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In this paper, stability analysis of traffic control for two-region urban cities is treated. It is
known in control theory that optimality does not imply stability. If the optimal control is
applied in a heavily congested system with high demand, traffic conditions might not
change or the network might still lead to gridlock. A city partitioned in two regions with
a Macroscopic Fundamental Diagram (MFD) for each of the regions is considered. Under
the assumption of triangular MFDs, the two-region MFDs system is modeled as a piecewise
second-order system. Necessary and sufficient conditions are derived for stable equilib-
rium accumulations in the undersaturated regimes for both MFDs. Moreover, the traffic
perimeter control problem for the two-region MFDs system is formulated. Phase portraits
and stability analysis are conducted, and a new algorithm is proposed to derive the bound-
aries of the stable and unstable regions. Based on these regions, a state-feedback control
strategy is derived. Trapezoidal shape of MFDs are also addressed with numerical solutions.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Monitoring and controlling congestion in arterial networks still remains a challenge. The issue is not only that the existing
monitoring infrastructure in arterials is less dense than freeways but also that arterial systems traffic dynamics are more
complex than these of freeways. The main reasons are the sharp changes of capacity (periodicity of green and red phases
in short time intervals) and the characteristics of route choice (in arterials vehicles can randomly turn at intersections, search
for parking, and begin or finish their trips in the middle of the street, which is not the case in freeways). If a vehicle is tracked
on a freeway for 15 s we can estimate with high accuracy the speed field in the time-space proximity of the vehicle. Instead,
this is not the case in arterials as there are strong variations in speeds and densities even for vehicles traveling in the same
link during the same cycle length. This makes the control of traffic in urban regions more challenging than freeway systems.

Consider now a large urban traffic network at a specific point in time where congestion is unevenly distributed over space
(like taking a photograph from a plane). This uneven congestion distribution occurs because of spatial inhomogeneity in de-
mand, road infrastructure, and control. Recent studies Geroliminis and Sun (2011), Mazloumian et al. (2010), Daganzo et al.
(2011) have shown that networks with heterogeneous distribution of density exhibit network flows smaller than those that
approximately meet homogeneity conditions (low spatial variance of link density), especially for high network densities.
Also, note that the scalability of flows from a series of links to large traffic networks is not a direct transformation. Route
or network capacity can be significantly smaller than the capacity of a single link, because of the correlations between suc-
cessive arterial links and the effect of offsets, Daganzo and Geroliminis (2008) and Boyacı and Geroliminis (2011). In case of
long links, these effects are negligible and the physics of traffic much simpler. Nevertheless, most of congestion occurs in the
city centers with dense topology of short links.
. All rights reserved.
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The physical tool to advance this research is the Macroscopic Fundamental Diagram (MFD) of urban traffic, which pro-
vides for different network regions a unimodal, low-scatter relationship between network vehicle density [veh/km] and net-
work space-mean flow [veh/h]. The first theoretical proposition of such a physical model was developed by Godfrey (1969),
while similar approaches were also initiated by Herman and Prigogine (1979) and Daganzo (2007). The physical model of
MFD was observed with dynamic features in congested urban networks in Yokohama by Geroliminis and Daganzo (2008).
Network flow increases with density up to a critical point, while additional vehicles in the network cause strong reductions
in flow. This work showed (i) that some urban regions approximately exhibit an MFD, (ii) there is a robust linear relation
between the regions average flow and rate vehicles reach their destinations (outflow) and (iii) the shape of the MFD is
not very sensitive to different demand patterns. Property (i) is important for modeling purposes as details in individual links
are not needed to describe the congestion level of cities and its dynamics. Property (ii) is important for monitoring purposes
as flow can be easily observed with different types of sensors while outflow is more difficult. Property (iii) is important for
control purposes as efficient active traffic management schemes can be developed without a detailed knowledge of O–D ta-
bles. MFD can also be utilized to introduce simple control strategies to improve mobility in homogeneous city centers. The
main logic of the strategies is that they aim to decrease inflows in regions with points in the decreased part of an MFD, and
manage the accumulation to maintain the flow in the city on its maximum. The optimal control policy was derived for a
single MFD system in Daganzo (2007). Nevertheless, the derived policy might not be optimal if vehicles have destinations
outside the center of the city, or the periphery of the region has limited storage and might gridlock. Other investigations
of MFD using empirical or simulated data can be found in Buisson and Ladier (2009), Ji et al. (2010), Mazloumian et al.
(2010), Courbon and Leclercq (2011), Laval (2010) and others.

An important observation (see for example Kalman, 1960) is that optimality does not imply stability. If the optimal con-
trol is applied in a heavily congested system with high demand, traffic conditions might not change or the network might
still lead to gridlock.

Stability analysis and control synthesis of a nonlinear system are not trivial tasks. Even for a simple class of nonlinear
system such as piecewise affine systems, and despite the fact that piecewise affine models are just a composition of linear
dynamic systems, their stability properties are complex and cannot be easily deduced from those of the component linear
subsystems, and instead, numerical tests were proposed in Bemporad et al. (2000).

In this paper, the stability analysis for two-region MFDs system is treated. Briefly speaking an urban region can have a
well-defined MFD (low scatter) (i) if the variance of link density is small (network roughly homogeneous) and (ii) topogra-
phy of network is redundant (many options for route choices that can facilitate (i)) (see Daganzo and Geroliminis, 2008;
Mazloumian et al., 2010; Geroliminis and Sun, 2011). Thus, by minimizing link density variance, this can imply an MFD with
low scatter. Small variance is also important because as Mazloumian et al. (2010) showed, for the same average density, net-
work flow is smaller in case of higher density variance. In a similar manner, Daganzo et al. (2011) showed for networks of
two overlapping bins that symmetric equilibrium patterns with equal flows and densities across all links are unstable if the
network density is high and can create states much below than an idealized MFD with homogeneous densities in all links. A
city can be partitioned in a number of regions with low-scatter MFDs (Ji and Geroliminis, 2011). Then, perimeter control
strategies can be developed to maximize mobility for multi-region cities. In this paper we assume well-defined MFDs and
analyze the stability of traffic perimeter control, e.g. the paper identifies the unstable control conditions where the network
will lead to gridlock and cannot be prevented by any control strategy.

The dynamic equations are formulated as a piecewise second-order system. The MFDs are assumed to be in triangular
shapes, and each region can have two types of demand, endogenous and exogenous. In this paper we analyze cases where
one of the two regions is the center of attraction and does not generate exogenous demand. The first part of the paper
focuses on systems where all trips have destination in the center of the city (2 degrees of demand), while the second part
allows some trips from the external region to remain in the external region (3 degrees of demand). Furthermore, necessary
and sufficient conditions are derived for asymptotically stable equilibrium point in the undersaturated regimes for both
MFDs. A new algorithm is proposed for computing the boundaries of stable and unstable regions and a state-feedback
control is derived where the criterion is to maximize the output of the system, i.e. the number of vehicles that complete
their trips and reach their destinations. We also investigate how a trapezoidal MFD affects the shape of the stability
region.

This paper is organized as follows: the dynamic equations and the control problem for two-region MFDs system are for-
mulated in Section 2.1, and phase portrait for piecewise second-order system is constructed in Section 2.2. In Section 3 the
stability analysis is conducted and the new algorithm for computing the boundaries of the stable and unstable regions is
proposed. The state-feedback control law is derived in Section 4. Numerical results for region of attraction for three degrees
of demand are presented in Section 5.
2. Two-state, two-region MFDs system

2.1. Dynamic equations and problem formulation

Let us consider a traffic urban network that is partitioned to two regions, i = 1, 2, where each region has an MFD, e.g. a city
with two regions: the periphery of the center (1) and the city center (2). Assume that the partitioned network has only two
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demands: q1(t) [veh/s] is the exogenous traffic demand generated in region 1 with destination to region 2 at time t, while
q2(t) [veh/s] is the endogenous traffic demand generated in region 2 with destination to region 2 at time t (we will relax this
assumption later). Moreover, assume that a perimeter control u(t) [–] exists on the border between the two regions, where
0 6 u(t) 6 1. The control may restrict the flow that transfers from region 1 to 2, e.g. if u(t) = 0 then the control prevents any
vehicle to transfer from region 1 to 2. The perimeter control can be actuated in different ways, e.g. by coordinating green and
red durations of signalized intersections placed on the border between two regions, or with dynamic pricing schemes.

Two state variables are used to model the dynamics of the traffic urban network with two demands according to the
MFDs of both regions. The two state variables are the accumulations ni(t) [veh], i = 1, 2, defined as the total number of vehicles
in region i at time t. Under the assumption that average trip length within each region is constant with time, the MFD links
accumulation ni(t) and trip completion flow Gi(ni(t)) [veh/s], defined as the uncontrolled or unrestricted rate of vehicles that
reach their destinations, Geroliminis and Daganzo (2008). For the two-state two-region system, since the perimeter control
u(t) may restrict vehicles to transfer from region 1 to 2, then only a portion of vehicles G1(n1(t)) � u(t) can actually transfer
from region 1 to 2. However, there is no restriction on the trip completion flow from region 2 to 2.

We now assume that the demands are constant with time, i.e. qi(t) = qi, i = 1, 2. Time-dependent demand profiles will be
discussed later. Then the two-state two-region MFDs control problem is formulated as follows: given initial state accumula-
tions n1,0, n2,0, end state accumulations n1,f, n2,f, and control time horizon [0, tf], find the optimal control policy that maxi-
mizes the number of vehicles reach their destinations, i.e.
J ¼max
Z tf

0
G2ðn2ðtÞÞdt ð1Þ
subject to
dn1ðtÞ
dt

¼ q1 � G1ðn1ðtÞÞ � uðtÞ; ð2Þ

dn2ðtÞ
dt

¼ q2 þ G1ðn1ðtÞÞ � uðtÞ � G2ðn2ðtÞÞ; ð3Þ

n1ð0Þ ¼ n1;0; n2ð0Þ ¼ n2;0; ð4Þ

n1ðtfÞ ¼ n1;f ; n2ðtfÞ ¼ n2;f ; ð5Þ

0 < umin 6 uðtÞ 6 umax < 1; ð6Þ
where umin and umax are a priori given lower and upper bounds of the perimeter control, and Eqs. (2), (3) are the conservation
of mass equations for n1(t) and n2(t), respectively. The criterion is to maximize the output of the traffic network, i.e. the num-
ber of vehicles that complete their trips and reach their destinations. For the defined demands in a two-region MFDs system,
there is only one destination which is region 2, hence the maximum number of vehicles reach their destination is defined in
(1). Note that the control time horizon tf is assumed to be large enough to reach the a priori known end state point.

The trip completion flows of the two regions depend on their MFD shapes. In this paper, the MFDs for both two regions,
e.g. the city center and the periphery of the city, are assumed to be triangular, see Fig. 1, with capacity ci [veh/s] at critical
accumulation ni,cr [veh], and jam accumulation ni,jam [veh]. Two traffic regimes are distinguished in a triangular shape of
MFD: uncongested 0 6 ni(t) 6 ni,cr and congested ni,cr 6 ni(t) 6 ni,jam. The triangular shape is defined as a piecewise affine
function
GiðniðtÞÞ ¼

ci
ni;cr
� niðtÞ if 0 6 niðtÞ 6 ni;cr;

�ci
ni;jam�ni;cr

� niðtÞ þ
ci �ni;jam

ni;jam�ni;cr
if ni;cr 6 niðtÞ 6 ni;jam:

8<
: ð7Þ
Substituting (7) into the dynamic Eqs. (2) and (3), one gets a piecewise second-order system of two state variables n1(t) and
n2(t) with four state regions, see also Fig. 1:

� state region I, for 0 6 n1(t) 6 n1,cr and 0 6 n2(t) 6 n2,cr,
� state region II, for 0 6 n1(t) 6 n1,cr and n2,cr 6 n2(t) 6 n2,jam,
� state region III, for n1,cr 6 n1(t) 6 n1,jam and 0 6 n2(t) 6 n2,cr,
� state region IV, for n1,cr 6 n1(t) 6 n1,jam and n2,cr 6 n2(t) 6 n2,jam.

2.2. Phase portraits for piecewise second-order system

In order to investigate the behavior of the two-state two-region MFDs system (2)–(6), a phase portrait is constructed by
plotting trajectories from a large number of initial states spread all over the (n2,n1)-plane with constant control u. The qual-
itative behavior of the trajectories near equilibrium points can be also determined via linearization with respect to these
points, see e.g. Khalil (2002), Sastry (1999).

The equilibrium points, i.e. dni/dt = 0, i = 1, 2, in state regions I, II, III, and IV, after substituting (7) into (2) and (3) are



Fig. 1. Four state regions I, II, III, and IV in (n2,n1)-plane according to triangular MFDs with a different type of equilibrium points.
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ðn2;eq;n1;eqÞI ¼
ðq1 þ q2Þ � n2;cr

c2
;
q1 � n1;cr

c1 � u

� �
; ð8Þ

ðn2;eq;n1;eqÞII ¼ n2;jam �
ðn2;jam � n2;crÞ � ðq1 þ q2Þ

c2
;
q1 � n1;cr

c1 � u

� �
; ð9Þ

ðn2;eq;n1;eqÞIII ¼
ðq1 þ q2Þ � n2;cr

c2
;n1;jam �

q1 � ðn1;jam � n1;crÞ
c1 � u

� �
; ð10Þ

ðn2;eq;n1;eqÞIV ¼ n2;jam �
ðn2;jam � n2;crÞ � ðq1 þ q2Þ

c2
;n1;jam �

q1 � ðn1;jam � n1;crÞ
c1 � u

� �
: ð11Þ
Proposition 1. The necessary and sufficient conditions for equilibrium points, i.e. dni/dt = 0, i = 1, 2, in state regions I, II, III, and IV
of the two-state two-region MFDs system with triangular shapes are:
q1 þ q2 < c2; ð12Þ
q1 < c1 � u: ð13Þ
Proof. If dni/dt = 0 for i = 1, 2 hold, then they imply (8)–(11), and by definition the equilibrium points in state regions I, II, III,
and IV, i.e. (n2,eq,n1,eq)I, (n2,eq,n1,eq)II, (n2,eq,n1,eq)III, and (n2,eq,n1,eq)IV satisfy the lower and upper bounds of their regions, i.e.
0 6 n1(t) 6 n1,cr and 0 6 n2(t) 6 n2,cr for state region I, and so on. Substituting each equilibrium point in the lower and upper
bounds for its state region, one gets (12) and (13).

Clearly, if (12) and (13) hold, then each equilibrium point satisfies the lower and upper bounds for its region, i.e. there
exist equilibrium points (8)–(11) such that they belong to state regions I–IV, respectively. h

If (12) or (13) does not hold, then all trajectories reach at least one jam accumulation and the traffic network leads to
gridlock, if demand continues to be constant.

Let us rewrite (2) and (3), respectively, as
dn1ðtÞ
dt

¼ f1ðn1;n2Þ; ð14Þ

dn2ðtÞ
dt

¼ f2ðn1;n2Þ; ð15Þ
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where f1(n1,n2) = q1 � G1(n1(t)) � u(t), f2(n1,n2) = q2 + G1(n1(t)) � u(t) � G2(n2(t)). Let us assume that there exists at least one
equilibrium point, denoted by n1,eq, n2,eq, for (14) and (15), i.e. dni/dt = 0, i = 1, 2, then the Jacobian matrix of (14) and (15)
at n1,eq, n2,eq
1 Com
2 It is
A ¼
@f1
@n1

@f1
@n2

@f2
@n1

@f2
@n2

2
4

3
5
������

n1¼n1;eq ;n2¼n2;eq

: ð16Þ
Hence, under the assumption that (12) and (13) hold and for a given constant u, one can calculate the Jacobian matrix at the
equilibrium points in the state regions I, II, III, and IV according to
AI ¼
� c1

n1;cr
� u 0

c1
n1;cr
� u � c2

n2;cr

" #
AII ¼

� c1
n1;cr
� u 0

c1
n1;cr
� u c2

n2;jam�n2;cr

2
4

3
5

AIII ¼
c1

n1;jam�n1;cr
� u 0

� c1
n1;jam�n1;cr

� u � c2
n2;cr

2
4

3
5 AIV ¼

c1
n1;jam�n1;cr

� u 0

� c1
n1;jam�n1;cr

� u c2
n2;jam�n2;cr

2
4

3
5:

ð17Þ
The type of the equilibrium points is determined according to the eigenvalues of matrices AI, AII, AIII, and AIV in (17), see Khalil
(2002), Sastry (1999). All these matrices are lower triangular matrices, hence, the eigenvalues are the elements in the diag-
onal. The equilibrium point in region I is an asymptotically stable equilibrium node since the two eigenvalues are negative, the
equilibrium points in regions II and III are unstable saddle points since one of the eigenvalues is positive and the other is neg-
ative, and the equilibrium point in region IV is an unstable node since both eigenvalues are real positive, i.e. c1/(n1,jam � n1,cr)
� u > 0 and c2/(n2,jam � n2,cr) > 0. The type of the equilibrium points are shown schematically in Fig. 1.

The phase portraits are numerically constructed according to the following steps under the assumption that (i) the nec-
essary and sufficient conditions (12) and (13) hold and (ii) u(t) = u is constant and a priori given during the construction of
the portraits,

1. Calculate all equilibrium points according to (8)–(11).
2. Select a bounding box in the (n2,n1)-plane as
0 6 n1ðtÞ 6 n1;jam; ð18Þ
0 6 n2ðtÞ 6 n2;jam: ð19Þ
3. Calculate trajectories1 for selected initial points: inside and near the bounding box (18) and (19), and near calculated equi-
librium points in step 1.

Following these steps, the phase portraits are numerically conducted for example 1 as shown in Fig. 3a, where the green
lines are the trajectories and the gray arrows are the direction of the trajectories. The equilibrium points in the four state
regions are marked by circles in the (n2,n1)-plane. The input data for example 1 are as follows: the traffic demand rates
are q1 = 0.194 [veh/s], q2 = 0.069 [veh/s], the perimeter control u(t) = umax = 0.8, the MFD parameters are: c1 = 0.5 [veh/s],
n1,cr = 50 [veh], n1,jam = 200 [veh], c2 = 0.583 [veh/s], n2,cr = 150 [veh], n2,jam = 450 [veh], i.e. region 2 is about twice as large
as region 1. Values of these parameters are consistent with empirical observations from Geroliminis and Daganzo (2008).

3. Stability characterization of two-state two-region system

The phase portrait conducted in Section 2.2 shows that if (12) and (13) hold then some of the trajectories reach asymp-
totically an equilibrium point while other trajectories reach jam accumulation at least for one of the regions, e.g. see Fig. 3b.
Hence, before solving the two-state two-region MFDs control problem, behavior and stability analysis of the two-region sys-
tem are conducted. We define now a stable region and a region of attraction for the phase portraits.

According to Section 2.2, if the necessary and sufficient conditions (12) and (13) hold, then one stable equilibrium point
exists in state region I. Stable trajectories are defined as trajectories that approach a stable equilibrium point in state region I
(n2,eq,n1,eq)I correspond to u(t) as t ? tf,2 see (8), while unstable trajectories approach at least one jam accumulation, i.e. n1(tf) = -
n1,jam or/and n2(tf) = n2,jam, and there exists no control u(t), even a time dependent one, that can bring trajectories to stable equi-
librium point under the prevailing traffic demand. Moreover, a stable region is defined as the set of all points that have stable
trajectories, while all other points with unstable trajectories define an unstable region.

To construct the stable region, we need to start from an easier problem. Thus, a region of attraction for constant control
u(t) = u, denoted by RAu, is defined as the set of all points (n2,n1) that their trajectories are stable with applied control u. Find-
ing the region of attraction of a nonlinear system is a significant research topic that has been studied extensively, e.g. Chiang
and Thorp (1989), Mhaskar et al. (2006), Tan and Packard (2008), Topcu and Packard (2009). Since computing the exact RA is
puter programs for solving ordinary differential equations are widely available. In this paper, Simulink, the simulation tool of MATLAB is used.
assumed that tf is large enough to reach asymptotically the equilibrium point.
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hard, researchers have focused on finding Lyapunov functions whose sublevel sets provide invariant subsets of the RA. There
is no general Lyapunov function that may apply for nonlinear systems, therefore, different methods were presented for spe-
cific class of nonlinear systems, e.g. piecewise quadratic Lyapunov functions and linear matrix inequalities approach have
been proposed in Hassibi and Boyd (1998) and Johansson and Rantzer (1998) for piecewise affine systems. It is a hard task
to find a Lyapunov function for bilinear systems, which is a class of nonlinear control systems where the control u is act as an
additive and multiplicative coefficient of state variables, Elliott (2009). Moreover, it was concluded in Gutman (1981) that
there exists no general method to design stabilizing controllers for bilinear system. The two-state two-region system is even
more sophisticated than bilinear system since it is a piecewise bilinear system, see (2), (3), and (7), however, a new algorithm
is proposed to calculate the region of attraction according to analytical and numerical computations. Regions of attraction
(RAs) are used to characterize the stable and unstable regions in this section, and to design a state-feedback control in
Section 4.
3.1. Region of attraction boundary

Since the two-region MFDs system is piecewise system, and has an equilibrium point in each piece (state region), three
different cases are distinguished to calculate the region of attraction boundary.

Recall that the dynamic behavior around the equilibrium points is locally described for each state region according to their
types as isolated points in the (n2,n1)-plane as shown in Fig. 1. However, calculating region of attraction boundary for the
four state regions, the trajectories’ behaviors are described as the superposition of the dynamic behaviors caused by two
or more equilibrium points. Therefore, according to the distances between the positions of equilibrium points in the plane,
see (8)–(11), the superposition of dynamic behaviors is different, resulting in three different cases of regions of attraction:
cases a, b, and c. The region of attraction boundaries for constant control for cases a, b, and c are schematically shown in
Fig. 2. In case a, the equilibrium points in state regions III and IV are ‘‘far’’ enough from each other such that trajectories
do not interfere each other, i.e. the type of equilibrium points and the qualitative behavior near them are maintained as
two isolated points in the plane, see Fig. 1. In case b and c, the two equilibrium points in regions II and III affect points near
them such that the speed and direction of trajectories pass through them are a superposition result of direction and speed
responses from equilibrium point II and III. Therefore, the behavior of trajectories and the boundary in cases b and c are dif-
ferent than that in case a. In case a, the attraction boundary passes through state region IV and its equilibrium point. In case
b, the boundary passes through state region IV, while it passes through state region I in case c. Intuitively speaking, cases a
and b show that even if initial conditions are congested (regions II, III, and IV) there exists some control u, that can lead the
system to a stable uncongested equilibrium. This can be the case in the offset of congestion. If demand is very high, the re-
gion of attraction will shrink (case c) and demand has to decrease to allow the system to reach a stable uncongested equi-
librium and avoid gridlock.

Under the assumption that u(t) is constant during the control time horizon, i.e. u(t) = u for [0, tf], the following steps are
presented for computing the RA boundary curve, see Fig. 2:

1. Calculate all equilibrium points according to (8)–(11).
2. Start from the saddle equilibrium point in state region II, and calculate the corresponding eigenvector of the negative

eigenvalue of the linearized system in that region, i.e. k1 = �c1/n1,cr � u < 0, according to
ðn2;n1Þ ¼ 1;
�c2 � n1;cr

c1 � u � ðn2;jam � n2;crÞ
� 1

� �
; ð20Þ
therefore, the slope of line AB is �c2 � n1, cr/(c1 � u � (n2,jam � n2,cr)) � 1.
Fig. 2. Region of attraction corresponds to constant control u: cases a, b, and c.
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3. Given the slope of the line AB and the saddle equilibrium point (n2,eq,n1,eq)II, extend the line in both direction until hitting
the boundaries of region II. Depending on the value of the slope, point B might intersect with line n1(t) = n1,cr or
n2(t) = n2,cr.

4. If point B intersects with n2(t) = n2,cr, then it is case c. Calculate the trajectory from points B to C (region I) and C to D
(region III) in reverse way according to Appendix A.3.

5. If point B intersects first with n1(t) = n1,cr, then the trajectory enters region IV, and we need to calculate it in reverse
direction starting from point B according to Eqs. (A.3), (A.4), and (A.5) in Appendix A.1, with initial state point B and
t = 0 ?1. The solution in region IV might reach first unstable equilibrium point of region IV (case a) or intersect with
line n2(t) = n2,cr (case b):
� Case a: draw a horizontal line staring from the unstable equilibrium point (n2,eq,n1,eq)IV and moving through the saddle

point (n2,eq,n1,eq)III towards n2(t) = 0. Note from (10) and (11) that equilibrium points in III and IV have the same value
for n1(t).

� Case b: calculate the trajectories from points B to C and C to D in reverse way, according to Appendix A.2.

Note that the RA boundary curve is combined from several trajectories some of them are calculated numerically, while
others are calculated analytically, see Appendices A.1, A.2, and A.3.

The region of attraction boundaries for cases a, b, and c are demonstrated by examples 1, 2, and 3, as shown in Fig. 3a–c,
respectively, where the red curve is the corresponding RA boundary to u(t) = umax. The input data for example 1 is given in
Section 2.2. The traffic demand rates for example 2 are q1 = 0.194 [veh/s], q2 = 0.319 [veh/s] and the perimeter control is
u(t) = umax = 0.8, while for example 3 the traffic demand rates are q1 = 0.194 [veh/s], q2 = 0.278 [veh/s] and the perimeter
control is u(t) = umax = 1. The MFD parameters for examples 2 and 3 are the same as for example 1.

Until this section, the RA boundaries for all numerical examples 1, 2, and 3 were calculated for constant control u(t) = umax

(trajectories drawn by green color). Clearly, different RA boundaries and trajectories are obtained by applying u(t) = umin, e.g.
the corresponding phase portraits and RA boundary for example 1 to u(t) = umin = 0.45 and u(t) = umax = 0.8 are shown in
Fig. 3d, where trajectories are drawn by blue color and the RA boundary by cyan color for umin. Note that if the necessary
conditions (12) and (13) are violated, the reader should refer to Remark 1 at a later section.
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Fig. 3. (a) Numerical example 1 demonstrates case a; (b) numerical example 2 demonstrates case b; (c) numerical example 3 demonstrates case c; and,
(d) numerical example 1 corresponds to u(t) = umin (trajectories in blue and RA boundary in cyan) and u(t) = umax (trajectories in green and RA boundary in
red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The three cases of the region of attraction boundaries shown in Fig. 2 correspond to triangular MFDs. The phase portraits
approach can be also utilized to calculate the region of attraction boundary for more complex shapes than triangulares, e.g.
trapezoidal shapes with several piecewise linear components, however more cases are expected as the boundary would pass
through different state regions with different dynamic equations. Therefore, the five steps for computing the RA boundary
curve presented in this section should be extended. The procedure will be similar but more tedious. Nevertheless, similar
trajectories and boundary behaviors are expected for triangular and trapezoidal shapes of MFDs especially when the shapes
are close to each other. The extensions for the five steps would be only technical as the piecewise second-order system of the
two state variables n1(t) and n2(t) will have more state regions when both MFDs have trapezoidal shapes instead of triangular
shapes. The extensions are not presented in this paper as they do not add extra information regarding the stability analysis
for the two-state two-region system, however, numerical example 4 is presented to demonstrate the impacts of assuming
trapezoidal shapes instead of triangular shapes for different values of capacities and control.

In numerical example 4, the boundaries of region of attraction are compared for four sets of triangulares with same ni,cr

and ni,jam and value of capacity change as a fraction K, K = 1, 0.72, 0.6, 0.48, and one set of trapezoidal shapes of MFDs as
shown in Fig. 4a. The MFDs for regions 1 and 2 are symmetric, but region 1 is twice larger with a capacity equal to K.
The capacities of the trapezoidal MFDs are 0.48 and 0.24 [veh/s] for regions 1 and 2, respectively. The perimeter control
for example 4 is u(t) = 0.85, while two levels of demands are analyzed a medium (q1 = 0.042, q2 = 0.0278 [veh/s]) and a higher
level (q1 = 0.07, q2 = 0.14 [veh/s]). The results in Fig. 4b and c show that increasing the capacities of the triangular MFDs in-
creases the region of attraction. It is also shown that the boundaries of the trapezoidal MFDs are close to the two boundaries
of the triangular MFDs with K = 0.6 and K = 0.72. Note that in the G(n) graph of Fig. 4a, when K = 0.6 the areas under both
triangular and trapezoidal MFDs are similar, while for K = 0.72 the triangular MFDs envelop the trapezoidal MFDs having
the same free flow speeds and backward wave speeds. These observations imply some guidance for choosing values of K
for a triangular MFD to approximate a given trapezoidal MFD, however, calibration of K is out of the scope of this paper
and this area of research should be investigated more deeply in the future.

3.2. Stability characterization

In Section 3.1, an algorithm is proposed to compute the RAu boundary for a constant control u. In this section, this algo-
rithm is applied to characterize the stable and unstable regions.

Recall that stable region is defined as the set of all points that have at least one trajectory, which approaches a corre-
sponding stable equilibrium point for some control u(t). If u(t) is assumed to be constant for the whole control period, then
the stable region is the set of all possible RAs. However, since the control may change over the control period, the stable re-
gion is wider, i.e. points outside the set of all RAs may also be stable if there exits at least one trajectory that enters the set of
all RAs.

In principle, in order to characterize the stable region, one has to calculate RAs correspond to all constant u, that satisfy
(6), and explore the state space for trajectories that enter these RAs. However, qualitative behavior and numerical examples
show that computations of RAumin and a few trajectories are enough to characterize the stable region boundary. The quanti-
tative behavior of RAs for a wide range of u are shown in Fig. 5a and b for triangular and trapezoidal MFDs, respectively. The
results shown in Fig. 5a are for numerical example 5 where its input data are the same as the input data of example 1 except
q2 is much larger, q2(t) = 0.347 [veh/s], while the results shown in Fig. 5b are for example 4.

In the following, we restrict our explanations how to characterize the stable region for the two-state system to triangular
MFDs. In case of trapezoidal MFDs, the same concept holds but extended explanations are needed as the RAu boundary cases
are different from cases a, b, and c.

From the quantitative and qualitative behavior of the RAs for triangular MFDs shown in Fig. 5a and Fig. 2, respectively,
two different shapes of stable region are distinguished according to RAumin , see also Fig. 6: (i) RAumin belong to case a, (ii)
RAumin

belongs to case b or case c. The solid curve in Fig. 6 is a boundary that characterizes the stability region and splits
(n2,n1)-plane into stable and unstable regions. Computing RAumin and a few trajectories are enough to characterize the stable
region boundary. For case a, the boundary is combined from (1) a horizontal trajectory that passes through the unstable sad-
dle point according to umax in state region III and ends at the unstable equilibrium point in state region IV according to umax,
(2) a trajectory that is reversely calculated according to umin, denoted by ~umin as shown in Fig. 6, starts from unstable equi-
librium point in state region IV according to umax and ends at the unstable equilibrium point in state region IV according to
umin, and (3) the remaining part of RAumin

that passes through the unstable saddle point in state region II. For cases b and c,
the boundary is combined from (1) a trajectory that starts from the horizontal axes with umax and ends at a tangent point
with RAumin

, and (2) the remaining part of RAumin
that passes through the unstable saddle point in state region II, see

Fig. 6. Numerical example 5 with upper and lower bounds umax = 0.75, umin = 0.5 demonstrates cases a, and with upper
and lower bounds umax = 0.75, umin = 0.6 demonstrates cases b.

In Section 3.1, the RA boundary was analyzed for dynamic equations with constant demands q1 and q2, see (2) and (3).
However, the same analysis can be also used for time varying demand q1(t) and q2(t), since for the dynamic Eqs. (2) and
(3) no bifurcation happens with time varying demand, i.e. the difference in behavior around equilibrium points is quantita-
tive but not qualitative when demand varies, it means that there will be always (if conditions (12) and (13) hold) one stable
and one unstable equilibrium points in state regions I and IV, respectively, two saddle equilibrium points in regions II and III.
Only the positions of the equilibria points varies within each region. The reason that no bifurcation happens with time
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Fig. 4. Numerical example 4: (a) different triangular and trapezoidal shapes of MFDs; corresponding phase portraits to the trapezoidal shapes for (b) low
demand and (c) higher demand, trajectories and region of attraction boundaries are drawn in green and red, respectively. Boundaries of region of attraction
correspond to different triangular shapes K = 1, 0.72, 0.6, 0.48 are shown in dashed lines. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 5. RAs for wide range of u for (a) triangular MFDs in example 5, and (b) trapezoidal MFDs in example 4.

Fig. 6. Stable and unstable regions for cases a, b, and c.
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varying demand is that each equilibrium point is a function of q1(t) and q2(t). Then, n1,eq(q1(t),q2(t)), n2,eq(q1(t),q2(t)) is a
smooth function of q1(t), q2(t), as long as the Jacobian linearization around equilibrium points does not have a zero eigen-
value, see Izhikevich (2007), Khalil (2002), which holds in our case since the demand is an affine parameter of the system.

Consider a base case with q1 = 700 [veh/h] and q2 = 650 [veh/h], and the MFD parameters are the same as in example 1.
Examples in Fig. 7 show the effect of different levels of endogenous and exogenous demands q2 (Fig. 7a) and q1 (Fig. 7b) in
the size of the stable region, respectively. For all cases stable region is constructed for umin = 0.45 and umax = 0.8. Results in
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Fig. 7. Stable regions for different levels of (a) endogenous demand q2 [veh/h], and (b) exogenous demand q1 [veh/h].
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Fig. 7a and b are as expected. The stable region becomes smaller as the number of trips with destinations to region 2 in-
creases, then the system of the two regions will intend to be jammed, i.e. larger unstable region and smaller stable region.

4. State-feedback control for two-region MFDs

In this section, a stabilizing control solution is derived for the two-state two-region MFDs control problem (1)–(6). It will
be shown in Section 4.1 that the two-region control problem is a feasibility (or stabilizing) problem, i.e. any feasible se-
quence of the perimeter control is an optimal solution, and all feasible solutions have the same value of the criterion for
the same initial and end states, even when demands are time dependent. However, when the control problem has no feasible
solution for the initial state, then the control cannot stabilize the two-region MFDs and the stable equilibrium end point is
not reachable, hence, an optimal solution is derived for a relaxed problem as shown in Section 4.2.

4.1. Stabilizing control for feasibility control problem

First, let us assume that the two-region MFDs control problem has a feasible solution for the given initial state, i.e. at least
one feasible solution u(t) exists for 0 6 t 6 tf, such that satisfies (6) and can bring initial states (4) to end states (5) in time
duration tf according to (2) and (3). In this case, one can integrate the differential Eqs. (2) and (3), and by summation one gets
n1;f þ n2;f ¼
Z tf

0
ðq1ðtÞ þ q2ðtÞÞdt �

Z tf

0
G2ðn2ðtÞÞdt þ n1;0 þ n2;0: ð21Þ
Note that
R tf

0 G2ðn2ðtÞÞdt is the criterion to be optimized, see (1), hence substituting (1) into (21), one gets
J ¼max
u
�n1;f � n2;f þ

Z tf

0
ðq1ðtÞ þ q2ðtÞÞdt þ n1;0 þ n2;0

� �
; ð22Þ
which is equivalent to optimize:
J ¼min
u
ðn1;f þ n2;fÞ: ð23Þ
Hence, (23) implies (1). When the end state is a priori known, then the criterion J is independent of u(t) and the problem is a
feasibility control problem: if any applied control u(t) brings the initial state (n2,0,n1,0) to the end state (n2,f,n1, f) in time dura-
tion tf where the initial state, end state, and tf are a priori known, then the applied control u(t) is optimal, in other words, all
feasible controllers are also optimal. However, when the end point is assumed to be asymptotically a stable equilibrium
point in stable region I, then according to (8) the sum of end state n1,f + n2,f in (23) is minimized when the control sequence
ends with u(tf) = umax.

Note that (22) is generally derived for any trajectory that moves and stays in the same region, i.e. G1(n1(t)) and G2(n2(t))
are the same functions for 0 6 t 6 tf. However, it is easily shown that (22) holds also for trajectory that moves from one re-
gion to another while reaching the end state point. For example, let us consider a trajectory that moves through three state
regions IV, III, and I, as shown in Fig. 8, where t1 and t2 the time instants when trajectory enters state region III and I, respec-
tively. One can calculate the value of the criterion J1 in region IV for [0, t1], and J2 in region III for [t1, t2], and J3 in region I for
[t2, tf] according to (22), respectively,
J1 ¼ �n1ðt1Þ � n2ðt1Þ þ
Z t1

0
ðq1ðtÞ þ q2ðtÞÞdt þ n1;0 þ n2;0; ð24Þ
Fig. 8. Trajectory moves through three regions IV, III, and I.
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J2 ¼ �n1ðt2Þ � n2ðt2Þ þ
Z t2

t1

ðq1ðtÞ þ q2ðtÞÞ;dt þ n1ðt1Þ þ n2ðt1Þ; ð25Þ

J3 ¼ �n1;f � n2;f þ
Z tf

t2

ðq1ðtÞ þ q2ðtÞÞdt þ n1ðt2Þ þ n2ðt2Þ: ð26Þ
The value of the criterion J from 0 to tf is calculated by summation of J1 (24), J2 (25), and J3 (26), one gets (22). Hence, (22)
holds for any trajectory that moves through different regions with different G1(n1(t)) and G2(n2(t)), and the problem is still a
feasibility problem. Moreover, note that according to (22), the control problem is still a feasibility problem when demand
varies with time. Instead of constant demand inside the integral, it will be substituted by time varying demand, which does
not affect the derivation of (22).

However, the control problem may be not feasible for all initial states where the end state is not reachable, hence an opti-
mal solution is derived for a relaxed problem where the end state is free.

4.2. Optimal control for relaxed control problem

When the two-state two-region control problem (1)–(6) has no feasible solution for the initial state, an optimal solution is
derived for a relaxed control problem: two-state two-region control problem with free end state, i.e. (1)–(4), (6), and
(n2,f,n1,f) is free. Note that for the relaxed problem, the assumption that control time horizon tf is large enough to reach
end state is dropped since the end state is free. The optimal relaxed control problems are solved separately for the four state
regions in the (n2,n1)-plane correspond to Gi(ni(t)), i = 1, 2, in each state region. The Pontryagin maximum principle (PMP) is
used to solve the relaxed problems, see Pontryagin et al. (1962). In the following, the optimal solution is presented in details
only for state region I, while the optimal solutions for the other three regions II, III, and IV are derived in a similar way.

For state region I, the Hamiltonian, denoted by HI, is formed as
HI ¼ R1;I � n1ðtÞ � uðtÞ � ðp2ðtÞ � p1ðtÞÞ þ p1ðtÞ � q1 þ p2ðtÞ � ðq2 � R2;I � n2ðtÞÞ þ R2;I � n2ðtÞ; ð27Þ
where R1,I = c1/n1,cr, R2,I = c2/n2,cr, and p1(t), p2(t) are the costate variables that satisfy
dp1

dt
¼ � @H

@n1
¼ R1;I � uðtÞ � ðp1ðtÞ � p2ðtÞÞ; ð28Þ

dp2

dt
¼ � @H

@n2
¼ R2;I � ðp2ðtÞ � 1Þ: ð29Þ
Recall that the end state (n2(tf),n1(tf)) is free, hence according to PMP it follows that p1(tf) = 0 and p2(tf) = 0. The Hamiltonian
must be maximized over the control variable u(t) subject to the control constraint (6). The optimal control solution obtained
by maxuH in (27) is
uðtÞ ¼
umax if p2ðtÞ � p1ðtÞ > 0;
umin if p2ðtÞ � p1ðtÞ < 0:

�
ð30Þ
A switching point ts [sec] is the time instant that satisfies p2(ts) = p1(ts). If there exists a switching point, then the optimal pol-
icy will be determined by that point.

The initial conditions of the costates should be chosen such that the resulting solution satisfies p1(tf) = p2(tf) = 0 and opti-
mality condition (30). Note that if p2(0) > 1 then dp2/dt > 0, see (29), but this is a contradiction since p2(tf) = 0, hence lets as-
sume that p2(t) is 0 6 p2(t) < 1 and p1(0) > 0. Since p1(tf) = 0,p1(t) must be decreasing for 0 6 t < tf, i.e. dp1/dt < 0, which
implies p1(t) < p2(t) for 0 6 t < tf according to (28), therefore the optimal control is u(t) = umax, see (30). In this case, there will
be no switching point ts otherwise dp1/dt > 0 for ts 6 t 6 tf, however p1(tf) = 0 is not satisfied, therefore ts = tf.

The summary of optimal solutions for the relaxed problems is as follows, if the initial state (n2,0,n1,0) belongs to: state
region I or III apply u(t) = umax, otherwise apply u(t) = umin for state regions II and IV. In other words, when region 2 is in
free-flow regime, one can increase the trip completion rate by increasing the region 2 flow. This can be realized by letting
more vehicles entering the region and increasing the number of vehicles in the region to become closer to n2,cr, therefore, the
perimeter control has to restrict minimum number of transferring vehicles from region 1 to region 2. On the contrary where
region 2 is congested, any increase of n2(t) will decrease the flow and thus the trip completion, therefore, the perimeter con-
trol has to restrict maximum number of transferring vehicles in order to maximize the number of trips ended. This solution is
exactly the same as proposed by Daganzo (2007) for a single region city. Nevertheless, this solution might not be optimal in
case some trips have destination in region 1. We discuss this in Section 5.

4.3. State-feedback control strategy for time-dependent condition

A state-feedback control strategy is proposed according to the feasibility of two-region control problem (1)–(6), see
Fig. 9a. If the necessary and sufficient conditions (12) and (13) hold, then the state space of the control problem is divided
to stable and unstable regions, where for each region different state-feedback control is defined: a stabilizing state-feedback
is applied for stable region to reach the optimal stable equilibrium point, and an optimizing state-feedback is applied for



Fig. 9. State-feedback control strategy.
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unstable region. The RAs are used in the two-state two-region control for stability characterization and state-feedback
strategy.

The stabilizing state-feedback control depends on the RAumax ;RAumin
and on ~umax which is a reverse trajectory calculated

with umax starting from the equilibrium point in state region IV (11) for u = umin (point L), see Fig. 9a case a. Note that it is not
necessary that ~umax trajectory ends in the corresponding equilibrium point of region IV (for u = umax), the trajectory continues
until it hits the upper boundary of the stable region as shown in the figure.

The stabilizing state-feedback control is as follows: if the initial state belongs to the RAumax , then apply u(t) = umax for
0 6 t 6 tf since it is proved that the value of the criterion is optimized with u(tf) = umax, see Section 4.1. If the initial state does
not belong to RAumax but belongs to the RAumin

, then apply u(t) = umin until the state trajectory enters the RAumax . If the initial
state belongs to the stable region and does not belong to RAumax or RAumin

, then for case b or c apply u(t) = umax, however, for
case a it depends on trajectory ~umax which splits this region to two: (i) apply umax for a point in region between RAumax and
~umax, and (ii) apply umin for region between ~umax and the border of stable region, see Fig. 9a. The state-feedback control strat-
egy (n2,n1)-plane is demonstrated by example 5 with umax = 0.5, umin = 0.4 for several initial state points, as shown in Fig. 9b.

Note that when the demands are essentially nonconstant the state-feedback control solution can be used in the scheme of
a predictive control by recalculating the stable region boundaries, RAumax , RAumin

, and the perimeter control at each new con-
trol step where the time varying demands can be approximated as constant demands for each control step.

Remark 1. If the necessary and sufficient conditions (12) and (13) for equilibrium points do not hold for the current
demands, i.e. the system does not have a stable equilibrium point, the control problem (1)–(6) has no feasible solution for
any u(t) since the end point is defined as a stable equilibrium point. In this case, the optimal control solution is identical to
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the relaxed problems and should be applied until the demands change with time such that the necessary and sufficient
conditions (12) and (13) hold.
5. Region of attraction for three-state two-region system

In the previous section, a state-feedback solution is derived for the two-state two-region problem. This state-feedback
strategy holds for more complicated two-region systems, e.g. in case some of the trips have destinations in both regions
1 and 2. However, the characterization of stable and unstable regions for three or four states system, is a tedious task but
straightforward. Hence, in this paper only numerical results of RAs for three-state two-region system are presented, where
trips generated from region 1 can finish in 1 or 2. Moreover, general guidance principles for the stability characterization and
modifications of the state-feedback strategy are stated for the three-state system. The full stability analysis of the three-state
two-region system will be a future research direction.

In the following, we deal with a traffic network that is partitioned into two regions i = 1, 2 and has three demands: two
endogenous demand qii(t) [veh/s], i = 1, 2, and one exogenous demand q12(t) [veh/s]. In this case, three accumulation states
n11(t), n12(t), and n2(t) [veh] are used to model the dynamic equations, where n11(t) or n12(t) is the total number of vehicles in
region (1) with destination (1) or (2) at time t, respectively, note that n1(t) = n11(t) + n12(t). The trip completion flow for re-
gion 1 is the sum of exit flow, i.e. trips from 1 with destination 2, plus the internal flow, i.e. trips from 1 with destination 1.
The exit flow from 1 with destination to 2 is calculated correspondingly to the ratio between accumulations, i.e. n12/n1 � G1(-
n1(t)), while the internal flow from 1 with destination to 1 is calculated by n11/n1 � G1(n1(t)). These relationships assume that
trip length for all trips within a region (internal or external) are similar. For a description in different case the reader can refer
to Geroliminis (2009).

The control problem of the three-state two-region system is formulated as follows:
J ¼ max
Z tf

0

n11ðtÞ
n1ðtÞ

� G1ðn1ðtÞÞ þ G2ðn2ðtÞÞ
� �

dt ð31Þ
subject to
dn11ðtÞ
dt

¼ q11ðtÞ �
n11ðtÞ

n11ðtÞ þ n12ðtÞ
� G1ðn1ðtÞÞ; ð32Þ

dn12ðtÞ
dt

¼ q12ðtÞ �
n12ðtÞ

n11ðtÞ þ n12ðtÞ
� G1ðn1ðtÞÞ � uðtÞ; ð33Þ

dn2ðtÞ
dt

¼ q2ðtÞ þ
n12ðtÞ

n11ðtÞ þ n12ðtÞ
� G1ðn1ðtÞÞ � uðtÞ � G2ðn2ðtÞÞ; ð34Þ

n11ð0Þ ¼ n11;0; n12ð0Þ ¼ n12;0; n2ð0Þ ¼ n2;0; ð35Þ

n11ðtf Þ ¼ n11;f ; n12ðtfÞ ¼ n12;f ; n2ðtfÞ ¼ n2;f ; ð36Þ

0 < umin 6 uðtÞ 6 umax < 1: ð37Þ
Note that the optimization control problem for the three accumulation states (31)–(37) is also a feasibility problem. This can
be proved in the same way as for the two-state problem, see Section 4.1.

Recall that the regions of attraction are utilized to characterize the stable and unstable regions. Computing the regions of
attraction of an equilibrium point in the three-state system is more sophisticated than the two-state problem as there are
three dimensional states (axes) instead of two. Hence, instead of computing a region boundary in a plane of two states, one
has to compute a region surface boundary in a space of three states. The five steps presented in Section 3.1 for computing the
region of attraction boundary for the two-state system can be extended to compute the surface boundary for the three-state
system, however, analytical solutions cannot be easily obtained. Hence, the surface boundaries are numerically investigated
for different splits and levels of demand through phase portraits computations in numerical example 6.

The input data for numerical example 6 are the same as example 1. However, the demand q1(t) = 0.194 [veh/s] is split into
two demands: q11(t) = 4/7 � q1(t) and q12(t) = 3/7 � q1(t). The boundary surfaces of RAumax and RAumin

are shown in red and cyan
colors, respectively, in Fig. 10a, and the corresponding trajectories to umax are in green. This figure is analogous to Fig. 3d for
the two-state example.

The surface boundary for the three-state problem is a collection of all boundary shapes in (n12,n2)-plane over all n11,
where 0 6 n11 6 n1,jam. The boundary shapes in (n12,n2)-plane are similar to the three boundary cases of the two-state system
shown in Section 3.1. e.g. the RAumax and RAumin

boundary shapes in (n12,n2)-plane with n11 = 0 in Fig. 10a are similar to those
in Fig. 3d.

Fig. 10b and c show the effect of different splits of demand in region 1 on the RAumax . In Fig. 10b, the demand of region 1 is
split to q11(t) = 2/3 � q1(t), while in Fig. 10c the split is reversed, i.e. q11(t) = 1/3 � q1(t). The total demand for regions 1 and 2 are
q1(t) = 0.083 [veh/s] and q2(t) = 0.472 [veh/s], while the other input data are similar to those of example 6. Although the total
demand q1 is the same, the RAumax shrinks when the exogenous demand q12(t) increases.



Fig. 10. RAs surface boundaries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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In order to characterize the stable region, one should compute all region of attraction surface boundaries, and explore the
state space outside all theses surface boundaries for trajectories that can enter inside one of the surface boundaries. This is a
huge computational effort, while we believe that the same concept of the new algorithm introduced for the two-state holds
also for the three-state system. This means that computing RAumin

surface boundary and a few trajectories is expected to be
enough to characterize the stable region boundary. However, this area should be investigated more deeply in the future.

The stabilizing control of the state-feedback control strategy for the three-state system will also have the same concept
presented for the two-state system in Section 4.1. Recall that the stabilizing control is applied when the current state, i.e.
n11(t), n12(t), n2(t) in the three-state system, belongs to the stable region. If the state is inside the surface boundary of
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RAumax then one has to apply umax, while if the state is outside the surface boundary of RAumax but inside RAumin
, then apply

umin until the trajectory enters RAumax . In the case when the state is outside both RAumax and RAumin surface boundaries, then
choose u(t) that brings the trajectory to enter one of the surface boundaries. However, this is the main issue as one has to
apply a control that guaranties to bring the trajectory from these points to enter RAumax or RAumin surface boundary. This issue
is unsolved yet and should be investigated more deeply in the future.

Regarding the optimal control for the relaxed control problem of three states is too tedious to be solved analytically by the
Pontryagin Maximum Principle. However, instead of obtaining an analytical solution, the optimal control problem for the
three-state and four-state system is solved in a state-feedback form using the model predictive control approach. For a de-
tailed description the reader can refer to Haddad et al. (2012).

6. Conclusions

In this paper, the optimal control problem for two-region urban cities is formulated where the criterion is to maximize
the number of vehicles that complete their trips and reach their destinations by controlling and managing accumulations
in the two regions. The macroscopic fundamental diagram for each region is assumed to be known and in triangular
shape. Later we relax this assumption and we investigate trapezoidal MFDs. In this paper, we analyze cases where
one of the two regions is the center of attraction and does not generate exogenous demand. The first part focuses on
systems where all trips have destination in the center of the city, while the second part allows some trips to remain out-
side the city center.

The dynamic equations of accumulations are analyzed, and equilibrium points of the system are identified. Necessary and
sufficient conditions for existence of equilibrium points are derived. Based on the phase portraits of the dynamic equations, a
new algorithm is presented to compute numerically and analytically the boundary between stable and unstable regions.

It is proven that the formulated control problem is a feasibility problem, i.e. if an applied control u(t) brings the initial
accumulations to a priori known optimal stable equilibrium accumulations, then u(t) is an optimal perimeter control. How-
ever, if the problem is not feasible for the current accumulations, i.e. the current accumulations belong to unstable region,
then the optimal control policy for a relaxed problem should be applied. Hence, based on the stable and unstable regions, a
state-feedback strategy is proposed where the stabilizing (and optimizing) control law of the stable region and the optimal
control law for the unstable region are presented in an analytical feedback form, as a function of the current accumulations.
In the case when demands are essentially nonconstant this solution can be used in the scheme of a predictive control by
recalculating region of attraction and control at each new step.

Future work involves the development of optimal control strategies for cities with more complex structures and dif-
ferent MFD shapes. Analytical solutions might be difficult to obtain under more complex cases, but decomposition of the
system in not heavily interacting regions can be a solution. Control strategies that intervene on the demand side should
also be considered (e.g. pricing, shift to more efficient and sustainable modes). These strategies would require a better
understanding in the modeling of multi-modal systems where different modes of transport (buses, cars etc) interact
for the same urban space.

Appendix A. Trajectory calculation of regions boundaries for cases a, b, and c

A.1. Case a

The trajectory from the unstable equilibrium point (n2,eq,n1,eq)IV to point B (see Fig. 2) is calculated in reverse time (with
negative t). Solution in reverse time is equivalent to solution in forward time (with positive t) of the dynamic equation
d~n1ðtÞ
dt

¼ �dn1ðtÞ
dt

; ðA:1Þ

d~n2ðtÞ
dt

¼ �dn2ðtÞ
dt

; ðA:2Þ
where dn1(t)/dt and dn2(t)/dt are the dynamic equations for state region IV, i.e. substituting (7) into the dynamic Eqs. (2) and
(3) with n1,cr 6 n1(t) 6 n1,jam and n2,cr 6 n2(t) 6 n2,jam. The direction of ð~n2ðtÞ; ~n1ðtÞÞ trajectory will be in reverse way, i.e from
point B to the unstable equilibrium point (n2,eq,n1,eq)IV.

Given the initial state of the trajectory, i.e. n1(0) = n1,cr and n2(0) = n2,B, where the starting time is zero, one can integrate
(A.1) and (A.2), respectively,
~n1ðtÞ ¼ n1;jam �
q1 � ðn1;jam � n1;crÞ

c1 � u
þ ðn1;jam � n1;crÞ �

q1

c1 � u
� 1

� �
� e

c1 �u�t
n1;cr�n1;jam ; ðA:3Þ

~n2ðtÞ ¼
e

c1 �u�t
n1;cr�n1;jam � ðq1 � c1 � uÞ � ðn1;cr � n1;jamÞ � ðn2;cr � n2;jamÞ

c2 � ðn1;jam � n1;crÞ þ c1 � u � ðn2;cr � n2;jamÞ
þ n2;cr � ðq1 þ q2Þ þ ðc2 � q1 � q2Þ � n2;jam

c2
þ c2 � e

c2 �t
n2;cr�n2;jam ;

ðA:4Þ
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c2 ¼
c1 � u � ðq1 � c1 � uÞ � n1;jam � ðn2;cr � n2;jamÞ2

ðc2 � n1;cr þ c1 � u � ðn2;jam � n2;crÞÞ � ðc2 � ðn1;cr � n1;jamÞ þ c1 � u � ðn2;jam � n2;crÞÞ
: ðA:5Þ
A.2. Case b

The trajectory from point C to B is in state region IV as shown in Fig. 2, hence the reverse equation system and the tra-
jectory from B to C is the same as in case a, i.e. (A.3), (A.4), and (A.5).

For trajectory CD, the dynamic equations according to (A.1) and (A.2) are reversed where dn1(t)/dt and dn2(t)/dt are the
dynamic equations for state region III, i.e. substituting (7) into the dynamic Eqs. (2) and (3) with n1,cr 6 n1(t) 6 n1,jam and
0 6 n2(t) 6 n2,cr. The direction of ð~n2ðtÞ; ~n1ðtÞÞ trajectory will be in reverse way, i.e from C to D. Given the initial state of
the trajectory CD, i.e. n1(0) = n1,C and n2(0) = n2,cr, where the starting time is zero, one can integrate (A.1) and (A.2),
respectively,
~n1ðtÞ ¼
n1;cr � q1 � q1 � n1;jam þ c1 � u � n1;jam

c1 � u
þ n1;C � n1;jam �

q1 � ðn1;cr � n1;jamÞ
c1 � u

� �
� e

c1 �u�t
n1;cr�n1;jam ; ðA:6Þ

~n2ðtÞ ¼ n2;cr �
q1 þ q2

c2
þ e

c1 �u�t
n1;cr�n1;jam � ðn1;cr � q1 � q1 � n1;jam þ c1 � u � ðn1;jam � n1;CÞÞ

c1 � n2;cr � uþ c2 � ðn1;jam � n1;crÞ

0
@

1
Aþ c2 � e

c2 �t
n2;cr ; ðA:7Þ

c2 ¼ n2;cr � 1� q1 þ q2

c2
� q1 � ðn1;cr � n1;jamÞ þ c1 � u � ðn1;jam � n1;CÞ

c1 � n2;cr � uþ c2 � ðn1;jam � n1;crÞ

� �
: ðA:8Þ
The curves BC and CD for case b are calculated according to the following steps:

1. find TBC [sec] the time instant when trajectory BC enters state region III, i.e. solve numerically ~n2ðTBCÞ ¼ n2;cr, where ~n2ðtÞ is
given by (A.4) and (A.5),

2. calculate trajectory BC, i.e. calculate ð~n1ðtÞ; ~n2ðtÞÞ for t = 0 ? TBC according to (A.3), (A.4), and (A.5),
3. save point C ¼ ðn2;C ;n1;CÞ ¼ ðn2;cr; ~n1ðTBCÞÞ,
4. find TCD [sec] the time instant when trajectory CD intersects n2(t) = 0, i.e. solve numerically ~n2ðTCDÞ ¼ 0, where ~n2ðtÞ is

given by (A.7) and (A.8),
5. calculate trajectory CD, i.e. calculate ð~n1ðtÞ; ~n2ðtÞÞ for t = 0 ? TCD according to (A.6), (A.7), and (A.8).

A.3. Case c

In this case, the trajectory BC is in state region I as shown in Fig. 2. Hence, given the initial state of the trajectory BC, i.e.
n1(0) = n1,B and n2(0) = n2, cr, where the starting time is zero, one can integrate (A.1) and (A.2), respectively, where dn1(t)/dt
and dn2(t)/dt are the dynamic equations for state region I, i.e. substituting (7) into the dynamic Eqs. (2) and (3) with 0 6 n1(-
t) 6 n1,cr and 0 6 n2(t) 6 n2,cr,
~n1ðtÞ ¼
n1;cr � q1

c1 � u
þ n1;B �

n1;cr � q1

c1 � u

� �
� e

c1 �u�t
n1;cr ; ðA:9Þ

~n2ðtÞ ¼ n2;cr �
q1 þ q2

c2
þ e

c1 �t�u
n1;cr � ð�n1;cr � q1 þ c1 � n1;B � uÞ

c2 � n1;cr � c1 � n2;cr � u

0
@

1
Aþ c2 � e

c2 �t
n2;cr ; ðA:10Þ

c2 ¼ n2;cr � 1� q1 þ q2

c2
� c1 � n1;B � u� n1;cr � q1

c2 � n1;cr � c1 � n2;cr � u

� �
: ðA:11Þ
It holds for point C that ~n1ðTBCÞ ¼ n1;cr, hence, from (A.9) one can calculate analytically TBC
TBC ¼ ln
n1;cr � ð1� q1

c1 �u
Þ

n1;B � q1
c1 �u

 !
� q1

c1 � u
: ðA:12Þ
The trajectory CD is calculated in the same way that was done in case b, however with different initial state. The dynamic
equations are reversed according to (A.1) and (A.2) where, dn1(t)/dt and dn2(t)/dt are the dynamic equations for state region
III, i.e. substituting (7) into the dynamic Eqs. (2) and (3) with n1,cr 6 n1(t) 6 n1, jam and 0 6 n2(t) 6 n2,cr. Given the initial state
of the trajectory CD, n1(0) = n1,cr and n2ð0Þ ¼ ~n2ðTBCÞ, where the starting time is zero, one can integrate (A.1) and (A.2), respec-
tively, and one get same equations as in case b, i.e. (A.6) and (A.7), where c2 is slightly different:
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c2 ¼ n2;C � n2;cr �
q1 þ q2

c2
þ q1 � ðn1;cr � n1;jamÞ þ c1 � u � ðn1;jam � n1;crÞ

c1 � n2;cr � uþ c2 � ðn1;jam � n1;crÞ

� �
: ðA:13Þ
The curves BC and CD for case c are calculated according to the following steps:

1. B = (n2,cr,n1,B),
2. calculate analytically TBC according to (A.12),
3. calculate trajectory BC, i.e. calculate ð~n1ðtÞ; ~n2ðtÞÞ for t = 0 ? TBC according to (A.9)–(A.11),
4. save point C ¼ ðn2;C ;n1;CÞ ¼ ð~n1ðTBCÞ; n1;crÞ,
5. find TCD [sec] the time instant when trajectory CD intersects n2(t) = 0, i.e. solve numerically ~n2ðTCDÞ ¼ 0, where ~n2ðtÞ is

given by (A.7) and (A.13),
6. calculate trajectory CD, i.e. calculate ð~n1ðtÞ; ~n2ðtÞÞ for t = 0 ? TCD according to (A.6), (A.7), and (A.13).

Note that if the trajectory starting from point B hits n2(t) = 0 before entering region III, then in this case there is no curve
CD.
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