of G′) is also

a cover for G. Moreover, as the edge demands are rounded off to the largest and then to

the closest power of 2, the selected capacity of the vertices for a solution (or mix cover) in

G′ will always be greater than the demands of the corresponding edges in G. Thus, a mix

cover for G′ is also a feasible mix cover for G.

Now, let us prove the second part. Let VOPT (G) be the set of vertices of the optimal

solution OPT (G) for the MC problem on the graph instance G and let COPT (G) = {c(vi)|vi ∈
VOPT (G)} be the capacities assigned to each vertex in the optimal solution. Consider a

solution S such that it has the same set of vertices as VOPT (G) and with capacities CS =

{2(c(vi) + α)|vi ∈ S}, where α is as defined above. We can see that (S,CS) is always a

feasible solution to G′. This is because, firstly, we always select the larger demand value for

each edge e. Thus, even in the worst case, where all vertices vi ∈ VOPT (G) in the optimal

solution OPT (G) are such that dvie < d
vj
e ,∀e ≡ (vi, vj) ∈ E, capacities selected in CS will

always overcome the difference in demands. Secondly, the rounded demands of each edge e
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is only at most twice that of the original (larger) demand. Thus,

OPT (G′) ≤
∑
vi∈S

2(c(vi) + α)wvi

≤
∑
vi∈S

2αc(vi)wvi ≤ 2αOPT (G)

The second inequality above follows from the fact that c(vi)α ≥ c(vi) +α for all c(vi), α ≥ 2.

We have the following result for the solution quality and running time of LDF.

Theorem 4.4 The LDF algorithm is a O(m+n) time (linear in terms of the number of edges

and vertices), 4αβ-approximation algorithm for the MC problem on graph instances with large

demands (specifically, ≥ 2), where β > 1 is the approximation ratio of the minimum WVC

algorithm used, α is as defined in Lemma 4.3, m is the total number of edges and n is the

total number of vertices in the graph.

Proof for Theorem 4.4 Let WVC-2Approx(Gk) denote the output (overall minimum weight)

of applying a β-approximation minimum WVC algorithm to the subgraph Gk of G′. If

OPT (Gk) is the corresponding optimal solution, then we have the following inequality:

WVC-2Approx(Gk) ≤ βOPT (Gk)

OPT (Gk) ≥ 1

β
WVC-2Approx(Gk) (1)

From Lemma 2 of [52] we know that,

OPT (G′) ≥ 1

2

K∑
k=0

2kOPT (Gk) (2)

where K is max. value of the exponent after the rounding. From Lemma 4.3,

OPT (G′) ≤ 2αOPT (G) (3)

From (1) and (2), we have

OPT (G′) ≥ 1

2

K∑
k=0

2k

β
WVC-2Approx(Gk)

≥ 1

2β

K∑
k=0

2kWVC-2Approx(Gk)
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Combining the above inequality with Eqn. 3 we have,

2αOPT (G) ≥ 1

2β

K∑
k=0

2kWVC-2Approx(Gk)

K∑
k=0

2kWVC-2Approx(Gk) ≤ 4αβOPT (G) (4)

The left-hand side of the inequality in (4) clearly denotes an upper bound of the objective

function on the transformed graph instance G′ (thus, an upper bound of the objective func-

tion on the original graph G) computed from the output of the LDF algorithm. From this

inequality, it is clear that the LDF algorithm is a 4αβ-approximation of the MC problem.

Now, let us observe the time complexity of the LDF algorithm. Tasks such as determining

the larger demand per edge, rounding the demand value (lines 1-5) and assigning capacities

(lines 17-20) can be completed in O(m+ n) time, in the worst-case. Moreover, Bar-Yehuda

and Even [8] showed that a 2-approximation can be obtained for a WVC problem in time

linear in terms of the number of edges and vertices. Thus, lines 9-15 run in O(m+n) time in

the worst case. Thus, the LDF algorithm runs in linear time in terms of the number of edges

and vertices (or quadratic time in terms of the number of vertices only) in the worst-case.

4.2.2 Smallest Demand First (SDF) Algorithm

In the LDF algorithm, we transform the input graph instance into an instance where the

smaller edge demand is replaced by the larger one. This guarantees that each edge has the

same (and a single) demand value and that the mix cover of such a transformed instance is

also a feasible mix cover of the original instance. In practice, it is clear that such a strategy

will produce a highly sub-optimal solution because there may be vertices in the final solution

that may cover edges with much lower actual demand values. In order to overcome this issue,

we propose another strategy for solving the MC problem, called the Smallest Demand First

(SDF) algorithm, which is based on a transformation that chooses the smaller of the two

edge demand values in the input instance G.

The SDF algorithm, as outlined in Algorithm 2, consists of three phases. In the first

phase, in contrast to the LDF algorithm, we transform the input graph instance G ≡
(V,E,w, d) of the MC problem into an instance G′′ ≡ (V,E,w, d′′) where the larger edge

demand is now replaced by the smaller one. In this phase, an additional task during edge

demands transformation is to remember the largest demand (dvmax) to be covered at each

vertex. In the second phase, similar to the LDF algorithm, we use the round and group

strategy to obtain a mix cover for the transformed instance. In the final phase, we assign

17



Algorithm 2: Smallest Demand First (SDF) Algorithm
input : Graph G ≡ (V,E,w, d).
output: Mix cover SMC ≡ (v, c(v)) of G, where v ∈ V and c(v) is the capacity assigned to v.

1 for all v ∈ V do
2 dvmax = 0;
3 end
4 for all e ≡ (u, v) ∈ E do
5 if due > dumax then
6 dumax = due ;
7 end
8 if dve > dvmax then
9 dvmax = dve ;

10 end
11 d′′e ≡ (d′′ue = min{due , dve}, d′′

v
e = min{due , dve});

12 if 2k−1 ≤ d′′ue = d′′ve ≤ 2k then
13 d′′e ≡ (d′′ue = 2k, d′′ve = 2k);
14 end

15 end
16 Let G′′ ≡ (V,E,w, d′′);

17 Let Gk ≡ (Vk, Ek, w) be a subgraph of G′′ induced by edges Ek = {e ∈ E|d′′e = 2k};
18 for all Gk do
19 if Vk 6= ∅ then
20 SGk

= WVC-2Approx(Gk ≡ (Vk, Ek, w));
21 else
22 SGk

= ∅;
23 end

24 end
25 SMC = ∅;
26 for all SGk

such that SGk
6= ∅ do

27 c(v)← max{max{2k|∀k s.t. v ∈ SGk
}, dvmax};

28 SMC ← (v, c(v));

29 end
30 return SMC ;

capacities to the vertices based on the output of the previous phase and the largest de-

mand dvmax determined in the first phase. Lemma 4.5 gives the relationship between the MC

problem on the transformed version G′′ and the original graph G.

Lemma 4.5 OPT (G′′) ≤ 2OPT (G), where G′′ ≡ (V,E,w, d′′) is the shortest demand first

transformation of the original graph instance G ≡ (V,E,w, d) and OPT (.) is the optimal

solution of the MC problem on the input graph instance.

Proof for Lemma 4.5 Let VOPT (G) be the set of vertices of the optimal solution OPT (G)

for the MC problem on the graph instance G and let COPT (G) = {c(vi)|vi ∈ VOPT (G)} be the

capacities assigned to each vertex in the optimal solution. Now, consider a solution S such

that it has the same set of vertices as VOPT (G) and with capacities CS = {2c(vi)|vi ∈ S}.
We can see that (S,CS) is always a feasible solution to G′′. As in G′′ we always select the

smaller demand value for each edge e and round it off to the closest power of 2, the demand

value of an edge in G′′ is at most twice the smaller edge demand of the corresponding edge

in the original graph instance G. As the capacity of the vertex vi in the optimal solution

OPT (G) should be such that it should be greater than or equal to the largest demand on
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the edges it covers, the capacity of vi selected in CS will be able to cover the corresponding

edges of vi in G′′ . Thus,

OPT (G′′) ≤
∑
vi∈S

2(c(vi))wvi

≤ 2
∑
vi∈S

c(vi)wvi ≤ 2OPT (G)

However, it is easy to see that a feasible solution for the MC problem on G′′ may not neces-

sarily be a feasible solution to the MC problem on the original graph instance G. Moreover,

in the worst case, OPT (G′′) may include only those vertices that correspond to larger de-

mand values in the original graph. We have the following result for the approximation ratio

of SDF.

Theorem 4.6 SDF is a O(m + n) (linear in terms of the number of edges and vertices),

4αβ-approximation algorithm for the MC problem on graph instances with large demands

(specifically, ≥ 2), where β > 1 is the approximation ratio of the minimum WVC algorithm

used, α is as defined in Lemma 4.3, m is the total number of edges and n is the total number

of vertices in the graph.

Proof for Theorem 4.6 We use a similar argument that we use to prove Theorem 4.4.

From Eqn. 1 in the proof of Theorem 4.4 we know that:

OPT (Gk) ≥ 1

β
WVC-2Approx(Gk)

where, β is the approximation ration of the weighted vertex cover algorithm WVC-2Approx

and Gk is the induced subgraph of G′′ with edge demands 2k. Now, let K be the maxi-

mum value of the exponent after the rounding the shortest demands on each edge. From

Lemma 2 of [52] we know that, OPT (G′′) ≥ 1
2

∑K
k=0 2kOPT (Gk). From Lemma 4.5 we have,

OPT (G′′) ≤ 2OPT (G)
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From the above we have,

2OPT (G) ≥ 1

2

K∑
k=0

2kOPT (Gk)

⇒ 4OPT (G) ≥
K∑
k=0

2kOPT (Gk)

⇒ 4βOPT (G) ≥
K∑
k=0

2kWVC-2Approx(Gk)

⇒ 4αβOPT (G) ≥ α
K∑
k=0

2kWVC-2Approx(Gk)

⇒ 4αβOPT (G) ≥
K∑
k=0

(2k + α)WVC-2Approx(Gk) (5)

The right-hand side of (Eqn. 5) clearly denotes an upper bound on the objective function

computed by the SDF algorithm. From this inequality, it is clear that the SDF algorithm is

a 4αβ-approximation algorithm for the MC problem.

Now, let us observe the time complexity of the SDF algorithm. The SDF algorithm has

an additional step, as compared to the LDF algorithm, which is the largest demand deter-

mination on each vertex (lines 5-10). In the worst case, this only increases the complexity

by a constant factor. Thus the SDF algorithm, similar to the LDF algorithm, runs in linear

time in terms of the number of edges and vertices (or quadratic time in terms of the number

of vertices only) in the worst-case.

Next, we present two heuristics for the MC problem, which run more efficiently as com-

pared to the LDF and SDF algorithms, but do not provide a guarantee on the solution

quality.

5 Other Heuristics

We propose two other heuristics for solving the MC problem. The first heuristic employs a

greedy strategy to select vertices that go in the solution, while the second heuristic makes

use of a simulated annealing-based optimization strategy.
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Algorithm 3: Demand-based greedy heuristic
input : Graph G ≡ (V,E,w, d).
output: Mix cover SMC ≡ (v, c(v)) of G, where v ∈ V and c(v) is the capacity assigned to v.

1 for all v ∈ V do
2 dvmax = 0;
3 end
4 for all e ≡ (u, v) ∈ E do
5 if due > dumax then
6 dumax = due ;
7 end
8 if dve > dvmax then
9 dvmax = dve ;

10 end

11 end
12 Sort all vertices v ∈ V based on increasing values of dvmax, i.e., vertex with smallest value of dvmax first. Let V ′ be the

sorted set of vertices;
13 Let SMC = ∅;
14 Add (V ′[1], c(V ′[1]) = d

V ′[1]
max ) in SMC ;

15 Mark all (V ′[1], v) ∈ E as covered, where v ∈ V ;
16 for i = 2 to n do
17 if there are more edges in E to be covered then

18 Add (V ′[i], c(V ′[i]) = d
V ′[i]
max ) in SMC ;

19 Mark all (V ′[i], v) ∈ E as covered, where v ∈ V ;

20 end

21 end
22 return SMC ;

5.1 Greedy Heuristic

We propose two greedy heuristics based on the parameter of the input graph instance used

for making the greedy choice. The first heuristic, shown in Algorithm 3, begins with a vertex

v ∈ V such that v has the smallest incident demand value amongst all vertices in G. In each

iteration, the heuristic then greedily selects a vertex (to be added to the solution) with the

next smallest incident demand value. This continues until all edges in G are covered.

The second heuristic, shown in Algorithm 4, begins with a vertex v ∈ V such that v

has the smallest mixing cost (wv) amongst all vertices in G. The capacity of the vertex v

is chosen as the largest demand value incident on it. In each iteration, the heuristic then

greedily selects a vertex (to be added to the solution) with the next smallest mixing cost.

This continues until all edges in G are covered. It is easy to see that the running time of

both the greedy heuristics are dictated by lines 4-11 and lines 16-21, which in the worst

case enumerates all the edges in the graph. Thus the asymptotic running time of the greedy

heuristics is linear in terms of the total number of edges and vertices in the input graph, i.e.,

polynomial (specifically, quadratic) in terms of the total number of vertices. But, as each

greedy heuristic tries to locally maximize either the demand value or the mixing cost, it is

difficult to derive a bound on the quality of the solution produced by these heuristics.
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Algorithm 4: Mixing cost-based greedy heuristic
input : Graph G ≡ (V,E,w, d).
output: Mix cover SMC ≡ (v, c(v)) of G, where v ∈ V and c(v) is the capacity assigned to v.

1 for all v ∈ V do
2 dvmax = 0;
3 end
4 for all e ≡ (u, v) ∈ E do
5 if due > dumax then
6 dumax = due ;
7 end
8 if dve > dvmax then
9 dvmax = dve ;

10 end

11 end
12 Sort all vertices v ∈ V based on increasing values of wv , i.e., vertex with smallest value of wv first. Let V ′ be the

sorted set of vertices;
13 Let SMC = ∅;
14 Add (V ′[1], c(V ′[1]) = d

V ′[1]
max ) in SMC ;

15 Mark all (V ′[1], v) ∈ E as covered, where v ∈ V ;
16 for i = 2 to n do
17 if there are more edges in E to be covered then

18 Add (V ′[i], c(V ′[i]) = d
V ′[i]
max ) in SMC ;

19 Mark all (V ′[i], v) ∈ E as covered, where v ∈ V ;

20 end

21 end
22 return SMC ;

5.2 Local Solution Search Heuristic

Due to the combinatorial hardness of the MC problem, an exhaustive search for a globally

optimal mix cover is infeasible. The greedy heuristics discussed above make locally optimal

choices (based on edge demand or mixing cost) at each step, and hence can get stuck in a

local optima. This results in a globally poor approximation. In order to obtain a better ap-

proximation of the global optimum, we propose a probabilistic neighborhood search heuristic

based on Simulated Annealing [33].

In this heuristic, we begin from an initial solution (obtained by one of the greedy al-

gorithms described above). Then in each iteration, the current solution is probabilistically

replaced by a randomly chosen “nearby” or “neighborhood” solution. The probability of

replacing the current solution with a neighborhood solution depends both on the difference

between the values of those solutions and a global parameter t, called the temperature, which

is gradually decreased in each iteration. The temperature parameter enables the algorithm

to escape local optima throughout the simulation, while slowly converging to a near-optimal

solution. Next, we describe the neighborhood of a feasible solution by using a local transfor-

mation technique.

Informally, a local transformation transforms a feasible solution α to another feasible

solution β by making some local changes to the specification of α. To define a neighborhood

for an instance of the MC problem, we introduce a transformation called the k-neighborhood
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Algorithm 5: Local Solution Search using Simulated Annealing
input : Graph G ≡ (V,E,w, d), maximum evaluation count cmax, initial temperature tinitial and temperature

decrease factor j ∈ [0, 1]
output: Mix cover SMC ≡ (v, c(v)) of G, where v ∈ V and c(v) is the capacity assigned to v.

1 SMC ← Greedy(G), C =
∑

v∈SMC
c(v)wv ; /*Initial solution and total weighted capacity*/

2 Sbest
MC ← SMC , Cbest ← C ; /*Best solution and corresponding capacity*/

3 c← 0 ; /*Initial evaluation count*/

4 while c < cmax do
5 Snew

MC ← Neighbor (SMC , k), Cnew =
∑

v∈Snew
MC

c(v)wv ;

6 t← Temperature (tinitial, c, j), c← c + 1;
7 if Random () < AcceptProbability (C, Cnew, t) then

/*Randomly move to a new feasible solution */

8 SMC ← Snew
MC , C ← Cnew;

9 end
10 if Cnew > Cbest then

/*Solution is better than current best */

11 Sbest
MC ← Snew

MC , Cbest ← Cnew

12 end

13 end

14 return Sbest
MC ;

transformation. Give an input graph instance G ≡ (V,E,w, d) of the MC problem and a

feasible solution SMC , a k-neighborhood of SMC exists if and only if there is a vertex v ∈ SMC

such that there are exactly k edges (v, u) ∈ E where u /∈ SMC . If there are no such vertices

v in SMC , then SMC does not have a k-neighborhood. Then, a k-neighbor Sk
MC of SMC is

obtained by replacing one such vertex v in SMC with the k vertices u such that (v, u) ∈ E
and u /∈ SMC . The first observation we make is that a k-neighbor of any feasible solution

has k − 1 extra vertices. It is also easy to see that a k-neighbor (if one exists) of a feasible

solution is also a feasible solution to the MC-problem. The Local Solution Search heuristic

is outlined in Algorithm 5.

Procedure Neighbor(SMC , k)
/*Determine the neighborhood of the current solution */

input : Feasible solution SMC and maximum value of neighborhood parameter k
output: A l-neighbor Sl

MC of SMC where l ≤ k

1 Sl
MC = SMC ;

2 Let v be a randomly selected vertex in Sl
MC ;

3 for l = 1 to k do
4 if l-neighbor of v exists then
5 Replace v (and its capacity c(v)) by its l-neighbor in Sl

MC ;

6 return Sl
MC ;

7 end

8 end

9 return Sl
MC ;

The asymptotic time complexity of the Local Solution Search heuristic is dictated by the

complexities of the Greedy algorithm (line 1) and the Neighbor procedure (line 5). As seen

earlier, the Greedy algorithm runs in linear time in terms of the total number of vertices

and edges (quadratic in the number of vertices) in the worst case. Provided cmax and t are
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Procedure Temperature(tinitial, c, j)
/*Compute the simulation temperature */

input : Initial temperature tinitial, evaluation count c and temperature decrease factor j ∈ [0, 1]
output: New simulation temperature value

1 return tinitial · (j)c;

Procedure AcceptProbability(C, Cnew, t)
/*Compute the acceptance probability of the new solution */

input : Solution quality or total weighted capacities C and Cnew of feasible solutions and current simulation
temperature value t

output: Probability of accepting solution Snew
MC

1 return min(1, e(Cnew−C)/t);

of the same order as the number of vertices, the worst-case asymptotic runtime of executing

lines 4-13 is quadratic in the total number of vertices. Thus, the overall asymptotic time

complexity of the Local Solution Search heuristic is still quadratic in the number of vertices.

In practice, the Local Solution Search is expected to run slower than the Greedy heuristic

because of the extra simulated annealing step. We now evaluate the practical efficiency of

the proposed approaches by executing them on real vehicular road-network data.

6 Empirical Evaluation

We evaluate the performance of the proposed algorithms by implementing them in Matlab

on a multi-core desktop computer. For our experiments, we construct the input graph

instances using real road-traffic data (intersections, road segments and bi-directional AADT

traffic intensities) from the official transportation databases for the US states of Florida [19],

Virginia [51] and Arizona [6].

For each state, we consider three different sizes of the respective road network graphs:

a small graph that corresponds to 25% of the total number of municipalities, a medium

(65-85%) and a full state graph, except for Arizona, where we were able to obtain only

limited traffic data that is comparable in size with the small graphs of Virginia and Florida.

For each such road network graph, we evaluate the performance of the proposed algorithms

for three vertex weight distributions: (i) Constant, (ii) uniform and (iii) positive Gaussian.

The constant distribution assigns the same weight (=1) to all vertices, the uniform draws the

weights uniformly at random from the interval [1,100], whereas the Gaussian has an expected

value of 50 and a standard deviation of 10. The edge demand values are derived from the

traffic intensity data (in each direction) on the roads. For the simulated annealing heuristic,

we choose the parameter values such that the probability of exiting a local optima, if any,

is high. To this end, we select the parameters cmax = 1000, tinitial = 100, the temperature
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Table 1: Performance of the algorithms in terms of the number of vertices in the solution.
# of v in the MC solution

SMALL SIZE GRAPH MEDIUM SIZE GRAPH FULL SIZE GRAPH
25% of municipalities 65-85% of municipalities Entire State

Florida
Virginia
Arizona

Constant Uniform Gaussian Constant Uniform Gaussian Constant Uniform Gaussian
LDF Florida 1243 1267 1237 2891 2990 2909 3481 3604 3503
SDF Florida 1217 1243 1214 2863 2950 2876 3452 3547 3452

Demand-based greedy Florida 2494 2494 2494 6082 6082 6082 7341 7341 7341
Mix-cost based greedy Florida 2465 2452 2459 6079 6033 6027 7336 7289 7282

Simulated annealing Florida 2465 2452 2459 6079 6033 6027 7336 7289 7282
LDF Virginia 1346 1373 1351 3328 3402 3344 3523 3589 3531
SDF Virginia 1376 1387 1364 3376 3423 3375 3550 3605 3550

Demand-based greedy Virginia 2090 2090 2090 5020 5020 5020 5264 5264 5264
Mix-cost based greedy Virginia 2089 2088 2088 5020 5019 5018 5264 5263 5262

Simulated annealing Virginia 2089 2088 2088 5020 5019 5018 5264 5263 5262
LDF Arizona 1180 1148 1144
SDF Arizona 1184 1151 1147

Demand-based greedy Arizona 1420 1420 1420
Mix-cost based greedy Arizona 1420 1420 1419

Simulated annealing Arizona 1420 1420 1419

Total number of      
vertices  / edges

2557 / 2640 6326 / 6960 7557 / 8310
2408 / 2514 5726 / 6728 5881 / 6952
1571 / 1408

decrease factor j = 0.9 and the maximum value of the neighborhood parameter k = 400.

We measure the performance of each algorithm by using three metrics. First, we record

the number of vertices in the MC solution produced by the algorithms, as shown in Table

1. The number of vertices in the solution is an important performance metric in this work,

because it is indicative of the number of mix-zones to be deployed. Second, we compute

the ratio of the objective function value of the solution produced by the algorithm to the

worst-case (näıve) solution (which includes all vertices of the graph), as shown in Table 2.

Third, we measure the duration of the simulation (or execution time) in seconds, as shown

in Table 3. All values are averaged over 100 runs of the algorithms. For clarity, we plot

the values for the full-size graphs of the states of Florida and Virginia in Figures 2 and 3,

respectively.

From Table 1 and Figures 2(a), 3(a), we can see that the LDF and SDF algorithms per-

form better than the greedy and the simulated annealing heuristics in terms of the number

of vertices in the final solution. There is no major performance difference between LDF

and SDF, and between the greedy and simulated annealing strategies. From the evaluation

results we can observe that depending on the size of the input graph and the demand val-

ues associated with the edges, the number of mix-zones to be deployed is between 46% (for

Florida) and 58% (for Virginia) of the total number of vertices. In Florida, SDF performs

slightly better than LDF, i.e., SDF produces around 2-3% or approximately 102 fewer mix-

zones. This observation is consistent across all graph sizes. In Virginia, on the contrary,
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Table 2: Performance of the algorithms in terms of the solution quality. These values are the
ratio of the solution quality of each algorithm to the solution quality of the näıve solution
that uses all vertices for the mix cover.
Ratio MC solution obj. fct. / naïve obj. fct.

SMALL SIZE GRAPH MEDIUM SIZE GRAPH FULL SIZE GRAPH
25% of municipalities 65-85% of municipalities Entire State

Florida
Virginia
Arizona

Constant Uniform Gaussian Constant Uniform Gaussian Constant Uniform Gaussian
LDF Florida 0.510 0.394 0.475 0.488 0.380 0.456 0.489 0.384 0.460
SDF Florida 0.445 0.346 0.416 0.429 0.338 0.403 0.426 0.336 0.399

Demand-based greedy Florida 0.695 0.695 0.695 0.692 0.693 0.692 0.695 0.694 0.695
Mix-cost based greedy Florida 0.694 0.677 0.686 0.697 0.686 0.687 0.696 0.687 0.688

Simulated annealing Florida 0.694 0.677 0.686 0.697 0.686 0.687 0.696 0.687 0.688
LDF Virginia 0.822 0.785 0.813 0.820 0.785 0.812 0.823 0.788 0.814
SDF Virginia 0.791 0.762 0.784 0.793 0.766 0.787 0.798 0.770 0.792

Demand-based greedy Virginia 0.699 0.699 0.699 0.687 0.686 0.686 0.689 0.689 0.689
Mix-cost based greedy Virginia 0.699 0.699 0.699 0.687 0.686 0.686 0.689 0.689 0.689

Simulated annealing Virginia 0.699 0.699 0.699 0.687 0.686 0.686 0.689 0.689 0.689
LDF Arizona 0.913 0.861 0.882
SDF Arizona 0.908 0.857 0.876

Demand-based greedy Arizona 0.701 0.702 0.701
Mix-cost based greedy Arizona 0.701 0.702 0.701

Simulated annealing Arizona 0.701 0.702 0.701

Total number of       
vertices  / edges

2557 / 2640 6326 / 6960 7557 / 8310
2408 / 2514 5726 / 6728 5881 / 6952
1571 / 1408

Table 3: Performance of the algorithms in terms of the execution time (in seconds).
Duration of the MC simulation [sec]

SMALL SIZE GRAPH MEDIUM SIZE GRAPH FULL SIZE GRAPH
25% of municipalities 65-85% of municipalities Entire State

Florida
Virginia
Arizona

Constant Uniform Gaussian Constant Uniform Gaussian Constant Uniform Gaussian
LDF Florida 7.70 8.70 8.50 37.02 37.00 36.72 49.04 42.81 49.15
SDF Florida 8.55 9.73 9.48 39.48 38.57 39.18 54.66 45.50 53.79

Demand-based greedy Florida 0.29 0.32 0.31 1.90 1.87 1.82 2.56 2.36 2.63
Mix-cost based greedy Florida 0.25 0.28 0.27 1.64 1.65 1.62 2.20 2.06 2.30

Simulated annealing Florida 0.87 1.02 0.97 3.22 3.18 3.13 3.96 3.67 4.14
LDF Virginia 7.20 7.96 7.81 29.95 30.07 30.51 31.64 28.52 32.20
SDF Virginia 7.53 8.35 8.22 31.85 31.51 31.70 33.37 29.80 33.62

Demand-based greedy Virginia 0.26 0.29 0.28 1.65 1.70 1.65 1.72 1.61 1.77
Mix-cost based greedy Virginia 0.27 0.28 0.27 1.62 1.67 1.64 1.66 1.58 1.74

Simulated annealing Virginia 0.89 0.95 0.94 3.16 3.23 3.18 3.29 3.00 3.35
LDF Arizona 4.57 4.71 4.69
SDF Arizona 4.59 4.73 4.69

Demand-based greedy Arizona 0.11 0.11 0.11
Mix-cost based greedy Arizona 0.09 0.10 0.10

Simulated annealing Arizona 0.58 0.60 0.58

Total number of      
vertices  / edges

2557 / 2640 6326 / 6960 7557 / 8310
2408 / 2514 5726 / 6728 5881 / 6952
1571 / 1408
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Figure 2: Performance of the algorithms on traffic data for Florida. (a) Number of vertices
in the solution. (b) Solution quality (ratio between the objective function values). (c)
Execution time (in seconds).

LDF performs slightly better than SDF (up to 30 fewer mix-zones). This indicates that,

although relatively small, the performance of the two algorithms are influenced by the road

network topology, and further investigations are needed to determine the effects of the road

topology on the performance of the proposed algorithms. The greedy and simulated anneal-

ing heuristics do not perform very well in this regard. According to the solutions produced

by these algorithms, the number of mix-zones required can be as high as 90% of the total

number of vertices (or possible mix-zone deployments), as it is the case for the Florida data.

In terms of the solution quality, we can see from Table 2 and Figures 2(b), 3(b) that SDF

performs slightly better than LDF for all graph sizes and for all vertex weight distributions.

This is in line with the analytical results. There is another interesting trend that we can see

from these plots. For the states of Virginia and Arizona, the greedy and simulated annealing

heuristics slightly outperform the LDF and SDF algorithms in terms of the solution quality,

while the opposite is true for the state of Florida. Both greedy and simulated annealing

heuristics perform equally well for all states and for all weight distributions. This gives an

impression that the performance of the greedy and simulated annealing heuristics depends

on the road network topology and the edge distribution which is, obviously, different in

Florida and Virginia. Thus, in terms of solution quality, there is no clear winner amongst

these algorithms.

The experimental results confirm that, as compared to the näıve solution, the proposed

algorithms achieve a lower mix-zone deployment cost; sometimes as low as 34% of the cost of

the näıve solution. For the LDF and SDF algorithms, and for all combinations of parameters,

the uniform distribution achieves the best (lowest) objective function ratio, followed by the
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Gaussian and the constant distributions. In the uniform distribution, which assigns (on

average) the same weight to an equal number of vertices, it is possible to determine lower

weight vertices to cover the same set of edges. In the Gaussian scenario, as most of the

weights will be close to the mean, this will be more difficult. In the constant weight scenario,

where all vertices have the same weights, there is no chance of finding alternative vertices

(with lower weights) to cover the same set of edges and thus the assigned capacity would

depend solely on the edge demands.
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Figure 3: Performance of the algorithms on traffic data for Virginia. (a) Number of vertices
in the solution. (b) Solution quality (ratio between the objective function values). (c)
Execution time (in seconds).

Another important metric for evaluating the performance of the proposed algorithms

is the running time or execution efficiency. As the traffic patterns evolve during the day

in each region, these algorithms would be executed multiple times per day, in order to

adapt the solutions to the dynamic traffic intensities throughout the day. Moreover, these

algorithms may be executed on small and resource constrained devices such as mobile phones

or vehicle on-board units. We can see from Table 3 and Figures 2(c), 3(c) that the greedy and

simulated annealing heuristics execute considerably faster (around 40 time faster) than the

LDF and SDF algorithms, albeit with a lower solution quality. Despite similar asymptotic

time complexities, the divide and conquer strategy of the LDF and SDF algorithms adds

significant extra computation as compared to the simple enumeration strategy followed by

the heuristics. Even for the largest graph, the execution duration of the LDF and SDF

algorithms does not exceed more than 55 seconds (< 1 min) while the running time of the

greedy and simulated annealing heuristics is always under 4 seconds. In summary, these

results show that the proposed algorithms execute in a reasonable amount of time by using

only standard computing infrastructure.
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7 Conclusion

An optimal placement of mix-zones is critical for improving the mixing effectiveness and

location privacy of mobile users in pervasive networks. In this paper, we addressed the prob-

lem of optimal mix-zone placement in pervasive road networking scenarios by formulating

it as a graph-based optimization problem. We refer to this problem as the Mix Cover or

MC problem. The Mix Cover problem that we studied in this paper is a generalization of

the Weighted Vertex Cover and the Facility Terminal Cover (FTC) problem, and has not

been addressed in the literature before. We proposed several deterministic bounded-ratio

approximation algorithms to solve the MC problem. The first algorithm is based on a LP

relaxation of the problem and the remaining two approaches take advantage of a “divide

and conquer” strategy proposed by Xu et al. [52]. We proved the solution quality and

running-time guarantees for the proposed approaches on input graph instances with demand

values greater than or equal to 2. We also proposed two additional algorithms; one based

on a greedy heuristic and the other based a simulated annealing approach. The later two

algorithms are simple and efficient, but do not provide any guarantees on the quality of the

produced solution. We performed extensive experiments to evaluate the execution efficiency

and solution quality of all the proposed algorithms on real road network and traffic data.

Results from these experiments confirmed the analytical results and highlighted the trade-

off between solution quality and execution cost of the proposed algorithms. These results

showed that, while the LDF and SDF algorithms are able to provide good quality solutions in

a reasonable time, heuristics such as greedy and simulated annealing also perform reasonably

well while running in an order of magnitude less time.
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