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Abstract

Isogeometric analysis (IGA) is a computational methodology recently developed to numer-
ically approximate Partial Differential Equation (PDEs). It is based on the isogeometric
paradigm, for which the same basis functions used to represent the geometry are then used to
approximate the unknown solution of the PDEs. In the case in which Non-Uniform Rational
B-Splines (NURBS) are used as basis functions, their mathematical properties lead to appre-
ciable benefits for the numerical approximation of PDEs, especially for high order PDEs in
the standard Galerkin formulation. In this framework, we propose an a priori error estimate,
extending existing results limited to second order PDEs.

The improvements in both accuracy and efficiency of IGA compared to Finite Element
Analysis (FEA), encourage the use of this methodology in the haemodynamic applications.
In fact, the simulation of blood flow in arteries requires the numerical approximation of Fluid-
Structure Interaction (FSI) problems. In order to account for the deformability of the vessel,
the Navier-Stokes equations representing the blood flows, are coupled with structural models
describing the mechanical response of the arterial wall. However, the FSI models are complex
from both the mathematical and the numerical points of view, leading to high computational
costs during the simulations.

With the aim of reducing the complexity of the problem and the computational costs of
the simulations, reduced FSI models can be considered. A first simplification, based on the
assumption of a thin arterial wall structure, consists in considering shell models to describe
the mechanical properties of the arterial walls. Moreover, by means of the additional kyne-
matic condition (continuity of velocities) and dynamic condition (balance of contact forces),
the structural problem can be rewritten as generalized boundary condition for the fluid prob-
lem. This results in a generalized Navier-Stokes problem which can be expressed only in terms
of the primitive variables of the fluid equations (velocity and pressure) and in a fixed com-
putational domain. As a consequence, the computational costs of the numerical simulations
are significantly reduced. On the other side, the generalized boundary conditions associated
to the reduced FSI model could involve high order derivatives, which need to be suitably
approximated. With this respect, IGA allows an accurate, straighforward and efficient numer-
ical approximation of the generalized Navier-Stokes equations characterizing the reduced FSI
problem.

In this work we consider the numerical approximation of reduced FSI models by means of
IGA, for which we discuss the numerical results obtained in haemodynamic applications.
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Introduction

In this work we numerically simulate blood flows in the cardiovascular system. Specifically,
we focus on the haemodynamics of large human arteries by using Isogeometric Analysis as
numerical method to approximate reduced Fluid-Structure Interaction problems.

In the last years, several efforts have been made in Mathematics and Engineering to provide
suitable mathematical models and numerical methods for the study of the cardiovascular
system [FQV 09, WSNO5]. The attention to this subject of research is also motivated by
the fact that, at the present time, one of the primary cause of human disease and mortality
is related to the cardiovascular system. Therefore, a deep understanding and a rigorous
investigation of the complex bio-mechanical processes of the human circulatory system is
stimulated from the medical and life sciences communities for both the physiological and
pathological conditions. Numerical simulations represent a powerful mean and recently became
an effective tool to describe quantitatively and in an accurate manner some aspects of the
cardiovascular system. Moreover, among the applications of computational haemodynamics
there are the surgical planning and the optimization of medical devices [BGHT09], especially
in the patient specific contexts.

The computational approach still presents some limitations with respect to in-vivo stud-
ies, even if not invasive, and less physiological in vitro experiments. Indeed, the study of
the cardiovascular system in its whole complex variety is beyond the current computational
resources; to couple different levels of details in the description of the phenomena. Moreover,
when performing local investigations, mathematical models need a proper set of patient spe-
cific data in order to formulate a well-posed problem. Nowadays, the geometrical data, which
define the computational domain, can be obtained by means of non-invasive investigations,
such as magnetic resonance or Doppler anemometry. Nevertheless, when considering a section
of the cardiovascular system, we introduce artificial boundaries, meaning that they do not
represent physical interfaces between the vascular domain and the exterior. In this part of the
boundary only average data are provided by in-vivo measurements [HNF"99, RMP*09] and
they are not sufficient to describe the problem from the mathematical point of view. For this
reason, starting from the analysis of the physical principles governing the fluid flow and taking
into account available data, different formulations have been proposed in literature to over-
come this inconveniences which is till now an important issue in fluid-dynamic computation
[VAVS11, THZ98, BGHT09, VCFJTO06]. In similar manner, the parameters characterizing the
blood flows, vary from an individual to another, for this reason the large part of the studies
have been performed in idealized geometries and average data, even if there is an increasing
interest towards the possibility of considering specific-patient configurations.

The complexity of the anatomy and physiology of the cardiovascular system leads to con-
sider several assumptions on the physical properties and principles that regulate blood flows.
Specifically, for the haemodynamic of large and medium arteries, it is a common practice

ix



X Introduction

to describe the blood flow dynamics by means of the classical laws of mass and momentum
conservation for a Newtonian viscous fluid with constant density, namely the Navier-Stokes
equations [FQ702]. These are set in terms of the variables describing the fluid velocity and
the pressure. An additional unknown, represented by the wall displacement, needs to be con-
sidered when accounting for the deformability of the vessels. This is an important feature
that largely influences the blood velocity and pressure fields in pathological conditions and
in large arteries, for which there is a significant wall displacement (up to the 10% of their
radius). Nevertheless, in this case, it is required to solve a complex strongly coupled and
computationally expensive Fluid-Structure Interaction problem, which describes the mechan-
ical interaction between the walls and the flowing blood [FQV'09]. However, this leads to
considerable computational costs when solving the problem numerically.

In order to overcome the difficulty of solving the coupled Fluid-Structure Interaction prob-
lem and to cope with the computational costs, a rigid-wall approximation can be considered.
Moreover, with the same goals, reduced Fluid-Structure Interaction models can be introduced
to limit the complexity and the computational costs when describing the complex physiology
of the arterial wall [Hol06]. In this context, shell models [NV09, BW97, BvGT12], based on
the assumption of a thin structure, are largely used to describe the wall mechanics. Besides
the fact that they reduce a three-dimensional problem to a two-dimensional one, shell models
allow to embed the solid problem into the fluid one at a variational level by using a coupled mo-
mentum method. [FVCJT06, NV09, BvGT12]. This follows from the correspondence between
the fluid boundary and the approximated thin wall together with a strong coupling of the cor-
responding degrees of freedom. Moreover, they proceed in the assumption of the kynematic
condition, which imposes the continuity of the velocities of the wall and the fluid, and the
dynamic condition, requiring the balance of the contact forces at the surface level [vTGT06].
The resulting fluid-structure coupling leads to the formulation of a generalized Navier-Stokes
problem, which includes the simplified structural model as a generalized boundary condition.
Depending on the model adopted for the structure, this kind of boundary condition can even-
tually involve high order derivatives. By using classical Finite Element Analysis [Qua09], the
approximation of the solution of high order Partial Differential Equations can lead to accuracy
problems, including when approximating the geometry. Moreover, mixed formulations of the
problem may be required in order to supply the low regularity of the basis functions, which
are only globally continuous.

Isogeometric Analisys is a computational methodology recently developed and initiated
with the work of Hughes et al. in [CHBO5|. It has been introduced to facilitate the interaction
of Computed Aided Design (CAD) and Finite Element Analysis technologies [CHB09|. Based
on the computational geometry technologies such as Non Uniform Rational B-Splines [PT97|
for the CAD, Isogeometric Analisys is based on the isogeometric paradigm, for which the same
basis functions used to represent the known geometry are then used to form a basis in the ap-
proximation of Partial Differential Equations. Isogeometric Analisys offers several possibilities
which are prevented or which constitute a non trivial task in the context of classical Finite
Element Analysis; namely, exact geometrical representation, simplified refinement procedures
[CHRO7] and smooth basis functions, eventually globally C*-continuous with k& > 0. In such a
way, the generalized Navier-Stokes equations, representing the reduced Fluid-Structure Inter-
action model, can be suitably approximated by using Isogeometric Analysis with a standard
Galerkin formulation [CHB09], especially the high order terms of the generalized boundary
condition derived from the structural problem. Compared to the standard Finite Element
Method, the combination of this property and the capability of facilitating the exact repre-
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sentation of smooth geometries, as for patient-specific configurations of arterial vessels, lead
to improvements in both the accuracy and the efficiency in the solution of the haemodynamic
Fluid-Structure Interaction problems [BCHZ0S].

With this motivation, we consider Isogeometric Analysis for solving high order Partial Dif-
ferential Equations. In particular, we deal with elliptic boundary values problems considering
Isogeometric Analysis in the framework of the Galerkin method, for which we provide an a
priori error estimate in lower order norms for high order Partial Differential Equations, which
extends existing results limited to second order Partial Differential Equations [BBadVC™06].
Successively, we simulate blood flows in two-dimensional models of arterial vessels, by consid-
ering rigid wall models. Then, we consider Isogeometric Analysis for the numerical approxi-
mation of reduced Fluid-Structure Interaction models. In this context, a complete membrane-
bending model for the structure is considered by means of the linear elastic Koiter shell model
for the arterial walls [Cia05]|. The strongly coupling between the fluid and the structural prob-
lems results in generalized Navier-Stokes equations formulated only in terms of the primitive
variables, i.e. the velocity and the pressure fields.

The outline of this work is as it follows:

Chapter 1 We introduce Isogeometric Analysis by recalling the main properties of NURBS
basis functions and the geometrical representation by means of NURBS. Then, we con-
sider the numerical solution of high order elliptic Partial Differential Equations by means
of Isogeometric Analysis in the framework of the Galerkin method. Several examples
are presented. Moreover, we provide the a priori error estimate for NURBS-based IGA
for the case of high order partial differential operators, extending the results for second
order operators of [BBadVC™06]; in particular, we address the case of lower order norms.

Chapter 2 In this chapter we briefly discuss the physiological and pathological aspects of the
cardiovascular system.

Chapter 3 We consider a rigid wall model for blood flows in arteries in two-dimensional do-
mains. We recall the Navier-Stokes equations, and we report their dimensionless form,
highlighting the dependency of the solution on the Reynolds number. In the following,
we discuss the choice of a proper set of boundary conditions accounting for the pulsatile
nature of blood flow and the presence of the downstream circulation (resistance bound-
ary condition). Then, we present the numerical approximation of the problem by means
of Isogeometric Analysis and the generalized-a method [JWHOO| used as time discretiza-
tion scheme. Specifically, we consider the stabilization of the Galerkin approximation of
the Navier-Stokes equations, by means of a variational multiscale method for large eddy
simulation [BCCT07].

Chapter 4 We deal with a reduced Fluid-Structure Interaction problem in haemodynamics.
We adopt a reduced model in the framework of the Coupled Momentum Method pro-
posed by Figueroa et al. in [FVCJT06], which by means of a strong coupling of the
degrees of freedom of the fluid and the structure, embeds the structural problem into
the fluid problem as a generalized boundary condition at a variational level. The result-
ing problem is expressed only in terms of the primitive variables of the fluid, velocity and
pressure, and, above all, defined in a fixed computational domain. The model chosen for
the structure is a full linear elastic Koiter shell model [Cia05]|, which involves high order
derivatives. By considering NURBS-based Isogeometric Analysis for its numerical ap-
proximation, we can take advantage of the efficacy and accuracy allowed by the method
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in the solution of high order Partial Differential Equations and in the exact geometrical
representation.

Conclusions We draw some conclusion on this work and we suggest some further extensions.

Appendix A We consider the numerical approximation of the two-dimensional time-dependent
Navier-Stokes equations in stream function formulation. We recast the Navier-Stokes
equations formulated in primitive variables in the fourth order nonlinear problem in
terms of the scalar stream function. By using NURBS-based Isogeometric Analysis a
standard Galerkin formulation is used to solve the benchmark Lid-driven cavity problem.

Appendix B We consider the strong imposition of essential boundary conditions for high or-
der Partial Differential Equations; in particular, we propose a technique to enforce the
boundary condition on the normal gradient of the solution stemming from a fourth order
partial differential operators.

The numerical simulations were performed by means of a C++ IGA library, developed by
the author. GeopPDEs (http://geopdes.sourceforge.net) [d{FRV11]|, and MATLAB (http:
//www.mathworks . com) have been used as support tools. The visualizations were performed
by means of ParaView (http://www.paraview.org/).


http://geopdes.sourceforge.net
http://www.mathworks.com
http://www.mathworks.com
 http://www.paraview.org/

Chapter 1

Isogeometric Analysis

Isogeometric Analysis (IGA) is a computational methodology for the numerical approximation
of Partial Differential Equations (PDEs), initiated with the work of Hughes et al. in [CHBO05].
The aim of the methodology is to close the existing gap in current Computed Aided Design
(CAD) and Finite Element Analysis (FEA), basically determined by the need of generating
a computational mesh. In fact, the geometrical models provided by CAD technology need to
be modified in order to obtain analysis suitable geometries, which are compatible with the
Finite Element approximation. Indeed, FEA requires the generation of a Finite Element mesh,
usually a piecewise approximation of the actual computational domain (geometry) obtained by
mapping of reference elements via polynomial bases. As a result, the construction of a Finite
Element geometry is one of the more time consuming steps in the FEA, in addition to the fact
that the geometrical approximation may lead to significant accuracy issues [CHB05, CHB09.
An additional problem may occur when performing mesh refinement, for which the geometrical
approximation generally does not improve, since direct communications between CAD systems
and the Finite Element solvers are not available in general.

These factors led to the development of a computational methodology based on a unique
geometrical representation under the isoparametric paradigm, for which the same basis func-
tions are used to represent the geometry and the unknown solution fields. Nevertheless, the
isoparametric paradigm occurs in IGA with a significant difference with respect to FEA and it
is indeed referred to as isogeometric paradigm. In fact, in FEA, a basis approximating the un-
known solution field of the PDEs is firstly chosen and then used to represent and approximate
the known geometry; on the contrary, IGA firstly introduces the basis field representing the
known geometry which is later used to approximate the unknown solution (see Figure 1.1).

Different computational geometry technologies could be adopted to represent the geome-
tries. We choose to refer to Non Uniform Rational B-Splines (NURBS) due to their large
use and development in CAD, but also for their mathematical properties in view of the nu-
merical approximation of PDEs. In particular, NURBS can exactly represent some common
geometries in engineering design, e.g. conic sections, provide globally smooth basis functions,
eventually C*-continuous with k > 0, and offer new refinements possibilities beside standard
h- and p-refinements of the FEA [CHBO09]. In this work, we consider only NURBS-based IGA,
although recently improvements have been done in the direction of IGA based on T-Splines,
a generalization of NURBS technology [BCC™10].

This chapter is devoted to the description of the main properties and features of Isogeo-
metric Analysis, starting from the geometric point of view, based on NURBS, and then moving
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Finite Element Analysis: Isoparametric paradigm

unknown solution

field

known geometry

Isogeometric Analysis: Isogeometric paradigm

unknown solution

field

known geometry

Figure 1.1: Isoparametric and Isogeometric paradigms.

to the use of NURBS as a basis for analysis. We specifically consider IGA in the framework
of the Galerkin method to solve elliptic PDEs, although different numerical methods can be
used, such as collocation or least square methods [CHB09]. We present IGA in the framework
of the Galerkin method for approximating high order PDEs and we provide a general a priori
error estimate under h-refinement by extending the result of [BBadVC™06] for second order
PDEs.

In Section 1.1 we discuss the geometrical representation by means of NURBS and B-Splines.
In Section 1.2 we consider IGA based on the Galerkin method for solving second order and
high order elliptic boundary value problems. In Section 1.3 we provide the a priori error
estimate for high order PDEs. Finally, in Section 1.4, we report and discuss some numerical
results.

1.1 Geometrical representation: B-Splines and NURBS

In view of the description of NURBS-based IGA, we recall the geometrical representation by
means of B-Splines and NURBS, since the computational domains, in which the PDEs are
defined, are parametrized as NURBS entities. We consider the case of geometries that can
be modeled as a single patch, i.e. a “large” domain topologically representable by geometrical
mapping of a rectangular or a cuboid reference domain. A large number of geometries can be
modeled with a single NURBS patch, even if sometimes, it is useful or necessary to represent
a geometry as a collection of multiple patches, e.g. when the geometry differs topologically
from a square or a cube or when local refinement is required. The NURBS parameter space is
local to individual patches for which a unique geometrical mapping from the parameter space
into the physical one is defined for the entire patch.

In this section we describe the mathematical construction and the properties of B-Splines
and NURBS basis and geometries and we report some examples. For more details, we refer
the interested reader to e.g. [CHB09, PT97, CHB05, CHRO7].

1.1.1 The knot vector

In one dimension a knot vector is a set of non-decreasing real numbers, representing coordinates
in the parameter space. By convention, we define a parameter domain © = [0,1] C R. The
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knot vector can be written as = = {£1,&2,...,&nqp+1}, where & is the i-th knot, with the
knot index i € {1,...,n+p+ 1} characterized by p and n, i.e., the polynomial degree and the
number of basis functions representing the B-Splines basis, respectively. By convention, we
assume that £ = 0 and &,4,4+1 = 1, in such a way the parameter domain is Q= (1, Enpt]-
A knot vector is said to be uniform, if the knots are equally spaced in the parameter domain
and non-uniform otherwise. Knots may be repeated and the number of times in which the
knot is repeated is indicated as the multiplicity of the knot value. A knot vector is said to be
open if its first and last knots appear p + 1 times, with each knot different from the first and
the last ones called internal knot. Specifically, we consider the case of open knot vectors.

We can collect all the r distinct ordered knots of = into a vector Z = {(1, ..., (,} and define
in a straightforward way the partition into elements induced by the knots on the parameter
domain. In particular, the j-th element of the mesh over 0= [0, 1] is defined as the subdomain
Qj = ({j,Cj+1), for j = 1,...,7, bounded by two distinct knots, while we will refer to the
subdomain bounded by two consecutive knots (§;,&;+1), for i = 1,...,n + p, as a knot span,
noticing that it can have null size. It holds that n = p + nys, where nys stands for the total
number of internal knot spans, i.e. knots spans delimited by at least an internal knot.

The multiplicity of the knots has important implications in the properties of the basis
functions, in particular for their regularity. Therefore, an additional auxiliary vector, say
M, is defined in relation with Z in order to gather the multiplicities of the distinct knots;
specifically, M := {m1,...,m,}, with m; > 1 representing the multiplicity of the knot value
Gj, for j=1,...,r.

Example 1.1. For the open knot vector = = {0,0,0,1/4,1/2,3/4,3/4,1,1,1}, we have
Z={0,1/4,1/2,3/4,1} and M = {3,1,1,2,3}. Graphically, we can represent Z as:

G G é:& G G

and the index space, which identifies the knots as separated entities, independently of their
actual values, as:

61626 €465 £ &1 65 o o

o
1.1.2 Univariate B-Splines basis
Given a knot vector = = {&1,...,&nqp+1}, the univariate B-Splines basis functions N, : O —
R, for i =1,...,n, are plecewise polynomials of degree p, built by means of the Cox-de Boor
recursion formula. For N; ,(n), with n € Q and for i =1,...,n, we have:
1 if & <n <&,
for p=0:N;o(n) = S < 77 Si1
0 otherwise,
(1.1)

—& Sitpr1 — 1
for p > 1: Nj,(n) = hl\b,p—l(n) + ml\fm@—l(n)-

0
By convention we assume that 0= 0, as it occurs when the knots are repeated.
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Figure 1.2: Quadratic ~ B-Splines  basis  functions for the open knot vector
= = {0,0,0,1/4,1/2,3/4,3/4,1,1,1}.

The properties characterizing a B-Splines basis {Nw}?:l can be directly deduced from
the knot vector =, as for the number of basis functions n and their degree p; moreover,
the regularity of each basis function can be deduced by Z (specifically from Z, M). Basis
functions of order p + 1 and degree p, are C*°-continuous in the domain Q, except in knots
¢;, where they are only CP~"™-continuous. In particular, if m; equals the degree p, the basis
function is interpolatory in the correspondent knot. This implies that a basis function defined
from an open knot vector possesses the so-called end-point interpolation property, for which
N1,(0) = Ny p(1) = 1; since the multiplicities of the first and last knots equal p + 1, the basis
becomes discontinuous, thus defining the patch boundary. The smoothness integer indexes
ki =p+1—-m; € [0,p], for all j = 1,...,7, are collected in a vector k = {ki,...,k },

for which we define ki, := 2min l{ktj} and kpax = max 1{kj}' We observe that in the
J=4,...,T— J=4,...,T—

knot (; the basis functions are C*i~1_continuous, according to the definition of the smoothness
integer k;, for j =1,...,n.
Additional properties of the B-Splines basis can be inferred by the formula (1.0). Firstly,
n

the basis functions constitute a partition of unity, i.e. Z Nip(n) =1forallne Q; then, each
i=1

basis function is pointwise non-negative, i.e. for all i = 1,...,n we have N;,(n) > 0 for all

RS Q). We can deduce that each basis function has compact support in p + 1 knot spans, in

particular supp(N; p) C [&, &ip+1] for all i = 1,..., n; moreover, we point out that p+ 1 basis

functions have support in each knot span.

In term of computational costs, the recursive construction of B-Splines basis functions can
be expensive. However, efficient algorithms have been developed for the evaluation of basis
functions and their derivatives, see [PT97]. By supposing that in n € Q) the basis function
N; p is sufficiently regular, the general form of its [-th derivative can be recursively expressed
in terms of basis function of inferior order. For p > 1, we have:

d P 41 P di-1
o Vial) = e (G Na()) — e (M) (12)

Remark 1.1. For the sake of simplicity, we will omit henceforth the subscript p, referred to
the degree of basis functions N;,, which will read as N;.

The B-Splines space built by the B-Splines basis functions is denoted as:

S" = Span ({N;}i,) (1.3)
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where the parameter h indicates its finite dimension and it is reminiscent of the definition of
the mesh over the parameter domain, say Qp; i.e. setting for each element Q; € Qp, with
j=1,...,7, the size hg, := |(j+1 — (|, we define h := max{hqg, : Q; € Qu}.

Example 1.2. In Figure 1.2 an example of quadratic B-Splines basis is provided. The basis is
defined starting from the open knot vector of Example 1.1, for which we notice the end-point
interpolation property. In this case, n =7, p = 2, k = {0,2,2,1,0} with the 4t 5th and 6th
basis functions only continuous and interpolatory in knot value {4 = 3/4. Each function has
support contained in p + 1 knot spans, some of them with have null size, due to the presence
of repeated knots. o

1.1.3 Multivariate B-Splines basis

The definition of B-Splines spaces, introduced in Section 1.1.2, can be extended to the k-
dimensional case by using a tensor product structure, where x > 1.

For a = 1,...,k, we provide r knot vectors Z, = {£7,&5,...,§, 4+, 11} and the cor-
responding vectors Z, = {({,...,(o } and My = {m{,...,m; }. A mesh Q over the
parametric domain Q= [0,1]" is defined by its partition into xk-dimensional elements:

On = 1{Q1,jr) = Va1 (G5 Ciros1)s 1< jo <7 — 1} (1.4)

For the sake of simplicity, we refer to an element of the mesh Qj, by omitting its index
(41s---+Jr). Moreover, having set the element size to hg := diam(Q) for all Q € Q , the
parameter h := max{hg : Q € Q} will be referred to as the global mesh size.

We define, for each i, = 1,...,n, with a = 1,...,k, the multivariate B-Splines basis
function as:

N(il,...,in) Q= R, N(il,.‘.,in)(n) = H Nf; (Na)- (1.5)
a=1

Remark 1.2. In order to simplify the notation, we introduce a multi-index © in the set I =
{t=(i1,...,ix) : 0 <ig <ng,1 <a <k}

Due to the tensor product structure of multivariate B-Splines, several properties satis-
fied by univariate B-Splines basis functions still hold for multivariate B-Splines basis func-
tions. In particular, the basis functions are piecewise polynomials, pointwise non-negative
and constitute a partition of unity. As for their supports, they are the tensor product of
the relative univariate supports, being still compact. Moreover, the (directional) regular-
ity of each basis function N; can be deduced by the one of the univariate functions used

o

in the tensor product. In all the elements ) € Q; the basis functions are C°°-continuous;
while, across each internal x — 1 dimensional face, separating the elements Q" and @, it
reaches a regularity of the order equals to the maximum order of continuity of the derivatives
across this face. We can still refer to smoothness parameters and define for each parametric

direction the vectors ko = {k{',..., k. }. The minimum and maximum regularity in each

a-direction are kpy, =  min  {k3 } and ki, ;= max {k% }; while the global ones
ja=2,..ra—1" I Ga=2,..,rq—1" I

are kmin == min{kp;, :a=1,...,k} and kyax := max{ky, o =1,... Kk}

The tensor product B-Splines space, spanned by these basis functions, is defined with a
notation similar to the one of the univariate case as:

Sh = Span ({Nz}zel) . (16)
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(a) Lagrange polynomial interpolation. (b) Variation diminishing property of B-Splines.

Figure 1.3: Interpolation of discontinuous data with Lagrange polynomials for a set of discontinuous
data and variation diminishing property for the corresponding B-splines curves.

1.1.4 B-Splines geometries

By means of uni- and multivariarite B-Splines bases, we can construct geometries in R?, e.g.
curves, surfaces and solids.

Definition 1.1. Given the univariate B-Splines space S" := Span ({N;}7y) over the para-
metric domain ) = [0,1], and a set of points {P;}iy C R, called control points, a B-Splines
curve in R? is defined as the linear combination of B-Splines basis functions with the control
points assumed as coefficients; i.e.

C:O—-QCRY C@= ZNi(n)Pi, (1.7)

where Q indicates the curve in RY.

We remark that a B-Splines curve is defined on the parameter domain Q) and with values in
the physical domain Q C R?, where the control points are defined. The properties of B-Splines
curves follow directly from the properties of the basis functions, particularly, concerning the
regularity and locality. The latter is related to the support of the basis functions and deter-
mines the fact that changing the position of a single control point may affect the geometry
of the curve in at most p + 1 elements. Because of the non-interpolatory nature of the basis,
the control points does not generally lie on the geometry. This leads to a lack of a immediate
interpretation of their role in the physical space, contrarily to the use of Lagrangian interpo-
latory basis functions in FEA. Moreover, we have the so called convex hull property, for which
a B-Splines curve is contained in the union of the convex hulls defined by p + 1 consecutive
control points. Then, by Definition 1.7, it follows the property known as affine covariance,
for which, applying an affine transformation A : R? — R? to a B-Splines curve is equivalent
to apply it to the control points {A(FP;)};, without changes to the basis functions. Lastly,
considering the piecewise linear interpolation of the control points, named control polygon, we
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deduce that no plane has more intersections with the B-Splines curve than it has with the
control polygon. We refer to this last property as to the variation diminishing property, which
is peculiar to B-splines curves and implies a monotone nature of them. As shown in Figure 1.3,
given a set of discontinuous data, the standard Lagrange polynomial interpolation provides
curves whose oscillating behavior increases when increasing the degree of the basis functions.
Instead, by considering the same data set as control points, the corresponding B-splines curves
are monotone, accordingly to the variation diminishing property.

By exploiting the tensor product nature of the multivariate B-Splines basis functions, it
is possible to define geometrical entities of dimension x > 1 in the physical space R?, where
1<k <d.

Definition 1.2. Given an integer k with 1 < k < d and knot vectors Zo = {7,653, -, &5 i pot1)
fora=1,...,k, let us consider the multivariate B-Splines space 8" of Definition 1.6, whose
multivariate basis functions {N;};er are defined over the parametric domain Q= [0,1]%, and
a set of II%_ ng control points {P;}ie; € RY. A k-dimensional B-Splines geometrical entity
in R? is defined by the geometrical mapping:

x: Q= QCRY x(n)=> Nin)P, (1.8)
el

where Q indicates the geometry in RY. Two-dimensional B-splines entities (k = 2) represent
B-Splines surfaces in RY, d = 2,3, while three-dimensional ones (k = 3) B-Splines solids, in
R3.

As for the univariate case, due to the tensor product nature of x-dimensional B-Splines
entities, several of their properties are directly inherited from the ones of the B-Splines curves
and analogously, they follow from the properties of the related multivariate basis. In particular,
the regularity and locality properties still hold, as well as the affine covariance and convex
hull properties.

In the multivariate case, we refer to the piecewise multilinear interpolant of the control
points P; as the control mesh in the physical space R?, which does not necessary lay in the
geometry 2. The latter does not coincide with the physical mesh in the physical domain
Q induced by the geometrical mapping x of the mesh defined in the parameter space. In
particular, the elements in the physical domain are obtained from Eq. (1.8) as the image of
the elements in the parametric domain:

Ky = {K = X(Q) Qe Qh} (1.9)

1.1.5 Uni— and multivariate NURBS basis

Since B-Splines are polynomial functions, a large category of geometries used in engineering
design, as conic sections, cannot still be exactly represented. In order to close this gap, Non-
Uniform Rational B-Splines (NURBS) have been introduced and are typically used in CAD
system [PT97].

Given a knot vector Z = {{1,&,...,&ntpt1}, & univariate NURBS basis is provided on
the parametric domain € = [0,1] by introducing a set of real numbers {w;}?_; called weights
and the univariate B-Splines basis {N;}i" ;, defined through the knot vector Z. We assume
that the weights are positive; this hypothesis is not necessary, but it is common in literature
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and in most applications of engineering interest. We introduce a scalar (positive) piecewise
polynomial function, called weighting function, as:

W:Q—=R,  W( :zn:Ni(n)wi. (1.10)

Through it, we can define for all i = 1...,n, the i-th NURBS basis function as:

6 o Nipwi  Ni(p)wi
Rz’ Q) — R, Rz(n) - W(n) = 2?11 Nj(T/)W]

(1.11)

Each basis function is a piecewise rational function defined in the parameter domain Q. Despite
its not-polinomial nature, it is a convention to refer to the degree of the NURBS basis functions
as to the degree of the B-splines basis {N;}i-, introduced in Eq. (1.11).

Analogously to univariate B-Splines basis function, the most of the properties can be
directly deduced taking into account the knot vector =, e.g. the number of basis function n
and the degree p. As for the regularity, the basis functions are C°°-continuous in the interior
of each element @) of the mesh Qj, while in the knots they are CP~"-continuous, with m;
the multiplicity of the knot value (; € Z, for j = 1,...r. The basis {R;};_, still constitutes

n

a partition of unity, i.e. Z Ri(n) =1foralln e ), and, if defined from an open knot vector,
i=1

it posseses the end-point interpolation property, i.e. Ri(&1) = Rp(&nqps1) = 1. Each basis

function is everywhere pointwise non-negative and has compact support in p + 1 knot spans,

i.e. supp(R;) C [&,&ivpt] for @ = 1,...,n; moreover, p + 1 basis functions have support in
each knot span.
By assuming that the basis functions R;, for i = 1,...,n, are sufficiently regular in n € €Q,

an explicit formula for the [-th derivative of univariate NURBS basis functions can be provided,
applying the quotient rule. In particular, from Eq. (1.2) we have that:

J LN d-9)
o =X () g
2 Ri(n) = =

a4 W)

(1.12)

The univariate NURBS space on the parametric domain Q, spanned by the NURBS basis
functions previously described, is denoted as:

N" = Span ({R;}™,), (1.13)

where, as before, the parameter h indicates the global mesh size.
These arguments can be easily generalized to define multivariate NURBS basis func-
tions and related multivariate NURBS spaces. For a = 1,...,k, given k knot vectors
= {&1,6%, - &notpat1) and their associated multivariate B-Splines basis {N;}ier, as
glven in Eq. (1.5). Assigned a set of weights w = {w;}ics, where, as previously, I = {i =
(i1, 405) : 0 < ig < ng,1 < a < Kk}, a weighting function is defined over the parametric
domam Q [0, 1)"

W:Q—R, W(n) = ZwiNi(n). (1.14)
el
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Figure 1.4: Projection of a piecewise quadratic B-Splines curve in R® into a plane. The resulting
object (red) is a NURBS curve.

This leads to the definition of the ¢-th multivariate NURBS basis function:

Ny (m)w;
W(n)

whose properties can be deduced by the ones of the related multivariate B-Splines basis
{N;}ier and the tensor product structure. Moreover, the resulting NURBS space over the
parametric domain 2 reads:

Ri:Q—R,  Rin) = Viel, (1.15)

N := Span ({Ri}ier) - (1.16)

Remark 1.3. If for all i € I, the weights are unitary, i.e. w; = 1 (or constant), we obtain
that R; = N; for all i; indeed, B-Splines represents a particular case of NURBS.

1.1.6 NURBS geometries

NURBS geometrical entities can be described from two different perspectives: the geometrical
and algebraical points of view.

From the geometrical point of view, a NURBS geometry in R? is obtained by projecting
a B-Splines geometry in R%*! onto an hypersurface in R? . The resulting object is, then,
identified with the corresponding physical domain © C RY. In particular, conic sections can
be exactly represented by the projective transformation of piecewise quadratic B-Splines, as
shown in Figure 1.4.

Given a B-Splines curve C% called in this context projective curve and defined through
basis functions the {N;}?; in the domain Q = [0,1] and control points {P#}? , C R,
which we call projective control points (we assume that these lie in the positive semi-space
{& € R : 2401 > 0}), with w; = (P®)41. The projection of the B-Splines curve into
the plane {x € RO . xgr1 = 1} is the ratio of two piecewise polynomials and defines a
NURBS curve. In particular, we can apply this transformation to the set of projective control
points { P’} | to obtain the control points associated to the NURBS curve, which are given

P¥);
by (P;); = (:})J for all j = 1,...,d, where (P;); indicates the j-th component of the i-

(2
th control point P; € RY. We can interpret w; as the weights for i = 1,...,n defining the
weighting function W of Eq. (1.10). In this manner, the NURBS curve C : 2 — RY is given
component-wise by:

C:Q—QCRY (C(n))j:m Vi=1,...,d. (1.17)
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By adopting an algebraic perspective, we define the NURBS geometries through control
points and the uni— and multivariate NURBS bases defined in Section 1.1.5.

Definition 1.3. By means of a NURBS basis {R;}icr, whose basis functions defined in Q=
0,1]% are given in Eq. (1.15), and a set of II%_ ny control points {P;}ier € RY, a NURBS
geometry in R? is represented by the geometrical mapping:

x: Q= QCRY  x(n)=> Ri(n)P. (1.18)
i€l

As for B-Splines, it is important to underline that a NURBS geometry is defined as a
map from the parametric domain € = [0,1]% into the physical space R%, to which the control
points belong. The properties of NURBS geometries derive from the ones of the NURBS
basis functions. In particular, the regularity and locality properties (referring, as for B-
Splines geometries, to each parametric direction) still hold, as well as the affine covariance,
convex hull and end-point (corner-point) interpolation properties. Moreover, the variation
diminishing property, for which no plane has more intersections with the curve than with the
control polygon, is valid also for NURBS curves.

In view of Isogeometric Analysis, for which we consider NURBS as the basis used for
the analysis, other than for the representation of the physical domain © by means of the
geometrical mapping x of Eq. (1.18), we restrict hereafter to the case in which the dimension
k of the parametric space R" equals the one relative to the physical space R? ie. k = d and
Q, Q2 C R Moreover, we introduce the deformation tensor and Jacobian of the map.

Definition 1.4. We define the deformation tensor of the geometrical mapping (1.18) as:
. 8X,‘

T:Q-)RdXdy ﬂ](n) = an(n)7 Vivjzla"'7d7 (119>
j
and Jacobian of the mapping:
J:Q =R, J(n):=det(T(n)). (1.20)

From the geometrical point of view, there will be no impediment in considering NURBS
geometries defined by maps with non-constant sign Jacobian. We will call them degenerate
geometries and an example of them is represented by geometries characterized by crossing
control points. However, we assume that the following necessary condition must be satisfied
by the geometries considered:

J(n) >0 ae inQ with |[Qy,|=0, (1.21)

where Q, := {n € Q: J(n) = 0} and || is the measure with respect to the topology of the
parameter space. Degenerate geometries are studied in [LEB'10]. Moreover, the geometrical
mapping given in Eq. (1.18) is assumed to be invertible, with smooth inverse on each element
K of the physical mesh Kj introduced in Eq. (1.9).

In virtue of the geometrical mapping (1.18), we define the space of NURBS in the domain
Q as the push-forward of the space N = Span ({R;}ic;) of Eq. (1.16), for which:

VI .= Span ({R; o x '}icr) = Span ({Ri}ier) , (1.22)

We denote with {R;};e; the NURBS basis in the physical domain, with R; := R; o x ! for
allt e I ={i = (i1,...,ix) : 0 <ig <ng,1 <a <k}
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Figure 1.5: Example 1.3: Arc obtained with NURBS basis of degree p = 2 and control points (e) P;,

fori=1,...,3.
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Figure 1.6: FExample 1.4: NURBS curve built considering the open knot vector = =
{0,0,0,1/6,2/6,3/6,4/6,5/6,5/6,1,1,1} and control points marked by e. The geometrical mapping of
the knots in the physical domain, denoted by X, defines the boundaries of elements K in the physical
mesh K".

Example 1.3 (NURBS curve). We represent an arc of circumference, corresponding to an
angle of size § < w/2. We consider a NURBS basis function of degree p = 2, defined by the
open knot vector Z = {0,0,0,1,1,1} and weights w; = ws = 1, while wy = cos (6/2). Then,
the control points are located as shown in Figure 1.5, i.e. P; and P; represent the arc terminal
points (due to the end-points interpolation property), while P, is located at the intersection
of the tangent lines to the curve in P; and Ps. o

Example 1.4 (NURBS curve). We build the NURBS curve C given in Figure 1.6 with the

2 2
following requirements on its regularity: Cjg(O) = Cfln?(O) =0, 65(1/3) = C;ng(l/?,) =0,
ic, . 2c, o, o .
d—(1/3 ) = 0 and W(l/?: ) # 0. The univariate NURBS basis is defined by means of
n n

the open knot vector = = {0,0,0,1/6,2/6,3/6,4/6,5/6,5/6,1,1,1}, degree of basis functions
p = 2 and weights w; = 1 for all ¢ = 1,...,6, while w7y = wg = 1 and wg = \/5/2 Control
points are located as in Figure 1.6, i.e. P, = [0,1]7, P, = [1/2,1)F, P3 = [1,1]F, P, =
(1,07, Ps =[3/2,0]", Ps=1[2,0)7, P =[2,0]", Ps=[3,0]7 and Py = [3,1]". o

Example 1.5 (NURBS surface). By using the tensor product structure, a quarter of an
annulus can be easily constructed by building univariate NURBS in the radial and angular
directions. The bivariate NURBS basis is defined by means of the knot vectors =Z; = {0,0,1,1}
(for the radial direction) and =y = {0,0,0,1,1,1} (for the angular component) and weights
wil = w3 =1, w2 = \@/2, wo1 = w23 = 1, woo = \/5/2, where the subscripts refers
to the parametric directions. Then, the NURBS surface shown in Figure 1.7a is obtained by
choosing control points as P ; = [1, 07, Py =11, 17, P 3 =10, 17, Py =12, 07, Py =
2, 217, P3 =10, 2]T. o
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(a) Ezample 1.5. (b) Ezample 1.6.

Figure 1.7: Examples 1.5 and 1.6: control points denoted by e.

Figure 1.8: Example 1.7: NURBS solid generated from the knot vectors Z; = {0,0,1,1} (radial
component), =9 = {0,0,0,1/4,1/4,1/2,1/2,3/4,3/4,1,1,1} (angular component) and Z5 = {0,0,1,1}
(depth). Control points are e.

Example 1.6 (NURBS surface). In Figure 1.7b it is shown a NURBS surface built by means
of the open knot vectors =; = {0,0, 1,1} (radial component) and Z3 = {0,0,0,1/2,1/2,1,1,1}
(angular component). Control points are located as in Figure 1.7b. o

Example 1.7 (NURBS solid). We want to construct a linear tube, with length L, inner radius
r, and outer radius R. The geometry is defined by means of open knot vectors =; = {0,0, 1,1}
(radial component), =9 = {0,0,0,1/4,1/4,1/2,1/2,3/4,3/4,1,1,1} (angular component) and
E3 = {0,0,1,1} (depth), and weights: w(;, i,,) = \/5/2 for 1,73 = 1,2 and iy = 2,4,6,8,
otherwise w(;, ;, i,y = 1. Control points are located as in Figure 1.8. o

1.1.7 h-, p- and k-refinements

In order to build more detailed geometries, but also in view of the enrichment of the NURBS
space N of Eq. (1.13), we recall the refinement procedures that can be performed within
the B-Splines and NURBS frameworks. In particular, two kind of refinement, called h- and
p- refinement, are affine with those used in FEA with the Lagrangian globally C%-continuous
basis. However, a third possibility, referred as k-refinement is peculiar to the NURBS and
B-splines basis. We will briefly describe them for an univariate B-Splines basis. For a detailed
description of refinements, we refer to [CHB09, CHRO7|.
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h-refinement (knot insertion). Let = = {{;,&o,...,&4p+1} be the knot vector which
defines a B-Splines basis and consider a knot to be inserted in Z, £ € [§, &41). By applying
the recursive formula in (1.0) to the estended knot vector = = {5_1,52,...,§_n+p+1+1} =
{&1,&,. .. ,gl,g‘, &41,-- > &nqpr1), @ new set of n 4+ 1 basis functions is obtained and their
span, 8" := Span ({N;}/; + 1)) is nested in S" := Span ({V;}?-,). Thus, for a curve in R? a
new set of control points should be defined for the new basis in order to obtain a curve which
is geometrically and parametrically equivalent to the original one. Moreover, h-refinement
allows to increase the number of elements of a mesh by adding new knots, but also to reduce
the regularity of the basis functions when inserting new knot ¢ already present in Z. Through
this kind of refinement, the number of elements increases, as well as the number of basis
functions and, consequently, the number of control points.

Example 1.8 (h-refinement). An example of knot insertion is given in Figure 1.9b, where we
perform a single knot insertion, adding a new knot value. Taking into account the relation
n = nis + p, the number of basis functions increases by one and they are C!-continuous in the
new knot (3 = 1/2, which defines = = {0,0,1/2, 1, 1}; nevertheless, the regularity of the curve
is preserved by suitably choosing the new set of control points {151}?;11 The physical mesh
K" on the curve has two elements whose size is an half of the single element constituting the
original physical mesh K", o

p-refinement (order elevation). Analogously with the p-refinement procedure of FEA,
we can elevate the polynomial order of the basis functions; we refer to this process as order
elevation or p-refinement. As for knot insertion, it is performed in such a manner that both
the parametrization and the geometry of the original curve are preserved. Since we want to
preserve also the regularity of the basis in the whole domain, it follows that, when performing
an order elevation, the multiplicity of each existing knot in = has to be increased by one,
without inserting any additional knots. The implementation of this kind of refinement is, in
general, less straightforward than knot insertion. We refer to [PT97| for suitable algorithms.
As fo% h—ref}iLnement, the p-refined procedure leads to the generation of nested function spaces,
ie. 8" CS™

Example 1.9 (p-refinement). In Figure 1.9¢ we illustrate an example of p-refinement for
the same curve shown in Figure 1.9a and already used in the Example 1.8. We obtain = =
{0,0,0,1,1,1}. We notice that the position of the control points and the basis functions are
different for the two procedures, but the curve is left unchanged. o

k-refiment. The fact that order elevation and knot insertion procedures do not commute,
introduces the possibility of a new refinement strategy, called k-refinement, which has not
analogue in FEA, [CHBO09].

Let us consider a B-Splines basis of degree p. If a knot insertion is performed, when adding
a new knot &, the basis functions in € are CP~!-continuous. This regularity in ¢ is preserved
if we subsequently elevate the degree to ¢ > p with the multiplicity of each knot, including
€, increased accordingly. On the other hand, we can first perform order elevation, until the
polynomial degree is ¢ and then insert a new knot value €. In this case the number of non-zero
knot spans is still the same as before, but the basis functions are now C?~!-continuous in &,
instead of only CP~!-continuous, the regularity attained according to the previous procedure.
The latter procedure is referred to as k-refinement.
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1 -
> 0.5
0 0;(5 1
==1{0,0,0,1,1,1}
(a) B-Splines curve.
1 1
> 0.5 >0.5r
0 0).(5 1 0 0).(5
/
==1{0,0,0,1/2,1,1,1} ==1{0,0,0,0,1,1,1,1}
(b) knot insertion. (c) order elevation.

Figure 1.9: Refinements: comparison between knot insertion (b) and order elevation (c) starting from

the same B-Splines curve shown in (a); control points (e), and knots in the physical mesh (x). The
corresponding basis functions and the knot vectors are reported.
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>05 >05
0 0)(5 0 OXS 1
£=1{0,0,0,0,1/2,1/2,1,1,1,1} ==1{0,0,0,0,1/2,1,1,1,1}
(a) First knot insertion and then order elevation. (b) First order elevation and then knot insertion,

k-refinement.

Figure 1.10: Refinements: comparison between performing firstly knot insertion, then order elevation
(a), and performing firstly order elevation, then knot insertion (b), starting from the same B-Splines
curve of Figure 1.9a; control points (e), and knots in the physical domain (x). The corresponding
basis functions and the knot vectors are reported.

Example 1.10. We show that the order elevation and knot insertion procedures do not
commute in Figure 1.10. We start from the same curve of Figure 1.9a and we perform a
single knot insertion and order elevation in different orders. As we can see, we obtain bases
with different regularity and number of basis functions; as a result, also the number and
the locations of control points is different for a curve parametrized in the new spaces. The
knot vector associated to the k-refinement is = = {0,0,0,0,1/2,1,1,1,1}, starting from = =
{0,0,0,1,1,1}. o

Simply considering the regularity of the new set of basis functions, obtained through k-
refinement, it is straightforward to observe that the procedure does not lead to sequences of
nested spaces, S" ZSh. Because of this, k-refinement cannot be referred as a refinement in
the classical sense. Nevertheless, there is an important advantage associated to k-refinement,
since it allows to increase the regularity of the basis functions by limiting their number.

Remark 1.4. The h-, p- and k-refinement procedures can be extended to multivariate B-
Splines basis and geometries, in virtue of the tensor product structure. Moreover, they can
be performed as well as for NURBS. We observe that after refinement, the weights defining
the NURBS basis functions will change, similarly to the control points. Nevertheless, both the
weighting function W of Eq. (1.14) and the geometrical mapping x of Eq. (1.18), which define
the NURBS geometries, are preserved under refinement.
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Figure 1.11: Example 1.7: Ek-refinement of the NURBS solid reported in Figure 1.8. Result-
ing control points are located in e and the knot vectors are: = = {0,0,0,1/3,2/3,1,1,1},
Sy = {0,0,0,1/12,2/12,3/12,3/12,4/12,5/12,6/12,6/12,7/12,8/12,9/12,9/12,10/12,11/12,1,1,1}
and 23 = {0,0,0,1/3,2/3,1,1,1}.

Example. 1.7 (NURBS solid and k-refinement). For the NURBS solid defined in Example 1.7,
we perform k-refinement in order to achieve in each parametric direction the same degree p = 3
and a number of basis functions equal to 3 x 12 x 3. The knot vectors obtained and the location
of control points are reported in Figure 1.11. o

1.2 Galerkin method for IGA

In this section we consider NURBS as a basis for analysis and we present the IGA-Galerkin
method based on NURBS for the approximation of PDEs. Specifically, we consider the general
case of high order PDEs.

Given a NURBS basis {R;};cs in the parameter domain QO cC Rd, a real valued function
1y, can be represented in Q as:

in: Qo R, dp(n) =Y Ri(n)d;, (1.23)
el

where {d;};c; C R are the control variables. We have already use the subscript ;, referring
to the global mesh size, to remark that we are defining functions over the finite dimensional
NURBS space N of Eq. (1.16).

By considering a composition with the inverse of the geometrical mapping (1.18), a function
defined in the physical domain € can be expressed as an element of the space V' (1.22) as:

up Qo R, up(@) =dpox (@) =) Ri(x '(@)d; = > Ri(a)d;. (1.24)
i€l el

Given a well posed boundary value problem, we look for an approximate solution in the
form (1.24) by means of suitable numerical methods. In particular, we refer to the Galerkin
method [SF73, Qual9], for which, after providing the variational formulation of the problem,
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the approximate solution is sought in a suitable finite dimensional space, which we assume
to be the NURBS space V". In this section we describe the IGA-Galerkin method for the
solution of general high order scalar elliptic boundary value problems.

Remark 1.5. Usually, the geometry, i.e. the computational domain §2, is represented at the
coarsest level of discretization and h-, p-, k-refinement, as described in Section 1.1.7, are
performed according to accuracy requirements to enrich the NURBS spaces N and V. We
will denote by Qp, the coarsest mesh of the family of meshes {Qp}n, obtained by performing
h-refinement. The weighting function W in Eq. (1.14), and the geometrical mapping x in
Eq. (1.18), are mainteined fized at the coarsest level of discretization; see Remark 1.4.

1.2.1 High order scalar elliptic PDEs: variational formulation

Let us consider a domain Q C R%, i.e. a connected open subset of the finite dimensional space
R, whose boundary 99 is sufficiently regular. An elliptic boundary value problem of order
2m is defined once provided an elliptic linear partial differential operator £ of order 2m and
a normal set of boundary operators {; }’anl The problem in strong form reads:

Lu=f in Q, (1.25a)
findu: Q2 —R )
Bju = g; on 000 Vj=1,...,m, (1.25b)
for given functions f and g; for j = 1, ..., m which must satisfy suitable regularity hypotheses,

for which we refer to [Ode00].

The weak formulation of problem (1.25a) is obtained by multiplying the partial differential
equation (1.25a) governing the problem, by a test function v € V', with V' a suitable function
space depending on the order of the operator £ and on the set of boundary conditions (1.25b),
and then integrating over the domain €2. This yields:

findu: Q=R : (Lu,v)2q0) =(f,v)2q WEV (1.26)

Specifically, V' is defined as the subspace of H™(£2) whose functions satisfy the homogeneous
counterpart of the essential boundary conditions, say {stsu = 93}?:1 C {Bju = g;}jL,, with
m < m defining the problem (1.25a), i.e.:

Vi={ve H"(Q): Bf*v=0for j=1,... m} (1.27)

Let us assume for the moment to consider the case in which the essential boundary conditions
are homogeneous, i.e. 9; =0 for all j =1,...,7, then, by setting u = ug, we can provide the
so called variational formulation of problem (1.25a) which seeks for a solution in the space V'
and for which the problem reads:

findug € V. :  alug,v)=F(v) Yv eV, (1.28)

where a : VXV — R is a bilinear form related to the the differential operator £L and F': V — R
is a linear functional depending on the source term f and on the natural boundary conditions,
that are naturally embedded in the weak form of the problem. We observe that in the case
of non homogeneous boundary conditions, the problem can be recast in the form (1.28) by
introducing a suitable lifting function, say g, such that v = ug + g. We will discuss in
Example 1.11 this case for the Poisson problem.

The equivalence between the problem in strong form (1.25a) and its variational formulation
(1.28) is satisfied in the sense of distributions; moreover, the well posedness of problems in
the form (1.28) is established in the Laz-Milgram Lemma (see for instance [Qua09, Ode00]).
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Theorem 1.1 (Lax-Milgram Lemma).
Given the problem (1.28) defined on the Hilbert space endowed with norm ||-||y,. If the following
hypotheses are satisfied:

i) a(-,-) is continuous, i.e. there exists M > 0 such that |a(w,v)| < M||w|y||v|,, for all
w,veV

it) a(-,-) is strongly coercive, i.e. there exists a > 0 such that a(v,v) > aHvH%/ for all
veV,

iii) F €V, ie. F(-) is a linear and continuous functional,

1
then, there exists a unique solution ug € V' of problem (1.28) and ||ug||,, < —||F|y-
a

We consider now some examples of elliptic PDEs with operators £ of order m > 1 in order
to provide their variational formulation. We characterize the space of admissible solutions
V', explaining the choice made in the definition (1.27), and we explicit the dependence of the
bilinear form a(-,-) and of the linear functional F'(-) on the data defining the problem (1.25a)
in its strong form.

Example 1.11 (Poisson problem). Let @ C R? a domain whose boundary is partitioned in
I'p,I'y € 00 such that Tp UT'y = 0Q and I'p NT'y = (. The known functions f : Q@ — R
with f € L*(Q), p : Q@ — R with g € L°°(Q) and p(x) > po > 0 a.e. in Q, are assigned.
Moreover, we assume g : I'p — R with g € Hl/Q(FD) and h:Tyx — R withh € L*(T'y). The
problem reads:

-V (uVu)=f in Q, (1.29a)

findu:Q—>R : u=yg on T'p, (1.29b)

uVu-n=h on I'y, (1.29¢)

To reduce the problem to the variational formulation (1.28), firstly, we multiply Eq. (1.29a)

by an arbitrary test function v € V, with V to be defined, and then we apply the Green’s
formula, to obtain the relation:

/MVU'V’UdQ—/ uVu-nvsz/fde%—/ vh dl. (1.30)
Q FD Q 1_‘N

By defining the test space V as the space of functions satisfying homogeneous essential bound-
ary conditions in the sense of the trace, i.e.:

Vi.={ve  H(Q): v|r, =0}, (1.31)

we obtain that for v € V' the second integral in the left hand side of Eq. (1.30) is zero. Since
the solution u satisfies essential boundary conditions which are not homogeneous (the data g
is not necessary zero), we introduce the so called, lifting function g such that g € H 1(Q) and
glr, = ¢. In this way, for the solution u belonging to the trial space defined as:

Vy:={ue H Q) : ulr, =g}, (1.32)
there exists a unique ug € V such that v = g + uyp.

The problem in variational formulation reads as in Eq. (1.28) with a(ug,v) := / uVuyg -
Q

Vo dQ and F(v) ::/fde+/ vhdF—/qu]-Vde. o
Q I'n Q
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Remark 1.6. Often the weak formulation of a boundary value problem can be expressed by
considering the following formulation, for which we look for a solution in a function space
different from the test space, i.e.:

find weVy, : a(u,v)=F@) Yvev, (1.33)
where the linear functional F : V — R reads F(v) := / fvdQ —i—/ vhdl' for allv e V.
Q Tn

Example 1.12. (Advection-diffusion problem) We consider an advection-diffusion equation,
for which the operator L is not self-adjoint and the bilinear form a(-, -) is not symmetric. The
problem reads:

~ V- (uVu)+b-Vu= in 0 1.34
find u: Q- R { WVu)+b-Vu=f in i, (1.34a)

u=g on 0, (1.34b)

where, in addition to hypotheses of Example 1.11, we assume that b € [L>®(Q)]¢ with V -
b = 0 a.e. in ; moreover I'p = 0. Following the same steps as in Example 1.11, we
recast problem (1.34a) in the weak form (1.33) considering as trial and test function spaces,
respectively:

Vy = {v € Hl(Q) PO g} , (1.35a)

V={ve H' Q) : v[po =0}, (1.35b)

and a(u,v) = / uVu- Vo dQ—i—/ vb-VudQ and F(v) := / fvd€2. Since the bilinear form
Q Q

a(-,-) is no more symmetric, when the convection term dominates the diffusion one, we may

obtain solutions highlighting internal and boundary layers. o

Example 1.13 (Biharmonic problem). The biharmonic problem defined in a domain 2 C R?
is governed by a fourth order partial differential operator £ = A2, often called bilaplacian,
which applied to a sufficiently regular function u reads:
0*u 0*u 0*u
ANy=— 42—+ .
YT e T BaZoyr T By
We restrict to the case of essential boundary conditions on 92. The problem in strong form
reads:

(1.36)

Ny =f in Q, (1.37a)
findu:Q2—-R u =g on 012, (1.37b)
Vu-n =gy on 0f). (1.37c)
To provide the weak form, we multiply Eq. (1.37a) by a sufficiently smooth test function v
and integrate over the domain: / Ao dQ = [ fvdQ. Then, we apply the Green’s formula
Q Q
to the left hand side, to obtain / A%yvdQ = / V- (V(Au) vdQ = / V- (V(Au)v) dQ—
Q Q Q
/ V (Au) - VodQ = V (Au) -novdl — jg AuVv-ndl' + / Aulv dQ. This yields:
Q oN oN Q

/ Aulov dQ + V (Au) -nvdl — Au (Vo -n) dl' = / fodQ. (1.38)
Q o0 onN Q
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We define the trial and test function spaces, respectively:

Vg = {U€H2(Q) tvloa = g1, (Vv-n)lag = g2}, (1.39a)
V={veH(Q) : vlpa=0, (Vv-n)lpo=0}, (1.39D)

for which we recast the problem (1.34a) in the weak form (1.33) with the bilinear form

a(u,v) := / Aulv dQ and the linear functional F'(v) := / fvdQ. o
Q Q

Example 1.14 (Trilaplacian problem). We consider a problem defined in the domain Q C R?
governed by the sixth order partial differential operator £ = A3, called trilaplacian, which,
applied to a sufficiently smooth function u, reads:

o%u 0%u 0%u 0%u

N3y i= AN ) = — + 3 3 -
v (&%) 0z0 + Ox40y? * Ox20yt +6yﬁ

(1.40)

In such a way, the trilaplacian problem complemented by essential boundary conditions reads:

—Nu=f in Q, (1.41a)

fnd u: QO — R u=q on 012, (1.41b)

Vu-n =g on 012, (1.41c)

Au = g3 on OfL. (1.41d)

In order to provide the variational formulation, as usual, we multiply the governing Eq. (1.41a)

by a suitable test function v and then apply the Green’s formula. Thus, defining the trial and
test function spaces as, respectively:

Vg = {v € H3(Q) s vlga =91, (Vv-n)|aq = g2, Avlog = gg} , (1.42a)
V= {v € H3(Q) s vlgn =0, (Vv-m)lag =0, Avlgg= 0} , (1.42b)

the weak form (1.33) is obtained with a(u,v) := / V (Au)-V (Av) dQ and F(v) = / fodQ.
Q Q
o

1.2.2 Galerkin method for IGA applied to high order scalar elliptic PDEs

We consider the approximation of the problem (1.28) by means of the (Bubnov-) Galerkin
method [CHB09]. We consider a nontrivial and close subspace V? C V for which the varia-
tional boundary values problem (1.28) reads:

find ugp, € VP 1 a(uon,vn) = F(up) Vo, € VR (1.43)

where the bilinear form a(-,-) and the linear functional F(-) in (1.43) are defined in Sec-
tion 1.2.2 and ugj, € V" represents the approximation of ug € V', given in Eq. (1.28).

Remark 1.7. A generalization of the Galerkin method is the so called Petrov-Galerkin method,
in which the finite dimensional space of test functions, say WP, is different from the trial space
V. Thus, the problem reads:

find uop, € V® ' a(uop,vp) = F(vp) VYo, € Wh (1.44)
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The well-posedness of problem (1.43) is determined in the following approximation theo-
rem; see for instance [Qua09, Ode00)].

Theorem 1.2 (Approximation Theorem). With the hypotheses of Lax-Milgram Lemma 1.1
satisfied, for the problem (1.43) there exists a unique solution ugy, € V, for which the following
stability estimate holds:

1
luonlly < —[1Ely (1.45)

Moreover, the approximation error e := ug — ugp, with ug the unique solution of problem
(1.28), satisfies the optimal error estimate:

M
Uy — U < — inf |jug—w . 1.46
luo = wonlly < = inf lluo —vnlly (1.46)

Remark 1.8. In virtue of the optimal error estimate (1.46), in order to obtain the convergence
of the method, it is sufficient to choose the family of nested spaces, say {Vh}h, such that the
following density property is satisfied:

lim inf |jv— =0 VYweV. 1.47
2l =l =0 o

When considering NURBS-based IGA, the function space V" is chosen as a finite dimen-
sional subspace of the space V" of NURBS defined in the computational domain €, given in
Eq. (1.22), ie. V.=V VA

Remark 1.9. The parameter h associated to V" corresponds the one characterizing V' and it
indicates the global mesh size used for the parametrization of the physical domain as a NURBS
geometry.

By exploiting the locality of the supports of NURBS basis functions, we can identify neq
basis functions that identically satisfy the homogeneous essential boundary conditions and by
reordering the indexes, we assume: Rlr, = 0 for all A =1,...,n¢. In such a way, a basis
for the finite dimensional space is provided, V" := Span{R A}Z‘;‘ll, and, due to the linearity of
F(-) and bilinearity of the form a(-,-), it is sufficient for problem (1.43) to be verified for each
basis function. Moreover, since ug), € V", we have:

Neq

uop = Z Rpdg, (1.48)
B=1

with {dB}%eil set of unknown control variables. Reconsidering problem (1.43) and exploit-
ing once more the bilinearity of the form af(-,-), we obtain the following, equivalent discrete

problem:
Teq

find {dp}5?, : Y dpa(Rp,Ra)=F(Ra) VA=1,... 0 (1.49)
B=1

The finite dimensional linear system (1.49) can be rewritten in matrix form as:
Ad=F, (1.50)

where A € R"™a*" ig the stiffness matriz, reading component-wise Asp = a(Rp,Ra),
d € R" is the vector of unknown coefficients d4 and F' € R" is such that F4 = F(R4).
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Remark 1.10. Due to the locality of the supports of NURBS basis functions, A is a sparse
matriz, which is assembled at the element level with a connectivity array, linking every local
function indezx to its global index; see for instance [CHB09]. Numerical integration is performed
by means of suitable gaussian quadrature formula applied in the parametric domain Q. We
refer the reader to [dFRV11, Hug00] for a detailed presentation of this process; moreover, a
study of efficient quadrature rules for NURBS-based isogeometric analysis has been initiated
in [HRS10].

We briefly discuss the case of non homogeneous essential boundary conditions. With this
aim, we consider as example the Poisson problem of Example 1.11.

Example. 1.11 (Poisson problem). The non homogeneous essential boundary condition
(1.29b) is embedded in the variational formulation (1.28) in the linear functional F', by means
of the lifting function g, such that for all functions u € V; there exists a unique ug € V for
which u = g + ug. Regarding its discrete counterpart, the solution uj belongs to the finite
dimensional NURBS affine space Vgh =V, N V! for which, if § € Vgh, then there exists a
unique ugp, € VP yielding up, = § + uop. Nevertheless, not every function g belongs to the
NURBS space; in this case, we have to resort to a g extension of the boundary datum g,
which is only an approximation of g, i.e. such that g, ~ g. Thus, the finite dimensional affine
space Vgh is characterized by functions uj € Vgh such that up|r, = gnlr, =~ g. In this case the
functional F of the weak form (1.43) is replaced by the following one, say Fj:

Fp(v) ::/vadQ—i—/F vhdF—/qugh-Vde. (1.51)
N

In practice, by means of a suitable ordering of the degrees of freedom, g can be expressed as:

Neq n
Gn=> Raga+ Y Raja; (1.52)
A=1 A=neq+1
in virtue of the condition R4|r, =0 for all A =1,...,ne,, we can assume that g4 = 0 for all
A =1,...,ngq; thus, the solution uy, reads:
Neq n
Up = Uop + gn = Z'RAdA—l- Z Raga. (1.53)
A=1 A=neq+1

Different approaches can be chosen to determine the values of the coefficients g4. Specifically,
we consider an L? projection of the function g on I'p. o

Remark 1.11. In analogy with Remark 1.6, the approximation by means of the Galerkin
method of the variational counterpart of problem (1.25a) reads:

find uy, € Vgh : o a(up,vp) = F(vy) Yo, € vh, (1.54)
with the functional F(-) as in Eq. (1.33).

Example. 1.12 (Advection-diffusion problem). When approximating the solution of the
advection-diffusion equation, it is well-known that the Galerkin method can provide unstable
results when the diffusion term is largely dominated by the convection term and h is not
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small enough. This can be explained considering the optimal error estimate (1.46) since, up
to constants dependent on the shape of the domain 2, the upper bound is determined by

— = il @ ol (Q), which grows with the ratio M A parameter, which
o 1o [l oo ()
measures the extent of the domination of the diffusion term over the ’(i[())ﬁlvectiof? term at
oo K
the discrete level, is the local Péclet number, defined locally as Peg := #7 where
FilLee ()

hx = diam(K) is the element dimension in the physical mesh, defined for each K € Kj.
When Peg > 1, the standard Galerkin formulation produces an unstable discretization of the
differential non-symmetric operator; several strategies have been proposed in order to over-
come this issue in the contest of FEA [Qua09, SF73]. A common remedy, which increases
stability within strongly consistent formulations, is the Streamline Upwind Petrov-Galerkin
(SUPG) method. An extensive literature is devoted to its analysis in the FEA framework; see
for instance [Qua09, BF91]. The SUPG method can be suitably used in the framework of IGA
by augmenting the weak form (1.28) or (1.43) with the following term on the left hand side:

Li(un, fivn) == D 7r(=V - (uVup) +b - Vup = f, b Vop) 2, (1.55)
KeKy,

where the stabilization parameter 7x, computed element wise, controls the amount of artificial
viscosity introduced. In particular, we define the stabilization parameter 75 as in [BHO7]:

hi ) { 1 }
Tk = ——————min< 1, —=Peg ¢ , (1.56)
2{[bl| oo () 3p?

where hy is element size for all K € Kj, and p indicates the degree of the basis functions. ¢

Remark 1.12. When considering high order PDEs, specifically of order 2m with m > 1, the
weak form of the problem exhibits derivatives of the solution and test functions of order m.
The numerical approzimation of the problem by means of the Galerkin method requires that
the basis functions are at least globally C™ ‘-continuous in Q. When considering the standard
FEA, the Lagrangian basis functions are only globally C°-continuous and, in order to solve
high order PDFEs, we need to resort to mixed formulations or weak penalization across the
mesh elements. On the contrary, NURBS-based IGA, for which we can build basis functions
with the required regularity, allows the use of the standard Galerkin formulation. This leads
to efficient numerical approzimations in the framework of the Galerkin method formulations
without the need to increase the number of variables as it is the case of mized formulations.

1.3 A priori error estimate for elliptic PDEs

In this section we provide the a priori error estimate for the errors corresponding to the
NURBS-based IGA approximation of scalar elliptic PDEs defined by differential operators of
order 2m, as in Eq. (1.25a). The result generalizes the a priori error estimate provided in
[BBadVCT06] and in [BadVBRS10] for second order elliptic operators and it is based on the
use of the Aubin-Nietsche’s argument for the derivation of the error in lower order norms,
see for instance [Ode00, SE73]. We consider the case of high order (2m) scalar elliptic PDEs,
see Eq. (1.25a), with homogeneous essential boundary conditions, for which the variational
formulation reads as in Eq. (1.28):

findueV : a(u,v)=F{) YveV, (1.57)
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since ug = u. The case of non homogeneous boundary conditions can be deduced by the
previous one.

Remark 1.13. In the following, we will denote by C' a positive constant independent of the
mesh size h and the unknown function w, which may change at each occurrence.

1.3.1 Preliminaries and interpolation estimate for NURBS

In order to provide the a priori error estimate of the approximation error of the Galerkin
method for NURBS-based IGA, we firstly need to recall some results concerning the inter-
polation theory of NURBS. The first interpolation result for the NURBS spaces is given in
[BBadVCT06], which we briefly recall here. In this work, the family of meshes over the pa-
rameter domain {Qp}, is assumed to undergo only h-refinement, being the degree p fixed.
The interpolation result is based on the introduction of a support extension @ of an element
Q in the mesh 9}, over the parametric domain, as the union of the supports of basis functions
whose support intersect the element itself. This last induces naturally the definition of a phys-
ical support estension of K, an element of the physical mesh K, (1.9) image of the element
Q € Qy, by means of the geometrical mapping x of Eq. (1.18), i.e. K = x(Q), as K := x(Q).
Moreover, in order to take into account the regularity across the common (d — 1)-dimensional
face between two adjacent elements Q1, Q™ € {Qp}1, the authors define the so called bent
Sobolev spaces of order | € N, see for reference [BBadVCT06].

Given a function v integrable over the parameter domain O, b€ LQ(Q), we introduce a
standard projective operator over the B-Splines space S”, say II sh, given by:

Mgn: LX(Q) = 8" et =Y (N, ) 12y 12 Nio (1.58)
el

where the linear functional \; € L2(Q) is defined as <>‘j’Ni>L2(§2)’,L2(Q) =054 for 1,5 € I.
The corresponding projective operator over N, the NURBS space on the parametric domain
of Eq. (1.16), is defined by means of the previous one and the definition of the NURBS basis
functions in Eq. (1.15) through the weighting function W of Eq. (1.14). In particular, Il s is
given by:
IIgn (W)

W )
for v € LQ(Q). In such a way the projection map over V. the NURBS space in the physical
domain Q defined in Eq. (1.22) as the push-forward of the space N, is given by:

HNh : LQ(Q) — Nh, HNh@ = (1.59)

. : L2(Q) — VI, Mypno := (M (vox))ox ' (1.60)

Firstly, we consider the provided local estimate for the interpolation error. Then, a global
estimate can be provided taking into account the minimum global regularity of the basis
functions, kmin, see Section 1.1.3.

Theorem 1.3 (Local error estimate). Let V! be the NURBS space in the physical domain Q
defined by NURBS basis functions of degree po, = p for all « = 1,...,d. Given the integers |
and 7 such that 0 <1 <7 < p+1 and r > m; for a function u € L*(Q) U H"(K), the local
estimate for the interpolation error is:

Tyl g1 g < Ol SV ol (L61)
=0
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where hy is the element size of K € Ky,

Proposition 1.1 (Global error estimate). Given the integers | and r such that 0 <1 < r <
p+1, r>m and a function uw € H"(2), then:

2 r—1) (i— T
S o (1.62)

< Cpr- l)||uHHr(Q)
Moreover, if | < kunin, we have:
[ = Tynu| gy < OB full grr (g (1.63)

The constants C' are dimensionless and depend on the shape of the domain €); moreover,
they also include the contribution of the gradient of the geometrical mapping x over the mesh
elements, where non explicit.

Corollary 1.1. Let u € H"(Q) be a function defined in the physical domain ). Given an
integer | such that 0 < I <p+ 1,1 <71 andl < kpin; then

lu = Iynul () < Cho~ lHuHm (1.64)
where 6 = min{r,p+ 1}.

Remark 1.14. The approximation result given in Proposition 1.1 and Corollary 1.1 only
highlights the dependence of the error on the mesh size h, considering the family of meshes
undergone only h-refinement. However, the potentiality of high order and global reqularity of
NURBS higher than C° is pointed out in [BadVBRS10], where the explicit dependences of the
interpolation error on the order p + 1 and the global regularity k of the basis is provided.

1.3.2 A priori error estimate

The Galerkin method provides an approximated solution for the scalar elliptic PDEs in
Eq. (1.57), for which we incur in approximation errors due to the fact that the space vhcv,
in which we seek the solution, is finite dimensional. We present the following result for the
IGA-Galerkin method in the framework of high order scalar elliptic PDEs, extending the one
provided in [BBadVC™06] for second order PDEs.

Theorem 1.4. Let u € H"(Q) be the exact solution of problem (1.57) and u, € V" the
approzimated solution obtained with the IGA-Galerkin method, which considers basis functions
of degree po, with po, =p for all a = 1,...,d and with global reqularity kmin > m. Then, the
following a priori error estimate holds:

lu = unll gm0y < CR||ull o) (1.65)

where vy = min{p + 1 — m, r —m}, and C is a positive constant independent of u and h, the
global mesh size.
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Proof. By means of the optimal error estimate (1.46) given in Theorem 1.2 and the approxi-
mation result (1.64) in Corollary 1.1, we have:

M
w— Up||gmioy < — Inf |lu — vpllgmoy < Cllu — Hyprul| m
o= wnllney < 10 = onlin < Ol = ystlimey |

S C"LL — thu‘Hm(Q) S ChaimHuHH’”(Q)’

where § = min{r,p + 1}. The third inequality is the generalization of Poincaré inequality,
valid since the domain €2 is a bounded with regular boundary, see for reference Corollary 6.31
in [AF07]. O

In order to derive lower order error estimate of the Galerkin-IGA approximation, we use
similar arguments to those applied for the FEA, see for reference [Ode00, SE73, Hug00|. In
particular, we consider the Aubin-Nietsche’s argument introducing the adjoint problem and
we resort to a generalized form of the Laz-Milgram Lemma 1.1 (the interested reader can refer
to, e.g., [0de00, SE73]), which we recall in the following.

Theorem 1.5 (Necas-Babuska Theorem).

Let V and W be two Hilbert spaces, endowed with norms |-\, and ||-||y,, and V' and W' be
their respective dual spaces. A boundary value problem in variational form can be formulated
as follows:

findueV : a(u,w)=F(w) YweW, (1.67)

with a : V. x W — R a bilinear form and F : W — R a linear functional. If the following
hypotheses are satisfied:

i) a(-,-) is continuous, i.e. there exists M > 0 such that |a(v,w)| < M|y ||wly, for all

veV,weW,
i) there exists B > 0 such that inf su M > 0,
veV\{0}wew (o} [Vl lwlly,
i) inf  sup —A0W g

weW\{0}yev\ {0} HUHVHWHW

) FeW,
1
then, there exists a unique solution u € V' of problem (1.67) and ||ull,, < BHFHW,

Theorem 1.6. Given the elliptic boundary value problem of order 2m of Eq. (1.57), let o be
an integer such that 0 < o < m and the linear functional F € H (). Let u € H" (), with
r > m, be the exact solution of problem (1.57) and uy the approzimated solution obtained with
the IGA-Galerkin method, with NURBS basis functions of degree po, = p for all a =1,...,d,
and kpmin > m. Then, the following a priori error estimate holds:

lu = up| o () < Ch’BHUHHT(Q)a (1.68)

where f = min{d — o, 2(§ —m)} with 6 = min{r,p+ 1} and C is a constant independent of u
and h, but depending on the shape of §2.
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Proof. The adjoint problem of problem (1.57) reads:
find pp eV : a*(pp,v)=F) YveV, (1.69)

where we define the bilinear form a* : V x V. — R as a*(v,w) := a(w,v) for all w,v € V
(see for instance [Ode00, Hug00, Qua09]). Its elliptic regularity is inherited by problem (1.57).
Moreover, by the space embedding rule V.C H? C H~? C V' and the hypothesis FF € H (1),
problem (1.69) satisfies the hypotheses of the Necas-Babuska Theorem 1.5; thus, there exists
a unique solution ¢p € V of the adjoint problem (1.69) and [[¢r| g2m-o(q) < ClIF || -0 (q):
for some constant C. By means of the generalized Poincaré inequality and the approximation
result of Corollary 1.1, there exists a projective operator IIn (1.60) onto the NURBS space
VI for which:

lor — HW‘PFHHM(Q) < Ch€”<PFHH2m—o(Q)7 (1.70)

with e = min{m —o,p+1—m}ifr >2m—ocor e =min{r —m,p+1—m} if r <2m —o.
Inequality (1.70) follows considering, as for the case r > 2m — o, op € H' () as an element
of H*™~7(Q) thanks to the inclusion H"(Q) C H*™~7(Q), while in the second case we only
take into account [|-|| oy < |||l grzm—o q)-

By definition of ||-[| ;o (), and choosing in Eq. (1.69) v = u — uj, we have:

|(F, U_Uh>Hfo(Q) Ho(Q | a*(op, u—up
u— unll oy = sup () HD] gy [ )
FeH—o 1F] -0 (0) rer—  |Fllp-o(q)

By the Galerkin orthogonality of the error with respect to V" and the continuity of the bilinear
form a*(+,-), we obtain:

* _II _
||u . uh”HU(Q) _ sup |(I (SDF YRPF, U Uh)|

FeH-7(Q) 1E | o c2) a71)
lor = ynop gm o) '

< Mllu = up|| gm sup
HO) o o) 1E | o (c)

Then, applying the error estimate provided in Theorem 1.4 and the upper bound of Eq. (1.70)
we have:
hellepll gam-oq)

lu = unll o (@) < CR|ull gr(qy sup
Ho @) @ o Fllg-oy

)

where v := min{p + 1 —m, r — m}.
Finally, by considering the inequality [l¢p| g2m-oq) < [|F]lg-+ (o) and adding the expo-
nents of K7€, we obtain the result (1.68). O

Remark 1.15. The regularity r of the exact solution w € H"(2) and the degree p of the
NURBS basis functions, used to obtain the approximated solution, determine the convergence
rate of the error with respect to the global mesh size h. Moreover, the rate of convergence
B depends on the order of the problem m, but also on the norm |-|| yo in which we want to
determine the error u—up. It is straightforward to conclude that the smaller is o the faster is
the convergence of the error with the mesh size h. However, we observe that p has to be large
enough with respect to m for w € H" (), with r > p+ 1, in order to achieve this result.
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For example, for m = 2 and for w € H"(Q), with r > p+ 1, we obtain that:
s — unll gy < R 22 o
e = wnl gy < CR™P 2272 ]| 1,

e = wnl 2y < CR™™MPH 2272 ]| 1,

and, if p = 2, the convergence rate for the errors in norms L*(Q) and H'(Q) is coincident
and equals 2.

The same considerations are more evident when considering the case m = 3 foru € H" (),
with r > p+ 1, for which:

lu = wnl| 2y < CR™MPHE20 4 ]| 1,
= wnl gy < CR™P 224 ]| 1o,

e = wnl 2y < CR™™MP0 22 ]| 1,
e = wnl sy < CR™™MP=2 2P ]| 1 .

In this case, the same rates of convergence of the errors in different norms is obtained up to
the case p = 5; in fact, if p = 3, the convergence rates for the errors in norms L*(Q), H*(Q)
and H%(Q) are the same and equal to 2, while if p = 4, the convergence rates in norms L*(Q)
and HY(Q) are the same and equals 4.

1.4 Numerical examples

We show several numerical results in order to highlight the properties of IGA in the framework
of the Galerkin method. We take into account the elliptic PDEs considered in the examples
of Section 1.2 and defined in a domain © C R? described by NURBS. Firstly, we deal with
second order PDEs,; to compare IGA to FEA. Successively, we solve high order elliptic PDEs
by using NURBS basis functions with high global regularity. In particular, we consider high
order PDEs involving the bilaplacian and trilaplacian operators for which the exact solution
is known, in order to show that the convergence rates predicted by the a priori error estimate
Eq. (1.68) are confirmed both with homogeneous and nonhomogeneous boundary conditions.

We refer to Appendix B for a description of the implementation of non homogeneous
essential boundary conditions for high order PDEs. Problems described by the Stokes and
Navier-Stokes equations in stream function formulations represents another example of high
order PDEs. We refer the reader to Appendix A for an insight into the topic.

1.4.1 The Poisson problem (Example 1.11): a comparison of IGA and FEA

Let us consider the Poisson problem described in Example 1.11 and defined in the domain
represented by a quarter of an annulus with inner radius r;, = 4 and outer radius r,,, = b, see
Figure 1.12. The geometry can be exactly represented by NURBS; on the contrary, since the
domain is not representable by polynomials, Finite Elements only allow an approximation of
Q with a polygonal shaped domain, Q". This induces a geometric error, for whose analysis in
the framework of FEA we refer to [SF73].

We consider two problems, whose analytical smooth solution is known, in order to compare
the errors, in the L? and H! norms, obtained in solving them with IGA or FEA. For both
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Iy
Figure 1.12: Poisson problem: computational domain §2 defined by a quarter of an annulus.

the problems, say case I and case 2, we consider a constant diffusion coefficient g = 1 and
homogeneous Dirichlet boundary conditions imposed on the whole boundary 02 = U?‘:1Fz‘-
We assume that for:

case 1 the source term is given by:
4 2 4 7/2
f(z,y) :m (122797 (2% + )" =2 (2% + ¥?)" +2(rw + Tow) (2% +97) /

15 (1 o+ Tou) 2292 (22 +42) 77

- 2rin’rout ('1"6 - 51"4y2 - 5x2y4 + 96) ]?
with the exact solution:

2 |:$’2 + yz - (Tin + Tout) (1’2 + y2) 2 + Tinrout:| )

case 2 the source term is given by:

1

mﬂ?y [32 (.’1:2 + y2) — 12 (TIQH + T2 )] y

out

f(xay) - -

with the exact solution:

1

ul@,y) = 107,
in’ out

wy [ (@ + )" = (R 402 (22 + o) + 022

We represent the domain ) of Figure 1.12 by means of NURBS of degree p = 2, with
N, = (2N“f)2 mesh elements, for N,.; = 2, ..., 5, maintaining global C!-continuity of the basis
functions across the mesh elements in 2. For the FEA we consider Lagrangian polynomial
bases of degree 2 (P2 finite elements) on meshes composed by triangular elements.

In Figure 1.13 we plot the exact solution of the problem of case 1 and the IGA and
FEA meshes to obtain, approximatively, the same errors in the norms L? and H' of order,
respectively, 107° and 1073, As we can see, the number of elements (N.,) is noticeable different
in the two cases. The same comparison is performed in last line of Table 1.1 with respect to
the degrees of freedom (Np,g ) for errors in the norms L? and H' of order, respectively, 1076
and 10™*. We also compare the corresponding errors in the norms L? and H! when computing
solutions with a similar number of degrees of freedom (Np.r, ) for several cases.

We perform the same analysis with the problem given of case 2, referring respectively to
Figure 1.14 and Table 1.2. In this case, in Figures 1.14b and 1.14b meshes which lead to
approximatively the same number of degrees of freedom (Np.r = 580) are shown. The same
considerations made for case 1 are still valid and once again we highlight the efficiency of the
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Table 1.1: Poisson problem case 1: comparison of the errors in L? and H' norms corresponding to
solutions obtained with IGA and FEA, with a similar number of degrees of freedom (Npops ).

IGA FEA
N..  Npors llu —uplly2 lu — upll g1 N Npors llu —unllp2 llw — upll g1
16 52  6.17869-10"°  2.67170- 1072 42 61 9.92176-10"3  6.07732- 102
64 164  4.77005-10"% 3.94278.1073 114 185  2.39930-10"2  2.29175.102
324 580 5.13074-1075 8.73335.10"% 326 583 8.53220-10"% 9.91611-107°
1,024 2,180 6.15555-10"% 2.12188.10"* 1,180 2,217 2.11927-10"% 3.38785-1073

- 42,538 84,227 6.15077-107% 2.15786-107*

e

-1

" 02

025

(a) Exact solution (b) IGA: mesh with N.; = 256, (c) FEA: mesh with N, = 4,930,
lu —un| 2 = 5.13074 - 10~°, w—un|, . = 5.16307 - 10~°,
[ — wnl| = 8.73335 - 107, l[u — |y = 1.10879 - 1072 .

Figure 1.13: Poisson problem case I: exact solution (a) and IGA (b) and FEA (c) meshes yielding
approximatively the same errors in norms L? and H'(about 10~* and 1073).

Table 1.2: Poisson problem case 2: comparison of the errors in L? and H' norms corresponding to
solutions obtained with IGA and FEA, with a similar number of degrees of freedom (Npops ).

IGA FEA
Nei Npors llu —unllp2 [l — up|l g1 Ne, Npors llw —unllp2 [l — wpll g1
16 52  3.90103-1073  7.84435.1072 42 61 7.06703-1072 4.05533-107!
64 164 4.39159-10"%  1.93967 - 1072 114 185 1.76357-1072  1.74868 107!
324 580 5.34384-107°  4.83807-107° 326 583 5.80311-1073 7.28272-1072
1,024 2,180 6.63574-10"% 1.20884-1073 1,180 2,217 1.38576-1073  2.31970-10"2

- - — — 308,044 613,795 6.62414-107%  2.66791-10"4

IGA method versus FEA, in particular when comparing the performances in computing an
error in norm L? of an order of magnitude of 107%. We deduce that the combination of the
exact geometrical representation and the smoothness of the basis functions used in IGA allows
to achieve similar errors of the FEA with a noticeable inferior number of degrees of freedom.
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(a) Exact solution (b) IGA: mesh with N, = 256, (c) FEA: mesh with N.; = 326,
Npors = 580. Npors = 583.

Figure 1.14: Poisson problem case 2: exact solution (a) and IGA (b) and FEA (c¢) meshes yielding
approximatively equals number of degrees of freedom (Npogs).

u=1
02]|u=1
/,
u=0 |1 Q p w=0
{6
u=0
(a) case 1: (b) case 2:
pw=10"% b= (—cos¥, fsinH)T, 0=m/4. pw=10"% b= —0r, withr = \/22 + ¢2,

0 = (—sin(f), cos(9))” and 0 = arctan(y/x).

Figure 1.15: Advection-diffusion problems: problems settings and data; boundary and internal layers
(red). Values imposed on the solution for the Dirichlet boundary conditions on I'p = 9€ are reported.

1.4.2 The advection-diffusion problem (Example 1.12): SUPG stabilization
with IGA

We consider the advection-diffusion problem, introduced in Example 1.12. Two different
configurations for this problem are taken into account and shown in Figure 1.15. In both
of the cases the parameters of the problem are chosen in such a way that the global Péclet
number is much greater than one, say Pe > 1, so that the diffusion term is dominated by the
advection term. We solve these problems by means of IGA both with the standard Galerkin
method and considering the SUPG stabilization presented in Section 1.2.2.

The first problem, say case 1, is defined by the data shown in Figure 1.15a and it repre-
sents a benchmark problem, whose solution is characterized by internal and boundary layers
|Qua09]. Considering the given velocity field such that |[b[| ) = 1 and the constant vis-

cosity 1 = 10™* and choosing a uniform mesh of size h = 1/20, we are dealing with a very
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<075

[:0‘5

—025

(a) Standard Galerkin-IGA method. (b) SUPG-IGA method.

Figure 1.16: Advection-diffusion problem case 1: comparison between numerical solutions obtained
with the standard Galerkin-IGA method (a) and SUPG-IGA method (b), with a local Péclet number
Pe g = 25, 000.

u

075 0.75

‘05 05

:0.25 . 10.25

0 i

-0.005863 0
(a) Standard Galerkin-IGA method. (b) SUPG-IGA method.

Figure 1.17: Advection-diffusion problem case 2: comparison between numerical solutions with the
standard Galerkin-IGA method (a) and SUPG-IGA method (b), with a local Péclet number Peyx ~
3, 300.

high local Péclet number, namely, Pex = 25,000 for all K € Kj. As expected, the solution
provided by the standard Galerkin method, reported in Figure 1.16a presents instabilities,
which completely dominate the numerical solution. On the contrary, when considering the
SUPG formulation, the numerical solution is satisfactory, even if some limited under- and
over-shooting phenomena appear near the layers, as reported in literature [SDST12].

The second problem, say case 2 is defined in Figure 1.15b and considers an advection
field aligned along the circumferential direction. This gives rise to internal and boundary
layers. The computational domain is exactly represented through NURBS basis functions of
degree p = 2. We use a uniform mesh of N,, = 32% and, by the given velocity field such
that [|b| (g = 4 and the constant viscosity p = 1074, we have a local Péclet number
Peg = 3,300 sufficiently high to lead to oscillations, controlled by the SUPG stabilization, as
shown in Figure 1.17.
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FQ Q F4

Iy
Figure 1.18: High order problems: computational domain Q = (0,1).

1.4.3 High order PDEs (Examples 1.13 and 1.14)

In order to validate the error estimate given in Theorem 1.6, we consider two examples for the
biharmonic problem (1.37a) and one example for the trilaplacian problem (1.41a), for which
the exact solution is known (see Examples 1.13 and 1.14). Both the problems are defined in
the physical domain = (0,1)? as described in Figure 1.18.

Example. 1.13 (Biharmonic problem). By referring to problem (1.37a) we consider two
problems, say case 1 and case 2, with different boundary conditions. For:

case 1: we set:
g(z,y) =0, ga(z,y) =0,
f(a,y) =4 (cos(2m(x —y)) + cos(2m(x +y)) )
— 87 (—4sin?(7z) sin®(my) + sin®(7z) + sin®(7y)) ,

yielding the exact solution:

u(z,y) = sin’(7z) sin?(7y).

case 2: we set:

ACAL e

gi(@,y) =0,  ga(z,y)lr, = x1,3 () (=) sin(mz) + xg,4) () (~1)i Y sin(my),
for all j =1,2,3,4 and with 2 = —1,
f(z,y) = 4n sin(rz) sin(7y),
yielding the exact solution:

u(z,y) = sin(wx) sin(my).

In both cases the exact solution u is smooth. In the latter case, the essential boundary
condition involving the normal derivative of the solution is non homogeneous.

For both the problems we consider the domain €2 described by B-Splines on uniform meshes
with number of elements N, = (2NT€f )2, for N,.; = 2,...,6, for three different choices of
degree of the basis, p = 2, 3, 4. Having performed k-refinement, different global regularities
are achieved, respectively we have Ct, C2, C3-continuous basis functions. We observe that the
hypotheses in Theorem 1.6 are satisfied for each degree p.
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(a) Numerical solution (b) p=2.
10° 10°
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(c) p=3. (d)p=4.

Figure 1.19: Bilaplacian problem case 1: (a) exact solution; plot of the errors in norm L?(o), H'(")
and H?(o) vs. the mesh size h for basis functions of degree p, p = 2 (b), p = 3 (c) and p = 4 (d);
comparison with the theoretical convergence rate.

For case 1, in Figure 1.19 we show the exact solution v and the convergence rates of the
errors in L%, H' and H? norms vs. the mesh size h. The results confirm the a priori error
estimate provided in Theorem 1.6 and the considerations of Remark 1.15. Furthermore, we
can easily see the benefit of a high order approach, which characterizes IGA. Let us consider,
for example, the error in L? norm: for p = 2, the error is of order 10™* using N,, = (26)2,
while the same order is already attained for p = 3 with a mesh of N, = (23)2, thus reducing
significantly the number of degrees of freedom.

For case 2, we observe that the theoretical result (1.68) in Theorem 1.6 is valid also when
non homogeneous essential boundary conditions are considered, as highlited in Figure 1.20. ¢
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(a) Numerical solution b)) p=2.
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(c)p=3. (d) p=14.

Figure 1.20: Bilaplacian problem case 2: (a) exact solution u; plot of the errors in norm L?(o), H'()
and H?(¢) vs. the mesh size h for basis functions of degree p, p = 2 (b), p = 3 (c) and p = 4 (d);
comparison with the theoretical convergence rate.
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(a) p=3. (b) p=14.

Figure 1.21: Trilaplacian problem: plot of the errors in norm L?(o), H'( 1), H*(¢) and H?(+) vs. the
mesh size h for basis functions of degree p, with p =3 (a), p =4 (b). Comparison with the theoretical
convergence rate.

Example. 1.14 (Trilaplacian problem). We consider the trilaplacian problem (1.41a), set in
the physical domain Q = (0, 1)2 as described in Figure 1.18, in order to validate, once more,
the a priori error estimate provided in Theorem 1.6. We consider homogeneous essential
boundary conditions imposed on the whole boundary 9f2, while the source term together with
the corresponding exact smooth solution are given by:

f(z,y) = =240 sin(rz) sin(ry) [151sin?(rz) — 243 sin? (72) sin®(7y) + 151 sin®(7y) — 90] ,

u(z,y) = sin®(7x) sin®(7y).
This problem is solved on uniform k-refined meshes with number of elements N, = (2Nref )2,
for N,.; = 3,...,7, for different choices of the degrees p = 3, 4 and thus different global
regularity of the basis functions, which are globally CP~!-continuous. The hypotheses in
Theorem 1.6 are satisfied and the plots of errors vs. the mesh size h in Figure 1.21 confirm
the theoretical results provided in Eq. (1.68). As already discussed in Remark 1.15, we can
observe that for p = 3 the convergence rates of the errors in norms ||-|| /2, ||| g1 and ||-|| ;2 are
equal to 2. For p = 4 the convergence rates of the errors in norms |[|-|| ;2 and [|-|| ;1 are equal
to 4. o



Chapter 2

An Introduction to the Cardiovascular
System

The cardiovascular system is a complex and active organ system, that together with the lym-
phatic system constitutes the circulatory system. The human cardiovascular system supplies
the human cells, tissues and organs with blood in order to maintain their functional needs.
The cardiovascular system is constituted by the heart and an intricate network of vessels and
it is regulated by complex mechanisms of nervous, biochemical and mechanical typology, that
allow it to quickly adapt to changes in the environment of the human body. Both the com-
plexity of the cardiovascular physiology and the variability of physical characteristics between
individuals, make its study an hard task.

In this chapter we briefly describe the main components and features characterizing the
cardiovascular system. Specifically, we focus on these aspects connected to the vascular flows,
in particular in arteries, with a mention to the related diseases and pathologies, whose causes
and cures are the primary reasons that move the research. For an extensive overview of the
topic, we refer the interested reader to [Fio00, V' 08] and to [FQV 09, FQ " 02] for a description
of the cardiovascular system in view of mathematical modeling.

2.1 Cardiovascular anatomy and physiology

The human cardiovascular system can be thought as an hydraulic system in which a pump
leads a fluid flow in a closed system of pipes. The pump is represented by the heart, the
fluid is the blood and the vascular network is constituted by a distribution net (the arterial
system), an exchange system (the microcirculation) and a blood collector (the venous system).
Moreover, the whole circulatory system can be divided into the systemic circulation, which
includes the vessels that distribute the oxygenated blood from the heart to the various organs
and then bring the oxygen-depleted blood back to the heart, and the pulmonary circulation,
where the oxygen-depleted blood is sent to the lungs in order to be oxygenated and therefore
returning to the heart.

Heart. The heart is a muscular organ that, contracting in a rhythmic and periodic way,
maintains the blood circulation active. It is divided into four cavities, the upper left and
right atria and the lower left and right ventricles. A thick wall of muscle, called the sep-
tum, separates the left side, involved in the systemic circulation, from the right side, being
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Figure 2.1: Heart anatomy and physiology: qualitative description of the cardiac cycle. Images from
[VT08] and [Fio00].

part of the pulmonary circulation. Each atrium, which collects the blood from the veins, is
connected to the correspondent ventricle, through a valve, which prevents blood from flowing
back from the ventricle to the atrium during the contraction of the former. In particular, the
one corresponding to the left atrium and ventricle is called mitral valve, the one to the right
tricuspid valve. The same task is performed by the aortic valve and pulmunary valve, which
avoid backflows from the arteries to the ventricles.

The mechanics of the heart is regulated by a complex and involuntary electro-chemical
activation of the muscle cells. The sequence of contraction and relaxation phases which allows
the heart to perform its pump functions is called cardiac cycle or heartbeat and it covers a
period of about Ty = 1.1s. It can be divided into two major stages, the systole and the
diastole phases. The former covers the period in which the myocardium contracts and it is
usually identified with the period between the closure of the mitral valve and that of the aortic
valve, the latter corresponds to the complementary and relaxing phase. The total duration of
each phase depends upon the state of the human body.

Blood. The blood is an inhomogeneous fluid constituted by a fluid part, called plasma,
in which particles and cells are suspended, mainly: red cells (erythrocytes, responsible for
the exchange of oxygen), white cells (leukocytes, part of the immune system) and platelets
(thrombocytes, controlling blood coagulation). On the whole, the blood (plasma and cells)
exhibits a non-Newtonian rheological behavior and its density is between 1.054g/em® and
1.06g/ em?. The primary function performed by the blood is the transport and the delivery
of the substances needed to maintain the metabolic activity of the cells and the removal
of the metabolic waste. Together with nutrients, blood transfers also respiratory gases and
substances at the level of solution. Moreover, it covers also an important part in the thermo-
regulation process and in preserving the chemical and physical characteristics of the tissues,
e.g. by maintaining constant levels of Ph and osmotic pressure.
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Figure 2.2: Schematic description of the systemic circulation and pulmonary circulation (left); descrip-
tion of the artery wall (right). Images from [V 08].

Vascular network. The circulatory system, in which the blood is flowing, is distributed in
all the organs and tissues. Starting from the heart, it is constituted by a network of arteries
which progressively branch, up to becoming a very thick network of thin wall capillaries;
the latter converge into veins whose radius becomes larger and larger in proximity of the
heart. There are also some direct interconnections, called anastomoses, between the arterial
and venous systems; however, the arterial and venous systems can be considered primarily two
distinct networks interconnected by means of the microcirculation. Tipically, large vessels have
a diameter between 1 —3cm, medium vessels are characterized by a diameter of 0.2mm — lem.
The small vessels (arterioles and venules) are considered to be part of the microcirculation, to
which the capillaries belong. The latter posses a diameter which can be as small as bum.

On the other hand, blood flow in larger vessels is pulsatile and characterized by high
values of the mean and maximum velocity. Moreover, the walls of the larger vessels respond
primarily in an elastic way with respect to small vessels due to the different characterization
of their complex stratified structure. Arterial walls are composed by three distinct concentric
layers of muscular smooth tissue and/or of connective tissue: the tunica intima, tunica media
and tunica adventitia. The tunica intima is constituted by a single layer of endothelial cells
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which lies on a thin lamina of connective tissue, the basal lamina. This interface between the
blood and the internal layer, called endothelium, is subject and react to the normal and shear
stresses caused by the fluid pressure and flow. The tunica media is mainly constituted by fibro-
muscular tissue and it goes from the internal elastic membrane to the external elastic one. The
mechanical properties of the walls are mainly characterized by this layer, depending on the
prevalence of muscular or connectivity cells. The tunica adventitia, finally, is an outer covering,
characterized by a connective nature, which does not essentially contribute to the compliance
of the vessel, and fill with nerve fibers, lymphatic and blood vessels. The arterial wall thickness
in the vascular network changes accordingly to the mean blood pressure. Moreover, the arteries
and the veins near the heart are thicker because of the additional pressure effect determined
by the gravity force. The chronic change in blood pressure, in conjunction with the flow rate,
has also a crucial role in the remodeling of the vessels, which increases the lumenal diameter
during each cardiac systole.

The pressure is maximum during the systolic phase, with relatively high values also dur-
ing the diastolic phase, due to the arterial walls elasticity. During the cardiac cycle, it is
possible to observe high and nearly periodic fluctuations of the blood pressure in the circu-
latory system. Usually, we distinguish between a maximum or systolic pressure, whose value
is 90 — 130mmH g, and a minimum or diastolic pressure, whose value is 70 — 85mmHg. The
difference between the maximum pressure and the minimum pressure is called differential or
pulse pressure and its value is about 30 — 45mmHg. All these values refer to the arterial
system, while the pressure in veins is smaller and lies in the range of 7.5 — 1bmmH g, but it
is subdued to sensible changes depending on the state and the posture of the body. An addi-
tional difference is e.g. the fact that veins have thinner and less elastic walls, The irregularity
and complexity of the venous flow has limited, till now, a deep understanding of the physical
laws that regulate it. More attention has been paid to the study of the arterial system.

Blood flows in arteries in normal physiological conditions is laminar, but some local flow
instabilities can occur during the cardiac systolic phase in proximity of the aortic valve, as well
as in the presence of branching or pathological conditions. The flow and the pressure waves
generated by the contraction of the heart propagate through the arterial tree because of the
elasticity of the walls. Moreover, there is a noticeable phenomenon of reflection of waves in
correspondence of discontinuities in the geometrical or elastic properties of the arteries. This
gives rise to a superposition of traveling and reflected pressure waves which must be taken
into account when studying the local pressure and velocity.

2.2 Cardiovascular pathologies

The cardiovascular system can be affected by several pathologies of different nature (congenital
defects, inflammatory or degenerative processes) which can concern the heart or the vascular
system. We briefly describe two largely diffused and degenerative pathologies of the arterial
system.

Stenosis. It indicates all the pathological situations characterized by the reduction of the
size of an orifice or a vessell, independently of the cause that has generated it, so much that
it obstructs and prevents the normal and physiological transition of substances. Stenoses of
the vascular type are seldom of congenital nature; more frequently they indicate advanced
stages of atheroscleroses. In the latter case, the artery wall thickens as consequence of the
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Figure 2.3: Schematic example of a stenosis (left) and aneurysms (right). Images from [V 08].

deposition of lipids and cholesterol. This disease may affect the whole artery tree, but above
all the large, high-pressure vessels, e.g. the celebral and coronary arteries. The narrowing of
the lumen area is linked to an increase in the wall rigidity. The main surgical devices which
can be adopted to cure a stenosis are angioplasty or the creation of an arterial bypass.

Aneurysm. It is a gradual dilation of an arterial segment over a typical time period of years.
In this case, the arterial wall stretches and becomes thinner and weaker than normal arterial
walls due to structural changes in the connective tissue. Consequently, untreated aneurysms
can break causing severe hemorrhage. According to the aneurysm form, we can discern differ-
ent typologies: saccular or fusiform. In particular, fusiform aneurysms are cylindrical dilations
where the entire circumference of the artery is weakened; while saccular aneurysms are ballons-
like bulges resulting from a weakening of one side of the artery wall. Saccular aneurysms can
be caused by trauma or certain infections of the blood. Fusiform aneurysms are often com-
plications of atherosclerosis, when local stenoses may lead to the release of vasoactive drugs
that cause the artery to remodel. They can be located in any artery but are most commonly
observed in the ascending and abdominal aorta or in celebral arteries.
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Chapter 3

Blood Flows in Arteries: Rigid Wall
Models

Due to the progresses in computational mechanics techniques, in the last few decades several
efforts have been dedicated towards the simulations of blood flows in arteries; we refer to
[FQVT09] for an overview and an extensive bibliography. Modeling the cardiovascular system
represents a challenging task due to the complex nature of the haemodynamic process and the
need to provide results in a clinically reasonable time frame. Nevertheless, the potentiality
of numerical simulations in the understanding of haemodynamic process both in the physio-
logical and pathological conditions is high, since less invasive than in vivo investigations and
potentially more accurate than in vitro studies.

The different levels of detail in the description of blood flows and of accuracy requirements
lead to the development of a hierarchy of models. In general, the larger is the complexity of
the model, the more the computational cost increases. For this reason, when only a global
understanding of the arterial tree features is needed, zero-dimensional models are sufficient;
otherwise, if a local detailed description of fluid dynamics is required, we need to consider
two- or three-dimenstonal models. Specifically, a full simulation is required when the fluid
phenomena are complex, such as in proximity of bifurcations, or in presence of pathologies
such as aneurysms and stenoses.

When performing a local investigation, the selection of the appropriate model depends also
on the arterial vessel considered, because of the different physical characteristics of blood in
the vascular system as described in Chapter 2. E.g., the rheological behavior of the blood as
a Newtonian fluid is a first approximation which can be adopted only for large and medium
arteries and it is no more valid at the level of the arterioles, in which the dimension of the
blood particles is of the same order of the diameter of the vessel. Moreover, the mechani-
cal interaction between the blood flow and the vessel walls leads to consider fluid-structure
interaction models which are computationally expensive, but able to properly represent the
haemodynamic phenomena. Nevertheless, rigid wall models are sufficiently accurate for small
and medium vessels, for which the wall displacement is considerably smaller than that of large
vessels, whose deformation can reach up to a 10% of their radius.

In this chapter we describe the mathematical modeling of blood flows in vessels for two-
dimensional problems, for which the computational domain represents a section of the vessel.
We specifically consider a rigid wall model for a section of an artery, identifying the main
quantities involved in the description of blood flow, including the system of PDEs that de-
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scribes the blood flow, namely the Navier-Stokes equations. Moreover, in order to properly
define the problem, suitable boundaries conditions must be provided taking into account the
pulsatile nature of the blood flow and the presence of the remaining part of the circulatory
system.

For the numerical solution of the Navier-Stokes equations, we consider IGA in the frame-
work of the Galerkin method for the semi-discrete spatial approximation and the generalized
a-method [Whi99] to perform time discretization. The numerical stabilization of the standard
Galerkin method of the Navier-Stokes equations is performed by means of the Variational
Multiscale Method (VMS) for which we consider the formulation taking into account for the
Large Eddy Simulation (VMS-LES) proposed in [BCCT07].

In Section 3.1 the Navier-Stokes equations are described and reported in dimensionless
form. In Section 3.2 we describe the proper set of boundary conditions defining a well-posed
problem under physiological conditions. In Section 3.3 we present the numerical approximation
of the problem. In Section 3.4 we report and discuss some numerical results.

3.1 Mathematical modeling of blood flows

Since our investigation will focus on blood flows in large and medium sized vessels, we can
assume for the fluid a Newtonian incompressible behavior. The main quantities involved in
the description of blood flow are the velocity u and the pressure P, both functions of time and
space. In this section we recall the Navier-Stokes equations for an incompressible Newtonian
viscous fluid with constant density, say ps, in a bidimensional domain 2 C R? and in the time
interval (0,T). Firstly, we provide the dimensionless form of the Navier-Stokes equations, then
the variational formulation, in view of their discretization. For more details on the existence,
uniqueness and dependence of the solution from the data, we refer e.g. to [FQ02, FQVT09].

3.1.1 The Navier-Stokes equations

The dynamic of fluids is described by the physical laws of mass and momentum conservation.
In the hypothesis of constant density, the mass conservation property reduces to the continuity
equation for an incompressible fluid, which reads:

V-u=0, (3.1)

where u : Q x (0,T) — R? is the velocity of the fluid. In haemodynamics, blood is usually
considered a constant density fluid with p; = 1.06 g/ em?. The principle of conservation of the
momentum leads to the following momentum equation:

ou
Pigp TPru Vu=V-o;=psf, (3.2)

where the vector field f : Q x (0,7) — R? indicates the body forces, while o is the second-
order Cauchy stress tensor. Moreover, by means of the assumption that the blood behaves
as a Newtonian incompressible fluid, a constitutive law relates the Cauchy stress tensor o to
the velocity field w through the relation:

o;=—Pl+ pp(Vu+ Vul) = —PI+ 2u;D(u), (3.3)
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where P is the scalar function called pressure ([P] =N/ m2), i is the fluid dynamic viscosity

T
VutvVu) oo

strain tensor. By substituting Eq. (3.3) in Eq. (3.2) and dividing by py, the ultimate form of
the momentum equation for an incompressible Newtonian fluid is:

([uf] = kg/m s), while I is the identity tensor and the tensor D(u) :=

%‘: +(u V)u+Vp—2V-(vD(u) = f, (3.4)

P
where we have introduced the scalar functions p := —, which is a scaled pressure ([p] = m?/ 52),

Pr
and vy 1= ﬂ, the fluid kinematic viscosity ([vy] = m?/s).
Pr

As result, the Navier-Stokes equations that describe the motion of an incompressible New-
tonian viscous fluid, with constant density py, reads:

B
a—';+(u-V)u+vp—2v-(ufD(u)) —f i Qte(0,7), (3.5a)
Vou=0 in Q te(0,T). (3.5b)

The problem described by the equations (3.5), in the unknown functions v = wu(x,t)
and p = p(«,t), must be completed by suitable initial and boundary conditions. The initial
condition of the fluid velocity, provided by the function ug, reads:

u(x,t =0) =up(x) x €, (3.6)

Remark 3.1. In haemodynamic applications for the initial condition we will consider ug = 0.
Despite the fact that we are using non physiological initial data, their effects on the numerical
simulation can be considered negligible after a sufficiently long time of assessment (for example
after a span of time of about two heartbeats).

As for the boundary conditions, let I'p, 'y € 02 be measurable subsets of 02 such that
I'pUl'y =0Q and I'pN Ty = 0. We consider:

(N) applied stresses or Neumann boundary condition, i.e. given a vector field h defined on
I'y and denoting with n the outward directed unit vector normal to I'p:

om=h only; (3.7)

(D) prescribed velocity or Dirichlet boundary condition, i.e. given a vector field g defined on
FDZ

u=¢g onlp. (3.8)

If I'p = 012, g we need / g -n =0, since u satisfies (3.5b).
I'p

Remark 3.2. In haemodynamic applications the vector field f is usually set to zero; this
hypothesis corresponds to consider negligible the effects of gravity.
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Remark 3.3. The term (u-V)w in (3.5a), which describes the convective transport, is non-
linear and quadratic in w. When the fluid is highly viscous, this term may be neglected, since
diffusion dominates the convection, yielding the so called Stokes equations:

%’: +Vp—2V-(vD(w)=f inQ te(0,T), (3.92)
Veou=0 inQ, te(0,T), (3.9b)

endowed with suitable initial and boundary conditions.

3.1.2 The Navier-Stokes equations in dimensionless form

In order to provide the dimensionless form of the Navier-Stokes equations (3.5), we introduce
a characteristic length of the domain, say Lg, and a characteristic velocity, say Vy. Typically,
for the blood flow, Lg is the vessel diameter, while V4 is the average velocity. In such a way,
we can provide the dimensionless space, time, pressure and velocity variables and body force,
which we denote by the superscript *:

., L
P = ut=—, fri= V—gf. (3.10)
0

Instead, the dimensionless differential operators, with respect to the independent variables,
read:
o dt*9 Vo 0

1 1
= = =2 = —V* D = —D*. 3.11
ot~ dt ot* Ly ot*’ v Lov ’ Lo (3.11)

In such a way, the momentum equation (3.5a) and the continuity equation (3.5b) in dimen-
sionless form read, respectively:

‘/02 ou* ‘/'02 V'OQ %2 vy ‘/02

I 8t*+L0 (u* -V u —i—LOVp LOV VLo (u*) Lof’ (3.12a)
%

vt ut =0, (3.12b)
Ly

X
in the dimensionless physical domain Q* := {x* € R? : x* = o with x € 2} and dimension-
0

less time interval (0,77) := {t* e R : t* = t?, with ¢ € (0,7")}. By multiplying Eq. (3.12) for
0

Lo/ VOQ, we identify the dimensionless parameter which describes the characteristic properties

of the equation:
VoL
Re = 220 (3.13)
vy

which is the Reynolds number.
For the sake of simplicity, we will omit henceforth the superscript * (unless when necessary).

. ou . . .
Moreover, we denote & := ——. In such a way the set of equations (3.5) in dimensionless form

ot
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reads:
( 1
w4+ (u-V)u+Vp—2V- <ReD(u)> =f in Q,te(0,7), (3.14a)
Vou=0 in Q, te(0,7T). (3.14b)
u(0) = ug in Q, (3.14c)
om=h on I'y,te(0,7), (3.14d)
u=g on I'p,te€(0,T), (3.14e)

where the functions defining the initial and boundary conditions have been accordingly pro-
vided in dimensionless form.

Remark 3.4. The Reynolds number measure the ratio of inertial forces with respect to viscous
forces and it represents the parameter that allows to determine the transition between laminar
and turbulent flow. The latter would typically manifest in some physiological conditions in
the circulatory system and in pathological cases such as with stenotic vessels. Numerically, in
order to capture the turbulence phenomena we may need to use the so-called turbulence models,
such as VMS for Large Eddy Simulation [BCCt 07, EH10, HS07, TMJ07, HMJ0O].

3.1.3 The Navier-Stokes equations in variational formulation

In view of the spatial approximation by means of the Galerkin method with IGA, we recall the
variational formulation of the Navier-Stokes equations in dimesionless form given in Eq. (3.14)
and completed by suitable initial and boundary conditions, as those described in Egs. (3.6),
(3.7) and (3.8), accordingly provided in dimensionless form.

We define the trial and test function spaces, respectively:

V, = {'v e [HY(Q)]* : vlr, = g}, (3.15a)
V= {cp e () : ¢lr, = o}, (3.15b)
Q:=L*Q).! (3.15¢)

We recast the Navier-Stokes equations in variational formulation by multiplying the momen-

tum equation (3.14a) by a vector valued weighting function ¢ € V', integrating over the

spatial domain and applying the Green’s integration formula. Moreover, the continuity equa-

tion (3.14b) is multiplied by a scalar valued test function g € @) and integrated over the spatial

domain. The variational formulation of the Navier-Stokes equations in residual form reads:
find, for all t € (0,T), u(t) € V, and p(t) € Q such that:

Bu(p; a(t), u(t), p(t)) =0 Ve eV, (3.16a)
Bo(¢; u(t), u(t), p(t)) =0 V¢ €@, (3.16b)
u(0) = ug in Q, (3.16¢)

'In the case in which we have a Dirichlet boundary conditions on the whole boundary, i.e. I'p = 0%, the
pressure is determined up to a constant. We can impose the uniqueness of the solution e.g. by means of the

zero-mean constraint. In such a case, the function space Q is defined as Q := {w e L*() : / P = 0}.
Q
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Figure 3.1: Two dimensional computational domain §2 for a vessel section of cylindrical shape. Bound-
ary conditions set on I''V (wall boundary), I'™ (inlet boundary) and T'°** (outlet boundary).

where the residuals of the momentum and continuity equations are given by, respectively:

Bu(g; @, w, p) :=m(w, o) + a(u, @) + c(u,u, ) + b(p,p) = F(¢) - H(p),  (3.17a)
Be(¢; u, u, p) = b(u, ), (3.17b)

2
with the bilinear forms defined as m(w, ¢) := / u-pdQ, a(u,p) = R/ D(u) : D(gp) dQ
Q €Ja

and b(p, p) := — / p V- dQ; while the form c(-, -, -) is given by ¢(v,u, ) = /(’U'V)U'Cp dQ.
Q Q

Finally, the functionals are given by F(y) := / f-eodQand H(p) := / h-pdl.
Q r

N

3.2 Boundary conditions for physiological flows

In modeling the blood flow we are interested in accounting for a part of the cardiovascular
system without neglecting the effects of the downstream circulation. In this section we describe
the boundary conditions formulating a physiologically-compatible two-dimensional model and
a mathematically well-posed problem governed by Egs. (3.14).

A first approximation of a section of a vessel can be considered a cylinder; thus, for a two-
dimensional model, the computational domain reduces to a rectangle. An example of a two-
dimensional computational domain is given in Figure 3.1. The upper and lower boundaries,
say 'V, correspond to the walls surrounding the vessel. We impose on them homogeneous
Dirichlet conditions (g% = 0), also called no-slip condition, responding to a rigid wall model.
The boundary I'™ represents the inlet boundary, while I'*"* the outlet boundary. A common
practice, responding to physical considerations, is to prescribe a velocity profile on I'", i.e.
a Dirichlet condition (g™), while a suitable Neumann condition in the outlet section T'**,
which represents the circulatory system. In such a way, we typically have I'p = 'V UT™ and
I'v = I'°™. For more details and alternative formulations, we refer the interested reader to
e.g. [VAVS11, Wom57, AADRF09, THZ98] and [BGHT 09, VCFJT06].

3.2.1 The inlet condition: pulsatile flow

At the inlet boundary, we prescribe a pulsatile periodic flow mapped to a parabolic velocity
profile, according to data provided in [FVCJT06]. We assume that the known function g™,
defining the Dirichlet boundary condition (3.8) on I'™, assumes the form:

g" ™ x (0,T) = R? such that g™ (x,t) := v™(x)q(t), (3.18)
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Figure 3.2: Physiological flow Q™ (t) (in cc/s) vs. time (in s).

with v™ : '™ — R? a vectorial function and ¢ : (0,T7) — R a scalar function. In particular,
the velocity profile which we define belongs to the category of velocity profile approximations
referred as the assumed shape profile [VAVS11]. In order to provide an explicit expression for
Eq. (3.18), firstly we consider the dimensional setting in radial coordinates, then we move to
the dimensionless form in Cartesian coordinates, assuming the invariance of the velocity with
respect to the circumferential coordinate.

In Figure 3.2 we show a realistic volumetric flow rate profile @™ (¢) at the inlet interface
of a carotid artery with nominal radius ry = 0.3¢m and period Tyg = 1.1s, where Tyg
indicates the period of an heartbeat. By considering the definition of volumetric flow rate,
which represents the volume of fluid passing through the inlet surface in a three-dimensional
vessel, its expression is given by the integral of the velocity profile over the arterial cross
section. In such a way, for every ¢t € (0,T"),we have:

Q" (1) = /F ndl = /%/ Brdr df = g(1)2 /OTV o rdr,  (3.19)

for which we can define the dimensionless function in the temporal variable ¢ as:

Q™ (t)

:(0,T) = R, t) = : . 3.20
00T 2B )= g (320)
By imposing the constrain ¢(¢f) = 1, with  := arg max Q™ (t), we set:
t€(0,7uB)
. . 2 2
v TP 5 R 0 (r) = ( QMAX <1 - 7"2> ,0> , (3.21)
e i
where Q) .x = {nfﬂiﬂx )Q (t). We operate the change of variables in Cartesian coordinates
te(0, Ty
by setting r = |y — ry| and then we consider the dimensionless space, time and velocity

variables given in Eqs. (3.10). In such a way, the inlet dimensionless condition for the physical
(dimensionless) domain shown in Figure 3.1, reads:

g"(z,t) = v"(x)q(t) = 4y(—y + 1)q(?), (3.22)

for y € (0,1).
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Remark 3.5. In order to adapt this condition for vessels whose radius is smaller than the one
for which the physiological flow rate is provided, we consider a suitable rescaling of the profile
given in Figure 3.2.

3.2.2 The outlet condition: the resistance condition

The blood flow in large and medium arteries is highly dependent on the outflow boundary
conditions in ensuring realistic responses. This is due to the fact that pulse waves may be
partially reflected by the downstream circulation at the outlet section of the artery, especially
the pressure waves. In order to avoid spurious reflections of the pressure and flow, a geometrical
multiscale approach can be adopted. In particular, we refer to a variant form of the classical
Resistance boundary condition (see for instance [RMP109, VAVS11]), which couples the model
with zero-dimensional or lumped models. Specifically, we prescribe at the outlet boundary a
Neumann condition similar to the one described in [BGH'09, BCHZ08].

On I'y = I'™ we consider the condition given in Eq. (3.7) decomposing the prescribed
stress on the outlet face in its normal and tangential components as it follows:

h:=h n+ h”t, (3.23)

where n is the outward directed unit vector normal to I'*"* and t indicates the tangent vector.
We set:

hy =0, (3.24a)
hJ_ = - (Cothout + PV) . (324b)

The coefficient C.,, in Eq. (3.24b) is the resistance constant and it is a positive quantity
(dimensionally, [Cou] =dyn - s/ cm5). The values of this parameter can be obtained by in
vivo measurements and vary with the vessel; we refer to [RMP"09] and [BGHT09] for physio-
logical values. The term Py allows to impose a physiologically realistic pressure in the vessel;
dimensionally we set P,y = 8mmHg. Finally, Q.. refers to the flowrate through I'***, which
we approximate by means of the following expression:

Qout = ﬂ-Lout/ u-n d]._‘7 (325)
4 Tout

where L., is the diameter of the outlet face. The boundary condition in Eq. (3.23) is provided

in its dimensionless form and imposed weakly in the variational formulation (3.16) by inserting

it into the residual in Eq. (3.17a):

—/ h~godF:</ n~cde) (C:ut/ u-ndF+pv>, (3.26)
Tout Tout TTout

s LO . 1
= —CouLow,——, while py = —— Py,
47T Vopy Vopy
where Ly and Vj are the characteristic length and velocity introduced in Section 3.1.2, while

py is the density fluid.

where the dimensionless constant C”  is given by C,

out

Remark 3.6. Due to the fact that the imposition of a Neumann condition in the outlet section
may cause instabilities in the presence of flow reversal, in [BGH' 09] the condition of Eq. (3.23)
1s augmented by a term acting only in presence of reverse flows. Instead, we choose the basic
form provided in [BCHZ08].
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3.3 The numerical approximation of the Navier-Stokes equa-
tions

In this section we present the numerical schemes for the solution of the Navier-Stokes equa-
tions (3.16). We provide the semi-discretized formulation in space based on the Galerkin
method in the framework of NURBS-based IGA. For the numerical stabilization of the Navier-
Stokes equations we consider the Variational Multiscale Method with turbulence modeling for
the Large Eddy Simulation (VMS-LES) proposed in [BCCT07]. The time discretization is
performed by means of the generalized a-method [Whi99, JWHO00.

3.3.1 Spatial approximation by means of IGA

In order to provide the semi-discrete IGA-Galerkin formulation, as described in Chapter 1
for elliptic PDEs, for the spatial approximation of the Navier-Stokes equations (3.16) defined
in the physical domain €2, we first parametrize the computational domain 2 as a NURBS
geometry. The space of NURBS functions in 2, say V", is given in Eq. (1.22). When consider-
ing NURBS-based IGA, we define the finite dimensional subspaces of the trial and test spaces
given in Eq. (3.15) as subspaces of the space V* of NURBS. Specifically, we set V" := VN [V")2,
Q" := QNV" and Vgh := V,N[V"? (we refer to Example 1.11 for the case of non homogeneous
essential boundary conditions). In such a way, the semi-discrete IGA-Galerkin formulation of
problem (3.16) reads:
find, for all ¢t € (0,T), ux(t) € Vgh and py(t) € Q" such that:

BM(QDh; ﬂ,h(t), uh(t), ph(t)) =0 chh S Vh, (3.27&)
Be(Wn; wn(t), un(t), pr(t) =0 Vi, € Q", (3.27b)
up(0) = ug in €, (3.27¢)

where the respective residuals are given in Egs. (3.17a) and (3.17b).

Remark 3.7. Due to the vectorial nature of functions in Vgh or V', we group the basis

functions by means of the canonical basis {e;}2_,. In particular, let the dimension of V" be
dim V" = Nyw, we define the basis functions as:

N
’R’zlﬁ} = |:7?(/)A] = Rae, R,Q4 = |:,R(/)A:| =TRaes, VA=1,...,Np, with Np:= 7Vh

In such way, we can consider separately the two components of the vectorial functions in vh
or Vgh. In particular, the approrimate solution of the unknown velocity field for each time
t € (0,T) can be expressed in the form:

Ny

up(t) = Z wiA ()R + gn(t), (3.28)
i=1 A=1

where gy, is the lifting function of the Dirichlet boundary data (eventually an approzimation
in the NURBS space), i.e. gnlr, =~ g, this yields the assumption that {u;a(t)}a,; are such that



52 Chapter 3. Blood Flows in Arteries: Rigid Wall Models

2
Z u;a(t) f4|pD = 0. Moreover, the respective components are given by:

Ny Ny
(), () = S walyRY + (gu), (6) and (un)y () = 3 uza()RE + (gn)y (1),
A=1 A=1

Under the assumption that the pressure and each velocity component are expressed in terms
of the same (Ny) basis functions {RA}X*’ZI, if we consider the lexicographical reordering, the
vectors of control variables for all t € (0,T), are:

L U(t) = {{UiA(t)}lgAng}2

=1

U(t) = {{%‘A(t)}lgAng }2

i=1 , P(t) = {pat) }1<a<n, -

(3.29)

In the theoretical development and in the computational setting, we consider the same
basis functions for the velocity and the pressure spaces. It is well known that this couple of
spaces does not satisfy the Babuska-Brezzi condition [Qua09, BF91], for which:

b
there exists Sy > 0 such that inf sup (ns ¥n)

e > o, (3.30)
Q" g evh [Vnllgllenlly

leading to the presence of spurious pressure modes. In the framework of techniques used
in FEA, several stabilized methods can be considered to overcome this issue, following the
saddle-point nature of the continuous problem for the incompressible Navier-Stokes equations.
A general study of stabilization techniques is presented in [BF91]; see also [CPGBO07, JTMO05,
HWO05, JW01, HFB86, FF92, TMJO7].

3.3.2 The Variational Multiscale method: stabilization and Large Eddy
Simulation

The stabilized Galerkin formulation of the Navier-Stokes equations (3.16), proposed in [BCCT07]
and presented here for NURBS-based IGA, is based on the Variational Multiscale formulation
(VMS) for Large Eddy simulation (LES). The reason to use the VMS for the Navier-Stokes
equations is multiple. Firstly, it has the role to provide a stable formulation in the sense of the
inf-sup condition, then it controls the numerical instabilities arising in advection dominates
regimes, i.e. for high Reynolds numbers. Finally, the VMS-LES provides a way to numer-
ically model turbulence according to the Large Eddy simulation principles; the method is
based on an a priori scales separation, contrarily to standard approaches which consider it a
posteriori or by means of filters. The problem is decomposed into coarse and fine scales; an
approximate analytical expression for the solution of the fine-scale equations is substituted
into the coarse-scale equations, in order to obtain a closed system that can be solved numeri-
cally. The solution of the coarse-scale problem is assumed as the approximate solution of the
Navier-Stokes equations. We briefly describe the significant steps that lead to the VMS-LES
formulation, referring to [BCC'07] for a complete analysis.

Remark 3.8. In the following, for simplicity, we assume that we have homogeneous Dirichlet
boundary conditions for the Navier-Stokes equations, i.e. we impose in Eq. (3.8) T'p = 0Q and
g = 0. In such a way, the trial solution and the test spaces for the wvelocity are coincident,
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i.e. Vg = V. Moreover, by applying the Green’s formula, the trilinear form c(-,-,-) in the
momentum residual (3.17a), can be rewritten as:

c(v,u,cp):/Q(U-V)u-cde:/QV-(v®u)-<pd(2:—/QV<p:(v®u)dQ. (3.31)

Remark 3.9. In order to make the notation consistent with the one used in [BCCT07], in
this section we will refer to the arguments of the residuals in Eqs. (3.17) as (u, p), instead of
(@, w, p). This choice is possible since the relation between @ and w is known.

Decomposition into fine and coarse scales

Given the test spaces V and @ associated to the Navier-Stokes equations (3.16) with homo-
geneous Dirichlet boundary conditions on I'p = 052, we define the space S := V x @ and
decompose it into the direct sum of a finite dimensional (coarse-scale) subspace S = V x Q
and a (fine-scale) subspace S =V x Q, such that:

S=8aS. (3.32)
In order to define the decomposition of each element in S, say s := (u,p), into a unique
pair of elements (u,p) = § € S (coarse-scale component), and (u,p) = § € S (fine-scale

component), we introduce a projector operator P : S — S : s ++ 5. Once P is chosen, the
direct sum of Eq. (3.32) is well defined and we can write each element in S as s = § + §. By
considering the decomposition of the test functions into their coarse- and fine-scale components
(,9) = (@,9) + (P, 1), we can use the linearity of the momentum and continuum residuals
to write the problem (3.16) in the form:

find, for all t € (0,T), s(t) = (u(t),p(t)) € S such that, respectively:

Bu(@; (u(t), p(1) + Bu (s (u(t), p(t)) =0 Vo e8,¢ € 8 (3.33a)
Be(v; (u(t), p(t)) + Be(¥s (u(t), p(t)) =0  VpeS,peS,  (3.33b)
u(0) =ug in Q. (3.33¢)

For the sake of simplicity, since we deal with the spatial decomposition, henceforth we will
leave implicit the initial condition of Eq. (3.33¢) and the temporal dependence of the solution
(u, p). Starting from problem (3.33), we can decompose the Navier-Stokes equations into the
coupled coarse-scale (3.34a) and fine-scale (3.34b) problems (by assuming that each of the
terms in Eq. (3.33) are zero independently from the others), which are respectively defined by
the equations:

{BM(QOa (u,p) =0 V&S, (3.34a)

Be (s (u, p)) =0 VY€ S;

{BM(?, (u,p)) =0 V@ES, (3.34b)
Be(y; (u, p)) =0 VY €S;

We express Eq. (3.34a) as a finite-dimensional system for the coarse-scale component of the
solution, depending parametrically on the fine-scale component. Likewise, Eq. (3.34b) can
be rewritten as an infinite-dimensional system for the fine-scale component of the solution,
depending parametrically on the coarse-scale component. With this aim, we firstly observe
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that, once fixed the test functions, say (¢,1), we can interpret the residual of the continuity
equation of Eq. (3.17b) as a linear functional in (u, p); moreover we can decompose the residual
of the momentum equation into the sum of a linear functional in (u, p), say By, a bilinear
form in (u, p), say B2, which are respectively given by:

Busals (u, p)) = mli @) + alus, ) + (0.1, (3.35)
Bua(es (u, p), (u, p)) = c(u, u, @), (3.35b)

and a constant F'(¢) in (u, p). This results in:
Bu(p; (w, p)) = Bua(p; (w, p)) + Buo(p; (w, p), (u, p)) + F(ep) (3.36)

where we have used the same notation for the forms and functional defining the residual of
the momentum equation of Eq. (3.17a). In such a way, by considering the decomposition of
the unknown s = (u,p) € S in its coarse- and fine-components, i.e. s = § + §, the residuals
of the coarse- and fine-scale problems can be rewritten as it follows:

Buy(p; 54 8) = Bua(@; 8) + Bua(p; 8) + Bua(p; 8, 8) (3.37a)
+ Bu2(@; 8, 8) + Bua(p; 8, 8) + Bua(ps 8, 8) + F(p),

Be(v; 8+ 8) = Ba(v; 8) + Be(v; 8), (3.37b)

Buy(p; 5+ 3) = Bua(p; 8) + Bua(p; 8) + Bua(#; 8, 8) (3.37c)
+ Bu2(#5 8, 8) + Bua(p; 8, 8) + Bua(ps 8, 8) + F(),

Be(¥; 84 8) = Be (s 8) + Bo(i; §). (3.37d)

Remark 3.10. In Eq. (3.37a) the term By2(@; 8, 8) + Bu2(p; 8, 8) is called cross-stress
term, while we refer to Byra(@; 8, 8) as the Reynolds stress term.

Firstly, we consider the fine-scale problem (3.34b) in which the coarse-scale component
of the unknown § is considered as a parameter entering the equations. In such a way, the
problem (3.34b) reads:

find § € S such that:

{ Bus(@; 8) + Bua(@; 8, 8) = (@, Resy(8))y v V@ € S, (3.38a)
Bes(; 3) = (4, Resc(8))g o vy €S, (3.38b)

where each term in Eq. (3.38) is defined according to [BCCT07] as:

Bu,s(@; 8) = Bua(@; 8) + Bara(@; 8, 8) + Bura(; 8, 8), (3.392)
(¢, Resnm(s >>v v = — (F(P) + Bmi(p; 5) + Bua(p; 8, 8)), (3.39b)
Be,s(d; 8) := Bo(i; 8), (3.39¢)
(i, Resc(8))g o = —Bc(@z?; 5). (3.39d)

Specifically, the forms By s(+; §) and Bc s(+; 8) are linear in 8, while Bz o(-; 8, §) is bilinear
in 8. Moreover, the source terms are expressed in terms of the functionals Resy/(8) € v’
and Resc(8) € Q’ , which can be view as the corresponding coarse-scale residuals lifted to the
dual of the corresponding fine-scale spaces V', @', and which define the following coarse-scale

residual into S’
Resp(8)

Res(s) = Resc(s)

(3.40)
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The solution § of problem (3.38) can be formally written in terms of Res(s) and §. It
is expected that the larger the space S is chosen, the better is the approximation of s by
means of §, thus the smaller are the component § and the coarse scale residual Res(S) into
the dual space S’. With the additional hypothesis that  is zero if Res() is zero, the following
perturbation series expansion of § in terms of Res(5) can be considered:

[oe)
§=>) s, (3.41)
k=1

where ¢ := [|Res(3)[|g. We substitute Eq. (3.41) into Egs. (3.38) and we use a recurrence
formula to group coefficients of the powers of ¢ coming from the expansion of the bilinear
form in § Byra(-; 8, 8). By equating like coefficients of the powers of ¢ in the full expansion
of the Egs. (3.38), we obtain a sequence of coupled linear variational problems, each defined
by the same (linear) operator in §; that can be formally inverted through a fine-scale Green’s
operator.

Since in practice, neither the sum of an infinite number of terms nor the exact determina-
tion of the fine-scale Green’s operator are possible, the serie in Eq. (3.41) is truncated at the
first order and reads:

s =¢81, (3.42)
with §; the solution of the first variational problem approximated as:
- Res(3)
§1=—T—F+, (3.43)
[ Res(5)]ls

where 7 is an approximation of the fine-scale Green’s operator. In such a way, we obtain an
approximated form for § in terms of § which can be used into the finite dimensional problem
(3.34a) to close the system, whose unknown is the coarse-scale component .

Remark 3.11. Following [BCC" 07], we consider the coarse-scaled solution § as the numerical
approzimation of s = (u,p). As usual, a dual aim moves to the choice of a convenient
dimension for S: the larger is the finite dimensional space S, the better is the approzimation
of (u,p) by means of (u,p), but at the expense of the computational effort.

Implementation and resulting semi-discrete formulation

In the framework of the Galerkin-IGA method, we define the finite-dimensional subspaces
V CV and Q C Q in terms of the NURBS basis functions which represent the computational
domain. Specifically, given the space of NURBS basis functions in €2, say VP we define
V:=vn"?and Q:=QnV"

Remark 3.12. In order to explicit the dependence from the mesh parameter h, as done in
Section 3.3.1, we denote V" :=V and Q" := Q; similarly every function belonging to V,Q,S
will be written with the superscript .

In such a way the coarse-scale problem (3.37) reads:
find, for all t € (0,T), sp(t) = (un(t), pu(t)) € V* x Q" such that
Bu(epn; sn(t) +3() =0 Ve, € VP,

Be(tn; sn(t) +8() =0 vy, € Q", (3.44)
up(0) = uo in 0,
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where the residuals of the momentum and continuity equation are defined in Eqs. (3.37a)
and (3.37b). The explicit expression for § = (@, p), in the assumptions made in Eqgs. (3.42)
and (3.43), reads:

u = TarRespr(sy), (3.45a)
p = 1cResc(sh), (3.45b)

where the discrete coarse scale residuals (Resys, Resc) and the discrete approximation of the
operators E;dl and V - ,c;dlv (respectively, Tas, 7¢) are given by:

ou
Resnr(sn) = Resnyr(up, pp) := Th + (up, - V)up, + Vpp, — @V (D(up)) — f, (3.46a)
t
Resc(sy) = Resc(up,pn) ==V - up, (3.46b)
1

4
™ = Al 3 tun- Guy, + C[ G G] , (3.46C)

1
T = , (3.46d)

™9 "9
: : Ony; aT]k — : :
with G, defined component wise as G; ; : Z 1,7 = 1,2, the covariant metric
’ ox; 8CC]

tensor related to the geometrical mapping from the physical to the parametric coordinates,

2

0 1 1

while g; := kzl am:, for i = 1,2. For square meshes G = ﬁl and g-g = 72 with h the mesh

size. The positive constant C derives from an element-wise inverse estimate; it is independent
from the mesh size, but depends on the degree p of the basis functions, in particular it is set as
Cr = 60-2P~2 according to [Whi99]. The term At refers to the time step, which appears into
the definition of Eq. (3.46¢), even if we have not already introduced the time discretization.

Remark 3.13. The stabilization parameters Tpr and 7o may degenerate for At — 0 for fized

values of the mesh size h, velocity and Reynolds number. This issue can be resolved by setting
the dimensionless time step:

Iy

At = x— 3.47

XVO ) ( )

where hy and Vi are the characteristic dimensionless mesh size and velocity; x is a selected

coefficient which we set equal to 0.5. In Figure 3.3 it is shown the dependency of the stabi-

lization parameters Ty; and Tc on At for fized values of HuhHLoo @ = 1, Re =278 (3.3a) or

Re = 1500 (3 3b); we consider p = 2 and three different meshes with sizes hy = 273, hg = 274
and hg = 275,

The problem (3.44) in spatial semi-discretized form, resulting from the VMS-LES formula-
tion, can be viewed as an augmented stabilized form of the IGA-Galerkin formulation (3.27).
In particular, considering the Navier-Stokes equations (3.16), completed by suitable boundary
conditions, its stabilized semi-discrete formulation in the framework of the variational multi-
scale method reads:
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A =
X X2
W

o SN : = wANIN

At
(a) Re =278 (b) Re = 1500

Figure 3.3: Stabilization parameters 7y and 7¢ vs. At for Re = 278 (3.3a) and Re = 1500 (3.3b) for
different mesh sizes.

find, for all t € (0,T), ux(t) € Vgh and py,(t) € Q" such that:

VMS—LES .
By (i @n(t), un(t), pu(t)) =0 Ve € V7, (3.482)
S— S .
B (s (), un (), pn(0) =0 Yoy € Q" (3.48)
uy(0) = ug in €, (3.48c)
where the augmented residuals are given element wise over the computational mesh by, re-
spectively:
S-LES . .
B]‘\//IM o (@n; @n, Wh, pr) := Buyr(Pn; n, wh, ph) (8-49)
+ > [ (un - Veon, e Resnr(un, pn)) 2 (k)
KeKky,
+ (V- n, ¢V - un) 250
+ (up, - ch}f, TMResM(UmPh))L?(K)
= (Veon, TmResy (wn, pr) @ T Resn (Wh, Pr)) 2k | »
B (Uns i, wn, pr) == Bo(Un; i, un, ph) (349b)
+ ) (Ven, TaResn (wn, pn)) 2 (k)
KeK,

Remark 3.14. The additional terms appearing in Eqs. (3.49) can be compared to classical
stabilization terms, such as SUPG. Specifically, the classical SUPG stabilization consider only
the first two terms in Eq. (3.49a) and Eq. (3.49b) and we will refer to this formulation as
VMS-SUPG. The additional terms in Eq. (3.49a) (the last ones) are an half of the cross-stress
and the Reynolds-stress terms due to the LES modeling.
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3.3.3 Time discretization: the generalized-a method

The choice to refer to the generalized-o method [JWHO00, Whi99] as time discretization scheme
for the semi-discretized problem (3.49) is due to its capability in controlling the numerical dis-
sipation, without compromising accuracy. The amount of desired high frequencies dissipation
is taken into account by the parameter po, € [0,1] (see for instance [Hug00|), which is the
spectral radius of the amplification matrix of the discretized problem as the time step tends
to infinity. Once fixed, the parameters, say u,, af, 0 € [0,1], which define the generalized-«
method, can be defined in terms of p according to considerations of accuracy and stability.
In [Whi99] it is shown that second order accuracy can be achieved provided that:

1
d = 5 + oy — (3.50)
while unconditional stability if
1
Qm 2 af > 5 (3.51)

Moreover, low-frequency dissipation is minimized, with respect to a given level of high-
frequency dissipation, by choosing:

1/3— poo 1
“m =3 <1+poo> T T (3.52)

Remark 3.15. We set the parameter poo to a default value of poo = 0.5, a compromise between
the zero dissipation case (poc = 1) and the mazimal dissipation (poo = 0). This choice was
performed also in [BCCT 07], where it is shown to be effective even in turbulence simulations.
We refer to [JWHO0] for a discussion about the choice of poo.

In order to apply the generalized-a method to the semi-discretized stabilized Navier-Stokes
equations (3.48), we define the discrete residuals as the continuous residuals evaluated in the
basis functions of the spaces V" and Q", i.e.:

2

. VMS—LES i, .
Rt (000, w0, 1 (0) = { {1 (Rl o), w0, ph<t>>}1§A§Nb}i:1, (3.53)
. VMS—LES .
Ro (n(t), un(t), p(t)) = { B (R (1), wn(0), o)} (3.53b)
where BR}MS?LES and BgMS?LES are respectively given in Eqs. (3.48a) and (3.48Db).

The discretization of the time interval (0,7), is performed by means of a discrete time
vector {tn}ﬁlo, subdividing (0,7") in a set of N; time intervals of size At. For the sake of
simplicity, in the vectors of control variables of Eq. (3.29) we replace t,, with the subscript n.

Remark 3.16. We recall that, when using the VMS-LES augmented form, we set At as in
Eq. (3.47), by taking into account Remark 3.13.

The generalized-a algorithm reads: at each time step t,, given U,, U,, P,, find Un+17
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U,t1, Upta,,, Un+af, P, ;1 such that:

Ry (Un+am, Unia,, Pn+1) —0, (3.54a)
Re (Un+am, Untas, Pnﬂ) —0, (3.54b)
Ui = U, + AtU, + At (Un+1 - Un) : (3.54¢)
Untan = Un + am (Un1 = U, (3.54d)
Unia, = Un + 5 (Un+1 - Un). (3.54¢)

In particular, Eq. (3.54a) and Eq. (3.54b) are, respectively, the momentum and continuity
vectors of the discrete residuals with velocity and acceleration evaluated at the intermediate
times tyia, = th + ayp(tny1 — tn) and tnya,, = th + am(tns1 —tn), while the pressure at ¢,,41.

Remark 3.17. The algorithm considers U(t) and U(t) as independent variables.

In order to deal with the nonlinearity of the system of equations (3.54) we use the Newton
method [QSS07], by coupling the method with a predictor-multicorrector algorithm, as done
in [BCCT07, Whi99].

Predictor stage

According to [BCCT07, Whi99] we set:

gn(tns1) on I'p,
n+1 5 - 1 . (355&)
otherwise;
5
t I'p,
Upi1,0) = gh( 1) i (3.55)
U, otherwise;
P, 1,0) = Pn. (3.55¢)
Multi-corrector stage
The following steps are repeated for | = 1,2, ..., lnax:
STEP 1 Set:
Un+am,(l) = Un + (0779 (Un+1,(l71) — Un) s (356&)
Untay.y = Un + s (Ungraon) — Un ), (3.56b)
P, 1,0 = Puy1,0-1)- (3.56¢)

STEP 2 The discrete residuals are assembled:
Ry, 1) = Ru (Un+am,(l)v Uitay,) Pn+1,(l)) ; (3.57a)

Re ) = Rc <Un+ocm,(l)7 Untay,0) Pn+l,(l)) - (3.57h)
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STEP 3 Given a prescribed tolerance tol,, check the following condition on the relative norm
of the residual vectors:

VIRl + [ Rl
VIR0 + 1 Reo)l

If the condition (3.58) is satisfied, the control variables at time step ¢, are set to:

< toly; (3.58)

Unt1 =Upi1,0-1): Unt1 =Upi10-1), Por1=Poi10-1) (3.59)

and the algorithm terminates,

otherwise we assemble the consistent tangent matrix of the nonlinear system, written
as a block matrix:

Ko, Koo
K = P wl 3.60
{KMp KMu] (3.60)
where:
aRC’(Un-‘roc s Un+a 5 Pn-f—l)
Ko, : = i ! 61
ORc(Unia,s Untays P
Koo : = ¢Wntan, Untay, Prv1) (3.61b)
aU—nJrl
ORc(Uniay; Untayr Pa ORc(Unian, Untayr Pa
= Qi C( +m tay +1)+Oéf5At C( +am +ay +1)’
8Un+am 6Un+af
aR1M<l.]n—s—oz ) Un+a ) Pn+1)
Ky,:= i ! 61
ORM(Un+tapn, Uniay, Pa
Ky : = 22 Witan, Unvay, Prvt) (3.61d)
aU—n-i-l
ORM(Un+tay, Uniayr Pa ORM(Untopm, Uniay, Pa
8Un+am 8Un+af
STEP 4 Solve the following liner system:
[ch Kcu] |:A1_3n+1,(l):| _ [Rc,(z)] ' (3.62)
Ky Kura| [AU ) Ry
STEP 5 The iterates are updated as:
Unir.() = Uni1,0-1) + AU, 41, (3.63a)
Uni1,0) = Uny1,0-1) + 0ALAU, 11 1), (3.63b)
P10 = Poy1,0-1) + AP0y (3.63¢)

Then we return to STEP 1.

Remark 3.18. At STEP 3 we are using a Newton’s linearization of the residual with respect
to u to improve the current values of the vectors variables by solving the system in Eq. (3.62)
in the unknown vector U.
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Firstly we do not consider int hte formu in the tangent matrix the terms corresponding to the
differntial of the disff varia

Remark 3.19. We do not provide explicit expressions for the matrices and residual vectors
which define the system in Eq. (3.62), but we point out that following strategies have been
adopted in order to simplify the implementation. Firstly, we do not consider into the formu-
lation of the tangent matriz the terms corresponding to the differentiation of the stabilization
parameters, Ty and 1o given respectively in Eq. (3.46¢) and (3.46¢). Moreover, the contri-
bution of the discretized terms relative to the resistance boundary condition of Eq. (3.26) is
taken into account only in the residual vectors Rc 1y, Rar 1y, yielding an inezact form of the
tangent system in Eq. (3.62), but only limited to the contribution associated to T'°*.

3.4 Numerical results

In this section we provide numerical results for blood flows with rigid wall models. In par-
ticular, we take into account vessels with stenosis and a domain describing an aneurysm.
Although the computational domains considered refers to idealized configurations, they high-
light the capability of IGA in representing smooth geometries, as the ones provided by in-vivo
investigations. We discuss the VMS-LES stabilization in Section 3.3.2, then we consider the
importance of imposing the resistance boundary condition, described in Section 3.2.2, to obtain
more realistic responses with respect to an homogeneous Neumann boundary condition. In the
examples considered, except when otherwise specified, the nominal radius of the vessels is set
to ry = 0.15¢m and the profile of the inlet velocity is the one described in Section 3.2.1, with

a default value for the maximum flow rate set to %%X )Q“‘(t) = 1.237em3 /s = 0.1237cc/s.
t€(0,TuB

Moreover, the blood is considered a Newtonian fluid with constant density p; = 1.06g/cm3
and dinamic viscosity p; = 4 - 10~2g /(em - s). The simulations were performed for a period
corresponding to three heartbeats (37yug); the results shown correspond to the last heartbeat,
in order to allow sufficient time for the flow to adopt from the initial condition.

3.4.1 Asymmetric and axisymmetric stenosis: a comparison between VMS
stabilizations

We consider an asymmetric stenosed vessel with length equal to 2.4cm. We consider a reduc-
tion of the area in the stenosed region of the 50%, yielding the resulting radius in the central
section of the stenosis, distant 0.75¢m from the inlet face, to be equal to 0.075¢m. The result-
ing domain Q C R? is exactly represented by means of globally C!-continuous NURBS basis
functions of degree p = 2; the mesh is constituted by N, = 128 x 32 elements; according to
condition in Eq. (3.47) the dimensionless time step is set to At = 0.03125, corresponding to a
dimensional time step equal to At = 2.68-10%s . The dimensionless resistance constant C*
used in the resistance boundary condition of Eq. (3.26), is set to C, = 0.3085 by considering
a resistance constant C,,, = 162dyn - s/ cm5, while the reference pressure is fixed to a default
value of Py = 85mmHg (valid for all the simulations). The geometrical data (Lo = 0.3cm),
the choice on the value for the maximum flow rate, which yields a characteristic velocity of
Vo = 35em/s, and the values characterizing the fluid, are such that, for this problem, the
Reynolds number is Re = 278.

The pulsatile nature of the flow and the narrowing of the vessel cause a periodic generation
of vortexes. This can be seen in Figure 3.4, where we report the streamlines of the velocity at
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different times in the flow cycle which cover a period equal to the heartbeat Tyg = 1.1s. In
Figure 3.5 we show the magnitude of the velocity field at the corresponding times, rescaling
the color map at each time step in order to show the minimum and maximum values obtained.
As expected, we can see that the velocity yields its global maximum at the time corresponding
to the peak flow in the central section of the stenosis.

In order to study the behavior of the stabilization based on the VMS-LES method, de-
scribed in Section 3.3.2, we compare the solution with that obtained from the VMS-SUPG
stabilization, neglecting the LES terms (see Remark 3.14). By considering Figures 3.6 and 3.7
we deduce that, even for the small value of the Reynolds number considered and being the
flow substantially laminar, the solution is sensible to the use of the LES terms. Specifically,
in Figure 3.6 we show the corresponding velocity field obtained by using the VMS-SUPG sta-
bilization, rescaled accordingly with the values obtained with the VMS-LES one. Moreover,
we plot at significant time steps the velocity fields with the VMS-LES and VMS-SUPG stabi-
lizations. The same study is performed comparing the vorticity in Figure 3.7. In this case the
difference of the magnitude of the vorticity has its maximum values in the proximity of the
walls in the region beyond the stenosis and in the middle of the sectional area corresponding
to the presence of vortexes. The relative difference of the value of the vorticity in the latter
region for the two stabilizations is about the 1 — 2%.

We perform the same study starting from the same pathological configuration of an ax-
isymmetric stenosis with a maximum reduction of the area of the vessel of the 50% at a
distal section from the inlet face located at about the 22% of the total lenght equal to 12cm.
For this simulation we set the vessel radius to ry = 0.3¢m and the maximum flow rate to

?1ax )Qi“(t) = 13.7em? /s. The domain is represented by means of globally C!-continuous
t€(0,TuB

NURBS basis functions of degree p = 2; the mesh is constituted by N, = 320 x 32 elements
and the dimensional time step is set to At = 3.875-107%s . In such a way, the Reynolds
number is Re = 1500. In this case the flow is substantially laminar and periodic, but we
observe in Figure 3.8 that the two VMS models lead to noticeable differences in the vorticity.
In particular, the deviation of the vorticity value is about of the order of the 5% in the region
in which the vortexes develop. In Figure 3.9 we show the streamlines of the velocity at the
same time, corresponding to ¢ = 0.0465s.
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Figure 3.4: Streamlines for the asymmetric stenosis at different times in the cardiac cycle. Streamlines
are colored according to the velocity magnitude, Re = 278.
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Figure 3.5: Velocity magnitude (in ¢m/s) for the asymmetric stenosis, colormap rescaled at each time

step.
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(a) Velocity magnitude (in cm/s) with VMS-SUPG stabilization.
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(b) Difference velocity obtained with VMS-LES and VMS-SUPG stabilizations.

Figure 3.6: Velocity magnitude (in e¢m/s) for the asymmetric stenosis considering VMS-SUPG sta-
bilization; difference of the velocity magnitude for the VMS-LES and VMS-SUPG stabilizations,

Re = 278.
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(a) Vorticity magnitude (in 1/s) with VMS-LES stabilization.
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(b) Vorticity magnitude (in 1/s) with VMS-SUPG stabilization.
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(¢) Difference vorticity obtained with VMS-LES and VMS-SUPG stabilizations.

Figure 3.7: Vorticity magnitude (in 1/s) for the asymmetric stenosis considering VMS-SUPG stabiliza-
tion; difference of the vorticity magnitude for the VMS-LES and VMS-SUPG stabilizations, Re = 278.
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(a) Vorticity magnitude (in 1/s) with VMS-LES stabilization (top), col-
ored according to the vorticity magnitude in logarithmic scale; profiles of
vorticity at different sections (bottom) as indicated above.
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(b) Difference of vorticity magnitude obtained for VMS-LES and VMS-
SUPG stabilizations (top), colored according to the difference of vorticity
magnitude in logarithmic scale; relative difference of vorticity at different
sections (bottom).

Figure 3.8: Vorticity magnitude (in 1/s) for the axisymmetric stenosis considering VMS-LES stabi-
lization and difference of the vorticity for VMS-LES and VMS-SUPG stabilizations. Data relative to
time ¢ = 0.046s, Re = 1500.
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Figure 3.9: Streamlines for the axisymmetric stenosis colored according to the velocity magnitude,
time ¢ = 0.046s, Re = 1500.

3.4.2 Symmetric stenosis: a comparison between boundary conditions

We consider a pathological configuration represented by an axisymmetric stenosis at a distal
section from the inlet face of about 0.75¢m. The stenosis induces a reduction of the area of
the 75% in a vessel of length 2.4em. The domain ©Q C R?, in which the problem is defined,
is represented by means of globally C!'-continuous NURBS basis functions of degree p = 2;
the mesh is constituted by N,, = 128 x 32 elements; according to condition in Eq. (3.47) the
dimensionless time step is set to At = 0.03125, corresponding to a dimensional time step equal
to At = 2.68 - 10~*s. The values of the parameter defining the method are the same as in
Section 3.4.1, yielding a Reynolds number equals to Re = 278. In Figure 3.10 we report the
streamlines of the flow at different phases in the pulse cycle which cover a period equals to the
heartbeat Tz = 1.1s. Both the restriction of the vessel and the pulsatile nature of the flow
generate complex vorticous structures in the vessel. The number of vortexes tends to increase
when using the resistance condition in Eq. (3.26). In particular, it increases in the systolic
phase up to a maximum of 5 at the peak of the heart pulse, when the velocity attains its
maximum value. We can notice that the flow is non-axisymmetric, contrary to the one that
occurs in case of an homogeneous Neumann boundary condition at the outlet. In Figure 4.3
we compare the streamlines at the distal region obtained by using different kind of boundary
conditions, the resistance and homogeneous Neumann boundary conditions. We also plot the
component u, of the velocity field. We observe that the result obtained with the resistance
boundary condition is more realistic, since it allows to reduce the reflection of the pressure
waves from the outlet. As observed e.g. in [VCFJTO06|, the choice of the boundary condition
has a significant impact on the velocity and pressure fields.
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Figure 3.10: Streamlines for the symmetric stenosis at different times in the cardiac cycle. Streamlines
are colored according to the velocity magnitude, Re = 278.
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(a) Streamlines and component u, of the velocity with homogeneous Neumann BCs.
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(b) Streamlines and component uy of the velocity with resistance BCs.

Figure 3.11: Comparison between homogeneous Neumann boundary conditions and resistance bound-
ary conditions imposed on the outlet interface for the symmetric stenosis and Re = 278. Solutions in
the distal region at the peak flow time.
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Figure 3.12: Evolution of the pressure in time (s) sampled in three points at the inlet (black) and
outlet (blue) boundaries and corresponding to the aneurysm region, for Re = 278.

3.4.3 Artery with an Aneurysm

In this section we present the solution obtained for an idealized aneurysm, which occurs
in a curved vessel. By means of IGA we are able to provide an exact representation of
this geometry, using basis functions of degree p = 2 and global continuity C!. The mesh is
constituted by N, = 99 x 32 elements; and the resulting dimensionless time step, according
to condition (3.47), is At = 0.037037, with corresponding dimensional time step At = 3.18 -
10™%s. The dimensionless resistance constant for this specific problem is set to C*, = 5.046
corresponding to resistance constant C,,, = 2500dyn - s /cm57 an higher value with respect
to the one considered in the previous sections. As in Sections 3.4.1 and 3.4.1, the data
characterizing the geometry and the choice of the maximum flow rate value yield a Reynolds
number equal to Re = 278. In Figure 3.13 we report the streamlines of the velocity at
different times in the heartbeat period in order to show the development of vortexes. We
observe that the flow maintains laminar behavior with vortexes developing in the aneurysm.
Their maximum number is 3, corresponding to the peak of the flow. In particular, throughout
the deceleration phase we can observe a quite stable flow presenting only a vortex in the
aneurysm region. In Figure 3.12 we plot the pressure curves during the cardiac cycle in three
different points in the domain. The results are in good agreement with those reported in
[VCFJTO06], even if different geometries are considered.
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Figure 3.13: Streamlines for the aneurysm at different times in the cardiac cycle. Streamlines are
colored according to the velocity magnitude, Re = 278.
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Chapter 4

Isogeometric Analysis for Reduced
Fluid-Structure Interaction Models

In haemodynamic applications a deep understanding of the Fluid-Structure Interaction (FSI)
mechanisms is a key factor to describe the vascular dynamics in medium-large vessels, where
the deformation of the walls assumes relevant values. In addition, the large part of the arterial
diseases and pathologies can be properly studied only if the mechanical response of the vessel
walls to the pulsatile nature of blood flow is taken into account. This is due to the fact that
a rigid wall approximation is able to capture only the main features of the flow field, but
precluding e.g. the study of the pressure propagation phenomena. Nevertheless, accounting
for a detailed description of the compliance of the arterial walls gives rise to challenging
mathematical and numerical problems.

Mathematically, FSI models couple the fluid problem, describing the blood flow, and a
structural problem, representing the deformation of the wall. From the numerical point of view,
usually, the two major classes of methods considered are referred to as staggered or monolithic
approaches [NV09, BCHZ08]. The former looks for separated and sequential solutions of the
fluid and structural subproblems once per time step by means of suitable existing fluid and
structure solvers and then combines the solutions with a coupling condition, which is in general
not exactly satisfied. Their simplicity has the drawback that the resulting numerical scheme
may be unstable in haemodynamics, because of the high added mass effect. The monolithic
approach considers a unique fluid-structure solver by treating implicitly the coupling condition
which is exactly satisfied. In this case, the numerical schemes are stable, but the computational
cost associated to their numerical solution is relevant. Moreover, the resulting system of
equations is highly nonlinear even if the vessel wall mechanics is described by means of simple
linearly elastic PDEs.

The most common approaches are those related to an Arbitrary Lagrangian Eulerian (ALE)
formulation, which considers the fluid problem defined in a domain £2; varying in time. Sig-
nificant progresses have been achieved within this formulation both in the context of FEA
[FQVT09, NV09, BvGT12, vTGT06] and IGA [BCHZ08, BGHT09]; however, the update of
the moving computational domain makes the model computationally expensive.

In order to respond to a reduction of the computational costs for heamodynamics FSI, a
new formulation, called coupled momentum method for fluid-solid interaction problems (CMM-
FSI), was proposed by Figueroa et al. in [FVCJTO06]. This method couples the solid and
the fluid problems in the variational formulation, embedding the wall model into the fluid

73
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problem as a generalized Robin boundary condition, as done e.g. in [NV09|, but keeping the
fluid domain fixed. This results in a fully coupled, reduced monolithic approach with a limited
computational effort due to the identification between the degrees of freedom of the vessel wall
and those of the fluid velocity.

Starting from [FVCJT06|, we consider a reduced FSI model formulated as generalized
Navier-Stokes equations in a fixed domain. The problem is expressed only in terms of the
primitive variables of the fluid problem, i.e. the velocity u and the pressure P, by means
of a kinematic condition (continuity of velocities) and through an approximation of the wall
displacement, say 7, in terms of the fluid velocity and acceleration fields. The mechanical
response of the wall enters the fluid problem as a boundary condition [NV09] thanks to the
dynamic condition (balancing of contact forces) and the thin wall approximation. In this
work, we consider the linear elastic Koiter shell model for the arterial walls, as done e.g.
in [vTGT06], however, contrarily to [vTGT06], we consider the complete linear Koiter shell
model without neglecting the bending terms which involves high order derivatives. Indeed,
our numerical simulations are based on IGA, for which the standard Galerkin formulation can
be used, as pointed out in Chapter 1 and Appendix A.

In Section 4.1 we present the linear elastic Koiter shell model for the description of the
wall mechanics. In Section 4.2 the coupled momentum method is described; we derive the
dimensionless variational formulation of the reduced FSI problem resulting from the models
considered and the coupling conditions. Then, we briefly describe the numerical approximation
of the reduced model. Finally, in Section 4.3, we present some numerical results by comparing
different choices on the parameters which characterize the method.

4.1 Mathematical modeling of artery walls

When dealing with FSI problems, the complex physiological structure of the arterial wall in
medium and large vessels (see Chapter 2) requires to resort to reduced structural models to
reduce the computational cost, even if only an average description of the mechanical response
of the wall is provided. The first assumption, see e.g. [FVCJT06, NV09, BvGT12, vTGT06],
is a thin wall approximation, which allow to identify the solid domain with the boundary of
the fluid domain. Further simplifications involve the nature of the material constituting the
walls, which are assumed to be homogeneous, isotropic and incompressible, despite they are
in fact anisotropic and heterogeneous. By means of these hypotheses we can consider the
so called shell models which are more computationally convenient than the ones describing
the behavior of each layer constituting the wall [Hol06]. Specifically, we refer to the linear
Koiter shell model, whose equations have been demonstrated to be asymptotically equivalent
to three-dimensional problems for thin elastic shells, see e.g. the references quoted in [Cia05].

In this section we recall the main concepts connected to the differential geometry of sur-
faces with a brief presentation notationally oriented. We derive the Koiter shell equations
for a geometry in cylindrical coordinates, representing a cylindrical ring whose radius is a
function of the longitudinal coordinate. Moreover, since we are in the hypothesis that the
Kirchhoff-Love kinematic condition holds, the terms in the equations do not depend on the
circumferential coordinate 6 and the axial symmetry allows to eventually consider a one-
dimensional model. For further details on differential geometry applied to the elastic theory,
in particular the mathematical analysis and formulation of the linear Koiter shell equations,
we refer the interested reader to e.g. [Cia05].
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4.1.1 Differential geometry: preliminaries

In the hypothesis that the wall thickness, say hg, is small enough, an elastic shell can be
defined referring to its middle surface, say I'*, described by a two-dimensional manifold with
boundary. For the sake of simplicity, we will consider henceforth the Einstein’s convention for
which repeated indexes are summed. In particular Greek letters refers to indexes assuming
values in the set {1,2}, whereas Latin indexes in {1, 2, 3}.

Let w C R?, be a connected subset which defines a two-dimensional manifold with standard
differentiable structure whose local coordinates are denoted by (£1,&2). Moreover, let ¢ : w —
I'* C R? be an injective regular mapping defining a two-dimensional manifold with boundary
by introducing a local system of curvilinear coordinates whose covariant basis vectors are given

by:
81/1 a1 X a2
agp =, fora=1,2, az3=—""—"-—: 4.1
el agav ) 4 3 Hal < CLQH’ ( )
where x denotes the exterior product, while ||-|| is the euclidean norm. By using the as-

sumption that 1 is regular, the two vectors ai1(&1,&2), a2(&1,&2) are linearly independent in
all the points (£1,£2) € w and @ is an injective immersion of w in I'*. The two vectors
a1(&1,82),a2(&1,&2) define the tangent plane to the surface I' in (£1,&2), while as(&1,&2) is
the normal unit to the tangent plane in (&1, &). The controvariant basis vectors {a'}?_; are
defined by means of the relation:

a'-a; =06, , fori,j=1,2,3, (4.2)

with d; ; the Kronecker symbol. Therefore, the covariant and controvariant components of the
first fundamental form of the surface are given by:

aoB = Qo - g, a®? =a®.af = a;é, fora, 8 = 1,2, (4.3)
and the covariant and mixed component of the second fundamental form respectively by:

aag B 8(13

= -y —, bg = a" by, fora,f =1,2. 4.4
afa 855 ( )

bag = as-

An arbitrary vector field, say n, defined on I'*, can be represented in covariant components
n :w — R, ie. n((&1,82)) = ni(&1,&2)a(&1,&2), and its surface covariant derivatives are
expressed as:

on
N8la = 8755 —Iosno for o, 8= 1,2, (4.5)

in terms of the Christoffel symbols of the first and second kind:

3} 0
Tupr = % car, T95 = a"Tagr 8?5 .a®, fora, B0 =1,2. (4.6)
hs hs 3 e .
Now, let Q := w x —5 C R, then, if hs is small enough (see [Cia05]), we can define

a shell whose middle surface is I'* and thickness hs by means of the mapping:

U:Q—Q° CR?, U(&,8,6) =&, &)+ &as(é, &). (4.7)
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Figure 4.1: Example 4.1: shell of thickness h; and middle surface represented by a cylindrical ring
with R = R(z).

Example 4.1 (Cylindrical ring with R = R(z)). Let us consider the shell given in Figure 4.1
of thickness hs and middle surface I'* (in red). The surface I'* can be parametrized by the
mapping:

Y:wCR? 5T CR3 (8, 2):= (R(2)cosb, R(z)sinb, z)T, (4.8)
where w := {(0,2) : 0 € [0,27),2z € [0,L]} and R : [0,L] — R? is a smooth function. It
represents a cylindrical ring aligned along the canonical base vector z, whose length is equal
to L and radius is a function of the longitudinal coordinate, i.e. R := R(z). For the sake of
simplicity, we denote henceforth with the superscript ’ the derivative of different quantities
with respect to the longitudinal coordinate z. The covariant basis is then given by:

—R(z)sinf R'(2)cosf cos 6
a = % = | R(z)cosf |, az= % = |R(2)sinf|, a3= ;2 sin ¢
651 0 852 1 1 -+ (R/(Z)) —R/(Z)
(4.9)

Therefore, the first and second fundamental forms are:

(R(2))? 0 1[—R<Z> 0 }; (4.10)

W10 (R T AT ()

this yields:

1 1
0 — 0
o _ | (RGP s 1 RE)
1+ (R'(2))? 14 (R'(2))?

Moreover, we explicit the Christoffel symbols of the second kind, which are given by:

_ R(2)R(2) . _R(2)
1+ (R(2))2" % R(z)’
R(z) o _ R()ER'()
R(z)” 7 1+ (R(2)*

MLy =T3, =0, If =

(4.12)
F%Q = F%Q =0, F%Q =
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According to Eq. (4.7), the shell represented in Figure 4.1 can be parametrized by the mapping:

[ &3
(R(Z)—i_l—l—(R’(z))Q cos 0
(0, 2,&3) = (R(z)+ &

sin 0

1+ (R'(2))?
&R/ (2
1+ (R (2))?

4.1.2 The linear Koiter shell model

In general, shell theories are based on some kinematic assumptions that relate the displacement
of the points located in a material line orthogonal to the middle surface to the corresponding
point on the middle surface. In particular, under the Kirchhoff-Love kinematic condition, for
which any point of such material lines remains on the normal of the deformed middle surface
after the deformation and preserve its distance from it, we can express the displacement field
of the shell uniquely in terms of the displacement of the mid surface. Moreover, the external
loads on the shell faces are reduced to equivalent loads acting in the middle surface. The
linear Koiter shell model considers an additional assumption for which the state of the stress
inside the shell is planar and parallel to the mid surface. For the sake of simplicity, the PDEs
governing the dynamic of the shell are provided in their variational formulation.

Let ©° be a linearly elastic shell, whose thickness hg is sufficiently small and denote by I'®
its middle surface. Moreover, let A, u the two Lamé constants characterizing the material, or
equivalently, the corresponding Young’s modulus E and Poisson ratio v:

Ev E

AT ATy P aasay

(4.13)

The weak formulation of the linear Koiter shell equations [Cia05] is expressed in terms of the
controvariant components of the shell elasticity tensor and of the covariant components of the
linearized metric and curvature changes of the surface. Specifically, the elasticity tensor reads
component wise:

4\
) (414)
n

or equivalently, by means of the relation (4.13):

2F E
22V BT ——(a®d’T + a®7ad"7). (4.15)

Eaﬁa’r _
1—12 1+v

The latter are defined as the linear part with respect to the vectorial field i, of the asso-
ciated covariant change of metric tensor and change of curvature tensor; they are given by,
respectively:

(77045 + 77ﬁ|a) — bapns, (4.16a)
laB — bgboﬁni’) + bgnaw + bgnﬂa + bg|a7]‘ra (4'16b)

1
’Yaﬁ(n) - 5
Pap(n) = N3
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where n;, for i = 1,2,3, are the covariant components of 7, the covariant derivatives 7,5 are
given in Eq. (4.5), while 1/q and bj|an, are defined as:

Mg = Oapns — Laplons  and  bhlan: := 0abj + I'L,b5 — ' 505 (4.17)

We introduce the following function space:

0
V= {77 € H'(w) x H(w) x H*(w) : nil, =0 fori=1,2,3, and %Ha = 0}, (4.18)

where 9 C 0w denotes the subset of the boundary in which essential homogeneous boundary

o-
conditions are imposed and I is the outer normal derivative operator along dw. Then, the

n
variational formulation of the linear Koiter shell model for a shell 2° with volume shell density
ps, which is clamped along 7 and whose motion takes place in the interval time (0,7"), reads:

find, for all t € (0,T), n(t) € V such that:

ok hs
[ heplSggh ¢ gagdt + [ BT s (€) J61de: (1.19)

h3
+/w2flE“ﬁ‘”pm(77)paﬁ(C) Jd&dé, = /wts.g Jd6déy VC eV,

where (Jd€1d&y) is the area element along I'*, with J := y/det(aqg); whereas t° is the surface

force acting on the shell. Moreover, the problem (4.19) must be completed by suitable initial
conditions for the displacement field of the form:

n(t=0)=mn9 and g—?(t =0) = no. (4.20)
Remark 4.1. The weak formulation of the linear Koiter shell accounts for both the membrane
(or stretching) and the bending (or flexural) terms, the former being related to the linearized
change of metric tensor and the latter to the change of curvature tensor. Alternative formu-
lations for the shell model derived from the Koiter shell equations (4.19) are given in [NV09),
even if the bending terms are neglected (however a contribution due to a prestress tensor is
added to the linear terms). Further modifications of the specific linear elastic cylindrical Koiter
shell model (see Example J.2) are provided in [BvG™" 12, vTG" 06], where the model is extended
i order to account for a viscoelastic response of the shell.

Remark 4.2. We refer to [Cia05] for the equivalent (in the sense of distribution) strong form
of the linear Koiter shell problem (4.19).

Example. 4.1 (Cylindrical ring with R = R(z)). For the shell defined in Example 4.1, let
n € V be a vector field, describing the displacement of the middle surface I'* and whose
covariant components are respectively denoted by ny := n1, 0, := 12 and n, := 73, according
to the system of cylindrical coordinates introduced. Moreover, by means of the assumption
of axial symmetry of the geometry, the problem (4.19) is completely independent from the
circumferential coordinate 6, provided that t° is suitably chosen. This leads to consider the
problem (4.19) to be expressed only in the variables (7., n,), which represent the longitudinal
displacement and the radial displacement, respectively. In such a way, the function space V'
of Eq. (4.18), in which the problem (4.19) is defined, is given by:

V= {("72,777") € HI(OaL) X HQ(O’L) : 772"}'0 = Ovnr|’Yo =0 and 77”70 = 0}7 (4'21)
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with 79 C {0, L}. If the shell is clamped, it means that 9 = {0, L} and on the correspond-
ing boundary defined by g x (—25, ;) essential homogeneous boundary conditions are

prescribed.

The covariant components of the linearized change of metric tensor and change of curvature
tensor associated with n can be computed by means of Eq. (4.16) and they are respectively
given by:

) = e A an) = () = 0

Ya2(n) =1l — ((2 i ())) N — \/%m, (4.22a)
o) = g (MR =) + G (g * T2 i) ™
p12(n) = pa1(n) =0,

putn) =1~ { e~ T ar R U 1 e )

1

A1t (R

(2R"(2)(1 + (R'(2))*) — 3R"(2))n.
(4.22D)

Moreover, the controvariant components of the shell elasticity tensor, expressed in terms of
the Young’s modulus E and the Poisson ratio v, are null except the following components:

gl _ ﬂ# pli22 _ p221l _ 2Ev 1 1
1 =12 (R(2))* 1 =12 (R(2))? (1+ (R(2))?)
oF 1 (4.23)
E2222 _

1= (1+(R(2))%)*

By substituting the expressions of Eq. (4.22) and Eq. (4.23) into Eq. (4.19), we have the
explicit form of the PDEs defining the Koiter shell model for the given geometry. o

Example 4.2. The linear elastic cylindrical Koiter shell model, considered e.g. in [BvG 12,
vTGT06] (where terms representing a viscoelastic behavior are added), can be deduced from
Example 4.1, considering a constant radius, say R. This yields the following well known model,
defined on the function space V of Eq. (4.21):

find, for all t € (0,7T), n(t) = (n.(t),n-(t)) € V such that:

L 92 L
9%n Ev 1 E 1
hss 7d hs 2 T z r 2S2 rSr d
o fy o e /0<1— (”* ”)(“ C) Tt (”C 2“)) ’
h3 Ev a1 E "
= PEE) - THollr _77“ rSr d
+120<1V2<m R277><r C> 1+V<77M+ 477<>>z

L
:/ t.¢dz  VCeV. (4.24)
0
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Example 4.3. An additional simplification consist in assuming that the structure deforms
only in the normal direction to the middle surface; this assumption is widely adopted in the
vascular dynamic modeling, see for instance [NV09]. This hypothesis leads to neglect all the
terms involving the covariant components 71,72 of the displacement field, i.e. n = (0,0,n3).
The resulting function space V' of Eq. (4.18), reduces to the following:

vim{ne 2w a0 ana 511, =0}, (1.25)

while the covariant change of metric tensor and change of curvature tensor respectively, are
given by:

Yas(n) = —bagsns, (4.26a)
Pap(M) = Oapns — I'op0sm3 — bbopns. (4.26b)

In the specific case of the clamped cylindrical shell in Example 4.2, the function space is
V = {neH*0,L):n(0)=n(L)=0 and 7'(0) =n'(L) =0} and problem (4.19) with only
normal (radial) displacement reads:

find, for all t € (0,T), n-(t) € V such that:

L E 1
sps/ o2 ~(dz + h / (1_1/2R277TC> dz
h3 Ev | E P |
T2 ), <1_y2 (n’”_RQW)< 4) T+v ("rf TR ) )

:/ ticdz  VCeV. (4.27)
0

o

Remark 4.3. We observe that the bending terms in the resulting linear elastic Koiter shell
model involve high order derivatives. Usually, shell models based on the linear Koiter shell
equations (4.19) account only for the membrane terms, as done e.g. [vTGT 06, NV09]. This
choice is motivated by considering that these high order terms are relatively small with respect
to the membrane terms. Nevertheless, in [vTG"06], it is highlighted the lack of analytical
results proving the well-posedness of FSI problems whose structural problem does not include
higher-order derivative terms corresponding to bending or viscoelastic behavior.

Remark 4.4. The linear elastic Koiter shell model described by the PDEs (4.19) is a two-
dimensional model for the vessel wall applicable to three-dimensional FSI problems. In order to
obtain a model which describes the mechanical response of the wall in case of two-dimensional
models for the fluid, we need to reduce to a one-dimensional model for the structure by con-
sidering a section of the given surface, corresponding to the one selected for the domain of the
fluid. In this case additional coupling conditions must be imposed in order to close the resulting
system of equations. Nevertheless, one-dimensional models constitute a simple way to describe
the dynamic of the shell in case of axial symmetric geometries as the ones described in the
examples of this section. Consider, e.q., the linear elastic Koiter shell model in Example 4.1.
The invariance with respect to the circumferential coordinate 6 allows to consider the problem
for a selected angle 6, thus defined on a domain T whose coordinates considered are only the
radial and the azial ones. By symmetry, the solution can be extended to the domain defined in
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correspondence of the coordinate 01 = 0 + w. In such a way we can obtain a one-dimensional
model for a section in correspondence of a diameter of the shell, without resorting to additional
coupling conditions (being these constituted by the symmetry).

4.2 The reduced Fluid-Structure Interaction model

In this section we present a reduced FSI model in the framework of the coupled momentum
method [FVCJT06]. We describe the procedure leading to the formulation of the coupled
problem in the form of generalized Navier-Stokes equations (3.16) in the primitive variables
describing the fluid flow (u,p), without the need to introduce additional degrees of freedom
representing the displacement of the wall (7). Since we consider the linear elastic Koiter shell
model of Section 4.1, we obtain a different formulation with respect to [FVCIJT06, NV09|;
in particular, this leads to the choice of different function spaces and the presence of high
order terms on the boundary. For three-dimensional models, the problem is fully coupled,
instead for two-dimensional models we need to take into account Remark 4.4 and consider
axial symmetric geometries. The resulting coupled problem (for the specific case of a two-
dimensional model of a cylindrical vessel) is provided in its dimensionless form, according
to the process of Section 3.1.2. Finally, we consider the numerical approximation of the
generalized Navier-Stokes equations by means of IGA for the spatial approximation.

4.2.1 The Coupled Momentum method

In large and medium vessels, blood flows can be modeled as the flow of an incompressible,
Newtonian viscous fluid (see Section 3.1). Thus, the motion of the fluid in the computational
domain, say Q/, can be described by means of the Navier-Stokes equations (3.5). In order to
formulate a well posed problem, Eq. (3.5) must be completed by suitable initial conditions,
for which we consider Remark 3.1, and boundary conditions. As for the latter, on the inlet
boundary I'™ and on the outlet boundary I'** we consider the same set of boundary conditions
described in Section 3.2 (eventually extended to the three-dimensional model case, without
perfoming any reduction). Nevertheless, the no-slip boundary condition, prescribed on the
part of the boundary corresponding to the interface with the vessel wall 'V, is replaced by
imposing a normal stress (a traction), say ¢/, i.e. om = t/ on TV,

We briefly recall the dimensional form of the Navier-Stokes equations defined in the do-
main ©f with this set of boundary conditions for the general case of domains @/ C R?, for
d = 2,3, corresponding to two-dimensional and three-dimensional fluid problems. By fol-
lowing the notation introduced in Chapter 3, let w be the fluid velocity and P the pressure,
whereas we denote by ps the density fluid so that we can distinguish it from the density of the
wall, indicated by ps. Moreover, let g™ and h be the dimensional vector fields representing
respectively the inlet and outlet condition of Section 3.2 and ug the initial velocity field. We
consider the notation py and vy for indicating the dynamic and kinematic viscosity of the
fluid. The problem describing the blood flow in the time interval (0,7") reads (for d=2,3):
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find u : Q' x (0,7) = R? and P: Q/ x (0,7) = R such that:

( Ou(t
o P80 4y ) V) u(t) - V- os(u(®). PO) = F i 0t (0.7), (4250)
V- u(t) = in Qfte(0,T), (4.28b)
u(t = 0) = ug in Q7 (4.28c)
u(t) =g" on I' ¢t e (0,7), (4.28d)
or(u(t),P(t)n=~h on I' te(0,7T),(4.28¢)
os(u(t), P(t))n =t/ on ', ¢te(0,7), (4.28f)
T
where of(u, P) = —PI+ 2psD(u) is the Cauchy stress tensor, with D(u) = (V'u—l—QVu)

the strain rate tensor.

The vector field ¢/ is not yet specified and it will be determined by the coupling between
the fluid and the structural problems. Specifically, the two conditions that allow to perform
the coupling are the so called kinematic condition, which requires the continuity of the fluid
and the structural velocities at the interface I'V, i.e.:

on

ahﬂw = ’LL|FW, (429)

and the dynamic condition, that imposes the balance of contact forces at the interface, for
which the contact force of the fluid represented by ¢/ is equal and opposite to the contact
force of the wall, say t°:

t/ = —t*, on TV, (4.30)

We assume for the structure a thin wall approximation and we choose as constitutive model the
linear Koiter shell model described in Section 4.1.2. In such a way, in case of three-dimensional
models, we can close the fluid problem (4.28) since the fluid boundary I'" coincides with the
domain I'* in which the structural problem (4.19) is defined; this yields TV = I'*. Moreover,
the vector field ¢* of Eq. (4.30) corresponds to the one of Eq. (4.19). Instead, according to
Remark 4.4, in order to not increase the computational cost, for two-dimensional models we
restrict to the case of axial symmetric geometries and the coupled FSI problem follows as well.

In [FVCJT06, NV09]|, since a membrane model is assumed for the structure, the spatial
differentiability requirements as for the trial and test spaces of the fluid and solid problems are
the same. In such a case, the coupling is performed at the variational level by considering the
standard variational formulation for the fluid problem and embedding the structure equation
into the fluid problem as boundary condition. Instead, in our case, a membrane-bending model
leads to define suitable trial and test spaces for the respective weak formulations in order to
obtain the same spatial differentiability requirement for all the components of the unknowns.
In particular we impose an higher spatial differentiability requirement as we will describe in
next section.

The resulting problem is defined in the unknowns 7 (wall displacement), v (fluid velocity)
and P (fluid pressure). With the aim of reducing the computational costs, a strong cou-
pling between the degrees of freedom of the vector fields describing the displacement and the
velocity can be performed. As a consequence, the problem is written only in terms of the
primitive variables related to the fluid problem (w, P). Moreover, it is possible to maintain
fixed the computational domain for the fluid problem, being the degrees of freedom of the
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velocity field on 'V enhanced with an additional contribution due to the wall. The structure
(surface) displacement is obtained by means of a consistent time integration of the velocity
and acceleration. Specifically, by using the coupling condition of Eq. (4.29), we replace n by
a vector field, say d, expressed in terms of the fluid velocity u and acceleration, say o, and
given by:

At? . .
d: TV x (0,T) = R, d(t) :=n(to) + Atu(ty) + 5 [(1—=2B)u(ty) +2B8u(t)]. (4.31)
Remark 4.5. Fven if we have not already performed the discretization in time, we express the
approzimation d by involving the time step At :=t — tg. We underline that the same strategy

has been adopted in the discrete formulation of the VMS-LES of Section 3.3.2.

The approximation of Eq. (4.31) is performed in the framework of the Newmark algorithm
[Hug00] in order to be consistent with the time integration scheme used, i.e. the generalized-«
method of Section 3.3.3. The Newmark method is formulated for second order differential
equations in time in the general form aw(t) + bw(t) + cw(t) = d for which, at the discrete level
we consider:

A . .
W1 = Wy + Aty + 5 [(1 —2B)wy, + 2BWn41] (4.32a)

U1 = tim + A[(1 = 8)tdy, + Oty y1] - (4.32Db)

The algorithm of Eq. (4.32) is unconditionally stable if the parameters § and [ satisfy the
following relation, see for instance [Hug00]:

28> 6> (4.33)

N | =

By recognizing that Eq. (4.32a) corresponds to Eq. (4.31) and Eq. (4.32b) to the updating
of the velocities of Eq. (3.54¢) in the generalized-a method, we can assure an unconditional
stable approximation provided that the parameter 5 in Eq. (4.31) is related to the parameter
0, also used in the generalized-a method, through the condition of Eq. (4.33). In particular,
following Egs. (3.50) and (3.52), we can write ¢ as a function of the amount of high frequency

1

1+ poo

dissipation p € [0,1], as § =

1
. Therefore, ¢ € {2, 1] and the unconditional stability
1
condition is satisfied for all the choices of the parameter 8 € [4, 1} satisfying Eq. (4.33).

Remark 4.6. By considering the kinematic condition of Eq. (4.29) and the expression of u(tg)
in terms of u(ty) and u(t) in Eq. (4.32b), the approximation provided in Eq. (4.31) yields that
the continuity of velocities is satisfied up to a term of the first order in t —tg. This follows by:

(t —tg)?

d(t) — u(t) = (t = t0)d (—u(t) + i(to)) + ——

(1 =2B)a(to) + 2B1(t)) -

4.2.2 The reduced FSI problem: variational formulation and dimensionless
form

Let us start by considering the general case of a three-dimensional FSI model. The complete
FSI problem consists in solving the fluid problem (4.28) in the domain Q/, with the boundary
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condition of Eq. (4.28f) provided by the structural problem. In particular, we consider a
clamped shell, i.e., by using the same notation introduced in Section (4.1.2), the portion of
the boundary =y in which essential boundary conditions are imposed for the structural problem
coincide with 79 = dw and we denote by I'g := 1(7). In order to obtain a strongly coupled
problem at the variational level, we consider the strong form of the fluid problem (4.28) and of
the structural problem, see Remark 4.2, and we multiply Eq. (4.28a) and Eq. (4.28b), defining
the fluid problem, and the governing equations the structural problem, by respectively the
test functions ¢, ¥ and {. According to the coupling condition of Eq. (4.29) we require
that ¢|pw = . We then integrate over the respective computational domains and apply the
Green’s formula to obtain the variational formulations of each problem. By means of the
dynamic condition of Eq. (4.30) and the constrain on the test functions ¢ and ¢, we obtain
the following equality:

—/ t/ . pdl :/ts.c Jdg dés. (4.34)
v w

Moreover, we impose the same spatial differentiability requirement for all the components of
the functions belonging to the trial and test spaces relative to the unknown velocity field.
Therefore, since we are using the complete linear Koiter shell model without neglecting the
bending terms which involve fourth order derivatives, the trial and test function spaces will be
defined by functions whose components are in the space H 2((2) In such a way, the embedding
process of the structural problem into the fluid problem by means of Eq. (4.34) results in a
generalized form of the Navier-Stokes equations in variational formulation, with trial and test
function spaces defined by:

3 ‘ 0
v, = {0 e [0 s ol =" plr, =0 and P, —o}. (4.35)
20/ 1° Op
V=lgpec [H (©Q )] @l = 0, I, =0 and ;=0 (4.35b)
Q = L*(Q). (4.35¢)

We now repeat these steps in the case of two-dimensional models whose computational
domain is defined by an axial symmetric geometry. For the sake of illustration, we consider the
case in which the geometry of the vessel is approximated by a cylinder, but the generalization
to the case of Example 4.1 is straightforward.

Let us assume that the artery posses a cylindrical shape with length L and radius R and
consider a section along a diameter. The computational domain, centered with respect to
the axis of symmetry consists of a structure describing the deformable wall Q° which delimits
the domain ©/ where the fluid motion takes place. By assuming a thin wall approximation
and identifying the middle surface I'* with the fluid interface, the corresponding domains
in which the fluid problem and the structural problem reads: Qf := {(z,y) : = € (0,L)
and y € (=R, R)}, whose boundary is 0/ = '™ UT°* UTY with T™ := {0} x (—R, R),
re* .= {L} x (-R,R), TV := [0,L] x {—R, R}, and I'* := {(z,y) : x € (0,L) and y €
{—R, R}}, with boundary T° := {(x,y) : 2 € {0, L} and y € {-R, R}}.

Moreover, the computational domain €2 in which the reduced FSI problem is defined coin-
cides with the fluid domain, i.e. Q = Qf. In the framework of the three-dimensional model, we
derive the weak formulation of the fluid and structural problems imposing the higher spatial
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differentiability requirement. In such a way, the fluid problem reads:
find, for all t € (0,T), u(t) € V;]f and p(t) € @ such that:

/prfat R+ /Qf pr(u(t) - V)u(t) - ¢ d + /Qf 2sDlul): D) 48 (4.36a)

— P(t)V-gon—/ f-cpdﬂ—/ h~<de—/ t/ pdl'=0 VeeV/,
Of Qf Tout I

/ (V- w(t)) dQ = 0 Wb € Q. (4.36D)
Qf

where the trial and test function spaces are defined as: ng = {’v € [H2(Q)]2 U|pin = gm} ,

vii= {cp € [H2(Q)]2 D@l = 0} and Q := L*(Q). The structural problem reads:
find, for all t € (0,T), n(t) € V* such that:

9*n(t)
hsps /Fs o ¢dr’

E 1 1 E 1
+ hs /F (1 _Vyg (n;(t) + Rny(t)) <C; + RCy) 1 (n;(t)C; + Rz%(ﬂ(y)) dr

h3 Ev 1 1 E 1
2 (72 (0= ) (6 - 36) + 10 (100G + gen(06,) ) ar

—/tS-CdF—O V¢ eV,

where the function space V* is given by: V*® := {(n,,n,) € H*(T%) : 0zl = 0,1yl4 = 0 and
773’/\70 = O} and we have denoted by means of the superscript ' the differentiation with respect
to x.

By means of the the kinematic condition of Eq. (4.30) and the specific choice of the fluid-
structure test functions, which satisfy ¢|pw = ¢, we obtain the relation:

—/ th - pdl = / t° - ¢dr. (4.37)
™w s
: o . . : . on
Thus, by using the approximation d of 7 and the kinematic coupling condition u = Bt on
'Y =T and defining the following trial and test spaces:
2 )

Vy = {e € [H*Q)]" s @lw = 6", ¢lr, = 0 and .0, =0}, (4.38a)

V= {go € [HQ(Q)]2 such that ¢|pn =0, @|r, =0 and 9.¢|r, = 0}, (4.38b)

Q = L*()). (4.38¢c)

the reduced FSI problem in terms of the primitive variables (u, P) of the fluid problem, reads:
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find, for all t € (0,7T'), u(t) € V; and P(t) € @ such that:

/Qf Py agi ) cpdQ+ /Qf pr(u(t) - V)u(t) - ¢ dQ —I-/ 2/ pD(u(t)) - D(cp) dQ (4.39a)
—/QfP(t)V-cpdﬂ—/gff-god@—/routh <de+hSpS/ - pdI’

o [ (120 (RO + 50 (d+ pon) + 15 ( + ey ) T

i Ev " 1 ! 1 1" 1"
_5 o o b r
1 (1 — <dy(t) RQdy(t)) <soy = | Y 1 1+ ) (t) el + 7R4d ey ) ) d

=0 Vo eV,
/ (V- u(t)y d2=0 Vip e @Q,  (4.39b)
of
u(t =0) =uo in Q, (4.39¢)
n(t =0) =no on TV,  (4.39d)

Remark 4.7. For the numerical simulations we will set u(t = 0) = 0 and n(t = 0) = 0
for which the considerations in Remark 3.1 still hold. Moreover, since we have expressed the
reduced FSI problem (4.39) only in terms of w and P by means of the approximation d of n,
the initial condition (4.39d) is expressed in terms of n, since initializes the approximation d
of m.

We proceed by deriving the dimensionless form of the reduced FSI problem (4.39), starting
from its variational formulation. The scaling factors for the variables of the problem (4.39) are
chosen equal to the ones used to perform the derivation of the Navier-Stokes equations describ-
ing the blood flow for a rigid-wall model in dimensionless form, see Section 3.1.2. Specifically,
we refer to Egs. (3.10) and (3.11) to define the dimensionless variables and differential oper-
ators. In particular, we can observe that the function d is dimensionally a length, since it is
an approximation of the displacement field 7. This yields:

. d 1 NN A 0 e 1 v ‘9“0 Vo 0w
(At*)2 ] (4.40)
=n + At*ud + [(1 2) o + 25 ot* } ’

where for the sake of simplicity, ng indicates ng := n*(t;) and analogously for ug := w*(tg).
We rescale all the terms of Eq. (4.39) by the fluid density py, then we follow the same
steps of Section 3.1.2 by substituting the dimensional quantities with their dimensionless
counterpart. In such a way, the coefficients multiplying the integrals over I''V relative to the
structural part of the problem, can be provided in their dimensionless form by means of the
following expressions:
h E 1

R
pz::& ht:=—= E*':=—=, R'=-—

, , , . 441
P Lo pr Vs Lo (4.41)

In particular, we can observe that, in the specific case of constant radius, R* = 1/2. Finally,

we multiply all terms by the coefficient VLo and we obtain the dimensionless form of the
o 0
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reduced FSI problem in variational formulation defined in the dimensionless computational
domain Q* := Q/Ly. For the sake of simplicity, we will omit henceforth the superscript * and
we denote by V;, V', @ the respective spaces in Eq. (4.38) of functions defined in dimensionless

) u
variables. Moreover, by denoting with p the rescaled dimensionless pressure, @ := — the

dimensionless acceleration field and f the dimensionless source term relative to the fluid
problem, the reduced FSI problem in residual form reads:
find, for all t € (0,T), u(t) € V; and p(t) € Q such that:

Bulg: lt), u(t), plt) =0 Vg eV, (4.42a)
Bo(ys; a(t), u(t), p(t) =0 ¥ €Q, (4.42b)
u(t =0) =up in Q, (4.42¢)
n(t =0) =no in Q. (4.42d)

where the residuals of the momentum and continuity equations of the generalized Navier-
Stokes equations (4.42) are given respectively, by:

Bu(g; @, w, p) == m(i, @)+ a(u, ) + c(u,u, ) + b(p,p) — F(p) — H(p)  (4.43a)
+ms (@, @) + H3 " (u, ) + H.™" (u, @)
Be(¥; 4, u, p) = b(u,), (4.43b)

with the forms and functionals relative to the fluid part of the reduced FSI problem defined
as in Section 3.1.3, for which we brieﬂy recall that the bilinear forms are given by m(w, ¢) :=

/u p dQ, a(u, @) /D ) dQ and b(e, p) := /pV-(p d§2; while the form

Q Q

c(+,+,-) is given by c(v,u, @) = /('U -V)u - dQ and the functionals are F'(¢ / fpdQ
Q

and H(yp) = / h - ¢ dI'. Moreover, we have introduced the bilinear form:
I'n

ms(w, @) := hsps/ - dl, (4.44a)
W
Ev E
) = e [ (TE0 (4 20) (64 20,) + o (i + 4dy5,) ) .
(4.44b)
h3 Ev E
iv(une) = 12 [ (20 (0= 44,) (4~ 40) + T (8] +16d,0,) ) T,
(4.44c¢)

where Eq. (4.44a) denote the added mass effect due to the structural part; whereas Eqs. (4.44b)
refer to the membrane and bending terms of the structural equations embedded as boundary
data.

Remark 4.8. If we compare the variational formulation of the Navier-Stokes equations (3.17)
describing the blood flow and of the generalized Navier-Stokes equations (4.43) derived from
the strong coupling between the fluid and structure problems, we observe that the main differ-
ence relies on the definition of the trial and test function spaces, respectively in Eq. (3.15) and
Eq. (4.38), other than the presence of the generalized boundary conditions on T'Y. We under-
line that the higher differentiability requirement is due to the choice on the structural model;
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however it is possible to adopt different models which does not require this level of reqularity;
see for instance [FVCJT06, NV0I).

4.2.3 Numerical approximation: IGA and generalized-a method

Since the reduced FSI problem (4.43) is formulated as a generalized Navier-Stokes equations
in the unknowns u and p, in order to perform its numerical approximation we can use the
same methods adopted for the fluid problem in a rigid wall model illustrated in Section 3.3. In
particular, the semi-discretized formulation in space is based on the Galerkin method in the
framework of NURBS-based IGA, as explained in Section 3.3.1. We consider the stabilization
based on the variational multiscale method for large eddy simulation (VMS-LES) of [BCCT07]
and described in Section 3.3.2. We observe that the stabilization considered is not affected
by the boundary terms appearing in the generalized Navier-Stokes equations. In such a way,
the semi-discretized problem reads as in Eq. (3.48), where the finite dimensional subspaces
Vgh CVy, VP C V and Q" C Q of the respective trial and test spaces of Eq. (4.38), are defined
as subspaces of the space V* of NURBS on the computational domain €, as previously.
Moreover, considering the spatial differentiability requirements on the spaces V; and V' of
Eq. (4.38), the numerical approximation by means of IGA allows to use a standard Galerkin
formulation for the semi-discretization in space of the high order derivatives involved in the
generalized boundary condition introduced by the coupling (see Remark 1.12). It is sufficient
to require that the NURBS basis functions defining V" are, at least, globally C'-continuous
in Q.

The time integration scheme used is the generalized-a method and the choice to formulate
the reduced FSI problem (4.43) in the unknowns (u, p), allows to use the standard generalized-
« method of Section 3.3.3. We highlight that the same strategies described in Remark 3.19
are adopted to simplify the implementation. In addition, we implement the resistance bound-
ary condition in an explicit way. This choice does not lead to a degradation on the global
accuracy, as we will see in Section 4.3 when comparing the results for the implicit or explicit
implementation of this term.

4.3 Numerical results

In this section we presents some numerical results for the reduced FSI method solved by means
of IGA in a two-dimensional cylindrical geometry. Firstly, we compare the results obtained
with the rigid-wall and the reduced FSI model. Then, we analyze the behavior of the reduced
model for different values of the parameters considered. In particular, we compare the solutions
obtained for the same material property when changing the value of the resistance constant
C.u, relative to the resistance boundary condition (see Section 3.2.2); then, we consider a
case of different elastic response of the wall, supposed to be less rigid. Finally, we analyze the
contribution of the longitudinal displacement by comparing the model with the linear elastic
Koiter shell model with only radial displacement (4.27).

All the numerical simulations are performed by using a mesh of N,; = 160 x 16 elements
for a dimensional time step At = 3.875-10"*s. The geometry is represented by NURBS basis
functions of degree p = 2, in such a way that they are globally C!-continuous, as required by
the reduced FSI model.

The values reported in Table 4.1 are used in the simulation of a reference configuration
and correspond to physiological values for a common carotid artery section; we refer e.g.
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Table 4.1: Fluid and structural physical and geometrical parameters for the axisymmetric cylindrical
artery.

Parameter Value ‘ Parameter Value

Length L =12cm Radius Rop = 0.3cm

Maximum flow rate(inlet BC) Qi = 13.7cm®/s | Resistance constant Cout = 5300dyn - s/cm®
Fluid density pf= 1.0559/cm3 Fluid dynamic viscosity — ps = O.O4cm2/s

Wall thickness hs = 0.06cm Wall density ps = 1A055g/cm3
Young’s Modulus E=4. 106dyn/cm2 Poisson ratio vr=0.5

to [BvGT12] and [FVCJIT06, BGH'09]. In particular, the elastic characteristics of the vessel
walls are described by the Poisson ratio v = 0.5 and the Young’s modulus E = 4-10%dyn /cm?.
Moreover, the resulting Reynolds Number is Re = 1534. Each simulation is performed for a
period corresponding to three heartbeats (3Tyg, with Ty = 1.1s) and the results reported
refer to the last heartbeat. If not otherwise specified, we sample the data shown in two sections,
which we will denote by S1 and Sa, located respectively at d; = 0.9¢m and do = 11.1¢m from
the inlet.

4.3.1 A comparison between rigid wall and reduced FSI models

We study the results obtained by using a rigid wall model and the reduced FSI model described
in Section 4.2. The main quantities which highlight the differences between the choice of one
model instead of the other are the pressure and the flow. We analyze them in Figure 4.2.

The pressure curves refer to the middle point of section S1 and Ss, respectively, and we can
observe that the ones referring to the rigid wall model present an higher peak pressure value
especially in proximity of the inlet section. Moreover, the absolute minimum and maximum
values of the pressure assumed all along the vessel section and for all the heartbeat period
yield an higher pressure drop for a rigid wall model, as reported in literature [FVCJT06| and
experienced in physiological flow with stiffer vessels. As for the flow curves, as expected, by
the inlet condition prescribed (see Section 3.2.1) the two curves overlap in the section S
closest to the inlet. The differences are noticeable when considering the flow in the section
So, proximal to the outlet. The curve relative to the rigid wall model overlaps the profiles of
section Sp as it is expected for an incompressible fluid in a rigid domain [FVCJTO06|, while
the one relative to the reduced FSI model shows a modest phase lag between sections S7 and
So. Lastly, an additional term of comparison are the streamlines for the solutions of the two
models. We have selected an instant at the beginning of the heartbeat in order to show the
different behavior of the streamlines in a section at the middle off the geometry considered. It
is noticeable in Figure 4.3 that, while in the case of rigid wall, the streamlines does not show
any curvature and appear to be exactly parallel to the wall, the streamlines of the solution of
the reduced FSI problem show a different pattern due to the interaction of the fluid with the
wall.
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Figure 4.3: Comparison between rigid and reduced FSI models: streamlines at ¢ = 0.0116 in a region
distal 7em from the inlet interface.
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4.3.2 The reference configuration

In this section we discuss the numerical results obtained with the reduced FSI model for the
geometrical and physical data collected in Table 4.1.

We first consider in Figure 4.4 the pressure and flow curves in sections S; and Ss. We
can observe that in both the graphs there is a complete overlapping between the solutions
obtained by implementing the resistance condition explicitly or implicitly. By implementing
the resistance condition in an explicit way, the contribution of the discretized terms relative
to this boundary condition enters the tangent system of the generalized-alpha method only in
the residual vectors. Contrary, in the case in which we consider an implicit scheme, we have
to add to the tangent matrix complicated terms or to resort to an inexact form of the tangent
system (limited to the contribute on I"***). Since we obtained weak differences between the
two strategies, we have chosen to implement it in a explicit way. The profile relative to the
pressure wave can be compared with the one reported in [BvG™12] which corresponds to a
physiological pressure curve.

As for the flow, we can see a phase lag between the one relative to the section S; in
proximity of the inlet boundary and to the section S in proximity of the outlet. Moreover in
Figure 4.4 we show the displacement of the wall relative to the considered sections. In cyan we
plot the displacement of the top wall relative to S7 during the complete heartbeat period, while
in green the one relative to S3. Once more we can observe a complete overlapping between the
solutions obtained with an implicit or explicit method. The complete analysis of the solution
relative to the displacement field during an heartbeat period is performed in Figure 4.5,
considering both for the components of the displacement and the total displacement, the
relative displacement with respect to the values at the beginning of the heartbeat, i.e n—n(t =
0). We consider the displacement relative to three points of the wall located respectively at
the top wall of sections S1, So and of a section located at the middle of the vessel. We can
see that the longitudinal displacement computed by means of the linear Koiter shell model
show a behavior different from the one of the work [BvG'12] in which are considered also
viscoelastic effects, but not the bending terms. In particular, considering the mid point of
the arterial vessel the shape is nearly the same, but we obtain a minimum which is much
more higher than the one provided by [BvG 12|, where min 17, ~ —0.1mm while in our

te€(0,TuB)
case (mlTn )Th: ~ —0.045mm. Nevertheless, the total longitudinal displacement that we
te(0,TuB
obtain ( max 7,(t)— min n,(t) =0.07mm ) is included in the range of values obtained
t€(0,TaB) t€(0,TuB)

by experimental studies, as reported in [BvGT12]. We can observe in Figure 4.5¢ that the
contribution to the total displacement is determined in large part by the radial displacement;
we will discuss later the choice of a linear Koiter shell model considering only the radial
displacement in Section 4.3.4.

In Figures 4.6, 4.7, 4.8 we collect the solutions obtained at different times during the
heartbeat period, in particular, we refer to ¢ = 0.0116s, in which the wall velocity reaches
its maximum value, to the time corresponding to the peak systole and finally to the mid-
diastolic phase. For all of them we sample the pressure along the centerline, the longitudinal
and radial displacements of the upper wall boundary and the spatial distribution for the fluid
and wall velocities. In particular, in order to highlight the behavior of the wall velocity we
have represented it by means of arrays. We can observe that the maximum value of the wall
velocity during the total heartbeat period is not attained at the peak systole, but rather at
t = 0.0116s, more over, it does not determine the maximum displacement of the wall. We
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obtain the maximum displacement at the time corresponding to the peak systole in which the
direction of the wall velocity vectors is normal to the wall. By means of the approximation
formula (4.31), for which we consider a default value of 8 = 1.0, it results that the contribution
of the acceleration term is not negligible. When considering the profiles of each component of
the displacement, we can see that their shape does not undergo noticeable changes at all the
times considered, but their mean absolute values is sensibly different during the peak systole.
The presence of the boundary layers for the radial displacement close to the inlet and outlet
sections is explained by the use of homogeneous essential boundary conditions for the wall
model, we refer to [BvGT12] for more details. In particular, the oscillations that normally
would appear are reduced by the bending terms involved in the model.
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4.3.3 A comparison between different parameters

In this section we study the sensibility of the model to some of the parameters used in the
simulations. Firstly, we address the choice of the resistance boundary condition (Section 3.2.2).
As reference value we set C,,, = 5300dyn - s/ em® and we compare the solutions with values
C,ue = 2500dyn - s/cm5 in Figure 4.9 and C,,, = 10000dyn - s/cm5 in Figure 4.10. In both
the cases we consider the pressure and flow curves and the total displacement in the sections
S1 and S3. We analyze the flow rate, for which we can observe that there are not significant
differences, apart form the increase in the phase lag according to the use of an higher parameter
for the resistance constant. The differences are more discernible when considering the plots of
the pressure and the total displacement, for which we can observe significant differences with
respect to the case C,,, = 5300dyn - s/ em?® responding to physiological data. Nevertheless,
as expected an higher value for the resistance condition yield a reduction of the spurious
reflection at the outlet. Furthermore, the pressure drop (pPmax — Pmin) is higher with higher
values of C,,,. The total displacement is quite unrealistic for the value C.,, = 10000dyn-s/ em®,
since it corresponds to a 17% of the radius, while for C,,, = 5300dyn - s/ em® we obtain the
physiological value of the 9.6% of the radius, lastly in the case of C,,, = 2500dyn - s/ em® we
have a total displacement equal to 4.67% of the radius.

As expected, the model is also sensible to the values for the Young’s modulus. In particular,
we compare the solution obtained with the reference configuration with the one in which
the wall is considered less rigid. In particular, we set the value of the Young’s modulus
E =2-10%yn/em? as in [BvGT12]. This value is close to the physiological one, but we notice
in Figure 4.11 the sensitivity of the model to the elastic behavior of the wall, which in this
case shows a total displacement of the 18.5% of the radius compared with the 9.6% previously
considered. Moreover, noticeable differences are shown in the flow curves in Figure 4.11b
where, as expected, it is highlighted the increase in the phase lag in case of lower Young’s
modulus.
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Figure 4.9: Comparison between C,,, = 5300dyn - s/cm5 (red colors) and C,,; = 2500dyn - s/ em®
(blue colors): pressure and flow vs. time, respectively in a middle point of sections S; and Sy and in
through sections Sy (clear) and Sy (dark). Total displacement magnitude at the sections S7 and S3. In
legend, reference and 2500 refer respectively to C,,, = 5300dyn - s/ em® and C.y = 2500dyn - s / em?.
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Figure 4.10: Comparison between C,,, = 5300dyn - s/cm® (red colors) and C,., = 10000dyn - s/cm®
(blue colors): pressure and flow vs. time, respectively in a middle point of sections S; and Sy and in
through sections S; (clear) and S (dark). Total displacement magnitude at the sections S and S3. In
legend, reference and 10000 refer respectively to C,y = 5300dyn - s/cm® and Coy = 10000dyn - s/cm?.
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Figure 4.11: Comparison between E = 4 - 105dyn/cm? (red colors) and E = 2 - 10%dyn/cm? (blue
colors): pressure and flow vs. time, respectively in a middle point of sections S; and S5 and in through
sections 57 (clear) and Sy (dark). Total displacement magnitude at the sections S7 and Ss. In legend,
reference and E2 refer respectively to E = 4 -10%dyn/cm? and E = 2 - 10%dyn/cm?.
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Figure 4.12: Comparison between simplified linear Koiter shell model (blue colors) with respect to the
full model (red colors): pressure and flow vs. time, respectively in a middle point of sections S; and
Sy and in through sections S; (clear) and S (dark). In legend, reference and radial refer respectively
to the full model and to the simplified model (radial displacement).

4.3.4 Numerical simulation with the linear Koiter shell model with radial
displacement

We consider the simplified linear Koiter shell model of Eq. (4.27) with respect to the full model
of Eq. (4.24), as it is described in Example 4.3. In particular, for the simplified model this case
we assume that the structure deforms only in the normal direction to the middle surface, i.e.
we report only radial displacement. The relative contribution of the longitudinal displacement
leads to minimal differences between the two models. In particular, in Figure 4.12 we report
the pressure and flow plots vs. time in sections S; and S5, which shows good agreement
between the two models. Moreover, in Figure 4.13 we analyze both the total displacement for
each section S7 and S9 and the components of the relative displacement in section S; where
we can observe that there is a minimal difference (2% of the total displacement for the full
model). This results shows and justifies the fact that in vascular dynamics is widely accepted
the assumption of main radial displacement of the wall.
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Conclusions

In this thesis we have dealt with the numerical approximation of a reduced Fluid-Structure
Interaction (FSI) problem in haemodynamic applications by means of Isogeometric Analysis
(IGA).

In the first part, we investigated some aspects of IGA [CHB09|, starting with a discussion
on the representation of geometries by means of Non-Uniform Rational B-Splines (NURBS)
[PT97]. IGA has been considered in the framework of the Galerkin method for the numerical
approximation of Partial Differential Equations (PDEs) [CHB09], specifically for high order
PDEs. Moreover, extending the results obtained in [BBadVC™06], we provided an a priori er-
ror estimate under hA-refinement for the NURBS-based IGA approximation of high order scalar
elliptic PDEs. In particular, we focused on the derivation of the errors in lower order norms by
means of the Aubin-Nietsche’s argument [Ode00, SF73]. The numerical examples provided,
confirmed the theoretical results and highlighted some of the advantages of IGA compared to
Finite Element Analysis (FEA). These include the possibility of an exact geometrical repre-
sentation [CHBO05|, an higher level of accuracy, simplified and enriched refinement procedures
[CHRO7|, and globally smoother basis functions with compact support for the analysis.

The improvements provided by IGA with respect to FEA in terms of both accuracy and
efficiency, led to consider the method for haemodynamic applications [BCHZ08].

Firstly, we considered the simulation of blood flows in two-dimensional rigid arteries. The
Navier-Stokes equations have been used to represent blood flows, with a proper set of boundary
conditions [VAVS11, BGHT09]. For the numerical solution of the Navier-Stokes equations we
have considered IGA in the framework of the Galerkin method for the spatial approximation
and the generalized-a method to perform the discretization in time. The standard Galerkin
method has been stabilized by means of the Variational Multiscale method accounting for
Large Eddy Simulation [BCCT07]. Numerical examples of pathological conditions in idealized
geometries have been reported and discussed.

Rigid wall models, which neglect the deformability of the arterial vessels, preclude the
connect study of the blood flows, especially in large arteries, whose walls undergo sensible de-
formations. In order to account for the compliance of the vessel, FSI models must be used. In
haemodynamics, FSI models describe the mechanical interaction between the blood flow and
the response of the arterial wall to the deformation by coupling the Navier-Stokes equations
with structural models. The complexity and the elevated computational cost in the numer-
ical approximation of FSI problems, led to consider a reduced FSI model. Based on a thin
wall approximation, a shell model has been adopted to describe the arterial wall similarly to
[FQVT09]. Specifically, we have considered a linear elastic Koiter shell model for axisymmetric
geometries [Cia05], capable to capture both radial and longitudinal displacements.

A further level of reduction may be introduced by coupling at the variational level the
fluid and structural problems [FVCJT06, NV09| by means of the kynematic and dynamic
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conditions [vTGT06], thus resulting in the embedding of the structural problem into the fluid
one as a generalized boundary condition. In the framework of [FVCJTO06], the strong coupling
between the degrees of freedom relative to the wall displacement and to the fluid velocity on
the boundary, led us to numerically solve the resulting generalized Navier-Stokes equations
only in terms of the primitive variables velocity and pressure, in a fixed computational domain.
Usually, for the structure only a membrane model is considered [FVCJT06, NV09]; instead,
we took into account in this formulation also the bending terms, which involve high order
derivatives. The choice to use IGA for the numerical approximation has turned out to be
crucial when solving the resulting generalized Navier-Stokes equations, since high order terms
are involved. Moreover, the exact geometrical representation of smooth geometries constitutes
a peculiarity of IGA that reveals its efficiency in dealing with patient-specific geometries.
Even if we considered only two-dimensional geometries, the procedure based on IGA revealed
very efficient. We obtained that the computational cost is comparable to rigid wall models.
Moreover, the implementation does not require significant efforts once a solver for the Navier-
Stokes equations is available. Although the methodology discussed was presented in detail
for two-dimensional problems (for which it is required to assume axisymmetric geometries
unless considering additional conditions) the same approach can be eventually applied to
three-dimensional geometries.

Further extensions of this work may involve the choice of the structural model. First of all,
additional terms can be considered in the structural problem in order to include viscoelastic
effects [BvG 12, vT'G106]; thin structural models can be also investigated [Hol06]. Further
developments are represented by the analysis of different boundary conditions for the fluid in
combination with the reduced FSI model, including Womersley profiles at the inlet [Wom57,
AADRF09, THZ98| and impedance condition at the outlet [FVCJTO06]. Finally, a rigorous
mathematical analysis of the reduced FSI model may be investigated. Specifically, further
work is required in order to provide stability results for this formulation.
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Appendix A

Isogeometric Analysis for
Navier-Stokes Equations in Stream
Function Formulation

We consider the numerical approximation of the Navier-Stokes equations in stream function
formulation, for which the equations are recast in a fourth order nonlinear problem in terms
of a scalar function called stream function. One of the advantages of this formulation is the
fact that, at least in two-dimensional problems, we can considerably reduce the size of the
discrete system obtained with the Galerkin method with respect to the one corresponding to
the Navier-Stokes equations in primitive variables. Moreover, the stream function formulation
yields a stable problem in the standard Galerkin formulation, which at the discrete level,
requires basis functions at least C'-continuous. This requirement can be satisfied by using
NURBS-based IGA (see Remark 1.12). Specifically, we consider the solution of a benchmark
problem, i.e. the Lid-driven cavity problem for different values of the Reynolds number, for
which we compare the numerical results with those available in literature, in particular in

[GGSs2].

A.1 The Navier-Stokes equations in stream function formula-
tion

We consider the Navier-Stokes equations governing the flow of an incompressible fluid in a
domain © C R? for the time interval (0,T) in terms of the dimensionless primitive vari-
ables, i.e. the velocity and the pressure fields (u,p) (see Section 3.1.2). In order to deduce
the stream function formulation, we start from the variational formulation of the problem
complemented with Dirichlet and Neumann boundary conditions, imposed respectively on the
subsets I'p, I'y C 99 (see Eq. (3.16)). By using the same notation introduced in Section 3.1.2,
in particular referring to the function spaces Vg, V, Q of Egs. (3.15), the problem reads:
find, for all t € (0,T), u(t) € Vg, p(t) € Q such that:

m(@(t), @) + a(u(t), @) + c(u(t), u(t), @) + b, p(t) = F(@) + H(gp) Yo eV, (Ala)
b(u(t),) =0 Vi € Q, (A.1b)
u(0) = ug in Q, (A.1c)
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wherem(u,go)::/u p dQ, a(u, ) /D p) dQ, b(ep,p) := /pV-Lde

Q

and c(v,u, @) ::/(v V)u - ¢ dQ; while F(p /f @ dQ and H(p) := / h - dl;
Q I'n
(Vu + VuT)

moreover D(u) := is the strain rate tensor.

We introduce the spaces of divergence-free functions, subsets of the respective spaces V
and V, defined as:

Wyg:={ueV,:V-u=0} CV, (A.2a)

W:={peV:V.p=0}CV. (A.2b)

A function u € Vj, solution of the problem (A.1), is also a solution of the following problem:
find, for all t € (0,T'), u(t) € W, such that:

{ m(@(t), @) + a(u(t), @) + c(u(t), u(t), 9) = F(p) + H(p) VYpeW, (A3a)
u(0) = ug in Q. (A.3b)

Moreover, we consider over the space of scalar functions H*(Q) the equivalence relation ~
defined by the following:

for all v,w € H*(Q): v~ w if and only if w — v € R, (A.4)

whose equivalence classes are denoted by [-].. The resulting quotient space of scalar functions
in H*(Q) identified up to a constant, is given by:

X = {[]~ :v e H*(Q)}, (A.5)

and we identify each element of X with its equivalence class, i.e. v € X means v € [v]~, with
[v]~ € X. In the additional hypothesis that 2 is a simply connected two-dimensional domain,
given ¢ € W there exists a unique w € X such that:

¢ = curlw, (A.6)

where the partial differential operator curl is defined as:

(A7)

curl : X — [HY(Q)]?, curlw:= (8w 8w>

oy’ Oz

see for reference [ABadVB™07, GR79]. In particular, the operator curl provides an isomor-
phism between the spaces Wy, W and the following spaces defined as, respectively:

¢, :={veX:curlvr, =g}, (A.8a)
¢ :={we X : curlw|p, =0}. (A.8b)

In such a way, we can recast the Navier-Stokes problem (A.3) in a problem whose unknown
is the scalar function v € ®4, called stream function, and it reads:
find, for all t € (0,T), v(t) € @4 such that:

{ m(0(t),w) + a(v(t),w) + c(v(t),v(t),w) = Fw) + H(w) VYwe€®,  (A.9a)
(0) = o in Q, (A.9Db)

<
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where the forms and the functionals in Eq. (A.9) are defined as:

[ ow g, [ oou

o 0y Dy \ 0z Oz
a(v, w) = 1@2@/9 <2§Z/Z:;’ + % (g;’ - gif;) (‘22;;’ - gj;’)) do, (A.10b)
Py [ (155~ 5,52) a0 (A.10d)

_ ow ow

m(v,w) : dQ (A.10a)

with f = (fsz, fy) and b = (hy, hy); the initial condition is such that curlvgy = wug. The
problem (A.9) is the stream function formulation for the Navier-Stokes equations (A.1) and
it is a time dependent fourth order nonlinear PDE. By construction, the curl of the scalar
field v solution of the problem (A.9) returns the velocity field u, solution of the problem (A.3)
which is, by definition, divergence free. The pressure field, appearing in problem (A.1) can be
obtained by solving a second order PDE depending on the stream function v, see e.g. [GR79].

Remark A.l1. By definition of the spaces ®4 and ® in Eq. (A.8), the scalar field v € ®,
solution of the problem (A.9) is not a scalar function, but a class of equivalence of functions
determined up to a constant. We enforce the uniqueness of the solution of the problem (A.9)
i a classical sense by imposing a value in a point in the domain. Moreover, we recast the
essential boundary condition curlv|p, = g in the form of essential boundary conditions for
fourth order PDEs, i.e. given dy,dy:T'p = R, v|r, =di, Vv n|r, = da. In particular, by
means of the relation between the two solutions, i.e. curlv = wu, a Dirichlet boundary condition
ulr, =g = (92, 9y) yields a condition of the form Vv - n|r, = (—gy,gz) - n; while the former
boundary condition v|r, = di can be deduced by means of the constraint for the uniqueness,
which imposes a value for v in a point in the domain 2, and the Fundamental Theorem of
Calculus. For the sake of simplicity, we provide the Galerkin formulation of the problem (A.9)
in terms of functions in ® and @4, postponing the issue of the uniqueness of the solution in
the classical sense to the specific Lid-driven cavity problem.

A.1.1 Numerical approximation: Isogeometric Analysis

In order to find the numerical approximated solution of the problem (A.9), we provide the
semi-discretized spatial formulation by means of the IGA-Galerkin method presented in Sec-
tion 1.2. Moreover we use the generalized-o method [Whi99, JWHO00]| for scalar problems for
the approximation in time.

Let the two-dimensional computational domain € be represented by a NURBS geometry.
We consider the finite dimensional space of NURBS in the physical domain, say V", given in
Eq. (1.22) and we define the finite dimensional subspaces of the trial and test function spaces
of Eq. (A.8) as the NURBS spaces given respectively by ®" := & N V" and @Z =0, N Vh,
with Ny := dim ®". In this manner, the IGA-Galerkin approximation of the problem (A.9)
reads:
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find, for all t € (0,7T), vi(t) € <I>}gL such that:

ﬁl(i)h(t), wh) + d(vh(t), wh) + E(Uh(t), Uh(t), wh) = F(wh) + f_f(wh) Ywy, € q)h, (A.lla)
curlv, (0) = uo in Q, (A.11b)

where the forms and the functionals are given in Eq. (A.10). By the notation of Chapter 1,
we introduce the vectors of control variables for all ¢ € (0,7") for the function vj, and its time
derivative vy, given by:

V(1) = {o:()}Y and V(1) = {wi(t)},. (A.12)

Moreover, we rewrite Eq. (A.11a) in residual form as:
find, for all t € (0,T), vi(t) € Q)Z such that:

Bh(wh, f)h(t), ’Uh(t)) =0 Ywy, € (I)h, (A.13a)

curlv, (0) = uo in €, (A.13Db)
with Bh(wh, Vh, Uh) = T?L(@h(t), ’U)h) + C_L(’Uh(t), wh) + E(Uh(t), ’Uh(t), wh) — F(’U)h) — ﬁ(wh) and
we define the vector of discrete residuals whose components are the residuals By(-, 0p, vp)
evaluated in the NURBS basis function for the function space ®", say R;, for i = 1,..., N,
ie.

R (0n(t), va(t)) := {Bn(Rs: n(t), va(t)}2, . (A.14)

In this manner, we can perform the discretization in time by means of the generalized-a

method for scalar problems, for which we refer to [Whi99, JWH00]. We introduce a discrete
time vector {tn}nNLO, subdividing (0,7") in a set of N; time intervals of size At = t, 11 — ty.
For the sake of simplicity, in the vectors of control variables of Eq. (A.12) we replace t,

with the subscript n. The generalized-« algorithm reads: at time step t,, given V;,, V;,, find

Vn+1, Vn+1, Vn—l—amy V’VH—Otf such that:

R (Vnm,n, Viia f) —0, (A.15a)
Vi1 = Vo + At, Vi, + AL, (Vn+1 — Vn> , (A.15b)
Vitan = Va+ am (Va1 = Vo) (A.15¢)
Vita, = Vo + g (Vn+1 - Vn>, (A.15d)

where the parameters o, ayf, § € [0,1], defining the generalized-a method, are chosen on the
basis of accuracy and stability considerations as in Egs. (3.50) and (3.52). We deal with the
nonlinearity of the system of equations (A.15) in the framework of the case of the generalized-«
algorithm for vector-scalar problems, see Section 3.3.3, coupling the method with a predictor-
multicorrector algorithm.

A.2 Numerical results: the Lid-driven cavity problem

We consider the Navier-Stokes problem (A.9) in stream function formulation to solve the
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Iy

u=20

Figure A.1: Lid-driven cavity problem: problem setting and data. £ = (0, 1)2, I'p =09Q.

benchmark Lid-driven cavity problem for different values of the Reynolds number, specifically
Re = 100,400, 1000, 5000. In Figure A.1 we report the data relative to the problem defined in
the domain Q = (0,1)? in terms of the unknown velocity field w. By recalling Remark A.1, we
impose the uniqueness of the solution v of problem (A.9) in a classical sense, by imposing that
v(0,0,¢t) = 0 for all ¢t € (0,7"). In such a way, the boundary conditions for the Navier-Stokes
equations in stream function formulation reads: v|sq =0, Vv -n|r, = 1 and Vv -n|p, = 0 for
i1=1,2,4.

We represent the computational domain @ = (0,1)? of Figure A.1 by means of C!-
continuous B-Splines basis functions of degree p = 2, on uniform meshes with N, = (28)2
elements. We set the time step At, for the time approximation with the generalized-a method,
to a default value of At = 0.1. The initial condition for the stream function is set to v(0) = 0.

For each value of the Reynolds number considered, Re = 100, 400, 1000, 5000, we compare
the solutions obtained, at the steady state, with the data in [GGS82]. In Figures A.2, A.3, A.4,
A.6 a comparison is performed in terms of the streamlines, vorticity contour lines and the
positions of the vortexes centers with respect to [GGS82]. The values of the stream function
and the vorticity contour lines are the ones used in [GGS82]| and reported in Table A.2.
Moreover, for Re = 5000 we show in Figure A.5 the evolution of the streamlines from the
initial condition to the steady state. In Table A.1 we compare with [GGS82| the positions of
the vortexes centers and the corresponding values that the stream function v assumes. The
notation is the same reported in [GGS82]; in particular, as for the vortexes the letters B, L,
and R denote the bottom, left, and right corners respectively. As reported in literature, the
number of regions in which the vortexes develop increases for higher values of the Reynolds
number, specifically in the corners of the domain. E.g. for Re = 5000, we can observe in
Figure A.6 that two secondary vortexes in the bottom corners and a third vortex in the upper
right corner appear with respect to lower Reynolds numbers. When the Reynolds number
increases the centers of the primary ad the secondary vortexes move towards the center of the
domain. Furthermore, we can also notice that the larger is Re, the slower is the convergence
to the steady state. We can conclude that the results obtained by using IGA are in good
agreement with the results available in literature, even in the case of high Reynolds Numbers.
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Table A.1: Vortex centers: numerical results compared with [GGS82].

Re = 100 Re = 400
vortex property result [GGS82] result [GGS82]
Primary Umin —0.1035 —0.103423 —0.1140 —0.113909
z—coordinate 0.6150 0.6172 0.5550 0.5547
y—coordinate 0.7350 0.7344 0.6050 0.6055
First
BL Umax 1.7690 - 106 1.74877-1076 1.4224 -107° 1.41951-107°
z—coordinate 0.0341 0.0313 0.0512 0.0508
y—coordinate 0.0346 0.0391 0.0472 0.0469
First
BR Umax 1.2604 - 1072 1.25374-1075 6.4301 - 10~ 6.42352 - 104
z—coordinate 0.9400 0.9453 0.8850 0.8906
y—coordinate 0.0600 0.0625 0.1200 0.1250
Re = 1000 Re = 5000
vortex property result [GGS82] result [GGS82]
Primary Vmin —0.1185 —0.117929 —0.1121 —0.118966
x—coordinate 0.5300 0.5313 0.5050 0.5117
y—coordinate 0.5650 0.5625 0.5200 0.5352
First
T Vmax - — 1.2301-1073 1.454641 - 1073
x—coordinate — — 0.0625 0.0625
y—coordinate - — 0.9102 0.9102
First
BL Vmax 2.2069 - 104 2.31129 - 104 1.34379 - 1073 1.36119 - 1073
x—coordinate 0.0834 0.0859 0.0730 0.0703
y—coordinate 0.0777 0.0781 0.1360 0.1367
First
BR Vmax 0.0017 1.75102 - 1073 2.61468 - 1073 3.08358 - 1073
x—coordinate 0.8650 0.8594 0.8200 0.8086
y—coordinate 0.1100 0.1094 0.0750 0.0742
Second
BL Vmax - — —1.05856 - 107  —7.08860 - 108
x—coordinate - — 0.0085 0.0117
y—coordinate - — 0.0078 0.0078
Second
BR Vmax —1.36433-10"%  —9.31929 - 108 —7.21597-1077  —1.43226-10"°
x—coordinate 0.9930 0.9922 0.985 0.9805
y—coordinate 0.0070 0.0078 0.0160 0.0195
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Table A.2: Values for the contour lines of the stream-function and the vorticity.

Contour lines

Stream function Vorticity
—1.0-10710 —0.1175 -3.0
—-1.0-1077 1.0-1078 —2.0
—-1.0-107° 1.0-10~7 —1.0
—-1.0-107% 1.0-107 —0.5
—-1.0-1072 1.0-107° 0
—3.0-1072 5.0-107° 0.5
—5.0-1072 1.0-107% 1.0
—7.0-1072 25.107% 2.0
—9.0-1072 5.0-107% 3.0
-1.0-1071 1.0-1073 4.0

—0.11 1.5-1073 5.0
—0.115 3.0-1073

(a) Streamlines and position of vortexes (b) Streamlines in [GGS82].
centers.

A1

-~

(c) Vorticity contour lines. (d) Vorticity contours in [GGS82].

Figure A.2: Lid-driven cavity problem, Re = 100: comparison of the results (steady state reached at
t = 16) with [GGS82]. Computed vortexes centers (M) compared with those in [GGS82] (m).
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(a) Streamlines and position of vortexes (b) Streamlines in [GGS82].
centers.

N\

(c) Vorticity contour lines. (d) Vorticity contours in [GGS82].

%

Figure A.3: Lid-driven cavity problem, Re = 400: comparison of the results (steady state reached at
t = 40) with [GGS82]. Computed vortexes centers (M) compared with those in [GGS82] (m).
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@L

(a) Streamlines and position of vortexes (b) Streamlines in [GGS82].
centers.

[———

(¢) Vorticity contour lines. (d) Vorticity contours in [GGS82].

Figure A.4: Lid-driven cavity problem, Re = 1000: comparison of the results (steady state reached at
t = 40) with [GGS82]. Computed vortexes centers (M) compared with those in [GGS82] (m)
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Figure A.5: Lid-driven cavity problem, Re = 5000: streamlines at different time steps.
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(a) Streamlines and position of vortexes
centers.

r—

(c) Vorticity contour lines. (d) Vorticity contours in [GGS82].

Figure A.6: Lid-driven cavity problem, Re = 5000: comparison of the results (steady state reached at
t = 50) with [GGS82]. Computed vortexes centers (M) compared with those in [GGS82] (m).
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Appendix B

Imposition of Essential Boundary
Conditions for High Order PDEs

We discuss the strong imposition of essential boundary conditions for high order PDEs solved
by means of the Galerkin method in the framework of NURBS-based IGA. In particular, we
consider the imposition of the boundary condition on the normal gradient of the solution
stemming from a fourth order partial differential operator. We consider a method based on
the explicit formula for derivatives of multivariate NURBS basis functions for which a system
of equations involving a subset of the control variables needs to be solved. The general case for
higher order partial differential operators can be obtained straightforwardly; we only mention
the case of homogeneous essential boundary conditions imposed on the whole boundary do-
main for the trilaplacian operator (see Example 1.14). An alternative approach can be found
in [LDE"12|, where a periodic Bézier extraction operator is introduced to enforce the strong
imposition of periodic boundary conditions. The technique that we propose, even if compu-
tationally more expensive, allows the strong imposition of essential boundary conditions that
are not necessarily neither homogeneous nor periodic.

B.1 Strong imposition for fourth order PDEs

When considering a fourth order partial differential operator, e.g. the bilaplacian operator (see
Example 1.13), which defines a scalar boundary value problem in a domain 2 for the unknown
u, the essential boundary conditions are of the following type:

u|FEss :917 VU'n’FESS :927 (Bl)

for some functions g1, g2 : ['gss — R, where I'gss C 92 denotes the subset of the boundary in
which we impose the essential boundary conditions and n is the outward directed unit vector
normal to ['gss. For the sake of simplicity we consider the case in which I'gss = 0f2.

Let the domain €2 be parametrized as a NURBS geometry for which the NURBS basis
functions are built starting from open knot vectors. Specifically, we assume that €2 is a NURBS
surface represented by means of the geometrical mapping x of Eq. (1.18), which is defined in
the parametric domain Q = [0,1]? and assumed to be invertible. By recalling the notation
introduced in Chapter 1, we denote the knot vectors in each parametric direction @ = 1,2
as Zq = {&1585, -, &ntpat1), Which define in the parametric domain the corresponding
univariate B-Splines basis functions of degree pq, say {N;* }/'>_; in Eq. (1.1). By introducing

o=
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the set of multi-indexes I = {& = (i1,42) : 0 < iy < Ny, = 1,2}, we assign a set of weights
w = {w; }ier which defines the weighting function W of Eq. (1.14) and the bivariate NURBS
basis {R;}ier of Eq. (1.15) in the parametric domain; while {R;};c; are the basis functions
in the physical space Q of equation Eq. (1.22).

Let uy, be a function in the space of NURBS in the physical domain V? given in Eq. (1.22);
we assume that uy is the approximated solution of the fourth order PDE obtained by means
of the IGA-Galerkin method. Moreover, following Eq. (1.24), we write uj, = ZRidi, where

i€l
{d;}icr is the set of control variables. In order to impose the essential boundary conditions, it
is convenient to use the relation between the approximated solution uy, defined in the physical
domain  and its corresponding function, say 4 of Eq. (1.23), defined in the parametric
domain Q. Specifically, this relation is determined by the geometrical mapping and given by:

up = apox ' or equivalently 4 = up o x. (B.2)
Moreover, we introduce an extension of the boundary data in the space of NURBS, say g1
and g9 3, respectively given by:

gLh i Q=R gip=> Rigi and  gop: Q=R goni=> Rigi,  (B3)
el el

with {g; }ser and {g?}scs the corresponding sets of control variables.

By means of the end-point interpolation property (see Section 1.1.5) and Eq. (B.2), we
perform the strong imposition of the boundary condition uy|go = g1, identifying the control
variables of g; ;, and of uj, whose indexes are in the set Ky := {2 = (i1,492) € [ : iy =1, or i1 =
ni, orig =1, orig =ng} C I.

The imposition of the boundary condition on the normal gradient of the solution Vuy, -
n|po = ga, is not any longer straightforward; specifically, in order to recast the condition in
terms of the solution 4y, in the parametric domain, we use both the chain rule and Eq. (B.2),
for which:

Vuy, = [T*T@ah} ox~ 1, (B.4)

where we denote by V the gradient operator with respect to the parametric coordinates. More-
over, we use the relation between the outward directed unit normal vectors to the boundaries
in the physical domain, denoted by n, and in the parametric domain, say n, given by:

n=JTTh, (B.5)

where T is the deformation tensor of the geometrical mapping of Eq. (1.4) and J is the
Jacobian of the mapping of Eq. (1.20). In particular, Eq. (B.4) and Eq. (B.5) yield:

nfyq- (B.6)

In the framework of the strong imposition of the boundary condition uplpn = g1, from
Eq. (B.6), we can establish a system of relations between a subset of the control variables of
up, and of go . With this aim, we use the definition of derivative of NURBS basis functions,
given in Eq. (1.12), and the fact that bivariate open kot NURBS basis functions are used.
Specifically, we are interested in computing:

gonoxX o = IVl (TTT)

8uh 8uh

om

f’mh %

(51")7 ( 51)

(§n1+P1+17 ')’ ( ’§n2+p2+1)'
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We take as example the first of the above derivatives, for which we have:

§1a772 ZdaR 517 12)

el
(51 772 87]1 !

12 NE(n2)w

1=1*"1 (2,0)

ZN n2) (W(2,j)d(27j)“’<1J)d(1’j) W (&L, m2) '
(B.7)

Remark B.1. By means of the imposition of the essential boundary condition up|aq = 91,1,

we find the control variables {d 1])}3 1> d2,1) and d(g ,); while, in this particular case, the

set of unknowns is represented by the control variables {d(27j)}?i§1.

By collecting in the right hand side of Eq. (B.7) the known terms we obtain the relation:

no—1

ot ONJ
> N (m)djwe.g) = uh (51 n2)W (&1, 72) ( (&))
=2

-1

no N

+Z €1 12) (ZNI i 2l)>

- Nl (772)d(2,1)w(2,1) - Nn2 (772)d(2,n2)w(2,n2)7

(B.8)

which leads to the solution of an interpolation problem. In particular, we enforce Eq. (B.8)
in mo — 2 points equally spaced in the parametric domain restricted to the second parametric

j—1
direction, i.e. in {77] }ize o1, with nj =TT
The same method is implemented for the other derivatives leading to the solution of

linear systems in the unknown control variables {d ;) }725 ", {d (mi—1,)}iea {d (.2) };‘;;1 and

{d(jna—1) }}151 , respectively.

Remark B.2. The method can be extended to the strong imposition of essential boundary con-
ditions in case of partial differential operators of order higher than four. E.g., let us consider
the PDE defined by the trilaplacian operator of Eq. (1.41a) and completed by homogeneous
essential boundary conditions on the whole boundary. Moreover, let up be the approximated
solution obtained by means of the IGA-Galerkin method, whose control variables are denoted
by {di}icr. By means of the end-point interpolation property and Eq. (B.2) the imposition
of the boundary condition uplog = 0 of Eq. (1.41b) consists in setting to zero the control
variables whose indexes are in the set K1 := {i = (i1,i2) € I : i1 = 1, orip = ny, oris =
1, oris =no} C I, ie {dj =0}jck,. By means of this constrain, to perform the imposition
of the boundary condition (Vu-n)|aq = 0 of Eq. (1.41c) the method yields {d; = 0}jck,, with
Ky :={i = (i1,i2) € I 141 =2, oriy =ny — 1, orieg =2, orig = ng — 1} C I. Finally,
in order to satisfy the essential boundary condition Auplgg = 0 in Eq. (1.41d), analogous
considerations on the second order derivatives of NURBS basis functions and the relation:

Au = %? [J(TTT)*lw ox1,

lead to impose {dj = 0}jck,, with K3 := {1 = (i1,42) € [ 191 =3, oriy =ny — 2, oris =
3, 0’/’i2=7‘b2—2}§].
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