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Abstract
Though the following topics seem unlinked, most of the tools used in this thesis are related to

random walks and renewal theory.

After introducing the voter model, we consider the parabolic Anderson model with the voter

model as catalyst. In GÄRTNER, DEN HOLLANDER and MAILLARD [44], the behaviour of the

annealed Lyapunov exponents, i.e., the exponential growth rates of the successive moments of

the reactant with respect to the catalyst, was investigated. It was shown that these exponents

exhibit an interesting dependence on the dimension and on the diffusion constant. In Chapter

3 we address some questions left open in this paper by considering specifically when the

Lyapunov exponents are the a priori maximal value.

Then, we use exclusion process techniques to show that the evolution of a perturbed threshold

voter model is recurrent in the critical case. The key to our approach is to develop the ideas of

BRAMSON and MOUNTFORD [9] : we exhibit a Lyapunov-Foster function for the discrete time

version of the process. We also make a widespread use of coupling arguments.

Finally, using the regenerative scheme of COMETS, FERNÁNDEZ and FERRARI [19], we establish

a functional central limit theorem for discrete time stochastic processes with summable

memory decay. Furthermore, under stronger assumptions on the memory decay, we identify

the limiting variance in terms of the process only. As applications, we define classes of binary

autoregressive processes and power-law Ising chains for which the limit theorem is fulfilled.

Keywords : Markov process, voter model, exclusion process, regenerative chain, random walk,

coupling, parabolic Anderson model.
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Résumé
Les sujets abordés dans cette thèse peuvent sembler déconnectés les uns des autres mais en

fait, chaque chapitre utilise abondamment la théorie du renouvellement et les propriétés des

marches aléatoires.

Tout d’abord nous présentons le modèle parabolique d’Anderson muni, en tant que milieu

aléatoire, du modèle du votant que nous introduisons au préalable. Dans GÄRTNER, DEN

HOLLANDER et MAILLARD [44] est analysé le comportement des exposants de Lyapunov

annealed, c’est-à-dire, le taux de croissance exponentiel des moments successifs de l’agent

actif par rapport au catalyseur. Il y est prouvé que ces exposants présentent une intéressante

dépendance en la dimension et la constante de diffusion. Dans le Chapitre 3 nous traitons

quelques questions laissées en suspens dans le papier précédent en abordant spécifiquement

le cas où les exposants de Lyapunov atteignent leur valeur maximale a priori.

Puis nous utilisons les techniques liées au processus d’exclusion afin de montrer que l’évolu-

tion d’un modèle du votant à seuil est récurrente dans le cas critique lorsque l’on perturbe le

processus. La clef de notre approche est d’étendre les idées de BRAMSON et MOUNTFORD [9] :

nous exposons une fonction de Lyapunov-Foster pour le processus discrétisé par rapport au

temps. Des arguments de couplage seront également fréquemment utilisés.

Enfin, grâce au principe de régénération de COMETS, FERNÁNDEZ et FERRARI [19], nous

établissons un théorème fonctionnel de la limite centrale pour les processus stochastiques

à temps discret munis d’une décroissance de la mémoire sommable. Nous illustrons notre

résultat à l’aide de deux exemples : les chaînes d’Ising power-law et les processus binaires

autorégressifs.

Mots-clefs : processus de Markov, modèle du votant, processus d’exclusion, chaîne avec

régénération, marche aléatoire, couplage, modèle parabolique d’Anderson.
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Introduction

This thesis concerns Markov processes and related topics, mainly the voter model, parabolic

Anderson model, exclusion process and infinite regenerative chains. Though these mathemat-

ical objects are somewhat esoteric, the analysis essentially rests on extensive use of random

walk and renewal theory. We first briefly motivate these topics with historical references.

In 1827, the Scottish botanist Robert BROWN was studying the structure of pollen grains. He

placed them in water to examine them and remarked that they were in motion. After careful

experiments, he was convinced that the particles were moving by themselves, not because

of external factor. He was also convinced that this motion was not due to the essence of life

of particles and obtained the same kind of phenomenon with powder of stone. Although

biologist, he gave a revolutionary physical explanation.

Independently, in 1906, the Russian mathematician Andrei A. MARKOV studied sequences

of mutually dependent variables to find limit laws of probability. We owe him the extension

of weak law of large numbers and central limit theorem for some sequences of dependent

variables. In 1926, the Russian mathematician Sergei N. BERNSTEIN was the first to use the

name Markov Chain to describe a sequence of variables where the future does not depend on

the past, but only on the actual state. The work of BROWN was unknown by MARKOV as many

other topics. As popular examples of Markov chains, we can cite some of the urn problems

studied by Pierre-Simon LAPLACE, Daniel BERNOULLI, and Paul EHRENFESTS, random walks

studied first by Viktor Y. BUNYAKOVSKY or the work of Louis BACHELIER who used the Brownian

motion to evaluate stock options.

The work of BROWN was refined by Norbert WIENER in 1921. In 1933, Andrey N. KOLMOGOROV

published a monograph building probability theory from fundamental axioms [51] and, in

1938, he wrote a paper laying the foundations of the theory of Markov random processes [52].

Using this theoretic formulation of a probabilistic measure, around 1950, Vilibald FELLER

linked Markov processes and partial differential equations in a functional analysis framework.

Many books discuss this topic, see e.g., the works of Eugene B. DYNKIN [30], David A. FREED-

MAN [35], Daniel REVUZ [69], Sean P. MEYN and Richard L. TWEEDIE [67], Thomas M. LIGGETT

[60]. In Chapter 1, we recall definitions and main results about Markov chains and random

walks.

xiii



Chapter 0. Introduction

Interacting particle systems

In this thesis, we will also be concerned by a specific type of Markov processes : interacting

particle systems. These models were motivated by applied fields such as population genetics or

statistical mechanics. However, it is widely accepted that the precursors are Frank L. SPITZER

(see [73]) and, independently, Roland L. DOBRUSHIN (see [24] and [25]). This is a natural

extension of the theory of Markov processes and is now one of the richest topics of probability.

A typical interacting system consists of particles that evolve according to an interaction rule.

Although the system as a whole is Markovian, it is not true for the evolution of an individual

particle. Thus, while there are connections with Markov processes, most of the techniques

used are new. Many models exist, the best known are exclusion process, contact process, Ising

model, growth model and voter model. This last one will be our main subject of study.

The voter model first appeared in a paper of Peter CLIFFORD and Aidan SUDBURY in 1973 under

the name invasion process (see [17]). In 1975, Richard A. HOLLEY and Thomas M. LIGGETT

proved first results about this topic (see [47]). In 1979, Maury BRAMSON and David GRIFFEATH

studied stationary distributions in dimensions greater than three (see [8]), and in 1986, J.

Theodore COX and David GRIFFEATH analyzed the clustering in two dimensions (see [21]).

Since then, this subject has been widely studied and new questions raised, as occupation time

or interface shape for example. Have now a closer look on this model.

We consider each element of S, a countable set, as being a site occupied by persons who have

to choose between 0 and 1 (we can see these as voting intention). At any time, each person

knows what he wants, so we write ξ(x, t ) the opinion of the person x at time t . However, our

voters are not self-confident and can be easily influenced by their neighbors. Actually, each

voter periodically reassesses his mind by choosing randomly one of its neighbors and adopting

his view. We write p(x, y) the probability that the person x copies the mind of the person y and

understand “periodically” by “waiting randomly an exponential time with parameter one”.

More precisely, we see {ξ(t )}t>0 as a stochastic process homogeneous in time and such that

each configuration ξ(t) = ξ(·, t) is in {0,1}Z
d

. The transition mechanism is specified by a

nonnegative function c(x,η) with x ∈Zd and η ∈ {0,1}Z
d

which represents the rate at which the

site x flips its state (from 0 to 1, or from 1 to 0) when the system is in state η. Thus the process

ξ satisfies

Pη(ξ(x, t ) 6= η(x)) = c(x,η)+o(t )

for all site x ∈Zd and every configuration η ∈ {0,1}Z
d

. Moreover, two sites won’t change on the

same time as we have

Pη(ξ(x, t ) 6= η(x) and ξ(y, t ) 6= η(y)) = o(t )

for all different sites x, y ∈Zd and every configuration η ∈ {0,1}Z
d

.

xiv



A formal construction of this model and basic results will be given in Section 2. More details

can be found in the book of Thomas M. LIGGETT [58]. However, it is important to note that

we use the graphical representation to present these elements instead of using the standard

infinitesimal description and harmonic functions found in [58]. In particular we propose an

original proof of the basic convergence theorem (Corollary 1.13 p. 231 of [58]).

Remark that many variations of the standard voter model exists : three-state modified voter

model, rebellious voter model, exclusion-voter model or threshold voter model. The last one

will be focused on in Chapter 4. In the threshold voter model, a person will change his mind

if at least half of his direct neighbors have a different voting intention. We will use exclusion

process techniques to study this process in a critical case and we will consider a perturbed

system, i.e., one of the vote is favored compared to the other one.

Parabolic Anderson model

In 1958, Philippe W. ANDERSON conceived the concept of electron localization. When the

degree of disorder is too high in a solid, the diffusive motion of the electron is stopped (see

[1]). Indeed, as the standard homogenization approach cannot cover many special cases, this

result was of a great importance and is sometimes called Anderson localization. This conducts

to the principle of intermittency, when there are irregular alternations of phases of apparently

periodic and chaotic dynamics. The Cauchy problem for the spatially discrete heat equation

with a random potential is a good and simple example exhibiting the effect of intermittency.

This is often called parabolic Anderson model. A very good reference about this topic is the

book of René A. CARMONA and Stanislav A. MOLCHANOV [11].

To be more precise, the parabolic Anderson model is the partial differential equation

∂

∂t
u(x, t ) =∆u(x, t )+Ẇ (x, t )u(x, t ) x ∈Rd , t > 0,

for the R-valued random field u, ∆ the Laplacian, Ẇ the space-time white noise and some

non-random initial condition u0. The interested reader will find more informations in the

paper of Lorenzo BERTINI and Nicoletta CANCRINI [4] and references therein. This model is

really important in physics as it is related to the KARDAR-PARISI-ZHANG equation [66].

We can also consider a discrete version of the previous equation, i.e.,

∂

∂t
u(x, t ) =∆u(x, t )+ξ(x, t )u(x, t ) x ∈Zd , t > 0,

with ∆ the discrete Laplacian and ξ an i.i.d R-valued random potential. The survey of Jürgen

GÄRTNER and Wolfgang KÖNIG [45] is an interesting source for references.

When ξ takes non-negative integer values, we can interpret this equation as a population

dynamics. Consider two types of particles : A, the catalyst and B the reactant. We then have

xv



Chapter 0. Introduction

the following properties

• A-particles evolve autonomously, according to a prescribed stationary dynamics given

by the ξ-field, with ξ(x, t ) denoting the number of A-particles at site x at time t ;

• B-particles perform independent random walks at rate 2dκ and split into two at rate

γξ(x, t );

• the initial configuration of B-particles is one particle everywhere (we made a particular

choice for u0).

Thus u(x, t ) can be seen as the average number of B-particles at site x at time t conditioned

on the evolution of the A-particles. One of the interest of this model is that the two terms in

the right-hand side of the equation are in competition : the diffusion of B-particle described

by κ∆ tends to make u flat, while the branching of B-particles caused by A-particles described

by ξ tends to make u irregular.

In the quenched situation, i.e. conditioned to the catalyst (u is defined almost surely with

respect to the medium ξ), the behaviour of the intermittency is well known for many time-

independent random potentials ξ (see the survey of Jürgen GÄRTNER and Wolfgang KÖNIG

[45] for examples) with the use of subadditive arguments. However, for time-dependent

random potential, it is not anymore the case. The intermittency is then indirectly studied by

comparing the successive annealed Lyapunov exponents, i.e., the exponential growth rates of

the successive moments of the solution with respect to the potential, more precisely,

λp = lim
t→∞

1

t
log

(
E(u(0, t )p )

)1/p , p ∈N, t > 0,

where E denotes expectation with respect to ξ.

If the catalyst is a family of independent simple random walks or a symmetric exclusion

process, spectral techniques were used to study annealed Lyapunov exponents. However, the

non-reversibility of the voter model implies that new techniques are needed and motivate the

interest of this model. In the paper of Jürgen GÄRTNER, Frank DEN HOLLANDER and Grégory

MAILLARD [44], it was shown that, when the catalyst is a voter model, these exponents exhibit

an interesting dependence on the dimension and on the diffusion constant. In Chapter 3,

we address some questions left open in [44] by considering specifically when the Lyapunov

exponents are the a priori maximal value in terms of strong transience of the Markov process

underlying the voter model.

Regenerative chains

These are discrete-time stochastic processes with infinite memory that are natural extensions

of Markov chains when the associated process depends on its whole past. Such processes have

been extensively studied (see e.g. the article of Roberto FERNÁNDEZ and Grégory MAILLARD

[33] and references therein), but surprisingly very few is known about limit theorems. In
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Chapter 5, we partially fill this gap by establishing a functional central limit theorem.

Historically, the first central limit theorems for regenerative chains have been established

under strong ergodic assumptions by Harry COHN (1966) [18], Il’dar A. IBRAGIMOV and Yurii

V. LINNIK (1971) [48] (see also Serban GRIGORESCU and Marius IOSIFESCU (1990) [41]). More

recently, the empirical entropies of chains with exponential memory decay have been studied

both in terms of their limit behaviour (Davide GABRIELLI, Antonio GALVES and Daniela GUIOL

(2003) [36]) and their large deviations (Jean-René CHAZOTTES and Davide GABRIELLI (2005)

[12]).

Limit theorems such as Local Central Limit Theorem and Law of Iterated Logarithm have been

broadly studied for Markov chains (see e.g. the book of Sean P. MEYN and Richard TWEEDIE

[67]). Regeneration methods, introduced by Kai Lai CHUNG (1967) [15] and refined by Xia

CHEN (1999) [13], have been used to divide the Markov chain into independent random blocks

in order to derive such limit theorems. In 2001, Roberto FERNÀNDEZ, Pablo A. FERRARI and

Antonio GALVES proposed a perfect simulation using renewal (see [31]). This constitute a

motivating challenge to extend the techniques of Chen’s work to the non-Markovian case.
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1 Prerequisites

In this chapter we gather the tools used for this work. This will help to fix the notation.

After basic notions about stochastic processes and some references for interested reader, we

give more details about Voter Model. In particular we propose a new way to show the basic

convergence theorem from the book of Thomas M. LIGGET [58].

1.1 Basic definitions

A Markov chainΦ= {Φ0,Φ1, . . .} is a stochastic process with an important property : the future

of the process is independent of the past given only its present value. Each Φi is a random

variable on a set E . This set is a general set equipped with a countably generated σ-field B(E ).

For example, when E is endowed with a locally compact, separable, metrizable topology, B(E )

is typically the Borelσ-field. Because of the Markov property, the processΦ can be constructed

with the one-step transition probabilities. We say that P = {P (x, A), x ∈ E , A ∈ B(E)} is a

transition probability kernel if

1. for each A ∈B(E), P (·, A) is a non-negative measurable function on E ;

2. for each x ∈ E ,P (x, ·) is a probability measure on B(E).

Then, for µ a measure on B(E) and P a probability kernel, we can construct a probabil-

ity measure Pµ on F = Π∞
i=0B(Ei ) and a stochastic process Φ = {Φ0,Φ1, . . .} on Ω = Π∞

i=0Ei ,

measurable with respect to F (where Ei are copies of E) such that

1. Pµ(B) is the probability of the event {Φ ∈ B} for any B ∈F ,

2. for any measurable Ai ∈ Ei , i ∈ {0, . . . ,n} and any n, we have

Pµ(Φ0 ∈ A0, . . . ,Φn ∈ An) =
∫

y0∈A0

· · ·
∫

yn−1∈An−1

µ(d y0)P (y0,d y1) · · ·P (yn−1, An). (1.1)

More details about this construction can be found in section 3.4 of the book of Sean P. MEYN

and Richard L. TWEEDIE [67] or in the book of Daniel REVUZ [69].
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Chapter 1. Prerequisites

In the particular situation where E is a countable set, a chain is said irreducible when there is

a strictly positive probability to reach every site y starting from any state x, i.e., ∀x, y ∈ E ,

∃n such that Pδx (Φn = y) > 0 (1.2)

for δx the Dirac measure. A chain is said aperiodic when the return to state x do not occur

periodically, i.e., ∀x ∈ E ,

∃n such that Pδx (Φn′ = x) > 0 for all n′ > n. (1.3)

One of the most important example of Markov chain is the random walk, in particular the

simple random walk. Let X1, X2, . . . be i.i.d. random variables taking values in Rd and de-

fine Sn = X1 + . . .+ Xn . Sn is called a random walk. In this model, the transition kernel is

homogeneous in space, i.e., p(x, y) = p(y −x). We can also define the symmetrized kernel by

p(s)(x) = 1

2
(p(x)+p(−x)). (1.4)

The simple random walk arises when X1 is uniformly distributed among the nearest neighbors

of the origin. This is said to be recurrent when the hitting time is finite almost surely for any

site i , i.e.,

Pδi (inf{n > 0 : Sn = i }) <∞) = 1 (1.5)

and transient otherwise. Moreover we have a criterion for the recurrence.

Theorem 1.1.1. Let ε> 0. Sn is recurrent if and only if∫
(−ε,ε)d

Re
1

1−φ(t)
dt =∞ (1.6)

with φ(t ) = E(
e i t Xi

)
the characteristic function of one step of the random walk. In particular,

we see the classical theorem of Polya : in dimension d = 1 or d = 2, the simple random walk is

recurrent while it is transient in dimension d > 3. We will not give details here and invite the

reader to look at one of the books on this topic, for example, the one of Rick DURRETT [29].

We can now extend our previous definition to time continuous case. Again, let E be a general

set equipped with a countably generated σ-field B(E). Define C (E) the space of continuous

bounded real-valued functions on E and endow it with the uniform norm

|| f (x)|| = sup
x∈E

| f (x)| (1.7)

to turn it into a Banach space. Let Ω the set of right continuous functions ω : [0,∞) → E

with left limits (sometimes called càdlàg). Define τs the s-drift function, i.e. τsω(t ) =ω(t + s).

Moreover write ξ(t ,ω) = ω(t) the process on realizations of Ω. Here, we set F the smallest
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σ-algebra on Ω such that the mapping ω→ ω(t) is measurable for each t > 0 and Ft the

smallest σ-algebra onΩ relative to which all the mapping τs , for s 6 t , are measurable.

We call Markov process (or Markov jump process) the collection of probability measures

{Pη,η ∈ E } onΩ such that

• the process ξ(t ) = ξ(t , ·) is adapted to the filtration {Ft , t > 0},

• Pη(ξ(0) = η) = 1 for all η ∈ E ,

• Eη(Y ◦τs |Fs) = Eξ(s)(Y ) Pη-a.s

for all η ∈ E and all bounded measurable function Y onΩ. Eη is the expectation corresponding

to Pη defined by

Eη(Y ) =
∫
Ω

Y dPη (1.8)

for any bounded measurable function Y onΩ.

Moreover, if the mapping

η→ Eη
(

f (ξ(t ))
)

(1.9)

is in C (E) for all f ∈C (E), t > 0, then the Markov process is called a Feller process. We write

[S(t ) f ](η) = Eη
(

f (ξ(t ))
)

(1.10)

and call the family of linear operator {S(t ), t > 0} on C (E ) a semigroup. If a semigroup satisfies

the Feller property, it ensures the existence of a unique Feller process (see for example the book

of Robert BLUEMENTHAL and Ronald GETOOR [6] for more details). Moreover, the Hille-Yosida

theorem gives a one-to-one correspondence between semigroups and Markov generators

(see the book of Eugene B. DYNKIN [30]) and is used to construct the semigroup of a Feller

process with it’s infinitesimal description. More details can be found in Chapter 1 of the book

of Thomas M. LIGGET [58].

We can now imagine a Markov process starting from an initial distribution instead of a fixed

configuration. Let P denote the set of all probability measures on E , with the topology of

weak convergence, i.e., µn → µ in P if and only if
∫

f dµn → ∫
f dµ for all f bounded (or all

f ∈C (E) when E is compact). The measure

Pµ =
∫

E
Pηµ(dη) (1.11)

describes the distribution of a Markov process with initial distribution µ. Then we define the

corresponding expectation by

Eµ( f (ξ(t )) =
∫

S(t ) f dµ (1.12)

3



Chapter 1. Prerequisites

for all f ∈C (E) and also define the measure µS(t ) by∫
f d(µS(t )) =

∫
S(t ) f dµ (1.13)

for all f ∈ C (E) which can be seen as the distribution at time t of the process starting with

initial distribution µ.

When a measure µ ∈ P satisfies µ = µS(t) we call it stationary and denote the set of all

stationary measures of P by P s .

Define τx the x-drift function, i.e. τxξ(y) = ξ(y+x) for all y ∈ S. When a measureµ ∈P satisfies

µ(τxξ) =µ(ξ) for all ξ ∈ E , we call it invariant and denote the set of all invariant measures of P

by P i .

Moreover, we say that a measure µ ∈P is ergodic if every invariant set is trivial, i.e.,

if, for all x,τx A = A then µ(A) = 1 or 0. (1.14)

A Markov process with semigroup {S(t ), t > 0} is said ergodic if

• P s is a singleton,

• limt→∞µS(t ) ∈P s for all µ ∈P .

Remark that when E is countable, an irreducible Markov process is ergodic if all its state are

positive recurrent, i.e., the hitting time is finite almost surely for any site i ,

Pδi (inf{t > 0 : X (t ) = i }) <∞) = 1 (1.15)

and the mean recurrence time is finite for any site i ,

Eδi (inf{t > 0 : X (t ) = i }) <∞. (1.16)

For a general E , Markov processes can be very complex. However, one of the most studied

class of Markov processes are random walks. In this situation, E is more simple, usually Zd .

The main references about random walk on Zd are the book of Franck SPITZER (see [74]) and

the books of Gregory F. LAWLER ([54] and [56] with Vlada LIMIC).

In fact, this work is focused on another large class of Markov processes : interacting particle

systems. In this particular situation, E = W S with W a compact metric space called phase

space and S a countable set called site space. E is then compact and metrizable. More precisely,

we take S = Zd and W = {0,1}. The elements of E (named configurations) will be denoted

by Greek letters ξ or η and elements of S =Zd (named sites) will be denoted by Latin letters

x, y or z, finite subsets of S by capital letters A, B , etc. Note that the processes are denoted

by (ξ(t ))t>0 and the state of a site x at time t by ξ(x, t). To lighten the notation, we will see

4



1.1. Basic definitions

configurations ξ as a subset of Zd such that if x ∈ ξ then the site x has state 1. Formally, ξ

is identified by the support of the function x 7→ ξ(x) ∈ {0,1}Z
d

. In particular, for A ⊂ Zd , if

ξ∩ A 6= ;, it means that there exists some x ∈ A such that ξ(x) = 1.

We can describe the local dynamics by a collection of transition measures cT (η,dξ). For each

η ∈ E and finite T ⊂ S, cT (η,dξ) is supposed to be a finite positive measure on W T and a

continuous mapping with respect to η (for the topology of weak convergence on W T ). We see

cT (η,dξ) as the rate at which a modification will appear in T for the configuration η. We now

need some notation to give a criteria for ergodicity. For x ∈ S and finite T ⊂ S, let

cT (x) = sup
η1,η2∈E

{||cT (η1,dξ)− cT (η2,dξ)||TV : η1(y) = η2(y) for all x 6= y
}

(1.17)

where || · ||TV refers to the total variation norm of a measure on W T , defined by

||P1 −P2||TV = sup
F∈F

{|P1(F )−P2(F )|} (1.18)

for P1 and P2 two probability measures on (Ω,F ). Let

γ(u, x) = ∑
T3u

cT (x) (1.19)

for x 6= u and γ(x, x) = 0. Write ξx,0 = {ξ : ξ(x) = 0} (similarly write ξx,1) and ξη,x,0 = {ξ : ξ(x) =
0,ξ(y) = η(y)} (similarly ξη,x,1), then define

ε= inf
x∈S

inf
η

(cT (ξη,x,0,ξx,0)− cT (ξη,x,1,ξx,1)), (1.20)

and

M = sup
u∈S

∑
T3u

∑
x 6=u

cT (x) = sup
u∈S

∑
u
γ(u, x). (1.21)

Theorem 1.1.2. Assuming

sup
u∈S

∑
T3u

cT <∞ and M <∞, (1.22)

the Dobrushin’s criterion states that

if M < ε, then the process is ergodic. (1.23)

See Theorem 4.1 of [58] for a proof.

We can now construct the operator

Ω f (η) =∑
T

∫
W T

cT (η,dξ)( f (ηξ)− f (η)) (1.24)

5
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where

ηξ(x) =
η(x) if x ∉ T,

ξ(x) if x ∈ T.
(1.25)

The closure of this operator is the generator of a Markov semigroup corresponding to a unique

Feller process (see Theorem 1.5 of [58]).

Before detailing the Voter Model, we first recall notions about coupling.

1.2 Coupling

Coupling is the name given to the method used to compare two probability measures evolving

on the same measurable space. This has been extensively used since early ’80 on many

different topics such Markov chains, renewal theory, Harris chains, random walks, birth and

death processes. We briefly present basic definition and examples. More details can be found

in the book of Torgny LINDVALL [61] and the one of Hermann ÞÓRISSON [70].

Definition 1.2.1. A coupling of the probability measure P and P′ on a measurable space

(E ,B(E)) is a probability measure P̂ on (E 2,B(E)2) such that

P(A) = P̂(A,E) and P′(A) = P̂(E , A) (1.26)

for any A ∈B(E).

We can also see the random element (Ω̂,F̂ , P̂, (X̂ , X̂ ′)) in (E 2,B(E)2) as a coupling between

the random elements (Ω,F ,P, X ) and (Ω′,F ′,P′, X ′) in (E ,B(E)) such that

X
D= X̂ and X ′ D= X̂ ′. (1.27)

Hence P̂((X̂ , X̂ ′)−1) is a coupling of P(X −1) and P(X ′−1) in the sens of 1.26. For simplicity we

can then lighten the notation and refer to (X̂ , X̂ ′) as a coupling of the random elements X and

X ′.

The previous definition is not really intuitive. That’s why we now give an easy example by

considering a situation with two simple random walks X , X ′ on Zd . First consider the case

d = 1. We begin with two independent walks X and X ′. We can create a coupling (X̂ , X̂ ′) by

X̂ (t ) = X (t ) and X̂ ′(t ) =
X ′(t ) if t < T,

X (t ) if t > T,
(1.28)

for T = min{t : X (t) = X ′(t)}. As the simple random walk is recurrent on Z, it ensures that

P(T <∞) = 1. This is the so-called Ornstein’s coupling. However, for d > 3, the simple random

walk is not anymore recurrent and so, apparently, the Ornstein’s coupling fails. In fact, we
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can apply this coupling componentwise. X̂ ′ evolves according to X ′ in the first coordinate

and according to X in the other coordinates. When the first projections of X and X ′ meet,

X̂ ′ then evolves according to X ′ in the second coordinate and according to X in the other

coordinates. Continue until all dimension are exhausted. This way, the coupling is successful

with probability 1.

We can also extend this example in a more general case. Consider two irreducible random

walks (not simple) X and X ′ evolving according to the same transition kernel p(·). Without

loss of generality, suppose that X (0) = 0 and X ′(0) = x. We now present a coupling (X̂ , X̂ ′)
so that X̂ (t) = X̂ ′(t) for all t > T for some stopping time T <∞. In particular this holds for

Poisson processes.

Lemma 1.2.2. Consider two random walks X , X ′ derived from an irreducible and recurrent

kernel. Irrespective of the initial values of the walks, there exists a coupling so that for all large t ,

X (t ) = X ′(t ).

Proof. Without loss of generality one may suppose that X (0) = 0 and X ′(0) = x. Let T = inf{t :

X (t ) = X ′(t )} for two independent copies of this random walk. Construct the coupling by

X̂ (t ) = X (t ) and X̂ ′(t ) =
X ′(t ) if t < T,

X (t ) if t > T.
(1.29)

Recurrence insures that T <∞ a.s. and make the coupling effective.

However these ideas extend to all random walks such that the symmetrization is irreducible

Proposition 1.2.3. Consider two random walks X , X ′ derived from a kernel whose symmetriza-

tion is irreducible. Irrespective of the initial values of the walks, there exists a coupling so that

for all large t , X (t ) = X ′(t ).

Proof. Without loss of generality one may suppose that X (0) = 0 and X ′(0) = x. Given the

irreducibility condition there exist {u1, . . . ,un} ⊂ Zd a family of distinct possible jumps, i.e.,

p(ui ) > 0 for all i such that there exist {l1, . . . , ln} ⊂Zwith
∑n

i li ui = x. We will then use these

jumps to describe the random walk X . We can write

X (t ) =
n∑

i=1
Nui (t )ui +Y (t ) a.s. (1.30)

with Y a random walk, Nui rate p(ui ) Poisson processes, such that Nui (0) = li and Y , Nui are

independent. We can also describe X ′ in the same way with

X ′(t ) =
n∑

i=1
N ′

ui
(t )ui +Y (t ) a.s. (1.31)

7



Chapter 1. Prerequisites

Now create a coupling N̂ui , N̂ ′
ui

such that

N̂ui (t ) = Nui (t ), N̂ ′
ui

(t ) =
N ′

ui
(t ) for t < Tui ,

Nui (t ) for t > Tui ,
(1.32)

with Tui = inf{t : Nui (t ) = N ′
ui

(t )}. the construction is granted by Lemma 1.2.2.

Finally, we have the coupling X̂ (t ) =∑n
i=1 N̂ui (t )ui +Y (t ) and X̂ ′(t ) =∑n

i=1 N̂ ′
ui

(t )ui +Y (t ) with

the property

X̂ (t ) = X̂ ′(t ) for t >max{Tu1 , . . . ,Tun } (1.33)

Then the coupling is effective.
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2 Voter model

As layed in introduction, the voter model first appeared in a paper of Peter CLIFFORD and

Aidan SUDBURY in 1973 under the name invasion process (see [17]) and in the work of Richard

A. HOLLEY and Thomas M. LIGGETT in 1975 (see [47]). In this section we will recall the

construction explained in the book of Thomas M. LIGGETT [58] that uses Markov generator.

We then give a more probabilistic construction using the Harris representation, as in the notes

of Richard DURRETT [27] and give a formal description of what we called the dual of this

process : the coalescing random walks. We then use these elements to propose a new proof of

the basic convergence theorem from [58].

2.1 Infinitesimal description

We define the operatorΩ on the set of absolutely continuous functions f on E by

Ω f (η) = ∑
x∈S

c(x,η)( f (ηx )− f (η)), η ∈ {0,1}Z
d

, (2.1)

where

ηx (y) =
η(y) if y 6= x,

1−η(y) if y = x,
(2.2)

and

c(x,η) =


∑
y∈S p(y)η(y) if η(x) = 0,∑
y∈S p(y)(1−η(y)) if η(x) = 1,

(2.3)

with p(·) an aperiodic kernel (i.e. the corresponding random walk is aperiodic).

It is important to remark that we consider a process homogeneous in space and that one can

replace p(y) by p(x, y) in the previous definition to describe a more general model. We made

this choice because we want the mechanics of the voter model to be derived from random
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Chapter 2. Voter model

walks. Formally, we need S to be a regular lattice to make our definition consistent but as

explained in the previous Chapter, we consider the special case W = {0,1}, S =Zd and thus

E = {0,1}Z
d

.

The closure of the operatorΩ is the generator of a Markov semigroup S(t ) (by Theorem of Hille-

Yosida, see Theorem 2.9 of [58]) and then there is a unique Markov process corresponding to it

(see Theorem 1.5 of [58]). In particular, this process verify

Pη(η(x, t ) 6= η(x)) = c(x,η)t +o(t ) (2.4)

as t → 0 and

Pη(η(x, t ) 6= η(x),η(y, t ) 6= η(y)) = o(t ) (2.5)

as t → 0, for all x, y ∈ S different and every η ∈ E . The construction with infinitesimal rates,

operators and semigroups is well known. However, we chose a more probabilistic point of

view.

2.2 Harris construction

For each x ∈Zd , take an independant Poisson process N x with rate 1 and write
{
T x

n

}
n>1 the

realization times. Then take a transition kernel of an irreducible random walk p that generates

an i.i.d. sequence Rx
n for each site x with P

(
x +Rx

n = y
) = p(y − x) for all y ∈ Zd . The idea is

that the person on site x will change his mind at times T x
n and adopts the opinion of the voter

at site x +Rx
n for each n. Another natural way to construct the process exists by taking, for

each pair (x, y) ∈Zd ×Zd , an independent Poisson process N x,y with rate p(y −x) and define

the corresponding
{
T x,y

n
}

n>1. These indicate how x change his opinion. We can easily remark

that both constructions are equivalent. For simplicity in notations, we will use the second one.

A common way to represent this process graphically is made by drawing an arrow from
(
y,T x,y

n
)

to
(
x,T x,y

n
)

and write a × at (x,T x,y
n ) for every x and n. Then you can imagine water entering

the bottom where the sites have value 1 and flowing the structure from bottom to top. The

× are closed gates and the arrows are pipelines. For a fixed time t , each site that is wet, is

considered to have value 1 at time t .

We say that there is a path from (x,0) to (y, t ) if there is a sequence of times s0 = 0 < s1 < . . . <
sm < sm+1 = t and spatial locations x0 = x, x1, . . . , xm−1, xm = y such that

1. for i = 1, . . . ,m there is an arrow from xi−1 to xi at times si ,

2. there is no × at site xi between times si and si+1 for all i = 0, . . . ,m.

For example, there is a path from (−2,0) to (−1, t ) on Figure 2.1 but none from (1,0) to (2, t ).

The process related to the voter model is defined by {ξ(t)}t>0 with ξ as starting state (i.e.
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0
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Figure 2.1: Harris representation in Z 1.

ξ(0) = ξ) and such that for all x ∈Zd , we have ξ(x, t ) = 1 if and only if there is y ∈Zd such that

there is a path from (y,0) to (x, t ) and ξ(y,0) = 1.

2.3 Dual process

By construction, if there is a path from (x,0) to (y, t), the value at site y at time t is the same

as the value at site x at time 0. Moreover, for every site y , there exists an unique site x such

that there is a path from (x,0) to (y, t). This motivates the definition of a dual process. To

construct it, reverse the direction of the arrows in the graphical representation and look at the

time backward.

Besides, it is immediate that the evolution of the ancestor of the site x in the dual is a random

walk with kernel p∗, the dual transition kernel of p defined by p∗(y) = p(−y) for all y ∈Zd . We

denote these random walks (X x (t ))t>0 and the measure associated to this is denoted Px with

Ex the corresponding expectation. In particular we have

ξ(x, t ) = 1 ⇔ ξ(X x (t ),0) = 1. (2.6)

Moreover, for two different sites x and y , the random walks (X x (t ))t>0 and (X y (t ))t>0 evolve

independently until they hit, then coalesce. For example, on Figure 2.2, random walks X −1

and X 1 coalesce very fast and X −1(t) = X 1(t) =−2. Also remark that when the symmetrized

transition kernel p(s)(x) = 1
2 (p(x)−p(−x)) is recurrent, limt→∞P(X x (t) = X y (t)) = 1 and so

limt→∞Pη(η(x, t) = η(y, t)) = 1 for any starting η ∈ {0,1}Z
d

. Thus in this case we tend to a

general consensus.

We also adopt the following notation. For any subset A ⊂Zd , the family of ancestors is denoted

by X A , i.e.,

X A(t ) = {X x (t ) ∈Zd : x ∈ A}. (2.7)
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Figure 2.2: Dual of Figure 2.1.

Although there are perhaps non-distinct sites in X A(t ), we see it as a subset of Z d . With this

remark in mind, we have, in particular,

ξ(x, t ) = 1∀x ∈ A ⇔ ξ(x,0) = 1∀x ∈ X A(t ). (2.8)

2.4 Stationary measures

We can remark that the voter model fails in Dobrushin criterion as ε= M = 1. This situation is

obvious as the voter Model is not ergodic. There are two trivial invariant measures : δ0 and

δ1 (only 0 or only 1). The discussion above shows that if the underlying random walk has a

recurrent symmetrization then these are the only (extremal) stationary measures. This raises

the question of what are the stationary measures when we have transience.

Name P i
e the set of extremal measures, i.e. the elements of P i which cannot be written as

a non trivial convex combination of elements of P i . We can easily show that the ergodic

measures are also extremal (and vice versa) (see Corollary 4.14 from LIGGETT [58]).

We first show that there exists another stationary measure than the trivial two ones.

Proposition 2.4.1. Denote by µα the Bernoulli product measure on {0,1}Z
d

, i.e., µα(η(x) = 1) =
α independently for all x ∈Zd . There exists a limiting measure

µα = lim
t→∞µαS(t ). (2.9)

Proof. For A a finite subset of Zd , first remark that

µαS(t )(ξ : A ∈ ξ) =µα(ξ : {X A(t )} ∈ ξ). (2.10)

Recall that the expression A ∈ ξ means that ξ(x) = 1∀x ∈ A. As the random walks X x are

coalescing, the number of distinct points of {X A(t)} is decreasing, because of coalescing

random walks, and as this is bounded from below by 1, there is a limit. Now take x1, . . . , xr ∈
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Zd and i1, . . . , ir ∈ {0,1} (for any r ) and note that µS(t)(ξ : ξ(x1) = i1, . . .ξ(xr ) = ir ) can be

written in terms of the form µS(t )(ξ : A ⊂ ξ) with A ⊂ {x1, . . . , xr } using the inclusion-exclusion

formula. As the collection of sets {ξ : ξ(x1) = i1, . . .ξ(xr ) = ir } is an algebra (in fact the so-called

cylinder algebra), it generates a unique smallest σ-algebra containing all these sets which

is the σ−algebra we have on S. Using the Carathéodory’s Extension Theorem, we show the

existence of the limiting measure µα. These notations will be used later : µα is the Bernoulli

product measure and µα is its limit.

We now use the prerequisite in Section 1.2 to show that every stationary measure will also be

translation invariant.

Proposition 2.4.2. Every stationary measure is also (translation) invariant.

Proof. We will use the dual representation and therefore, the collection of coalescing random

walks. Moreover, we will also take a system of random walks only coalescing until time R and

then evolving independently. In order to proceed, we need new definitions and notations.

Consider the set of coalescing random walks {X A} starting from points of A. Let c A
t (k) be the

probability of having exactly k distinct random walks at time t , with k 6 |A| the cardinality of

the set A. Write c A(k) = limt→∞ c A
t (k). This limit exists as c A(k) is decreasing and bounded

from below by 1. As explained before, define coupled processes depending on R > 0 such that

the set {X A
R } evolves in the same way as {X A} for t < R but then stops to coalesce and evolves

independently.

We can choose R such that, for ε> 0 fixed,∣∣c A
R (k)− c A(k)

∣∣< ε

|A| (2.11)

for all 16 k 6 |A|.

Now take µ ∈ P s a stationary measure. With similar arguments to those in the previous

subsection, it is sufficient to show that

µ(ξ : A ∈ ξ) =µ(ξ : A+ z ∈ ξ) (2.12)

for every z ∈Zd (with A+ z the natural coset of A).

Consider any A ∈Zd . As the measure µ is stationary, we have

µ(ξ : A ∈ ξ) =µ(ξ : X A(t )) ∈ ξ). (2.13)

Choose R sufficiently large such that Equation (2.11) is verified for A. Denote X A,R the

collection of distinct (non coalesced) random walks after time R, starting from set A. Let

X A+z,R evolve the exact same way as X A,R . We can then make a coupling between X A,R and
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X A+z,R componentwise (the first random walk of X A,R with the first of X A+z,R etc.) using the

technique explained in Proposition 1.2.3. That way we have

lim
t→∞P(X A,R (t ) = X A+z,R (t )) = 1. (2.14)

For R sufficiently large, by (2.11), we have

lim
t→∞P(X A(t ) = X A+z (t )) > 1−ε (2.15)

and then, except with a small probability ε, we have that

µS(t )(ξ : A ∈ ξ) =µS(t )(ξ : A+ z ∈ ξ) (2.16)

for t sufficiently large. Invariance of µ concludes the proof.

We are now ready for the main result of this Chapter.

2.4.1 Basic convergence theorem

We already saw that the voter model is not stationary because there are two trivial ergodic

measures δ0 and δ1. It is important to give a characterization of the stationary measures.

These are the only two when the symmetrized transition kernel is recurrent but when it is not

anymore the case, there exist other stationary measures. These results are well known and a

complete proof can be found in the book of Thomas M. LIGGETT [58].

Theorem 2.4.3. Let µα be the limiting measure of a Bernoulli product measure (as stated in

Proposition 2.4.1).

• If the symmetrized transition kernel is recurrent and µ ∈P i , then limt→∞µS(t ) =αδ0 +
(1−α)δ1 where α=µ{η : η(x) = 1} ;

• If the symmetrized transition kernel is transient and µ ∈ P i
e , then limt→∞µS(t) = µα

where α=µ{η : η(x) = 1}.

We now propose another way to prove the second part of this theorem. We choose a more

probabilistic point of view which simplifies the proof in our opinion. We rather follow the

philosophy of Rick DURRETT.

Take µ ∈P i an invariant measure. By the ergodic decomposition theorem, we know there is a

unique (up to a Borel isomorphism) Borel probability measure λ on P i
e such that

µ=
∫
P i

e

νdλ(ν).

Many proofs of this theorem exist, for example, the one of Klaus SCHMIDT [71] or the one of

Gustave CHOQUET [14].
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2.4. Stationary measures

We now prove the following theorem.

Theorem 2.4.4. If µ ∈P i
e , then we have

lim
t→∞µS(t ) =µα (2.17)

where

α= lim
n→∞

1

(2n +1)d

∑
|x|∞6n

η(x) µ-a.s. and µα = lim
t→∞µαS(t )

with µα a Bernoulli distribution with parameter α.

Using the ergodic decomposition, we just need to show that limt→∞µS(t ) =µα if µ is ergodic

and α, µα are defined as previously. Moreover, as the set of cylindric functions is dense in the

set of continuous and bounded functions (remark that all continuous functions are bounded

as the space is compact), we simply have to show

Pµ(η(x1, t ) = . . . = η(xr , t ) = 1)
t→∞−→ Pµα(η(x1) = . . . = η(xr ) = 1) (2.18)

for any r ∈N and x1, . . . , xr ∈Zd .

Consider the same notations as in the previous subsection. It’s immediate that the right hand

side of equation (2.18) is equal to
∑r

k=1 cx1,...,xr (k)αk . For ε> 0 fixed, choose R such that (2.11)

is verified.

Lemma 2.4.5 shows that the difference of behaviour between the two sets is small, more

precisely, for any fixed ε, there exists some R > 0 such that,∣∣µ⊗P(
η
(
X x1 (t )

)= . . . = η(
X xr (t )

)= 1
)−µ⊗P(

η
(
X x1,R (t )

)= . . . = η(
X xr ,R (t )

)= 1
)∣∣< ε (2.19)

for all t > 0. For simplicity in notation, write D t (x1, . . . , xr ,R) for the left hand side of the

previous inequality.

As Lemma 2.4.6 proves that

lim
t→∞µ⊗P

(
η
(
X x1,R (t )

)= . . . = η(
X xr ,R (t )

)= 1
)= r∑

k=1
cx1,...,xr

R (k)αk , (2.20)

Equation (2.11) and Lemma 2.4.5 show∣∣∣∣∣ lim
t→∞µ⊗P

(
η
(
X x1,R (t )

)= . . . = η(
X xr ,R (t )

)= 1
)− r∑

k=1
cx1,...,xr (k)αk

∣∣∣∣∣6 ε+ ε

1−α . (2.21)

This proved equation (2.18) as ε can be as small as we want.
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Chapter 2. Voter model

Lemma 2.4.5. For D t (x1, . . . , xr ,R) defined as in equation (2.19), we have

D t (x1, . . . , xr ,R)6 ε (2.22)

for R sufficiently large and for any t > R.

Proof. Let

τ(x1, . . . , xr ,R) = inf
{

s > R : ∃i 6= j such that X xi (R) 6= X x j (R), X xi (s) = X x j (s)
}

(2.23)

be the time of first coalescence after time R . By conditioning on the event τ6 t , then we have

D t (x1, . . . , xr ,R)6P(τ(x1, . . . , xr ,R) < t ). (2.24)

As P(τ(x1, . . . , xr ,R) < t ) is non increasing in R, we get the result.

Lemma 2.4.6. Take X xi ,t ,R
t and cx1,...,xr

R (k) defined as in proof of Theorem 2.4.4. Then we can

show that

lim
t→∞µ⊗P

(
η
(
X x1,R (t )

)= . . . = η(
X xr ,R (t )

)= 1
)= r∑

k=1
cx1,...,xr

R (k)αk . (2.25)

Proof. Take a finite range and aperiodic random walk with a Markov kernel p of mean z, and

starting from site x. Then, we can apply a local central limit theorem to show that after time t

the position of the random walk will be distributed by a multi-variable Gaussian law centered

in x + zt , up to an error of order O(t−(d+1)/2) (see Theorem 2.3.8 in [54]).

x + zt

s
p tε

s
p t2ε

s
p t (1−ε)

s
p t

A1

A2

A1/ε−1

A1/ε

Construction of the annulus Ai .

Let Ai be the annulus centered in x + zt with width ε as illustrated in the previous picture.

Then we know that except a small probability of order O(e−t ), the random walk will be in

one of the annulus Ai after a time t . Moreover, for ε sufficiently small, the distribution in the

16



2.4. Stationary measures

annulus can be considered uniform up to an error of order O(εt−d/2) (see Theorem 2.4.1 in

[56]).

We can now cover every annulus with very small squares of size
p

tεm . Here m is just a big

number chosen so that the probability that the random walk is not in any square is really

small.

Recall that we supposed that µ ∈P i and that

α= lim
n→∞

1

(2n +1)d

∑
|x|∞6n

η(x) µ-a.s. (2.26)

This means that for every δ> 0, there exists a nδ such that, for all n > nδ,

Pµ

(∣∣∣∣∣ 1

(2n +1)d

∑
|x|∞6n

η(x)−α
∣∣∣∣∣> δ

)
< δ (2.27)

and as µ is invariant we have, for all n > nδ and all y ∈ E ,

Pµ

(∣∣∣∣∣ 1

(2n +1)d

∑
|x−y |∞6n

η(x)−α
∣∣∣∣∣> δ

)
< δ (2.28)

That means that for each square, the density of 1’ is close to α when t is sufficiently large.

More formally, first take s sufficiently large so that the probability that the random walk is

outside an annulus of size s
p

t is smaller than δ1. Then, choose ε sufficiently small so that the

error of supposing the distribution in an annulus is uniform is smaller than δ2. Then, take m

big enough so that the probability the random walk is not in a covering square is smaller than

δ3. Finally, take t big enough so that the error due to the local central limit theorem is smaller

than δ4 and so that the size of a square is bigger than nδ5 . So the probability that the random

walk has value 1 at time t is α± (δ1 +δ2 +δ3 +δ4 +δ5).

Suppose now that the random walk X is not finite range. We can then find X ′ and X ′′ such

that X ′ is finite range and X = X ′+X ′′. By space homogeneity, we have

µ⊗P(
η
(
X t

)= 1
)= ∑

x ′′∈Zd

µ⊗P(
η
(
x ′′+X ′

t

)= 1|X ′′
t = x ′′)P(

X ′′
t = x ′′)=µ⊗P(

η
(
X ′′′

t

)= 1
)

(2.29)

which is close to α for t sufficiently large. Here, X ′′′ is the random walk evolving as X ′ but

starting from 0.

17



Chapter 2. Voter model

As the different random walks are independent after time R, we then have,

lim
t→∞µ⊗P

(
η
(
X x1,t ,R

t

)= . . . = η(
X xr ,t ,R

t

)= 1
)

= lim
t→∞

∫
P
(
η
(
X x1,t ,R

t

)= . . . = η(
X xr ,t ,R

t

)= 1|η= ξ)µ(dξ)

=
∫ r∑

k=1
cx1,...,xr

R (k)αkµ(dξ)

=
r∑

k=1
cx1,...,xr

R (k)αk .

(2.30)
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3 Parabolic Anderson model

3.1 Model

As outlined in Introduction, the parabolic Anderson model is the partial differential equation

∂

∂t
u(x, t ) = κ∆u(x, t )+γξ(x, t )u(x, t ) x ∈Zd , t > 0, (3.1)

for the R-valued random field u, with κ ∈ [0,∞) the diffusion constant, γ ∈ [0,∞) the coupling

constant, ∆ the discrete Laplacian, ξ the voter model starting from Bernoulli product measure

µρ with density ρ ∈ (0,1) (with kernel p(·, ·) = p(·) and p(s)(·, ·) its symmetrization) and initial

condition u(x,0) = 1 for all x ∈Zd .

3.2 Lyapunov exponents

Our focus of interest will be on the p-th annealed Lyapunov exponent, defined by

λp = lim
t→∞

1

t
log

(
Eµρ

(
[u(0, t )]p)1/p

)
, p ∈N, (3.2)

which represents the exponential growth rate of the p-th moment of the solution of the

equation (3.1). Note that λp also depends on the parameters κ, d , γ and ρ with the last two

being fixed from now on. If the above limit exists, then, by Hölder’s inequality, κ 7→ λp (κ)

satisfies

λp (κ) ∈ [ργ,γ] ∀κ ∈ [0,∞). (3.3)

The behaviour of the annealed Lyapunov exponents with a voter model as catalyst has already

been investigated by Jürgen GÄRTNER, Frank DEN HOLLANDER and Grégory MAILLARD [44],

where it was shown that:

• the Lyapunov exponents defined in (3.2) exist;
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Chapter 3. Parabolic Anderson model

• the function κ 7→λp (κ) is globally Lipschitz outside any neighborhood of 0 and satisfies

λp (κ) > ργ for all κ ∈ [0,∞);

• the Lyapunov exponents satisfy the following dichotomy (see Figure 3.1):

– when 16 d 6 4, if p(·, ·) has zero mean and finite variance, then λp (κ) = γ for all

κ ∈ [0,∞);

– when d > 5,

* limκ→0λp (κ) =λp (0);

* limκ→∞λp (κ) = ργ;

* if p(·, ·) has zero mean and finite variance, then p 7→λp (κ) is strictly increasing

for κ¿ 1.

The following questions were left open (see [44], Section 1.8):

(Q1) Does λp < γ when d > 5 if p(·, ·) has zero mean and finite variance?

(Q2) Is there a full dichotomy in the behaviour of the Lyapunov exponents? Namely, λp < γ if

and only if p(s)(·, ·) is strongly transient, i.e.,∫ ∞

0
t p(s)

t (0,0)d t <∞ . (3.4)

Since any transition kernel p(·, ·) in d > 5 satisfies
∫ ∞

0 t pt (0,0)d t <∞, a positive answer to

(Q2) will also ensure a positive one to (Q1) in the particular case when p(·, ·) is symmetric.

Theorems 3.3.2–3.3.4 in Section 3.3 give answers to question (Q2), depending on the symmetry

of p(·, ·). A positive answer to (Q1), given in Theorem 3.3.1, can also be deduced from our

proof of Theorem 3.3.2.

-

6

0

γ

κ

16 d 6 4

r
λp (κ)

-

6

0

γ

ργ

κ

λp (κ)

d > 5

rrrp = 1
p = 2
p = 3

Figure 3.1: Dichotomy of the behaviour of κ 7→λp (κ) when p(· , ·) has zero mean and finite variance.

By the Feynman-Kac formula, the solution of (3.1) reads

u(x, t ) = Ex

(
exp

[
γ

∫ t

0
ξ
(
X κ(s), t − s

)
d s

])
, (3.5)
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3.3. Main results

where X κ = (X κ(t ))t>0 is a simple random walk on Zd with step rate 2dκ and Ex denotes the

expectation with respect to X κ given X κ(0) = x. This leads to the following representation of

the Lyapunov exponents

λp = lim
t→∞Λp (t ) (3.6)

with

Λp (t ) = 1

pt
log

(
Eµρ ⊗E⊗p

0

)(
exp

[
γ

∫ t

0

p∑
j=1

ξ
(
X κ

j (s), t − s
)

d s

])
, (3.7)

where X κ
j , j = 1, . . . , p, are p independent copies of X κ. In the above expression, the ξ and

X κ processes are evolving in time reversed directions. It is nevertheless possible to let them

run in the same time evolution by using the following arguments. Let Λ̃p (t) denote the

ξ-time-reversal analogue ofΛp (t ) defined by

Λ̃p (t ) = 1

pt
log

(
Eµρ ⊗E⊗p

0

)(
exp

[
γ

∫ t

0

p∑
j=1

ξ
(
X κ

j (s), s
)

d s

])
(3.8)

and denoteΛp (t ) =

1

pt
logmax

x∈Zd

(
Eµρ ⊗E⊗p

0

)(
exp

[
γ

∫ t

0

p∑
j=1

ξ
(
X κ

j (s), t − s
)

d s

] p∏
j=1

δx
(
X κ

j (t )
))

= 1

pt
logmax

x∈Zd

(
Eµρ ⊗E⊗p

0

)(
exp

[
γ

∫ t

0

p∑
j=1

ξ
(
X κ

j (s), s
)

d s

] p∏
j=1

δx
(
X κ

j (t )
))

,

where in the last line we reverse the time of the ξ-process by using that µρ is shift-invariant and

X κ
j , j = 1, . . . , p, are time-reversible. As noted in [22], Section 2.1, limt→∞[Λp (t)−Λp (t)] = 0

and, using the same argument, limt→∞[Λ̃p (t )−Λp (t )] = 0, after which we can conclude that

λp (κ) = lim
t→∞

1

pt
log

(
Eµρ ⊗E⊗p

0

)(
exp

[
γ

∫ t

0

p∑
j=1

ξ
(
X κ

j (s), s
)

d s

])
. (3.9)

3.3 Main results

In what follows we give answers to questions (Q1) and (Q2) addressed in [44] concerning when

the Lyapunov exponents are trivial, i.e., equal to their a priori maximal value γ.

Our first theorem gives a positive answer to (Q1). It will be proved in Section 3.4 as a conse-

quence of the proof of Theorem 3.3.2.

Theorem 3.3.1. If d > 5 and p(·, ·) has zero mean and finite variance, then λp (κ) < γ for all

p > 1 and κ ∈ [0,∞).
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Chapter 3. Parabolic Anderson model

Our two next theorems state that the full dichotomy in (Q2) holds in the case when p(·, ·) is

symmetric (see Fig. 3.2). They will be proved in Section 3.4 and 3.5, respectively.

Theorem 3.3.2. If p(·, ·) is symmetric and strongly transient, then λp (κ) < γ for all p > 1 and

κ ∈ [0,∞).

Theorem 3.3.3. If p(·, ·) is symmetric and not strongly transient, then λp (κ) = γ for all p > 1

and κ ∈ [0,∞).

-

6

0

γ

κ

λp (κ)
not strongly transient

-

6

r

0

γ

ργ

κ

λp (κ)
strongly transientr

Figure 3.2: Full dichotomy of the behaviour of κ 7→λp (κ) when p(·, ·) is symmetric.

A similar full dichotomy also holds for the case where ξ is symmetric exclusion process in

equilibrium, between recurrent and transient p(·, ·) (see [42]).

Our fourth theorem shows that this full dichotomy only holds for symmetric transition kernels

p(·, ·), ensuring that the assertion in (Q2) is not true in its full generality.

Theorem 3.3.4. There exists p(·, ·) not symmetric with p(s)(·, ·) not strongly transient such that

λp (κ) < γ for all p > 1 and κ ∈ [0,∞).

In the strongly transient regime, the following problems remain open:

(a) limκ→0λp (κ) =λp (0);

(b) limκ→∞λp (κ) = ργ;

(c) p 7→λp (κ) is strictly increasing for κ¿ 1;

(d) κ 7→λp (κ) is convex on [0,∞).

In [44], (a) and (b) were established when d > 5, and (c) when d > 5 and p(·, ·) has zero mean

and finite variance. Their extension to the case when p(·, ·) is strongly transient remains open.

In what follows, we use generic notation P and E for probability and expectation whatever the

corresponding process is (even for joint processes).
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3.4 Proof of Theorems 3.3.1 and 3.3.2

We first give the proof of Theorem 3.3.2. Recall that the transition kernel associated to the

voter model ξ is assumed to be symmetric. At the end of the section we will explain how to

derive the proof of Theorem 3.3.1.

We have to show that λp (κ) < γ for all κ ∈ [0,∞). In what follows we assume without loss of

generality that p = 1, the extension to arbitrary p > 1 being straightforward. Our approach is

to pick a bad environment set BE associated to the ξ-process and a bad random walk set BW

associated to the random walk X κ so that, for all n ∈N,

E
(

exp
[
γ

∫ n

0
ξ(X κ(s), s)d s

])
6

(
P(BE )+P(BW )

)
eγn +E

(
1{

B c
E∩B c

W

} exp
[
γ

∫ n

0
ξ(X κ(s), s)d s

]) (3.10)

with, for some 0 < δ< 1,

P(BE )6 e−δn , P(BW )6 e−δn , (3.11)

and, ∫ n

0
ξ(X κ(s), s)d s 6 n(1−δ) on B c

E ∩B c
W . (3.12)

Since, combining (3.10–3.12), we obtain

lim
n→∞

1

n
logE

(
exp

[
γ

∫ n

0
ξ(X κ(s), s)d s

])
< γ , (3.13)

it is enough to prove (3.11) and (3.12).

The proof of (3.11) is given in Sections 3.4.1–3.4.3 below, and (3.12) will be obvious from our

definitions of BE and BW .

3.4.1 Coarse-graining and skeletons

Write Zd
e = 2Zd and Zd

o = 2Zd + 1, where 1 = (1, . . . ,1) ∈ Zd . We are going to use a coarse-

graining representation defined by a space-time block partition B j
y and a random walk skeleton

(yi )i>0. To that aim, for a fixed M , consider

B j
y =

d∏
k=1

[
(y[k] −1)M , (y[k] +1)M

)× [
j M , ( j +1)M

)⊂Zd ×R+ , (3.14)
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Chapter 3. Parabolic Anderson model

where y[k] is the kth coordinate of y , j ∈N0 :=N∪ {0} and

y ∈
{
Zd

e when j is even,

Zd
o when j is odd.

(3.15)

Without loss of generality we can consider random walks trajectories on interval [0,n] with

n ∈Nmultiple of M . Define the M-skeleton set by

Ξ=
{(

y0, . . . , y n
M

)
∈ (Zd )

n
M +1 : y2k ∈Zd

e , y2k+1 ∈Zd
o ∀k ∈ {0, . . . ,n/M }

}
(3.16)

and the M-skeleton set associated to a random walk X by

Ξ(X ) =
{(

y0, . . . , y n
M

)
∈Ξ : X (kM) ∈ B k

yk
∀k ∈ {0, . . . ,n/M }

}
. (3.17)

In what follows, we will consider the M-skeleton Ξ(X κ), but, as X κ starts from 0 ∈Zd , the first

point of our M-skeleton will always be y0 := 0 ∈Zd (see Fig. 3.3).

-

6

B j
y

y M

j M

0
y0

y1

y2

R+

Zd

Figure 3.3: Illustration of a M-skeleton (y0, y1, y2, . . .) ∈Ξ and coarse-grained B j
y blocks.

In the next lemma we prove that the number of M-skeletons not oscillating too much is at

most exponential in n/M . For that, define

ΞA =
{(

y0, . . . , y n
M

) ∈Ξ :
n/M∑
j=1

(‖y j − y j−1‖∞−1)6
n

Md

}
, (3.18)

the set of all M-skeletons that are appropriate where ‖ ·‖∞ is the standard l∞ norm.

Lemma 3.4.1. There exists some universal constant K ∈ (1,∞) such that, for any n, M ∈N,

|ΞA|6K n/M . (3.19)

Proof. For any fixed y1 ∈Zd and N ∈N0, let

I (N ) = |{y2 ∈Zd : ‖y1 − y2‖∞−1 = N
}| (3.20)
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be the number of elements ofZd on the boundary of the cube of size 2N +3 centered at y1. For

any N ∈N, we have I (N ) = (2N +3)d − (2N +1)d and I (0) = 3d −1, therefore, for any N ∈N0,

I (N )6 3d (N +1)d . (3.21)

Define, for any N ,k ∈N,

I (N ,k) =
∣∣∣∣∣
{

(y j )06 j6k ∈ (Zd )k+1 :
k∑

j=1
(‖y j − y j−1‖∞−1) = N

}∣∣∣∣∣ (3.22)

the number of sequences in (Zd )k+1 having size N . By (3.21) and (3.22), we have

I (N ,k) = ∑
(N1,...,Nk ) :∑k

i=1
Ni =N

(
k∏

i=1
I (Ni )

)

6 3dk
∑

(N1,...,Nk ) :∑k
i=1

Ni =N

(
k∏

i=1
(Ni +1)

)d

6 3dk

(
k +N +1

N

)
2d N ,

(3.23)

where, in the last line, we used that

max
(N1,...,Nk ) :∑k

i=1
Ni =N

k∏
i=1

(Ni +1) = 2N . (3.24)

Using (3.23) and the fact that Ξ⊂Zd , we obtain

|ΞA|6
⌊

n
Md

⌋∑
N=0

I
(
N ,

n

M

)
6 3

n
M

⌊
n

Md

⌋∑
N=0

(
n
M +N +1

N

)
2d N

6 3
n
M

⌊
n

Md

⌋∑
N=0

(
2n
M

N

)
2d N 6 3

n
M

2n
M∑

N=0

(
2n
M

N

)
2d N

= 3
n
M (2d +1)

2n
M ,

(3.25)

which ends the proof of the lemma.

3.4.2 The bad environment set BE

This section is devoted to the proof of the leftmost part of (3.11) for suitable set BE defined

below.
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We say that an environment ξ is good w.r.t. an M-skeleton (y0, · · · , y n
M

) if we have∣∣∣{06 j < n

M
: ∃(x, j M) ∈ B j

y j
s.t. ξ(x, s) = 0 ∀s ∈ [ j M , j M +1]

}∣∣∣> n

4M
. (3.26)

Since we want the environment to be good w.r.t. all appropriate M-skeletons, we define the

bad environment set as

BE = {∃ an M-skeleton ∈ΞA s.t. ξ is not good w.r.t. it}. (3.27)

In the next lemma we prove that for any fixed M-skeleton, the probability that ξ is not good

w.r.t. it is at most exponentially small in n/M .

Lemma 3.4.2. Take (yi )06i6 n
M
∈Ξ an M-skeleton. For M big enough, we have

P
(
ξ is not good w.r.t. (yi )06i6 n

M

)
6 (4K )−n/M , (3.28)

where K is the universal constant defined in Lemma 3.4.1.

Therefore, combining Lemmas 3.4.1 and 3.4.2, we get

P(BE )6 4−n/M (3.29)

for M big enough, from which we obtain the leftmost part of (3.11).

Before proving Lemma 3.4.2, we first give an auxiliary lemma. In order to study the evolution

of the voter model, we consider, as usual, the dual process, namely, a system of coalescing

random walks that evolve backwards in time. However, we will consider random walks starting

from different times. To that aim, define (X x,t (s))06s6t to be the random walk starting from x

at time t (i.e., X x,t (0) = x). From the graphical representation of the voter model, we can write

ξ(t)(x) = ξ(X x,t (t),0), x ∈Zd , and therefore the voter model can be expressed in terms of its

initial configuration and a system of coalescing random walks. Two random walks X x,s and

X x ′,s′ with s′ < s meet if there exists u 6 s′ such that X x ′,s′(s′−u) = X x,s(s −u). It is therefore

the same to say that X x,s and X x ′,s′ with s′ < s meet (in some appropriate time interval) if there

exists t > 0 in this interval (by letting t = s′−u) such that

X x ′,s′(t ) = X x,s(t + s − s′) . (3.30)

For convenience we will adopt this notation in the rest of the section.

Lemma 3.4.3. Take two independent random walks X x,s and X x ′,s′ with s′ < s. Then the

probability they ever meet is bounded above by∫ ∞

s−s′
pt (0,0)d t . (3.31)
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3.4. Proof of Theorems 3.3.1 and 3.3.2

Proof. Consider the random variable

W =
∫ ∞

0
1
{

X x,s(t ) = X x ′,s′(t + (s − s′))
}

d t . (3.32)

By symmetry, its expectation satisfies

E(W ) =
∫ ∞

0
P

(
X 0,0(2t + s − s′) = x −x ′) d t

6
∫ ∞

0
P

(
X 0,0(2t + s − s′) = 0

)
d t

= 1

2

∫ ∞

s−s′
pt (0,0)d t .

(3.33)

Moreover, we have

E(W |W > 0) =
∫ ∞

0
p2t (0,0)d t >

1

2
(3.34)

and then, since E(W ) = E(W |W > 0)P(W > 0), it follows that

P(W > 0)6 2E(W ) =
∫ ∞

s−s′
pt (0,0)d t . (3.35)

We are now ready to prove the Lemma 3.4.2.

Proof. Recall that ξ(x, s) = ξ(X x,s(s),0), where ξ(0) is distributed according to a product

Bernoulli law with density ρ ∈ (0,1). We first consider any M-skeleton (y0, . . . , yn/M ) ∈ Ξ
(even not appropriate). For each 06 j < n/M , we choose R sites (x j

1 , j M), . . . , (x j
R , j M) ∈ B j

y j

such that

P
(
∃06 k,k ′ 6R, k 6= k ′ : X x j

k , j M (s) = X x j

k′ , j M (s) for some s ∈ [0, j M ]
)
6 ε (3.36)

for ε¿ 1 to be specified later (see Fig. 3.4). Remark that we first fix ε and R and then we choose

M large enough so we can find these R sites. As we are in a strongly transient regime, we know

that these points exist. If two such random walks hit each other, then we freeze all the random

walks issuing from the corresponding block j .

For any 16 j < n
M , 16 k 6R for some R > 0, we have

E

 n
M −1∑

j ′= j+1

R∑
k ′=1

1{
X

x
j ′
k′ , j ′M

(s+( j ′− j )M)=X x
j
k

, j M (s) for some s∈[0, j M ]

}


6R

n
M −1∑

j ′= j+1

∫ ∞

( j ′− j )M
pt (0,0)d t 6R

∫ ∞

M

t

M
pt (0,0)d t ,
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Chapter 3. Parabolic Anderson model

and therefore, summing over 16 k 6R, we get

E

 n
M −1∑

j ′= j+1

R∑
k,k ′=1

1{
X

x
j ′
k′ , j ′M

(s+( j ′− j )M)=X x
j
k

, j M (s) for some s∈[0, j M ]

}


6
R2

M

∫ ∞

M
t pt (0,0)d t 6 ε2, (3.37)

for M sufficiently large. Again, remark that we first fix ε and R , then we choose M large enough.

-

6

B j
y

y M

j M

n

0
0

R+

Zd

-

j M
j M +1

( j +1)M

x̀ j
1 ` ` x̀ j

k ` `x j
R

Figure 3.4: Illustration of sites (x j
k , j M), k ∈ {1, . . . ,R}, for a fixed M-skeleton.

For each j , we now define the filtration

F
j

t =σ
(

X x j
k , j M (s) : 06 s 6 t , 16 k 6R

)
(3.38)

and the sub-martingale Z j (t ) :=

E

 n
M −1∑

j ′= j+1

R∑
k,k ′=1

1{
X

x
j ′
k′ , j ′M

(s+( j ′− j ))=X x
j
k

, j M (s) for some s∈[0,t ]

} ∣∣∣ F
j

t

 , (3.39)

with the stopping time

τ j = inf
{

t > 0: Z j (t ) > ε
}

. (3.40)

We freeze every random walk issuing from block j at time j M ∧τ j . Using (3.37) and the Doob’s

inequality, we can see that

P(τ j 6 j M)6P

(
sup

06t6 j M
Z j

t > ε

)
6

R2

Mε

∫ ∞

M
t pt (0,0)d t 6 ε . (3.41)

Since, Z j is a continuous sub-martingale except at jump times of one of the random walks
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X x j
k , j M and when a jump occurs, the increment is at most

R

n
M −1∑

j ′= j+1
p( j ′− j )M (0,0)6 ε2 (3.42)

if M is big enough. Therefore, for all 06 t 6 τ j , we get

Z j (t ) < ε+ε2 6 2ε P-a.s. . (3.43)

Now we say that j is good if

• τ j > j M ;

• the R random walks X x j
1 , j M , · · · , X x j

R , j M do not meet;

• the random walks X x j
k , j M do not hit any point x j ′

k ′ during interval [( j − j ′)M−1,( j − j ′)M ]

for j ′ < j ;

• the random walks X x j
k , j M do not meet X x j ′

k′ , j ′M for j ′ < j .

By (3.41), we know that the probability that the first condition does not occur is smaller than ε.

By definition of the sites x j
1 , . . . , x j

R , we know that the probability that random walks issuing

from the same block j at sites x j
k , k = 1, . . . ,R, hit each other is smaller than ε (recall (3.36)).

Moreover, the probability that the third condition does not occur is bounded from above by

R
j−1∑
j ′=1

∫ ( j− j ′)M

( j− j ′)M−1
pt (0,0)d t (3.44)

which is as small as we want for M large because we are in a transient case. We still have to

compute the probability that the fourth condition does not occur. Furthermore, we can see

that two random walks issuing from the same block evolve independently until they meet,

provided they do not meet a previous random walk. From the above considerations, we get

P
(

j is not good | G j−1
)
6 3ε+

j−1∑
j ′=1

R∑
k,k ′=1

P

(
X x j

k , j M meets X x j ′
k′ , j ′M | G j ′

)
, (3.45)

where

G j =σ
(

X x j ′
k , j ′M (s) : 16 k 6R, 16 j ′ 6 j , 06 s 6 j ′M ∧τ j ′

)
. (3.46)

Here, we recall that X x j
k , j M meets X x j ′

k′ , j ′M (with j ′ < j ) if we have

X x j
k , j M (s + ( j − j ′)M) = X x j ′

k , j ′M (s) for some s ∈ [
0,τ j ′ ∧ j ′M

]
. (3.47)

29



Chapter 3. Parabolic Anderson model

By (3.43), we have, for all j ′ fixed,

n
M −1∑

j= j ′+1

R∑
k,k ′=1

P

(
X x j

k , j M meets X x j ′
k′ , j ′M

∣∣∣ G j ′
)
6 2ε. (3.48)

Summing over all 16 j ′ 6 n/M −2, we get

n
M −2∑
j ′=1

n
M −1∑

j= j ′+1

R∑
k,k ′=1

P

(
X x j

k , j M meets X x j ′
k′ , j ′M

∣∣∣ G j ′
)
6

n

M
2ε, (3.49)

and then, interchanging the sums, we arrive at

n
M −1∑
j=2

j−1∑
j ′=1

R∑
k,k ′=1

P

(
X x j

k , j M meets X x j ′
k′ , j ′M

∣∣∣ G j ′
)
6

n

M
2ε. (3.50)

Thus, there are at most
⌊ n

2M

⌋
random positions j with the property

j−1∑
j ′=1

R∑
k,k ′=1

P

(
X x j

k , j M meets X x j ′
k′ , j ′M

∣∣∣ G j ′
)
> 4ε, (3.51)

and so at least
⌈ n

2M

⌉−2 random positions j have the property

j−1∑
j ′=1

R∑
k,k ′=1

P

(
X x j

k , j M meets X x j ′
k′ , j ′M

∣∣∣ G j ′
)
< 4ε . (3.52)

For these random positions j , we then have

P
(

j is good | G j−1)> 1−7ε. (3.53)

Using an elementary coupling, we have at least n
3M positions that are good with probability

bounded by

P
(
Y >

n

3M

)
> 1−e−c(ε)n/M (3.54)

for

Y ∼ B
(⌈ n

2M

⌉
−2,1−7ε

)
(3.55)

and c(ε) → ∞ as ε → 0. Therefore, outside a small probability e−c(ε)n/M , for at least n
3M

positions j , we have that the random walks X x j
k , j M are disjoint and so the values ξ(X x j

k , j M (s),0)

are independent until time s 6 j M . Then, in this case, using the fact that (ξ(x,0))x∈Zd are

i.i.d. according to a Bernoulli product measure with parameter ρ, we have that the number of

positions j so that there exists (x, j M) ∈ B j
y j

with ξ(x, s) = 0 and s ∈ [ j M , j M +1] is at least n
4M
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outside the probability, for some constant c(R) (so that c(R) →∞ as R →∞),

P
(
Y ′ >

n

12M

)
6 e−c(R)n/M (3.56)

with Y ′ ∼ B
( n

3M ,
(
(1−e−1(1−ρ))R

))
, for R large enough.

Then, by equations (3.54) and (3.56), we have, for ε sufficiently small and R sufficiently large,

P
(
ξ is not good w.r.t. (yi )06i6 n

M

)
6 e−c(ε)n/M +e−c(R)n/M ·6

(
1

4K

)n/M

. (3.57)

The proof of the leftmost part of (3.11) is now completed.

3.4.3 The bad random walk set BW

This section is devoted to the proof of the rightmost part of (3.11).

We are now interested in the random walk X κ. We are going to prove that (X κ(s))06s6n has an

appropriate M-skeleton and touches enough zeros outside a probability event exponentially

small in n (see Lemmas 3.4.4 and 3.4.5 below, respectively). To define the bad random set BW

announced in (3.5.11), we are going to define BW = BW1 ∪BW2 , where the bad sets BW1 and

BW2 correspond, respectively, to random walks trajectories X κ which do not have appropriate

M-skeleton and do not touch enough sites with value 0. To be more precise, define

BW1 =
{
(Ξ(X κ) ∉ΞA

}
. (3.58)

BW2 will be defined later, in (3.67). In the next lemma, we prove that the probability of BW1 is

exponentially small in n.

Lemma 3.4.4. Take (X κ(s))06s6n and Ξ(X κ) = (y0, · · · , yn/M ) the associated M-skeleton. Then,

there exists a constant K ′ not depending on n such that

P(BW1 )6 e−K ′n . (3.59)

Proof. In order to have the random walk moving from one block of the skeleton to a nonadja-

cent one, the random walk has to make at least M steps in the same direction. Keeping that in

mind, define

Y j (s) = X κ( j M + s)−X κ( j M) (3.60)

and let

τ
j
1 = inf{s : ‖Y j (s)‖∞ > M }, τ

j
i = inf

{
s > τ j

i−1 : ‖Y j (s)−Y j (τ j
i−1)‖∞ > M

}
. (3.61)
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Next, define

W j
i =1{

{τi
j<M }

} (3.62)

and use an elementary coupling to have

P(W j
1 = 1)6 e−c/M and P(W j

i = 1|W j
i−1 = 1)6 e−c(i )/M 6 e−c/M (3.63)

for some constants c and c(i ) which verify c(i ) > c. Therefore, we have that the number of

jumps for the j th block is bounded above by the number of W j
i equal to 1. Using a coupling

we can see that this is bounded above by a geometric law with parameter e−c/M . Now if we

consider all the blocks, by elementary properties of geometric random variables, we have

P(BW1 )6P
(
Y >

n

Md

)
6 e−c ′n (3.64)

for Y ∼ B
( n

M

(
1+ 1

d

)
,e−c/M

)
, some constant c ′ > 0, M being large and the proof is done.

Lemma 3.4.4 proves the first part of the rightmost part of (3.11), namely the part concerned

with bad set BW1 . Now we look at the number of times X κ stays on a site where the voter model

has zero value. For that, define

τi+1 = inf
{

t > τi +1: ∃x ∈Zd s.t. ‖x −X κ(t )‖∞ 6 2M , ξ(x, s) = 0 ∀s ∈ [t , t +1]
}

(3.65)

with τ0 = 0 and

k(M) = e−1/2 inf
‖x‖∞62M

P
(
X κ(1/2) = x | X κ(0) = 0

)
(3.66)

(remark that k(M) does not depend on n and is strictly positive). Finally, we define

BW2 =
{

(X κ,ξ) : τb n
2M c6 n −1 and

∫ n

0
ξ(X κ(s), s)d s > n

(
1− k(M)

8M

)}
(3.67)

as being the bad set corresponding to random walks trajectories X κ which do not touch

enough sites occupied by a zero configuration of the voter model. In the next lemma, we prove

that such a set has an exponentially small probability in n.

Lemma 3.4.5. There exists a constant δ> 0 not depending on n, such that, for M big enough

we have

P(BW2 )6 e−nδ . (3.68)

Proof. Take any realization of ξ and for each time τi , define a random variable Yi which takes

value 1 if X κ reaches a site with value zero at time τi + 1
2 and stays at this site until time τi +1,

or takes value 0 otherwise. Remark that after having fixed n, we can choose the state of ξ(t ),
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t > n, as we want, for example, full of zeros. Continue until τbn/(2M)c which is finite if ξ is well

chosen after time n. Using the strong Markov property, for every ki ∈ {0,1}, we see that

P(Yi = 1|Y j = k j , j < i ) =P(Yi = 1|Yi−1 = ki−1)> k(M) . (3.69)

Then, it follows that Y :=∑bn/(2M)c
i=1 Yi is stochastically greater than Y ′ the binomial random

variable B
( n

2M ,k(M)
)
. Moreover, if τbn/(2M)c 6 n −1, we have∫ n

0
ξ(X (s), s)d s 6 n − 1

2
Y . (3.70)

Hence, we get

P(BW2 )6P

(
τb n

2M c6 n −1 and n − 1

2
Y > n − nk(M)

8M

)
6P

(
n − Y

2
> n − nk(M)

8M

)
=P

(
Y 6

nk(M)

4M

)
6 e−cn

for n sufficiently large and c a positive constant not depending on n. This result being shown

for any realization of ξ (up to time n), this ends the proof.

Lemma 3.4.5 proves the second part of the rightmost part of (3.11), namely the part concerned

with bad set BW2 . To complete the proof of (3.12), it suffices to use the definition of BE and

BW = BW1 ∪BW2 , and to remark that if BE and BW1 do not occur, then the first condition of

BW2 , namely τbn/2Mc 6 n −1, is satisfied and therefore the second must be violated.

3.4.4 Proof of Theorem 3.3.1

The proof of Theorem 3.3.1 can be deduced from the proof of Theorem 3.3.2. Without assuming

that p(·, ·) is symmetric, it is enough to see that

•
∫ ∞

0
t pt (0,0)d t <∞, by local central limit theorem, and

• there is enough symmetry because there exists some C > 0 such that pt (x,0)6C pt (0,0)

for all x ∈Zd and t ∈ [0,∞). Therefore, Lemma 3.4.2 can still be applied.

From these two observations, the proof of Theorem 3.3.1 goes through the same lines as the

one of Theorem 3.3.2.
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3.5 Proof of Theorem 3.3.3

In this section we consider the Lyapunov exponents when the random walk kernel associated

to the voter model noise is symmetric and also not strongly transient, that is∫ ∞

0
t pt (0,0)d t =∞ . (3.71)

We want to show that when p(·, ·) is symmetric and not strongly transient, then

λp (κ) ≡ γ ∀κ ∈ (0,∞), ∀p > 1. (3.72)

Since the result is easily seen for recurrent random walks, we can and will assume in the

following that∫ ∞

0
pt (0,0)d t <∞ . (3.73)

Given the reasoning of [42], Section 3.1 and [44], Section 5.1 this result will follow from

Proposition 3.5.1, below. Consider, in the graphical representation associated to the voter

model ξ,

χ(t ) := number of distinct coalescing random walks produced on {0}× [0, t ] (3.74)

(This quantity is discussed in Bramson, Cox and Griffeath [7]).

Proposition 3.5.1. Assume that p(·, ·), is symmetric and not strongly transient, then for any

ε> 0, we have that

lim
t→∞P

(
χ(t )6 εt

)= 1. (3.75)

Before proving Proposition 3.5.1, we will first give the proof of Theorem 3.3.3.

Proof. From the graphical representation of the voter model and Proposition 3.5.1, we can see

that for all δ> 0 and M <∞,

P
(
ξ(x, s) = 1 ∀‖x‖∞ 6 M , ∀s ∈ [0, t ]

)
> e−δt (3.76)

for all t sufficiently large (see [44], proof of Lemma 5.1). Thus, just as in [44], Section 5.1, we

have for all p > 1,

E([u(0, t )]p )

> eγptP
(
‖X κ(s)‖∞ < M ∀s ∈ [0, t ]

)p
P
(
ξ(x, s) = 1 ∀‖x‖∞ < M , ∀s ∈ [0, t ]

)
> e t (γp−δ−c(M)p)

(3.77)
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for c(M) → 0 as M →∞. From this, it is immediate that

lim
t→∞

1

t
logE([u(0, t )]p )1/p = γ. (3.78)

To prove Proposition 3.5.1, we consider the following system of coalescing random walks

I = {X t : t ∈ P } (3.79)

for P a two sided, rate one Poisson process and X t a random walk defined on s ∈ [t ,∞), starting

at 0 at time t (we could equally well consider a system of random walks indexed by hZ for

some constant h). The coalescence is such that for t < t ′ ∈ P , X t , X t ′ evolve independently

until T t ,t ′ = inf{s > t ′ : X t (s) = X t ′(s)}, and then, for s > T t ,t ′ , X t (s) = X t ′(s).

We will be interested in the density or number of distinct random walks at certain times. To

aid this line we will adopt a labelling procedure for the random walks, whereby effectively

when two random walks meet for the first time, one of them (chosen at random) dies; in this

optic the number of distinct random walks will be the number still alive. Our labeling scheme

involves defining for each t ∈ P, the label process l t
s for s > t− (it will be helpful to be able to

define l t
t− = t , though since at time t there may well be other random walks present at the

origin, it will not necessarily be the case that l t
t = t). These processes will be defined by the

following properties:

• if for t 6= t ′ ∈ P, X t (s) 6= X t ′(s), then l t
s 6= l t ′

s ;

• if t1, t2, . . . , tr are elements of P , then at s >max{t1, . . . , tr }, if X t1 (s) = X t2 (s) = ·· · = X tr (s),

then l t1
s = l t2

s = ·· · = l tr
s = u for some u ∈ P with X t1 (s) = X u(s);

• if for t 6= t ′ ∈ P , X t meets X t ′ for the first time at s, then independently of past and

future random walks or labeling decisions l t
s = l t ′

s = l t ′
s− with probability 1

2 and with

equal probability l t
s = l t ′

s = l t
s−;

• the process l t
s can only change at moments where X t meets a distinct random walk for

the first time.

For t ∈ P , s > t , we say that t is alive at time s, if l t
s = t ; it dies at time s if l t

s− = t , l t
s 6= t . We say

X t , X u coalesce at time s if this is the first time at which the two labels are equal. The following

are easily seen:

• the events At
s = {l t

s = t } for t ∈ P are decreasing in s;

• At
s depends only on the random motions of the coalescing random walks and on the

labeling choices involving X t ;

• for s > 0, the number of independent random walks X t (s), t ∈ P ∩ [−n,0] is simply equal

to the number of distinct labels l t
s , t ∈ P ∩ [−n,0].
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Let

c0 = lim
s→∞P

t (At
s) ∈ [0,1], (3.80)

according to palm measure, Pt , for t ∈ P . We obtain easily:

Proposition 3.5.2.

lim
s→∞

1

s
|{distinct random walks X t (0) : t ∈ P ∩ [−s,0)

}| = c0 a.s. (3.81)

Proof. Using the definition of c0 in (3.80) and ergodicity of the system we see that the limit is

greater than c0. Then, Lemma 3.5.3 gives the result.

Lemma 3.5.3. For c0 as defined in (3.80), for each ε> 0, there exists R <∞ so that if we consider

the finite system of coalescing random walks (X t )t∈(−R,0]∩P , then with probability at least 1−ε
at time R there are less than (c0 +ε)R distinct random walks labels.

Proof. By definition of c0, for all ε> 0 there exists a T0 so that

P0( label 0 is alive at time s
)< c0 + ε

100
∀s > T0. (3.82)

Now pick R1 so that

P
(‖X 0(s)‖∞ 6R1 ∀s ∈ (0,T0)

)
> 1− ε

100
. (3.83)

Therefore,

P0( label 0 is not alive at time s > T0 and ‖X 0(s)‖∞ 6R1 ∀s ∈ (0,T0)
)

> 1− c0 − 2ε

100
.

(3.84)

We then pick T1 so that

P
(∃t ∈ P ∩ [−T1,T1]c : ‖X t (s)‖∞ 6R1 for some s ∈ (0,T0)

)< ε

100
. (3.85)

Thus

P0(∃t ∈ P ∩ [−T1,T1] \ {0} : l 0
R1

= t
)
> 1− c0 − ε

30
. (3.86)

From the translation invariant property of the system and ergodicity if

λs :=
∣∣∣{t ∈ [−s, s]∩P : X t loses its label to a random walk X t ′ with |t − t ′|6 T1

}∣∣∣, (3.87)

then

liminf
s→∞

λs

2s
> 1− c0 − ε

30
a.s. (3.88)
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The result now follows easily.

Proposition 3.5.1 will be proven by showing:

Proposition 3.5.4. If p(·, ·) is symmetric and not strongly transient, then c0 = 0.

The proof of Proposition 3.5.4 will work for any Poisson process rate, in particular for P having

rate M À 1. The distinct random walks treated in Proposition 3.5.1 can be divided into those

coalesced with a random walk from the system derived from P (and so by Proposition 3.5.4 of

small “density”) and those uncoalesced (also of small “density” if M is large). Thus Proposition

3.5.1 follows almost immediately from Proposition 3.5.4.

The argument for Proposition 3.5.4 is low level and intuitive. We argue by contradiction and

suppose that c0 > 0. From this we can deduce, loosely speaking, that after a certain time either

a random walk has lost its original label, or it will keep it forever. We then introduce coupling

on these random walks so that we may regard these random walks as essentially independent

random walks starting at 0 (at different times). We then introduce convenient comparison

systems so that we can analyze subsequent coalescences. We will use automatically, without

reference, the following “obvious" result:

Lemma 3.5.5. Consider two collections of coalescing random walks {Y i } and {(Y ′)i } for i in

some index set. If the coalescence rule is weaker for the {(Y ′)i } system, in that if two walks (Y ′)i

and (Y ′) j are permitted to coalesce at time t , then so are Y i and Y j , then there is a coupling of

the two systems so that the weaker contains the stronger.

We now fix ε > 0 so that ε¿ c0 (by hypothesis c0 > 0). We choose R according to Lemma

3.5.3 and divide up time into intervals I j = [ j R, ( j +1)R). We first consider the coalescing

system where random walks X t , X t ′ , t , t ′ ∈ P , can only “coalesce” (or destroy a label t or t ′)
if t , t ′ are in the same I j interval. Thus we have a system of random walks that is invariant

to time shifts by integer multiples of R. We now introduce a system of random walks Y t ,

t ∈V :=∪ j {[ j R, ( j +1)R)∩ j R+ 1
c0
Z}. The random walks Y t , t ∈ [

j R, ( j +1)R
)

are not permitted

to coalesce up until time ( j +1)R (at least) and will evolve independently of the system (X t )t∈P

until time ( j +1)R . We will match up the points in V ∩ I j , with those in P ∩ I j ∩K in a maximal

measurable way for K = {t ∈ P : label t survives to time ( j +1)R}.

Lemma 3.5.6. Unmatched points in ∪ j P ∩ I j ∩K and in V have density less than 2ε for R fixed

sufficiently large.

Remark: the system is not translation invariant with respect to all shifts but it possesses enough

invariance for us to speak of densities.

We similarly have

Lemma 3.5.7. Unmatched Y particles have density less than 2ε for R fixed sufficiently large.
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Chapter 3. Parabolic Anderson model

It is elementary that two random walks X , Z can be coupled so that for t sufficiently large

X (t ) = Z (t ). For given ε> 0 we choose M0 and then M1 so that

P
(

sup
t6R

‖X (t )‖∞ > M0

)
< ε

10
(3.89)

and

sup
|z|62M0

P
(

X0, Zz not coupled by time M1

)
< ε

10
, (3.90)

where X0 and Zz denote that the random walks X and Z start at point 0 and point z respec-

tively.

We then (on interval I j ) couple systems Y and X by letting married pairs Y t , X t ′ , t ∈ V ,

t ′ ∈ P ∩K , evolve independently of other Y , X random walks so that they couple by time

M1 + ( j +1)R with probability at least 1− 3ε
10 .

Thus we have two types of random walk labels, l t , for the X system which are equal to t at time

t +R +M1: those for which the associated random walk was paired with a Y random walk and

such that the random walks have coupled by time t +R +M1 said to be coupled and the others,

said to be decoupled. Similarly for the points in V associated to Y random walks. We note that

the foregoing implies that the density of uncoupled labels is bounded by 2ε+ 3ε
10 6 3ε. The

point is that modulo this small density, we have an identification of the coalescing X random

walks and the Y random walks.

We now try to show that enough Y particles will coalesce in a subsequent time interval to

imply that there will be a significant decrease in surviving labels for the X system. To do this

we must bear in mind that, essentially, it will be sufficient to show a decrease in the density

of Y random walk labels definitely greater than ε. Secondly, as already noted, we will adopt

a coalescence scheme that is a little complicated namely Y i ,Y i ′ in V can only “coalesce” at

time t >max{i , i ′} if

• (t − i ′, t − i ) are in some time set to be specified;

• for i < i ′, t−i ′
i ′−i ∈

( 9
10 , 11

10

)
.

We now begin to specify our coalescence rules for the random walk system {Y i }i∈V . The

objective here will be to facilitate the necessary calculations. A first objective is to have

coalescence of Y i ,Y i ′ at times t > max{i , i ′} so that pt (0,0) is well behaved around t − i , t − i ′.
It follows from symmetry of the random walk that t 7→ pt (0,0) is decreasing. The problem we

address is that it is not immediate how to achieve bounds in the opposite direction. This is the

purpose of the next result.

Lemma 3.5.8. Consider positive {an}n>0 so that
∑∞

n=0 an =∞. For all r ∈ Z+, there exists a

subsequence {ani }i>0 so that

(i)
∑

ani =∞;

(ii) ani > 1
2 ani−r , ∀i > 0.
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3.5. Proof of Theorem 3.3.3

Proof. If r > 1 we may consider the r subsequences {ar i+ j }i>0 for j ∈ {0,1, · · · ,r −1}. At least

one of these must satisfy
∑

ar i+ j =∞ so, without loss of generality, we take r = 1.

Now we classify i as good or bad according to whether ai > ai−1/2 or not. This decomposes Z

into intervals of bad sites, alternating with intervals of good sites. By geometric bounds, the

sum of bad sites is bounded by the sum of the good ai for which i is the right end point of a

good interval. Thus we have∑
i good

ai =∞, (3.91)

from which the result is immediate.

Corollary 3.5.9. For our symmetric kernel pt (0,0) we can find ni ↑∞ so that

(i)
∑

i

∫ 2ni +1

2ni
t pt (0,0)d t =∞;

(ii) p2ni −1 (0,0)6 212p2ni +3 (0,0).

Proof. In Lemma 3.5.8 take

an =
∫ 2n+4

2n+3
t pt (0,0)d t (3.92)

and take r = 5. Then by the monotonicity of t → pt (0,0), we have

22ni+7p2ni +3 (0,0)> ani >
1

2
ani−5 >

1

2
22ni−4p2ni −1 (0,0). (3.93)

We fix such a sequence {n j } j>1 once and for all.

We assume, as we may, that n j < n j+1 −4 for all j > 1 and also assume again, as we may, that

∫ 2n j +1

2n j
t pt (0,0)d t < ε

100
(3.94)

for all j > 1. We are now ready to consider our coalescence rules. We choose ε¿α¿ 1 (we

will fully specify α later on but we feel it more natural to defer the technical relations). We

then choose k0 so that 2nk0 > R +M1 with R as in Lemma 3.5.3 and Lemma 3.5.6 and M1 as in

(3.90), and

k1 := inf
{

k > k0 :
k∑

j=k0

∫ 2n j +1

2n j
t pt (0,0)d t >α

}
. (3.95)

We have coalescence between Y i and Y i ′ , for i < i ′ only at t ∈ [i ′+2n j , i ′+2n j+1], j ∈ [k0,k1] if
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Chapter 3. Parabolic Anderson model

(a) t−i ′
i ′−i ∈ (9/10,11/10);

(b) the interval of t ∈ [i ′+2n j , i ′+2n j+1] satisfying (a) is of length at least 2.

We say (i , i ′) and (i ′, i ) are in j and write (i , i ′) ∈ j if the above relations hold. To show that

sufficient coalescence occurs, we essentially use Bonferroni inequalities (see, e.g., [29], p. 21).

To aid our argument we introduce a family of independent (non coalescing) random walks

{(Z i (s))s>i }i∈V such that for each i ∈V , Y i (s) = Z i (s) for s > i such that l i
s = i . In the following

we will deal with random walks Y 0, Z 0, but lack of total translation invariance notwithstanding,

it will be easy to see that all bounds obtained for these random walks remain valid for more

general random walks Y i , Z i . For a given random walk Y 0, say, the probability that Y 0 is killed

by Y i (with i possible in the sense of the above rules) is in principle a complicated event given

the whole system of coalescing random walks. Certainly the event{
Z 0 meets Z i in appropriate time interval after first having met Z k}

(3.96)

is easier to deal with than the corresponding Y event. From this point on we will shorten

our phraseology by taking “Z i hits Z k " to mean that Z i meets Z k at a time t satisfying the

conditions (a) and (b) above with respect to i , k.

For (Z 0(s))s>0 and (Z i (s))s>i independent random walks each beginning at 0, we first estimate

∑
i
P
(
Z 0 hits Z i ). (3.97)

This of course decomposes as∑
j

∑
(0,i )∈ j

P
(
Z 0 hits Z i ). (3.98)

We fix j and consider i > 0 so that (0, i ) ∈ j (the case i < 0 is similar). That is the interval of

times s with

(s − i )/i ∈ (9/10,11/10), s ∈ [i +2n j , i +2n j+1] (3.99)

is at least 2 in length: we note that for each i ∈ (5
4 2n j , 7

4 2n j
)

the relevant interval, 19
10 i 6 s 6 21

10 i

is an interval of length greater than 5
4 2n j 1

5 = 2n j

4 .

Lemma 3.5.10. There exists c2 ∈ (0,∞) so that for any interval I of length at least 1 contained

in (1,∞),

1

c2

∫
I

pt (0,0)d t 6P
(
X 0(t ) = 0 for some t ∈ I

)
6 c2

∫
I

pt (0,0)d t (3.100)
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3.5. Proof of Theorem 3.3.3

Proof. Consider random variable W = ∫ b+1
a 1{X 0(s)=0} d s for I = [a,b]. Then

E(W ) =
∫ b+1

a
P(X 0(s) = 0)d s =

∫ b+1

a
ps(0,0)d s 6 2

∫
I

ps(0,0)d s , (3.101)

by monotonicity of ps(0,0) and the fact that b−a > 1. But for τ := inf{s ∈ I : X 0(s) = 0} we have

E(W |Fτ)> e−1 on {τ<∞} so

P(τ<∞) =P(
X 0(t ) = 0 for some t ∈ I

)
6 E(W )e 6 2e

∫
I

ps(0,0)d s . (3.102)

Equally for W ′ = ∫ b
a 1{X 0(s)=0} d s, we have

E(W ′ |Fτ)6 γ=
∫ ∞

0
ps(0,0)d s on {τ<∞} (3.103)

and so

P(τ<∞)>
E(W ′)
γ

= 1

γ

∫ b

a
ps(0,0)d s . (3.104)

Proposition 3.5.11. For some universal c3 ∈ (0,∞),

c−1
3 22n j p2n j (0,0)6

∑
(0,i )∈ j

P
(
Z 0 hits Z i )6 c322n j p2n j (0,0) . (3.105)

Proof. We consider first the upper bound. There are less than 2n j relevant i . For such an i ,

P
(
Z 0 hits Z i )6P

(
X 0(t ) hits 0 for some t ∈ [

a +2n j , a +3 ·2n j
])

(3.106)

for some a > 0. By monotonicity of t → pt (0,0) and using Lemma 3.5.10, this is bounded by

c2

∫ 3·2n j

2n j
ps(0,0)d s 6 c32n j p2n j (0,0) (3.107)

for some c3 > 0. On the other side the number of i ∈ (5
4 2n j , 7

4 2n j
)

is greater than c1
1
3 2n j if R

was fixed sufficiently large and for each such i , ( 9
10 i , 11

10 i ) ⊂ [2n j ,2n j+1]. Moreover, we have

P
(
Z 0 hits Z i )> 1

c2

∫ 32
10 i

28
10 i

ps(0,0)d s >
1

c2

4

10
i p2n j +3 (0,0)>

1

c2
2n j−1p2n j +3 (0,0)

>
2−13

c2
2n j p2n j −1 (0,0)> c−1

3 2n j p2n j (0,0),

(3.108)

because of Lemma 3.5.10, Corollary 3.5.9 (by our choice of j ), monotonicity of t → pt (0,0) and

possibly after increasing c3.
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Chapter 3. Parabolic Anderson model

Thus, using that j ∈ [k0,k1] (recall (3.95)), we have a universal c4 such that

c4α>
∑

j

∑
(0,i )∈ j

P
(
Z 0 hits Z i )> α

c4
. (3.109)

There are two issues to address

(a) to show that

P
(∃ j ,∃i so that (0, i ) ∈ j , Z 0 hits Z i ) (3.110)

is of the order α;

(b) to show that (a) holds with Z 0, Z i replaced by our coalescing random walks Y 0, Y i .

In fact both parts are resolved by the same calculation.

We consider the probability that random walk Z 0 is involved in a “3-way” collision with Z i

and Z i ′ either due to Z 0 hitting Z i in the appropriate time interval and then hitting Z i ′ , or

Z 0 hitting Z i and, subsequently Z i hitting Z i ′ . The first case is important to bound so that

one can use simple Bonferroni bounds to get a lower bound on P(∃i so that Z i hits Z 0). The

second is to take into account the fact that we are interested in the future coalescence of a

given random walk Y 0. As already noted, we can couple the systems in the usual way so that

for all t , ∪i {Y i
t } ⊆∪i {Z i

t }. The problem is that if for some i , Z i hits Z 0 due to coalescence this

do not necessarily imply that Y i hits Y 0: if the Y i particles coalesced with a Y i ′ before Z i hits

Z 0. Fortunately this event is contained in the union of events above over i , i ′.

Proposition 3.5.12. There exists universal constant K so that for all i and i ′ with (0, i ′) ∈ j ′

P
(
Z 0 hits Z i and then Z i ′)6K 2n j ′ p2

n j ′ (0,0)P
(
Z 0 hits Z i ) . (3.111)

Proof. There are several cases to consider: i < 0 < i ′, i < i ′ < 0, i ′ < i < 0, i ′ < 0 < i , 0 < i < i ′

and 0 < i ′ < i . All are essentially the same so we consider explicitly 0 < i < i ′. We leave the

reader to verify that the other cases are analogous. We choose j , j ′ so that (0, i ) ∈ j and

(0, i ′) ∈ j ′ (so necessarilly j ′ > j ). We condition on T j , Z i (T j )(= Z 0(T j )), for

T j := inf
{

s ∈
(

19i

10
,

21i

10

)
∩

[
i +2n j , i +2n j+1

]
: Z i (s) = Z 0(s)

}
<∞. (3.112)

With x = Z 0(T j ) we have

P

(
∃s′ > T j ∈

(
19i ′

10
,

21i ′

10

)
∩

[
i ′+2n j ′ , i ′+2n j ′+1

]
: Z i ′(s′) = Z 0(s′)

∣∣∣ G0,i
)

=P(
Z 0(t ) = x for some t ∈ I j

)
,

(3.113)
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3.5. Proof of Theorem 3.3.3

where I j is the image of the interval

[
(i ′+2n j ′ )∨T j ∨ 19i ′

10
, i ′+2n j ′+1 ∧ 21i ′

10

])
, (3.114)

by the function t 7→ 2t −T j − i ′, for G0,i =σ(Z 0(s), Z i (s) : s 6 T j ). By elementary algebra this is

less than

P

(
Z 0(t ) = x for t ∈

(
9i ′

10
,

16i ′

5

))
, (3.115)

but by arguing as in Lemma 3.5.10, this is bounded by

c2

∫ 16i ′
5

9i ′
10

ps(0, x)d s 6 c2

∫ 16
5 i ′

9
10 i ′

ps(0,0)d s 6 c2
23

10
i ′p

2
n j ′ −1 (0,0)

6 c2
23

9
2132n j ′ p

2
n j ′ +3 (0,0)6 c ′2n j ′ p2

n j ′ (0,0)

(3.116)

for some universal constant c ′, where we use symmetry and monotonicity of ps(·, ·) and

Corollary 3.5.9, by the choice of our n j ′ . So given that

P(Ti <∞) =P(
Z 0 hits Z i ), (3.117)

the desired bound is achieved.

Corollary 3.5.13. For α sufficiently small

P
(∃i : Z 0 hits Z i )> α

2
. (3.118)

Proof. By Bonferroni bounds, the desired probability is greater than∑
i
P
(
Z 0 hits Z i )−∑

i ,i ′
P
(
Z 0 hits Z i and then Z i ′)>α−K c2

3α
2 >

α

2
(3.119)

if α6 1/(2K c2
3).

We similarly show

Proposition 3.5.14. There exists universal constant K so that for all i ′ and i with (0, i ) ∈ j ,

P
(
Z 0 hits Z i after Z i hits Z i ′)6K 2n j p2n j (0,0)P

(
Z i hits Z i ′) . (3.120)

This gives as a corollary

Corollary 3.5.15. For the coalescing system {Y i }i∈V provided α is sufficiently small,

P
(
Y i dies after time R

)
>
α

5
. (3.121)
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Proof. We have of course from the labeling scheme

P
(
Y i dies after time R

)
>

1

2
P
(
Y i hits Y i ′ in appropriate time interval for some i ′

)
>

1

2
P
(
Z i hits Z i ′ in appropriate time interval for some i ′

)
− 1

2
P
(
Z i hits Z i ′ in appropriate time interval for some i ′ so that

Z i ′ hits some Z i ′′ previously
)

>
α

4
−K c2

3α
2 >

α

5

(3.122)

for α6 1/(20K c2
3).

We can now complete the proof of Proposition 3.5.4 and hence that of Proposition 3.5.1. If

we have c0 > 0, then we can find 0 < ε<α/200 and α so small that the relevant results above

hold, in particular Corollary 3.5.15. Thus the density of Y’s is reduced by at least α/5. But by

our choice of ε and Lemma 3.5.6, the density of X ’s is reduced by at least α/5−6ε>α/6> 3ε

which is a contradiction with Proposition 3.5.2, because it would entail the density falling

strictly below c0.

3.6 Proof of Theorem 3.3.4

In what follows we assume, as in Section 3.4, that p = 1, the extension to arbitrary p > 1 being

straightforward.

We begin by specifying the random walk (X (t ))t>0 on Z4 defined by

X (t ) = S(t )+e1N (t ) (3.123)

with (S(t ))t>0 denoting a simple random walk on Z4, (N (t ))t>0 a rate 1 Poisson process and

e1 = (1,0,0,0) the first unit vector in Z4.

Thus our random walk (X (t))t>0 is highly transient but its symmetrization is a mean zero

random walk and by the local central limit theorem, we have∫ ∞

0
t p(s)

t (0,0)d t =∞, (3.124)

where pt (·, ·) is the semigroup associated to (X (t ))t>0.

It remains to show that λp (κ) < γ for all κ ∈ [0,∞). Our approach is modeled on the proof of

the first part of Theorem 3.3.2. We wish again to pick bad environment set BE associated to the
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3.6. Proof of Theorem 3.3.4

ξ-process and bad random walk set BW associated to the random walk X κ so that

E
(

exp
[
γ

∫ n

0
ξ(X κ(s), s)d s

])
6

(
P(BE )+P(BW )

)
eγn +E

(
1{

B c
E∩B c

W

} exp
[
γ

∫ n

0
ξ(X κ(s), s)d s

]) (3.125)

with, for some 0 < δ< 1,

P(BE )6 e−δn , P(BW )6 e−δn , (3.126)

and, automatically from the definition of BE and BW ,∫ n

0
ξ(X κ(s), s)d s 6 n(1−δ) on B c

E ∩B c
W (3.127)

(as in the proof of Theorem 3.3.2). Since, combining (3.125–3.127), we obtain

lim
n→∞

1

n
logE

(
exp

[
γ

∫ n

0
ξ(X κ(s), s)d s

])
< γ , (3.128)

it is enough to prove (3.126). All of this has been done in the proof of Theorem 3.3.2 in a

different situation. The major difference is that we need to modify the collection of skeletons

used.

Lemma 3.6.1. Let X κ(·) be a speed κ simple random walk in four dimensions. Fix M ∈N\ {1}.

There exists c > 0 so that for M large and all n, outside of an e−cn probability event, there exists

06 i1 < i2 < ·· · < in/2M 6 n so that

X κ
(1)(i j M +kM)−X κ

(1)(i j M) >−kM

2
, j ∈ {1, · · · ,n/(2M)}, k > 0, (3.129)

where (X κ
(1)(t ))t>0 denotes the first coordinate of (X κ(t ))t>0.

Proof. Define

σ1 = inf
{
kM > 0: X κ

(1)(kM)6−kM/2
}

(3.130)

and recursively

σi+1 = inf
{
kM >σi : X κ

(1)(kM)−X κ
(1)(σi )6−(kM −σi )/2

}
. (3.131)

Since the event

{r M 6σ1 <∞} ⊂ ∪∞
k=r

{
X κ

(1)(kM)6−kM/2
}

, (3.132)

we have easily that, for all r ,

P(r M 6σ1 <∞) 6 e−r Mc (3.133)
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for c > 0 not depending on n or M . If we now define

τ1 = inf
{
kM > 0: X κ

(1)( j M)−X κ
(1)(kM) >−( j −k)M/2 ∀ j > k

}
(3.134)

and recursively

τi+1 = inf
{
kM > τi : X κ

(1)( j M)−X κ
(1)(kM) >−( j −k)M/2 ∀ j > k

}
, (3.135)

it is easily seen that

P(τ1 > r M)6P(∃16 k 6 r : r M 6σk <∞)

6
r−1∑
k=1

∑
0<x1<···<xk<r

P
(
σi = xi M ∀i 6 k, r M 6σk+1 <∞)

6
r−1∑
k=1

∑
0<x1<···<xk<r

e−r Mc 6 e−r Mc 2r

(3.136)

which is less than e−r Mc/2 if M is fixed sufficiently large. We have

• (τi+1 −τi )i>1 are i.i.d. (this follows from Kuczek’s argument (see [53])).

• Provided M has been fixed sufficiently large for each integer r > 1, P(τi+1 −τi > r M)6
e−r Mc/4. This follows from the fact that random variable τi+1 −τi is simply the random

variable τ1 conditioned on an event of probability at least 1/2 (provided M was fixed

large).

Thus by elementary properties of geometric random variables we have

P(τn/2M > n)6P
(
Y >

n

2M

)
6 e−cn (3.137)

for Y ∼ B
( n

M ,e−cM/4
)
, c > 0 and M large. This completes the proof of the lemma.

Given that the path of the random walk satisfies the condition of this lemma, we call the (not

uniquely defined) points i1, i2, · · · regular points.

Given this result, we consider the M-skeleton induced by the values X κ( j M), 06 j 6 n/M },

discretized via spatial cubes of length M/8 (rather than 2M as in the proof of Theorem

3.3.2). It is to be noted that if (X κ(t))06t6n satisfies the claim for Lemma 3.6.1 and y0 :=
0, y1, y2, · · · , yn/M with yk ∈Z4, 06 k 6 n/M , is its M-skeleton, namely,

X κ(kM) ∈Cyk :=
4∏

j=1

[
y ( j )

k

M

8
,(y ( j )

k +1)
M

8

)
, 06 k 6 n/M , (3.138)

where y ( j )
k denotes the j -th coordinate of yk (we suppose without loss of generality that M is a
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multiple of 8). Then, by (3.129) and (3.138), we must have

y (1)
i j

−4k 6 y (1)
i j+k +1. (3.139)

In particular, we must have

y (1)
i j ′

−4(i j − i j ′)6 y (1)
i j

+1 ∀i j ′ < i j . (3.140)

In the following we modify the definition of appropriate skeletons by adding in the requirement

that the skeleton must possess at least n/2M indices i1, i2, . . . , in/2M with the corresponding

yi j satisfying (3.140). We note that the resizing of the cubes makes the notion of acceptability

a little more stringent but does not change the essentials.

Remark first that Lemma 3.4.5 is still valid in our new setting. Lemma 3.6.1 immediately gives

that with this new definition, Lemma 3.4.4 remains true. Of course since this definition is

more restrictive we have

|ΞA|6K n/M (3.141)

for K as in Lemma 3.4.1.

In fact in our program all that remains to do, that is in any substantive way different from the

proof of Theorem 3.3.2, is to give a bound on the probability of BE for appropriate BE . This is

the content of the lemma below (analogous to Lemma 3.4.2). Given this lemma, we can then

proceed exactly as with the proof of Theorem 3.3.2.

Lemma 3.6.2. For any skeleton (yk )06k6n/M in ΞA , the probability that ξ is not good for

(yk )06k6n/M , i.e.,

6 ∃ n

4M
indices 16 j 6

n

M
: ξ(z, s) = 0 ∀s ∈ [ j M , j M +1] for some z ∈Cy j , (3.142)

is less than (4K )−n/M .

Proof. We note that proving the analogous result for Theorem 3.3.2, we did not need our

skeleton to be in ΞA , the proof worked over any skeleton. For us however it is vital that our

skeleton satisfies (3.140).

We consider a skeleton inΞA . Let the first n/2M regular points of our skeleton be i1, i2, · · · in/2M .

For each 16 i j 6 n/2M , we choose R points

x
i j

1 , . . . , x
i j

R ∈Cyi j
(3.143)

so spread out that for random walks (X (t))t>0 as in (3.123) beginning at the points x
i j

k , k =
1, · · · ,R, the chance that two of them meet is less than 0 < ε¿ 1.
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Chapter 3. Parabolic Anderson model

Now, consider i j ′ < i j and the probability that a random walk starting at (x
i j

k , i j M) meets a

random walk starting at (x
i j ′
k ′ , i j ′M) satisfies the following lemma.

Lemma 3.6.3. For i j ′ < i j , there exits K > 0 such that

P
(

X x
i j
k ,i j M meets X x

i j ′
k′ ,i j ′ M

)
6

K

M 2(i j − i j ′)2 . (3.144)

Proof. The important point is that since our skeleton is in ΞA ,(
x

i j ′
k ′

)(1)
6

(
x

i j

k

)(1) + (i j − i j ′)
M

2
+ M

4
, (3.145)

and so we have

P
(

X x
i j
k ,i j M meets X x

i j ′
k′ ,i j ′ M

)
6P

((
X x

i j
k ,i j M

)(1) (
(i j − i j ′)M

)
>

(
x

i j

k

)(1) + (i j − i j ′)
3M

4
,

X x
i j
k ,i j M meets X x

i j ′
k′ ,i j ′ M

)
+P

((
X x

i j
k ,i j M

)(1) (
(i j − i j ′)M

)
6

(
x

i j

k

)(1) + (i j − i j ′)
3M

4

)
.

(3.146)

By standard large deviations bounds,

P
((

X x
i j
k ,i j M

)(1) (
(i j − i j ′)M

)
6

(
x

i j

k

)(1) + (i j − i j ′)
3M

4

)
6 e−C M(i j−i j ′ ), (3.147)

for some universal C ∈ (0,∞). For the other term, we have the following lemma.

Lemma 3.6.4. For two independent processes X = (X (t ))t>0 and Y = (Y (t ))t>0 with X (0) = x ∈
Z4 and Y (0) = y ∈Z4, the probability that X ever meets Y is bounded by K /‖x − y‖2∞.

Proof. X −Y is not exactly a simple random walk, but it is a symmetric random walk and so

local central limit theorem gives appropriate random walks bounds (see, e.g., [56]).

From this and inequality (3.145), we have

P
(

X x
i j
k ,i j M meets X x

i j ′
k′ ,i j ′ M

∣∣∣(X x
i j
k ,i j M

)(1) (
(i j − i j ′)M

)
>

(
x

i j

k

)(1) + (i j − i j ′)
3M

4

)
6

K

M 2(i j − i j ′)2 .
(3.148)

Thus, for any R large but fixed, we can choose M so that for all skeletons in ΞA and each i j ′ ,
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we have

∑
i j<i j ′

∑
k,k ′

P
(

X x
i j
k ,i j M meets X x

i j ′
k′ ,i j ′ M

)
6

R2K

M 2

+∞∑
r=1

1

r 2

6
R2K ′

M 2 < ε2

(3.149)

with M chosen sufficiently large, which is analogous to (3.37). From this point on, the rest

follows as for the proof of Lemma 3.4.2.
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4 Asymmetric threshold-2 voter model

We saw previously that the standard voter model evolves as follows : the rate of change is

proportional to the number of direct neighbours with opposite sign. In a threshold voter

model, the rate is 1 or 0 depending on a threshold : if the number of direct neighbours exceeds

or equals the threshold, the rate is 1, otherwise, it is 0. We define the operatorΩ on the set of

continuous functions f on E by

Ω f (η) = ∑
x∈S

c(x,η)( f (ηx )− f (η)) (4.1)

where

ηx (y) =
η(y) if y 6= x,

−η(y) if y = x,
(4.2)

and

c(x,η) =
1 if

∑
|y−x|=11{η(y)6=η(x)} > d̃ ,

0 otherwise
(4.3)

with 0 < d̃ < 2d the fixed threshold. Remark that sites take value in {−1,+1}. We made this

choice to avoid confusion with exclusion process used later. This process was first studied by J.

Theodore COX and Rick DURRETT [20]. We also recommend the book of Thomas M. LIGGETT

[59] as reference.

If the threshold is strictly greater than d , it is clear that every unanimous hyper rectangle will

remain unchanged forever, so the process will fixate fast and no consensus arises. However,

when the threshold is equal to d , hyper rectangles will eventually disappear as their corners

can change. Thus the study of the evolution in a quadrant becomes of high interest. In

particular, this dynamics corresponds to a stochastic Ising model at zero temperature, for the

Hamiltonian with uniform ferromagnetic interaction between nearest neighbours. For this

model, it is known that when the system starts from a Bernoulli product measure with density
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Chapter 4. Asymmetric threshold-2 voter model

p of sites with value +1 and if p is sufficiently close to 1, then the system fixates in the sense

that for almost every realization of the initial configuration and dynamical evolution, each

site flips only finitely many times, reaching eventually the state +1 for all sites (see the paper

of Luiz Renato G. FONTES, Roberto H. SCHONMANN and Vladas SIDORAVICIUS [34] for more

details).

Thus, in the critical case (when d̃ = d) roughly if we have only a finite quantity of −1’s, then

we must tend to a consensus. This chapter consider whether this can be strongly perturbed :

if we start with a small amount of −1’s, must we go to all +1’s if a bias to −1’s is created ? To

answer this question, we are focused on the two dimensional case with the threshold equal to

d = 2. Starting with the upper-right quadrant full of −1, spin +1 elsewhere, the dynamics of the

model shows that the initial sites with value +1 are frozen and will never change. In particular,

we have a nice interface between +1 and −1 that can be mapped to an exclusion process with

infinitely many 1’s for negative positions and infinitely many 0’s for positive positions (more

details are given in the next section). It is known that this process is transient : although the

movement of one particle is symmetric, the big collection of 1’s on the left acts like a wall and

induces a bias towards the right. Remark that this result is consistent with the one in [34].

Hence we want to know if we can help the −1’s to induce a bias towards the left that can

outshine the right bias in order to have a recurrent process. We suggest to allow a flip from −1

to +1 with only one neighbour but sadly the interface become ugly and useless. However, we

can construct an auxiliary process (see Section 4.2) with a nicer interface (see Section 4.3) and

construct a Lyapunov-Foster function to show Theorem 4.5.1.

4.1 Threshold-2 voter model and standard exclusion process

Consider the usual threshold-2 voter model {η(t)}t>0 on {−1,1}Z
2

as defined in the book

of Thomas M. LIGGETT [59]. As outlined in introduction, the flip rate c(x,η) at a site x is

determined by

c(x,η) =
1 if

∑
|y−x|=11{η(y)6=η(x)} > 2,

0 otherwise.
(4.4)

Write ηmax for the configuration with spin −1 in [0,∞)2, spin 1 elsewhere, and suppose that

η(0) = ηmax. It is clear that all sites with spin 1 must remain in this state for ever as they have at

most one neighbour with value −1.

As outlined previously, the interface of the process {η(t )} can be mapped to a standard exclu-

sion process as explained in LIGGETT [58], pp. 411-412. We now give some details about this

construction.
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4.2. Model and notation

Starting from ηmax, there exists a finite integer R and a sequence x0, · · · , xR with

x0 ∈
{
−1

2

}
×

{
Z++ 1

2

}
and xR ∈

{
Z++ 1

2

}
×

{
−1

2

}
and xi −xi−1 ∈

{
(1,0), (0,−1)

}
for all 16 i 6R such that η(x, t ) = 1 if and only if x 6 xi −

(1
2 , 1

2

)
(in the natural partial order) for some i .

x13

x12x8

x6x3

x2x0

= spin value +1

= spin value −1

Interface’s illustration.

We will call interface the set of {(xi−1, xi ) : 16 i 6R} extended from x0 to
{−1

2

}×∞ and from

xR to ∞×{−1
2

}
. We can thus map this into an element of

Ω=
{
% ∈ {0,1}Z :

∑
x60

(1−%(x)) = ∑
x>0

%(x) <∞
}

(4.5)

vertical unit segments corresponding to 1’s, horizontal corresponding to 0’s and shifting to get

as many 0’s on the right of origin as 1’s on the left.

Origin

. . .1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 . . .

Exclusion process corresponding to the previous interface.

With this description the configuration {%(t)}t>0 corresponding to the interface of {η(t)}t>0

evolves as a symmetric nearest neighbour exclusion process beginning from the state

%max(x) =
1 if x 6 0,

0 if x > 0.

4.2 Model and notation

Consider now an asymmetric, spatially inhomogeneous variant of {η(t )}t>0, called {ξ(t )}t>0,

starting from the same initial configuration ηmax but such that the flip rates at sites having

current value −1 in the upper right quadrant change ; it only needs one neighbour to flip
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instead of two as previously. Formally the flip rate at a site x ∈ [0,∞)2 is modified and now

determined by

c(x,ξ) =


1 if ξ(x) =−1 and

∑
|y−x|=1

1{ξ(y)6=ξ(x)} > 2,

1 if ξ(x) = 1 and
∑

|y−x|=1
1{ξ(y)6=ξ(x)} > 1,

0 otherwise,

(4.6)

and the flip rate at a site x ∈ (
[0,∞)2

)c
stays the same as for {η(t)}t>0. In particular, the +1’s

outside of [0,∞)2 are frozen and spin value −1 will be helped in the upper right quadrant. It is

clear from usual attractiveness considerations that (under the natural coupling) for all t > 0,

we have η(t )> ξ(t ) under the natural partial order. Establishing stability for ξ will be a big step

towards showing that even with a big amount of 1’s, the −1’s can make over.

A difficulty in analyzing the process {ξ(t )}t>0 comes from the bias towards the spin value −1 :

the set of sites with spin −1 needs no longer to be connected and certainly there is no nice

interface between +1’s and −1’s. For this reason we will introduce a new Markov process

{λ(t )}t>0 with almost the same behaviour but a nicer interface.

We forget to turn a +1 in −1 if it has only one neighbour −1 unless there is another −1 not

too far away. In this case, the +1 turns in a new state called +1∗ (we can interpret this as a

possible flip). In particular, we define a process {λ(t)}t>0 on {−1,+1∗,+1}Z
2

with 1’s frozen

outside [0,∞)2 and evolving in [0,∞)2 as follows :

• site x with spin value −1 or +1∗ will flip to 1 with a rate 1 or 0 according to whether at

least two neighbours are of spin type 1 (see case 1).

• site x with spin value 1 will flip to −1 with a rate 1 or 0 according to whether at least two

neighbours are of spin type −1 (see case 2).

= spin value +1

= spin value −1

Cases 1 and 2 (the circle indicates the flipping site).

• when a site x = (x1, x2) with spin value +1 has only one neighbour of type −1 :

– if the sites (x1, x2 +1) (the direct neighbour) and (x1 +2, x2) (the ’not too far’ neigh-

bour) are with spin value −1, this will flip to 1∗ with rate 1 (see case 3) ;

– similarly, if the sites (x1 +1, x2) and (x1, x2 +2) are with spin value −1, this will flip

to +1∗ with rate 1 (see case 4) ;

– else, the flip rate is 0.
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4.3. The interface

= spin value +1

= spin value +1∗

= spin value −1

Cases 3 and 4.

• if at any time, a site with spin value +1∗ has at least two neighbours with spin type −1, it

immediately turns to −1 (see case 5).

• if at any time, a site with spin value +1∗ is such that site (x1 +2, x2) (or (x1, x2 +2)) is not

with spin value −1, it immediately turns to 1 (see case 6).

= spin value +1 = spin value +1∗ = spin value −1

= spin value +1

= spin value +1∗

= spin value −1

Cases 5 and 6.

We then define the collapse {λc (t )}t>0 of {λ(t )}t>0 byλc (x, t ) =−1 if and only if λ(x, t ) =−1,

λc (x, t ) = 1 if and only if λ(x, t ) ∈ {+1,+1∗}.
(4.7)

We can remark that under natural coupling, for all t > 0, we have η(t )>λc (t )> ξ(t ) under the

natural partial order. Moreover, as with process {η(t )}t>0, there will be a down-right interface

between 1’s and −1’s for {λc (t )}t>0.

= spin value +1 = spin value +1∗ = spin value −1

Evolution of {λ(t )}t>0 : spin (3,1) changes its value (case 3), then spin (4,1) (case 2 & 5). Spin (3,0) can’t flip.

4.3 The interface

We now consider the motion from the point of view of the interface. Similarly to η, there exists

a finite integer R and a sequence x0, · · · , xR with

x0 ∈
{
−1

2

}
×

{
Z++ 1

2

}
and xR ∈

{
Z++ 1

2

}
×

{
−1

2

}
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and xi −xi−1 ∈
{

(1,0), (0,−1)
}

for all 16 i 6R such that λc (x, t ) = 1 if and only if x 6 xi +
(1

2 , 1
2

)
(in the natural partial order) for some i . Recall that +1∗ is replaced by +1 in λc .

x13

x12x8

x6x3

x2x0

= spin value +1

= spin value +1∗

= spin value −1

Interface’s illustration.

As we can remark on the previous illustration, the process corresponding to the interface of

{λc (t)}t>0 will not be a Markov process due to the influence of +1∗ spins. However, using

{λ(t)}t>0, it can be turned into a Markov process {ρ(t)}t>0 by enlarging the spin space from

{0,1} to {0,0∗,1,1∗}, where a horizontal site will generate a spin value 0∗ if its nearest neighbour

is a site with value +1∗ and a vertical site will generate a spin value 1∗ if its nearest neighbour

is a site with value +1∗.

Origin

. . .1 1 1 1 0 1 0 0 11∗0 0 00∗ 1 0 0 0 0 0 . . .

Auxiliary process corresponding to the previous interface.

Thus, if ∗ modifications are disregarded, particles move according to simple exclusion but

with some additions

• if ρ(x −2, t−)ρ(x −1, t−)ρ(x, t−) = 0∗01 and the particle at x moves to site x −1, then the

particle will instead move to site x−2, replacing the 0∗, that is ρ(x−2, t )ρ(x−1, t )ρ(x, t ) =
100 (this corresponds to case 3 of Section 4.2),

• if ρ(x −1, t−)ρ(x, t−)ρ(x +1, t−) = 011∗ and the particle at x moves to site x −1, then the

particle at x +1 will also move, that is ρ(x −1, t )ρ(x, t )ρ(x +1, t ) = 110 (this corresponds

to case 4 of Section 4.2).

. . .10∗0110. . . → . . .110010. . . . . .10011∗ 0. . . → . . .101100. . .

= spin value −1 = spin value +1∗ = spin value +1

Links between {λt }t>0 and its perturbed exclusion process {ρ(t )}t>0.
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4.4. Harris system

Remark that these two additions are convenient because of their symmetry : if we permute 1’s

and 0’s, we get an inversed process completely equivalent. This description is rather informal

and will be formalized in the next section.

Rather than introduce more notation, we will adopt the convention that, for functions of spins,

the ∗ will be dropped, so for instance, g (ρ(t , x)) will equal g (0) if ρ(t , x) ∈ {0,0∗}. In this way

we also regard the process as a process onΩ defined in (4.5).

4.4 Harris system

We will make a widespread use of coupling arguments. To this end we will now explain how to

generate our process {ρ(t )}t>0 with a family of independent rate one Poisson processes N x,x+1,

x ∈Z, representing potential exchange between site x and site x +1. The process evolves as

follows (here time is written as subscript to lighten notation), when t ∈ N x,x+1 and

• ρ(x −1, t−)ρ(x, t−)ρ(x +1, t−) = 011, then ρ(x −1, t )ρ(x, t )ρ(x +1, t ) = 011∗ (case 4),

• ρ(x −1, t−)ρ(x, t−)ρ(x +1, t−) = 011∗, then ρ(x −1, t )ρ(x, t )ρ(x +1, t ) = 011 (case 1),

• ρ(x, t−)ρ(x +1, t−)ρ(x +2, t−) = 001, then ρ(x, t )ρ(x +1, t )ρ(x +2, t ) = 0∗01 (case 3),

• ρ(x, t−)ρ(x +1, t−)ρ(x +2, t−) = 0∗01, then ρ(x, t )ρ(x +1, t )ρ(x +2, t ) = 001 (case 1),

• ρ(x, t−)ρ(x +1, t−) = 10, then ρ(x, t )ρ(x +1, t ) = 01 (case 1),

• ρ(x, t−)ρ(x +1, t−) = 10∗, then ρ(x, t )ρ(x +1, t ) = 01 (cases 1 & 6),

• ρ(x, t−)ρ(x +1, t−) = 1∗0, then ρ(x, t )ρ(x +1, t ) = 01 (cases 1 & 6),

• ρ(x −1, t−)ρ(x, t−)ρ(x +1, t−) = 0∗01, then ρ(x −1, t )ρ(x, t )ρ(x +1, t ) = 100 (cases 2 & 5),

• ρ(x, t−)ρ(x +1, t−)ρ(x +2, t−) = 011∗, then ρ(x, t )ρ(x +1, t )ρ(x +2, t ) = 110 (cases 2 & 5),

• else, if ρ(x, t−)ρ(x +1, t−) = 01, then ρ(x, t )ρ(x +1, t ) = 10 (case 2),

• else, nothing happens.

We can see that globally ρ evolves as a standard exclusion process with exception that some-

times, a 1 can make two steps to the left or a 0 can make two steps to the right. Remark that

formally rates should be 1
2 in order to have a jump rate of 1. To lighten the notations we

decided to use this representation as results will stay unchanged.

4.5 Main result

We are now ready to state the main result of this chapter.

Theorem 4.5.1. Define

Γ=
{
ξ ∈ {−1,+1}Z

2
: ξ(x) ≡ 1 on

(
[0,∞)2)c

and
∑

x∈[0,∞)2

1{ξ(x)=+1} <∞
}

. (4.8)

The process {ξt }t>0 defined in (4.6) is positive recurrent on Γ.
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To prove this result, we will use the Markovian process {λt }t>0 and its collapse {λc
t }t>0 defined

in (4.7) and prove

Theorem 4.5.2. The process {λc
t }t>0 is positive recurrent on Γ.

Recall that under the natural coupling, we have for all t

ηt >λc
t > ξt (4.9)

under the natural partial order. Given the monotonicity and relation (4.9), Theorems 4.5.2

implies Theorem 4.5.1. From now on, therefore, we will not explicitly mention our original

process {ξ(t )}t>0 and work instead with {λ(t )}t>0 and its associated process {ρ(t )}t>0.

The key to our approach is that of the paper of Maury BRAMSON and Thomas MOUNTFORD

[9] : to establish the positive recurrence of {ρ(t )}t>0, it is sufficient to find a Lyapunov-Foster

function for the discrete time Markov process {ρ(r N )}r>0 (for some large constant N fixed),

i.e., we need to find a function f and a set A such that∀ρ0 ∉ A, Eρ0 ( f (ρ(N )))6 f (ρ0)−1,

∀ρ0 ∈ A, Eρ0 ( f (ρ(N ))) <∞.
(4.10)

More informations about the Foster’s criterion can be found in the book of Sean P. MEYN and

Richard L. TWEEDIE [67].

In the following section, we give the proof of our main result. In Section 4.7 we find a technical

result, Proposition 4.7.1, that describes the behaviour of particles when the quantity is finite

with a low density.

4.6 Proof of Theorem 4.5.2

Define the functions L, the leftmost 0, and R, the rightmost 1, i.e.,

L(ρ(t )) = min{x ∈Z : ρ(x, t ) = 0} and R(ρ(t )) = max{x ∈Z : ρ(x, t ) = 1}. (4.11)

These functions are well defined as we consider configurations in Ω, defined in (4.5). First

remark the following lemma.

Lemma 4.6.1. Uniformly over all configurations ρ0 ∈Ω, we have

Eρ0

(
(R(ρ(N ))−R(ρ0))+

)
6 N (4.12)

and

Eρ0

(
(R(ρ(N ))−R(ρ0))2

+
)
6 N 2 +N (4.13)
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Proof. We simply note that, for 0 6 t 6 N , R(ρ(t))−R(ρ0) is dominated by the sum of the

rightward jumps of R(ρ(s)) for s increasing up to t . Thus, (R(ρ(t ))−R(ρ0))+ is stochastically

less than a Poisson random variable with rate N .

Remark that the same arguments applies to (L(ρ0)−L(ρ(N )))+, as the process is symmetric

for 0’s, to obtain

Eρ0

(
(L(ρ0)−L(ρ(N )))+

)
6 N (4.14)

and

Eρ0

(
(L(ρ0)−L(ρ(N )))2

+
)
6 N 2 +N (4.15)

Now consider the function f = g +h :Ω→Rwhere

g (ρ) = ∑
x60

−x(1−ρ(x))+ ∑
x>0

xρ(x) (4.16)

and

h(ρ) =σN
(
(−L(ρ)−5N )++ (R(ρ)−5N )+

)
(4.17)

where the constant σ satisfies 0 <σ¿ 1 and will be specified in Section 4.6.2 (see equations

(4.47) and (4.58) for more details). Consider also the subset A ⊂Ω such that

A = {ρ ∈Ω : L(ρ) <−50N or R(ρ) > 50N }c. (4.18)

Here 50N can be changed. We just need something big enough to validate the construction in

Subsection 4.6.2, situation 2 when ρ0 ∈Ω2 that is defined later in (4.25).

As outlined previously, the objective is to show that f and A verify the Lyapunov-Foster’s

criterion (4.10). It is reasonably clear that the second property of (4.10) is satisfied. The

following lemma gives a justification.

Lemma 4.6.2. There exists K <∞ so that uniformly over all configurations ρ0 ∈ A, we have

Eρ0 ( f (ρ(N )))6K . (4.19)

Proof. Take X = R(ρ(N ))∨ (−L(ρ(N ))) and remark that X is stochastically less than the maxi-

mum of two independent Poisson processes beginning with values 50N . As we have f (ρ(N ))6
2X 2 +2σN X , the result is immediate.

But first, let’s have a closer look on function g .
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The quantity g (ρ) jumps with jump size 1 or 2. If the ∗ are disregarded, g (ρ) has only jump

size 1, a positive jump rate of∑
x∈Z

1{ρ(x)ρ(x+1)=10} (4.20)

and a negative jump rate of∑
x∈Z

1{ρ(x−1)ρ(x)=01}. (4.21)

Note that in Ω, (4.21) is always 1 less than (4.20). Now consider the ∗. For those x with

ρ(x−2)ρ(x−1)ρ(x) = 0∗01, any jump of the site x on the left will be of order 2 in fact. Similarly,

if ρ(x−1)ρ(x)ρ(x+1) = 011∗, when x jumps on the left, it will induce a jump of g (ρ) with jump

size 2. This motivates the following decomposition

g (ρ(t ))− g (ρ(0)) = M(t )+N (t )− A(t ) (4.22)

where

• M(t) is a local martingale (given ρ(0), it is easily seen to be a martingale) and M(t)

makes jumps of size 1 or −1, M(t ) can be seen as a time changed random walk,

• N (t ) is a rate 1 Poisson process,

• A(t ) is a jump process making only jump of size 1 with a jump rate
∑

x∈Z1{ρ(x,t )∈{0∗,1∗}}.

Fix M(0) = N (0) = A(0) = 0. Thus we have

Eρ0 (g (ρ(N ))) = g (ρ0)+N −E(A(N )). (4.23)

The function g is a good candidate to pass the Lyapunov-Foster’s criterion because A(t) is

usually increasing faster than N (t). However, when the rightmost 1 and the leftmost 0 are

isolated, g is not necessarly negative and fails to pass the criterion. That’s why we add the h

function, because in this situation, this decreases fast and then the criterion is verified. Thus

we splitΩ\ A into two parts corresponding to the two cases explained before : Ω1 andΩ2.

Let IL = {L(ρ0), . . . ,L(ρ0)+5N } and IR = {R(ρ0)−5N , . . . ,R(ρ0)}. Consider δ¿ 1 that will be

fixed small enough later and set

Ω1 =
{
ρ0 ∈Ω : L(ρ) <−50N or R(ρ0) > 50N ,

∑
x∈IL

(1−η(x)) < δN and
∑

x∈IR

η(x) < δN

}
(4.24)

and

Ω2 =
{
ρ0 ∈Ω : L(ρ) <−50N or R(ρ0) > 50N and

∑
x∈IL

(1−η(x))> δN or
∑

x∈IR

η(x)> δN

}
.

(4.25)
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4.6.1 Extreme points are isolated : when ρ0 ∈Ω1

In this situation, we need to have a finite speed propagation in order to control h.

Lemma 4.6.3. Consider % a process generated by the same Harris system as ρ and suppose that

ρ(x,0) = %(x,0) for all x ∈ {. . . ,−1,0}, then outside probability e−cN ,

ρ(x, N ) = %(x, N ) for all x ∈ {. . . ,−5N −1,−5N } (4.26)

for c > 0 not depending on N .

Proof. Define

D(t ) = inf{x : ρ(x, t ) 6= %(x, t )} (4.27)

and remark that D is piecewise constant and jumps by at most 2 to the left, with a rate smaller

than 2 by our construction. This means that D(t ) is dominated from below by −2P (t ) with P a

rate 2 Poisson process. Then, we have

P(D(N )6−5N )6P(P (N )> 2.5). (4.28)

Large deviations lead to the conclusion.

As we are in an isolated situation, we can observe the behaviour of the rightmost 1. Proposition

4.7.1 in Section 4.7 insures that when there are at most δN particles,

P(R(ρ(N ))−R(ρ0)6 δN )6 e−cN (4.29)

for some constant c > 0 not depending on N . By exchanging 1’s and 0’s, we get a similar result

for L. Then by Lemma 4.6.3, for some constants c1,c2 > 0, outside probability 2e−c1N +2e−c2N ,

we have

R(ρ(N )) < R(ρ0)−δN and L(ρ(N )) > L(ρ0)+δN . (4.30)

Let’s call this event G to clean the further notations. We can now return to our function f .

Recall that

Eρ0 (g (ρ(N )))6 g (ρ0)+N −Eρ0 (A(N ))6 g (ρ0)+N (4.31)

by decomposition (4.22). When ρ0 ∈Ω1, A(N ) is really small and then we need the part h to

verify the criterion. By previous result (4.30) and as R(ρ0) > 50N or L(ρ0) < 50N , we have

Eρ0 (h(ρ(N ))−h(ρ0))6 Eρ0 (h(ρ(N ))−h(ρ0)|Gc)Pρ0 (Gc)−σN ·2δN ·(1−2e−c1N−2e−c2N ). (4.32)
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By Cauchy-Schwarz inequality and Lemma 4.6.1, we have

Eρ0 (h(ρ(N ))−h(ρ0)|Gc)Pρ0 (Gc)6 Eρ0 ((h(ρ(N ))−h(ρ0))2)
1
2Pρ0 (Gc)

1
2

6 σN ·2
√

N 2 +N ·
√

2e−c1N +2e−c2N
(4.33)

which leads to, for N sufficiently large and for some constant c > 0,

Eρ0 (h(ρ(N ))−h(ρ0))6 2σδcN 2 (4.34)

with the help of equation (4.32). Thus, by equation (4.31), we get

Eρ0 ( f (ρ(N )))6 f (ρ0)−2σδcN 2 +2N 6 f (ρ0)−1 (4.35)

for N large enough.

4.6.2 Mixed situation : when ρ0 ∈Ω2

As ρ0 ∈Ω2, we know that either the number of 1’s in {R(ρ0)−5N , . . . ,R(ρ0)} exceeds δN or the

number of 0’s in {L(ρ0), . . . ,L(ρ0)+5N } exceeds δN . As both situations are symmetric, consider

that the first one occurs.

In this case, we need to verify that h is increasing slower than g in order the criterion to be

checked. We control Eρ0 (h(ρ(N ))−h(ρ0)) via Lemma 4.6.1, obtaining the bound 2σN 2. Thus

it suffices to show that Eρ0 (A(N )) is sufficiently positive as we have

Eρ0 (g (ρ(N )))6 g (ρ0)+N −Eρ0 (A(N )). (4.36)

To study A(ρ(N )), we partition {L(ρ0), . . . ,R(ρ0)} into intervals of length between δN
4 and δN

2 ,

named I1, . . . , Im (for some m), so that R(ρ0)−5N is endpoint of an interval. These partitions

include intervals of three types, where either the proportion of 1’s or 1∗’s exceeds 1−δ3

4 (and the

interval is said positive), either the proportion of 0’s or 0∗’s exceeds 1−δ3

4 (and the interval is

said negative) or intermediate when the interval is neither positive nor negative. These values

are chosen so that at least one of the intervals in IR (resp. IL) is not negative (resp. positive)

when the quantity of 1’s or 1∗’s (resp. 0’s or 0∗’s) exceeds δN in IR (resp. IL).

We now consider two situations :

1. there is j so that I j is not positive and I j+1 is not negative,

2. such a j does not exist.

In both cases, we adapt Proposition 4.7.1 (that will be proved in Section 4.7) to show that A(N )

will, with high probability, be at least of the order N 2.

Lemma 4.6.4. Given m < δN points x1 > . . . > xm such that ρ0(xi ) ∈ {1,1′∗} for all i , there exist

a family of motions {Y1(t ), . . . ,Ym(t )}06t6N so that
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• Yi (t ) > Yi+1(t ) for all i and t,

• ρ(Yi (t ), t ) = 1 for all i and t.

Moreover, Yi (t) is right continuous, piecewise constant, making a finite number of jumps on

t ∈ [0, N ] such that for all t , Yi (t )−Yi (t−) ∈ {−2,−1,0,1} and with probability at least e−cN ,

Yi (N ) < Yi (0)−δN for all i . (4.37)

Proof. Take Yi (0) = xi and let Yi evolve freely, as in Proposition 4.7.1. While the particle is

isolated, everything goes well. When the particle wants to move but is blocked by one of its

neighbours to the left, we simply swap their positions. For instance, suppose that Yi (t−) = x

(which means that ρ(x, t−) = 1), ρ(x − 1, t−) = 1 and t ∈ N x,x−1, then we simply write that

Yi (t ) = x −1. By this way, Yi evolves in the same way as Xi in Proposition 4.7.1.

Remark that the analogous conclusion holds for 0’s and 0∗’s.

Now consider situation 1. For some j , I j has at least m 0’s or 0∗’s and I j+1 has at least m 1’s or

1∗’s for

m = δ4

16
N . (4.38)

Choose exactly m points in each interval. Let Y1(t ), . . . ,Ym(t ) be the m motions associated to

the 1’s or 1∗’s in I j+1 and Z1(t), . . . , Zm(t) be the m motions associated to the 0’s or 0∗’s in I j .

By construction, we have

max{Z1(0), . . . , Zm(0)} < min{Y1(0), . . .Ym(0)} (4.39)

and by Lemma 4.6.4, we have

max{Y1(N ), . . . ,Ym(N )} < min{Z1(N ), . . . Zm(N )}. (4.40)

Thus choose
⌊ m

11

⌋
subscripts from {1, . . . ,m}, named i1, . . . , ibm

11c, so that ik+1 − ik > 10 for all

k. Repeat that operation to create the family j1, . . . , jbm
11c so that jk − jk+1 > 10 for all k. By

this way, we ensure that a motion can only correspond to one event G (described later). For

u, v 6
⌊ m

11

⌋
, we can now define the stopping time

Tu,v = inf{t : Y ju (t )−Ziv (t )6 2} (4.41)

and the time interval

ITu,v = [Tu,v ,Tu,v +1]. (4.42)
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Then consider the interval

Iu,v = {Ziv (Tu,v )−1, . . . ,Y ju (Tu,v )+1} (4.43)

and define the event

Gu,v = {no particle enters Iu,v and there is a jump of size 2 during time interval ITu,v }. (4.44)

Remark that the jump in event Gu,v can be to left or to right. Although the probability of event

Gu,v can be deduced from the Harris system, we don’t need the exact value and simply refer to

it as pu,v . Then, for all u, we have that
∑bm

11c
v=1 1{Gu,v } is stochastically greater than a binomial

Bin(
⌊ m

11

⌋
, pu) with pu = minv {pu,v }. Hence, by large deviations and as no jump of size 2 can

correspond to two distinct (u, v), we have

P

∃u 6
⌊ m

11

⌋
:
bm

11c∑
v=1

1{Gu,v } 6

⌊ m
11

⌋
p

2

6
⌊ m

11

⌋
e−cbm

11c6 e−c ′m (4.45)

for p = minu{pu}, c , c ′, some constants and m sufficiently large. In particular, this means that,

for some constants c1,c2 > 0, outside probability 2e−c1N +e−c2N we have

Eρ0 (AN )>
δ8N 2

112 ·162 ·
( p

2

)2
. (4.46)

Situation 1 is done if σ verifies

2σ− δ8

112 ·162 ·
( p

2

)2
< 0. (4.47)

Now consider situation 2. The rightmost non negative interval is necessary on the right of

R(ρ0)−5N because ρ0 ∈Ω2 as pointed previously. The interval immediately on its left cannot

be non positive and has to be positive. Actually, the reasoning repeats and every interval on

the left should be positive. We are then in a situation where we have a high density of particles

and as the number of 1’s at the right of the origin equals the amount of 0’s at the left of origin,

L(ρ0) has to be very far from origin. By the way, for δ sufficiently small, we can find x > L(ρ0)

and y > x+25N such that the number of 0’s is smaller than δN but greater than δN
2 on interval

{x, . . . , y}. We now want to show that the amount of jumps of size 2 is at least of order N 2 in

this interval with high probability so that Eρ0 (A(N ))> cN 2 for some constant c > 0.

Consider an auxiliary process ρF identically to ρ but where there are no 0’s and no 0∗’s outside

interval {x, x +1, . . . , y −1, y}. We are then in the situation of Proposition 4.7.1. Suppose that

the number of particles is m (recall that δN >m > δN
2 ) and define X1, . . . Xm to be the motions

associated to each particle. We can now consider a decomposition of Sm(t) = ∑m
i=1 Xi (t)
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similar to (4.22)

SF(t )−SF(0) = MF(t )+ AF(t ) (4.48)

with MF a martingale and AF a jump process simply counting the number of jumps of size 2

(on the right, as we are looking on 0’s and 0∗’s). Note that MF(0) = AF(0) = 0. Remark that MF

is a random walk with rate smaller than m and then, for some constants c1,c2 > 0, we have

P(|MF(N )| > c1mN )6 e−c2N . (4.49)

Proposition 4.7.1 shows that, for some constants c3 > 0, we have

P(SF(N ) < δN ·m)6 e−c3t . (4.50)

Then, if we take δ sufficiently small for c1 > δ
2 , then we have, for some constant c > 0,

P(AF(N )) < δN m

2
)6 e−cN . (4.51)

Now, simply remark that m > δN
2 and we have, for some constant c > 0,

P(AF(N ) < δ2N 2

4
)6 e−cN . (4.52)

We now need to control the contribution of 0’s and 0∗’s in intervals {x, . . . , x +5N } and {y −
5N , . . . , y}. We say that a site is associated with a jump of size 2 if it is one of the two sites

involved in the jump, i.e.,

• t ∈ N 2,3 and ρ(t−) = 0∗01 : we get ρ(t ) = 100, sites 2 and 3 are associated with this jump,

• t ∈ N 1,2 and ρ(t−) = 011∗ : we get ρ(t ) = 110, sites 1 and 2 are associated with this jump.

If we fix a particle x (a site with value 0 or 0∗, as we try to control them), it is then clear that the

number of jumps associated to it is stochastically dominated by a Poisson process of rate 1

as we need that t ∈ N x,x+1. In particular, if we write K (t ) for the number of associated jumps

(until time t ) for a fixed particle, there exists c > 0 so that

P(K (N ) > 2N )6 e−cN (4.53)

by standard Poisson bounds. As we have less than a proportion δ3

4 of 0’s in intervals {x, . . . , x +
5N } and {y −5N , . . . , y}, the contribution of 0’s and 0∗’s in these intervals, until time N , is at

most

δ3

4
·5N ·2N ·2 = δ35N 2 (4.54)

outside a probability of e−cN , for some constant c > 0.
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However, we did not consider interactions between particles in {x, . . . , x + 5N } and in {x +
5N +1, . . . , x +10N } that can modify the previous results. Then, repeat the reasoning of the

previous paragraph but this time consider intervals {x, . . . , x + 10N } and {y − 10N , . . . , y} to

compute equation (4.54). Lemma 4.6.3 ensures that, with high probability, particles in intervals

{x, . . . , x +5N } and {y −5N , . . . , y} do not interact with particles in interval {x +10N +1, . . . , y −
10N − 1}. This shows that the contribution of 0’s and 0∗’s in intervals {x, . . . , x + 5N } and

{y −5N , . . . , y} to AF is at most

δ310N 2 (4.55)

outside probability of e−cN , for some constant c > 0. This implies, due to equation (4.52), that

the total contribution of 0’s and 0∗’s in interval {x +5N+, . . . , y −5N −1} is at least

δ2N 2

4
−δ310N 2 >

δ2N 2

8
(4.56)

for δ sufficiently small, outside probability e−cN for some constant c > 0.

Then, using the finite speed propagation (Lemma 4.6.3), we know that, outside a probability

e−cN , for some constant c > 0, bound (4.56) is also true for the non-finite model ρ restricted to

interval {x+5N+1, . . . , y−5N−1}. This implies that for some constant c > 0, outside probability

e−cN ,

A(N )>
δ2N 2

8
. (4.57)

If σ verifies

2σ− δ2

8
< 0, (4.58)

it concludes the proof.

4.7 Technical results

In this Section, we consider the case where there is a finite quantity (of order N ) of 0’s close

together surrounded by 1’s. We may speak of the position X1(t ) of the leftmost 0 of ρ(t ), Xi (t )

the i -leftmost of ρ(t ) and L(t ) the leftmost particle 0 of ρ(t ). By spatial homogeneity, we can

fix L(0) = 0. We decided to identify 0’s as particles so that the bias is positive. As the model is

symmetric, we get the same result for 1’s in the opposite direction.

Formally we have

∞∑
i=0

(
1−ρ(x,0)

)< δN . (4.59)
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with δ very small, not depending on N . We wish to show that, outside an exponentially small

probability (in N ), for all j 6 δN , Xi (N )−Xi (0) will be of order N . We will use the fact that Xi

has a strictly positive drift to the right.

Proposition 4.7.1. Consider ρ the process associated toλc with only a finite amount of particles

with value 0. Take Xi (t) to be the i -rightmost particle with value 0 of ρ(t). There exists some

constant δ0 very small so that, for all δ< δ0, if the quantity of particles with value 0 is less than

δN , then there exist some constants c1,c2 > 0 not depending on N such that

P(Xi (N )−Xi (0)6 δ0N )6 c1e−c2N ∀i . (4.60)

We then define the following (non-Markov) motion, derived from the given Harris system.

{Y (t )}t>0 will be a process on Zwhich moves in jumps of 1 to the left (or jumps of size −1) and

jumps of 1 or 2 to the right. The process will jump from site x to site x −1 at time t if and only

if Y (t−) = x and t ∈ N x−1,x , it will jump rightwards if and only if t ∈ N x,x+1. At such times it

will jump a distance of 2 if within the relevant time interval, Y has not moved, there is a point

in N x+1,x+2 and no point in N x+1,x+2 later. We can easily see that {Y (t )}t>0 is an asymmetric

random walk with drift 1
8 . To be more precise, the transitions are given by

• −1 with probability 1
2 ,

• +1 with probability 3
8 ,

• +2 with probability 1
8 .

This process can be turned into a Markov process by the addition of an auxiliary process

{∆(t)}t>0 taking values 0 or 1 such that there will be a jump of Y at time t of magnitude 2 if

and only if t ∈ N x,x+1 and ∆(t−) = 1. Process ∆will evolve as follows :

• ∆(0) = 0 ;

• when t ∈ N Y (t−)+1,Y (t−)+2, ∆(t ) = 1 ;

• if∆(t−) = 1, then∆(t ) = 0 when t ∈ N Y (t−)−1,Y (t−), t ∈ N Y (t−),Y (t−)+1 or t ∈ N Y (t−)+1,Y (t−)+2.

· · · 1 1 0 1 1∗ 1 · · ·

Motions in black set ∆ to value 0 and dotted motions set ∆ to value 1.

It is clear that Y (t )6 X1(t ) if Y (0) = X1(0). Moreover, it also provides a basis lower bound for

Xi (t ). First define a function h by

h(1) = X1(0) and h(i ) = Xi (0)∧ (h(i −1)−b) (4.61)

for all appropriate i , with b > 2.
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Then define inductively {Yi (t )}t>0 evolving as Y and given Yi−1, one constrains Yi to always be

bounded by Yi−1 −2. That is, if Yi (t−) = Yi−1(t−)−2 and Yi−1 jumps on the left, formally when

t ∈ N Yi−1(t−)−1,Yi−1(t−), then Yi must also do so at the same time and the auxiliary process ∆(t )

is set to 0. Equally if Yi (t−) = Yi−1(t−)−3 or Yi (t−) = Yi−1(t−)−2 and Yi jumps on the right,

formally when t ∈ N Yi (t−),Yi (t−)+1, we set Yi (t) = Yi−1(t)−2 and ∆(t) is reset to 0. We also fix

the start of these processes such that Yi (0) = Xi (0)∧ (Xi−1(0)−2) which means that we have

Yi (t )6 Xi (t ) for all i and all time t . We will then show in Proposition 4.7.2 that Yi (and so Xi )

has a positive drift and use it to prove Theorem 4.7.1.

Proposition 4.7.2. For b chosen large enough and c > 0 small enough,

E

(∫ ∞

0
exp

(
−c

(
Yi (t )−h(i )− 1

16
t

))
d t

)
6C (4.62)

for appropriate C , for all i and all initial configuration ρ0 satisfying condition (4.59).

The basic idea behind the inductive argument we will use to prove Proposition 4.7.2 is that, as

long Yi lies at distance 2 below Yi−1, it will not be impeded in its movement. Since this occurs

most of the time when the particle density is low, Yi will move similarly to a continuous time

random walk with drift almost 1
8 , the actual drift of Y . We will then proceed as in [9], section 5,

and introduce a system of subprocesses when Yi (t j ) decreased quickly to control the effect Yi

has on Yi+1.

The goal is to show that Yi has a long term drift at least 1
16 . It’s more convenient to shift

coordinates in order to prove it. We set

φi−1(t ) = (Yi−1(t )−2)− 1

16
t −h(i ) (4.63)

and

Zi (t ) = Yi (t )− 1

16
t −h(i ). (4.64)

φi−1 will act as a barrier on Zi in a similar way than Yi−1 on Yi . If we bound

E

(∫ ∞

0
exp(−c Zi (t ))d t

)
, (4.65)

we get the result for Yi . The main problem here is that φi will not act as a line with positive

slope but can decrease quickly which can cause Zi to decrease. It means that we cannot

simply use standard large deviation results. That’s why we will define a system of subprocesses

{Zi , j (t )}t>t j , to control the effect of φi−1 over Zi . But first, we give some basic properties.

As Yi (t )6 Yi−1(t )−2 for all t > 0, we have

Zi (t )6φi−1(t ) for all t > 0 (4.66)
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and by definition of h, we have Zi (0)> 0 and

Zi (t ) =φi (t )+h(i +1)−h(i )+26φi (t )−b +2 for all t > 0. (4.67)

We now introduce stopping times {Si ( j )} j∈N to control the decrease of φi . Fix Si (0) = 0 and

inductively set

Si ( j ) = ⌊
Si ( j −1)+1

⌋∧min
{

t > Si ( j −1) :φi−1(t )6φi−1
(
Si ( j −1)

)−1
}

. (4.68)

We can remark that the amount φ j can decrease between these times is bounded by 1 and

Si ( j )−Si ( j−1)6 1 for all j . We are now ready to define the system of subprocesses {Zi , j (t )}t>t j .

At each time Si ( j ), we add a process Zi , j starting from

Zi , j (t ) =φi−1
(
Si ( j )

)
for t = Si ( j ) (4.69)

and evolving as Zi (according to the same translated random walk) except

• Zi , j is not stopped by the barrier φi−1,

• on the initial interval
[
Si ( j ),bSi ( j )+1c), positive jumps of Zi , j are suppressed.

We will show in Lemma 4.7.3, that the processes {Zi , j } j∈N will provide a lower bound for Zi .

Lemma 4.7.3. Fix i and define

Ui = min{t > 0 : Zi (t ) =φi−1(t )}. (4.70)

For t >Ui , we have

Zi (t ) > min
j>0

Zi , j (t )−1. (4.71)

Proof. Suppose that Zi (T ) =φi−1(T ) at a given time T . We claim that

Zi (T ) > Zi , j (T )−1 for some j > 0. (4.72)

1. If T = Si ( j ) for some j , then Zi (T ) = Zi , j (T );

2. Otherwise T is not an integer and there exist some j such that Si ( j ) ∈ [bT c,T ) for which

φi−1(T ) > φi−1(Si ( j ))−1 by definition (4.68). Since Zi , j cannot increase on [Si ( j ),T ],

this implies that

Zi , j (T )−16 Zi , j (Si ( j ))−1 =φi−1(Si ( j ))−1 <φi−1(T ) = Zi (T ). (4.73)

Hence, (4.72) holds.

After time T , the process Zi , j evolves according to the same law as Zi except it does not take

care about the barrier φi−1 and positive jumps on
[
Si ( j ),bSi ( j )+1c) are suppressed. So until
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the next time at which Zi is restricted by the barrier φi−1, Zi (t ) > Zi , j (t )−1.

After a finite amount of time, Zi has only a finite number of changes of state, and then attempts

to cross φi−1 only a finite number of times. We can also use induction to prove that (4.71)

holds for all t >Ui .

To prove Proposition 4.7.2, we have to analyze each Zi , j . We also define the translated random

walk Z with Z (0) = 0 and which evolves according to the same transition law as each Zi , j

except that positive jump during interval [0,1), instead of
[
Si ( j ),bSi ( j )+1c), are suppressed.

On [1,∞), Z is a finite range random walk with positive drift and so Z (t) →∞ linearly off a

large deviation set as t →∞.

Lemma 4.7.4. For c > 0 chosen small enough, we have

E

(∫ ∞

0
e−c Z (t ) d t

)
<∞. (4.74)

Proof. Choose a > 1 and set Z̃ (t ) = Z (t +a)−Z (a). It defines a random walk starting at 0 with

no suppression of jumps. Write zx = E(∫ x
0 e−c Z (t ) d t

)
. For x > a, we have,

zx 6 za +E
(
e−c Z (a))zx−a 6 za +E

(
e−c Z (a))zx . (4.75)

For c > 0 small enough, we have

E
(
e−c Z̃ (a−1)

)
6 γa−1 (4.76)

for γ ∈ (0,1). So for large enough a, we get

E
(
e−c Z (a))= E(

e−c Z̃ (a−1)
)
E
(
e−c Z (1))6 γa−1E

(
e−c Z (1))< 1. (4.77)

By 4.75 we have

zx 6
za

1−E(
e−c Z (a)

) (4.78)

and then, letting x →∞ implies z∞ <∞.

Fix i and take j0, j1, j2, . . . the subscripts at which Si ( jn) = n. We can then set Tn = Si ( jn −1),

the last stopping time before time n. Using this with lemma 4.7.4 gives a bound for the integrals

of the moment generating function of Zi , j summed over j for which Si ( j ) ∈ [n −1,n), in terms

of the moment generating function of φi−1(Tn).

Lemma 4.7.5. For c > 0 chosen large enough,

E

(
jn−1∑

j= jn−1

∫ ∞

0
e−c Zi , j (t ) d t

)
6C E

(
e−cφi−1(Tn )) (4.79)
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for all n, 16 i 6 Nδ and appropriate C .

Proof. Recall that Z is the translated random walk starting on Z (0) = 0 and which evolves

according to the same transition law as each Zi , j except that positive jump during interval

[0,1), instead of
[
Si ( j ),bSi ( j )+1c), are suppressed. We then have

Zi , j (t +Si ( j ))−Zi , j (Si ( j ))> Z (t ) (4.80)

for all t and Z is independent of FSi ( j ). So we get

E

(∫ ∞

Si ( j )
e−c Zi , j (t ) d t

)
= E

(∫ ∞

0
e−c Zi , j (t+Si ( j )) d t

)
= E

(
e−c Zi , j (Si ( j ))

∫ ∞

0
e−c

(
Zi , j (t+Si ( j ))−Zi , j (Si ( j ))

)
d t

)
6 E

(
e−c Zi , j (Si ( j ))

∫ ∞

0
e−c Z (t ) d t

)
= E

(∫ ∞

0
e−c Z (t ) d t

)
E
(
e−c Zi , j (Si ( j ))

)
.

(4.81)

We know that φi−1(Si ( j +1))6φi−1(Si ( j ))−1 for stopping times Si ( j ) and Si ( j +1) in interval

[n −1,n) and any n. It means that

φi−1(Si ( j ))−φi−1(Si ( jn −1))> ( jn −1)− j (4.82)

for j ∈ { jn−1, . . . , jn −1} and then, using (4.69),

E
(
e−c Zi , j (Si ( j ))

)
6 E

(
e−c( jn−1− j )e−c Zi , jn−1(Si ( jn−1))

)
= e−c( jn−1− j )E

(
e−c Zi , jn−1(Tn )) (4.83)

for such j . Lemma 4.7.4, (4.81) and (4.83) lead to

E

(
jn−1∑

j= jn−1

∫ ∞

Si ( j )
e−c Zi , j (t ) d t

)
6C E

(
e−c Zi , jn−1(Tn ))=C E

(
e−cφi−1(Tn )) . (4.84)

We are now ready to prove Proposition 4.7.2 using the bound of the integral of the moment

generating function of Zi , j given in Lemma 4.7.5 and the fact that these processes bound Zi

as stated in Lemma 4.7.3.

Proof. We will use induction to show that for i ,

E

(∫ ∞

0
e−c Zi (t ) d t

)
6C (4.85)

for large enough b, small enough c > 0 and appropriate C , which do not depend on i . Using
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this inequality and (4.64) prove (4.62).

As Y1 is a finite range random walk with drift 1
8 , the case i = 1 is clear. Let say that it works for a

certain constant C1 appropriate and chose C such that C = 2C1. Assume now that (4.85) holds

for i −1. On t <Ui , Zi is not blocked by the barrier and evolves as a translated random walk

with the same transition law as Z1. We denote Z̄ the extended process coupled with Zi before

Ui and evolving as Z1 after Ui . By Lemma 4.7.3,

Zi (t )>
(
min
j>0

Zi , j (t )−1

)
∧ Z̄ (t ) (4.86)

for all t . Consequently,

E

(∫ ∞

0
e−c Zi (t ) d t

)
6 ec E

( ∑
j>0

∫ ∞

0
e−c Zi , j (t ) d t

)
+E

(∫ ∞

0
e−c Z̄ (t ) d t

)
. (4.87)

Moreover, as Z1 and Z̄ have the same law and Z̄ (0)> 0,

E

(∫ ∞

0
e−c Z̄ (t ) d t

)
6C1 (4.88)

and by Lemma (4.7.5),

E

( ∑
j>0

∫ ∞

0
e−c Zi , j (t ) d t

)
= E

( ∞∑
n=1

jn−1∑
j= jn−1

∫ ∞

0
e−c Zi , j (t ) d t

)
6C2E

( ∞∑
n=1

e−cφi−1(Tn )
)

(4.89)

for small enough c > 0 and appropriate C2 not depending on i . Take P ∼P(1) a Poisson rate

1 random variable. Using the space homogeneity of the jumps of φi−1 and the fact that over

interval [n −1,n), the difference of supremum and infimum of φi−1 is at most the number of

jumps, we get

E

( ∞∑
n=1

exp

(
−c inf

t∈[n−1,n)
φi−1(t )

))

= E
( ∞∑

n=1
exp

(
c sup

t∈[n−1,n)
φi−1(t )− c inf

t∈[n−1,n)
φi−1(t )

)
exp

(
−c sup

t∈[n−1,n)
φi−1(t )

))

6
∞∑

n=1
E
(
ecP )

E

(
exp

(
−c sup

t∈[n−1,n)
φi−1(t )

))

6 (ec −1)E

(∫ ∞

0
e−cφi−1(t ) d t

)
.

(4.90)
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As Tn ∈ [n −1,n), using (4.90), (4.67) and the induction hypothesis, we have

E

( ∞∑
n=1

e−cφi−1(Tn )
)
6 E

( ∞∑
n=1

exp

(
−c inf

t∈[n−1,n)
φi−1(t )

))
6C3E

(∫ ∞

0
e−cφi−1(t ) d t

)
6C3 ec(2−b)E

(∫ ∞

0
e−c Zi−1(t ) d t

)
6 2C1C3 ec(2−b)

(4.91)

for appropriate C3 not depending on i . Plugging (4.88), (4.89) and (4.91) into (4.87) implies

that for i > 1,

E

(∫ ∞

0
ec Zi (t ) d t

)
6C1

(
1+2C2C3 ec(2−b)

)
6 2C1 =C (4.92)

for b large enough, as C1, C2, C3 and c > 0 do not depend on i .

Theorem 4.7.1 can now be proved.

Proof. Recall there are at most Nδ particles and write L for the leftmost particle. We first show

that Proposition 4.7.2 implies

E
(
exp

( c

16
N − cbNδ− cL(N )

))
6C (4.93)

for appropriate c, C and b.

Using the same arguments as in (4.90) for Zi instead of φi−1 and Proposition 4.7.2, we have

E

( ∞∑
n=1

exp

(
−c inf

t∈[n−1,n)
Zi (t )

))
6C (4.94)

which implies

E
(
e−c Zi (t ))6C (4.95)

for an appropriate C . Remark that as X1(0)> 0, h(k) >−bk for all k, so as h is decreasing, for

any k we have h(k) >−bδN . Then, choose i = δN in (4.95) and do the substitution to get

E

(
exp

(
c

(
1

16
t −bNδ−L(t )

)))
6C . (4.96)

Fix time t = N and you obtain (4.93).

Now we show that the leftmost particle will move at least almost 1
16 N to the right, except for a
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small probability in N . Choose δ0 as close as desired to 1
16 . We claim that

P(L(N )6 δ0N )6Ce−cN (4.97)

for c > 0 and C appropriate. First remark that if b and δ0 are fixed, we can choose δ small

enough to have

1

16
−δ0 > bδ. (4.98)

Write δ′ = 1
16 −δ0 −bδ > 0. Using δ such that (4.98) holds, Markov’s inequality and (4.93)

inequality, we have

P(cL(N )6 cκN ) =P
( c

16
N − cbNδ− cL(N )>

c

16
N − cbNδ− cδ0N

)
6P

(
e

c
16 N−cbNδ−cL(N ) > ecNδ′

)
6 e−cNδ′E

(
e

c
16 N−cbNδ−cL(N )

)
6Ce−cNδ′ .

(4.99)

By shift invariance, we then have

P(L(N )−L(0)6 δ0N )6Cec−δ′N (4.100)

even if we don’t suppose L(0) = 0. Now remark that Xi ’s are favored compared to L : this leads

to (4.60).
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5 Infinite regenerative chains

In this chapter, we prove a general functional central limit theorem (Theorem 5.2.1) for chains

satisfying the regenerative scheme introduced in COMETS, FERNÁNDEZ and FERRARI [19]. We

give an explicit expression for the associated limiting variance depending both on the original

and regenerative processes. As a corollary (Corollary 5.2.2), we give a more tractable condition

on the memory decay of the chain under which Theorem 5.2.1 is fulfilled. We also give a

regime of the memory decay for which the limiting variance can be expressed in terms on the

original process only. As applications, we derive theorems for autoregressive binary processes

and Ising chains (Propositions 5.3.1 and 5.3.2). We also give some remark about the law of the

iterated logarithm in Section 5.5.

The chapter is organized as follows. In Section 5.1, we give some definitions and preliminaries.

In Section 5.2, we state the main results. In Section 5.3 we introduce binary autoregressive

processes and power-law Ising chains for which we give central limit theorems. Finally, Section

5.4 is devoted to the proofs.

5.1 Notation and preliminary definitions

We consider a measurable space (E ,E ) where E is a finite alphabet and E is the discrete σ-

algebra. We denote (Ω,F ) the associated product measurable space withΩ= EZ. For each

Λ⊂Zwe denoteΩΛ = EΛ andσΛ for the restriction of a configurationσ ∈Ω toΩΛ, namely the

family (σi )i∈Λ ∈ EΛ. Also, FΛ will denote the sub-σ-algebra of F generated by cylinders based

on Λ (FΛ-measurable functions are insensitive to configuration values outside Λ). When

Λ is an interval, Λ = [k,n] with k,n ∈ Z such that k ≤ n, we use the notation: ωn
k = ω[k,n] =

ωk , . . . ,ωn ,Ωn
k =Ω[k,n] and F n

k =F[k,n]. For semi-intervals we denote also F≤n =F(−∞,n], etc.

The concatenation notation ωΛσ∆, where Λ∩∆ = ;, indicates the configuration on Λ∪∆
coinciding with ωi for i ∈Λ and with σi for i ∈∆.
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Chapter 5. Infinite regenerative chains

5.1.1 Chains

We start by briefly reviewing the well-known notions of chains in a shift-invariant setting. In

this particular case, chains are also called g -measures (see [50]).

Definition 5.1.1. A g -function g is a probability kernel g :Ω0 ×Ω−1−∞ → [0,1], i.e.,∑
ω0∈Ω0

g
(
ω0|ω−1

−∞
)= 1, ω−1

−∞ ∈Ω−1
−∞. (5.1)

The g -function g is:

1. continuous if the function g (ω0 | · ) is continuous for eachω0 ∈Ω0, i.e., for all ε> 0, there

exists n > 0 so that

|g (
ω0 |ω−1

−∞
)− g

(
σ0 |σ−1

−∞
)| < ε (5.2)

for all ω0−∞,σ0−∞ ∈Ω0−∞ with ω0−n =σ0−n ,

2. bounded away form zero if g (ω0 | · )> c > 0 for each ω0 ∈Ω0,

3. regular if g is continuous and bounded away from zero.

Definition 5.1.2. A probability measure P on (Ω,F ) is said to be consistent with a g -function

g if P is shift-invariant and∫
h(ω)g (x |ω)P(dω) =

∫
{ω0=x}

h(ω)P(dω) (5.3)

for all x ∈ E and F6−1-measurable function h. The family of these measures will be denoted

by G (g ) and for each P ∈G (g ), the process (Xi )i∈Z on (Ω,F ,P) will be called a g -chain.

Remark 5.1.3. In the consistency definition (5.3), P needs only to be defined on (Ω0−∞, F60).

Because of its shift-invariance, P can be extended in a unique way to (Ω,F ). That’s why,

without loss of generality, we can make no distinction between P on (Ω0−∞,F60) and its

natural extension on (Ω,F ).

5.1.2 Regeneration

The following regeneration result is due to COMETS, FERNÁNDEZ and FERRARI [19] (see Theo-

rem 4.1, Corollary 4.3 and Proposition 5.1). It will be the starting point of our analysis.

Theorem 5.1.4 (Comets & al. (2002)). Let g be a regular g -function such that∏
k>0

ak > 0 with ak = inf
σ−1
−k∈Ω−1

−k

∑
ξ0∈E

inf
ω−k−1−∞ ∈Ω−k−1−∞

g
(
ξ0 |σ−1

−k ω
−k−1
−∞

)
(5.4)

with the convention σ−1
0 =;.

Then
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1. there exists a unique probability measure P consistent with g ,

2. there exists a shift-invariant renewal process (Ti )i∈Z with renewal distribution

P(Ti+1 −Ti > M) = ρM , M > 0, i 6= 0 (5.5)

with ρM the probability of return to the origin at epoch M of the Markov chain onN∪ {0}

starting at time zero at the origin with transition probabilities
p(k,k +1) = ak ,

p(k,0) = 1−ak ,

p(k, j ) = 0 otherwise

(5.6)

and such that

T0 6 0 < T1. (5.7)

3. the random blocks {(X j : Ti 6 j < Ti+1)}i∈Z, where (Xi )i∈Z on (Ω,F ,P) is the associated

g -chain, are independent and, except for i = 0, identically distributed.

4. 16 E(T2 −T1) =∑∞
i=1ρi <∞.

5.2 Main Results

We are now ready to state the main results of this chapter as outlined in introduction.

Theorem 5.2.1. Let (Xi )i∈Z be a regular g -chain satisfying the regeneration assumption (5.4)

and f : E →R be a function such that

E
(

f (X0)
)= 0. (5.8)

Then,

1p
n

Sn := 1p
n

n−1∑
i=0

f (Xi ) −→ N
(
0,σ2) in distribution (5.9)

with

0 6 σ2 =
E

((∑T2−1
i=T1

f (Xi )
)2

)
E(T2 −T1)

< ∞. (5.10)

Furthermore, if E((T2 −T1)2) <∞, then

σ2 = E
(

f 2(X0)
)
+2

∑
i>1

E
(

f (X0) f (Xi )
)
<∞. (5.11)

Corollary 5.2.2. Let (Xi )i∈Z be a regular g -chain such that there exist a ∈ R, b ∈ [1,∞), C > 0
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and K > 2 such that for all k >K

ak > 1−C
(log(k))a

kb
. (5.12)

Let f : E →R satisfying (5.8).

1. If a ∈R and b > 1, or a <−1 and b = 1, then (5.9) is satisfied with σ2 defined by (5.10).

2. If a ∈R and b > 2, or a <−1 and b = 2, then (5.9) is satisfied with σ2 defined by (5.11).

5.3 Applications

5.3.1 Binary autoregressive processes

The binary version of autoregressive processes is mainly used in statistics and econometrics.

It describes binary responses when covariates are historical values of the process (see the book

of Peter MCCULLAGH and John A. NELDER (1989) [65], Section 4.3, for more details).

In what follows, we consider the example that was introduced previously in [19]. For the

alphabet E = {−1,+1}, consider θ0 a real number and (θk : k > 1) an absolutely summable real

sequence. Let q :R→ (0,1) be a function strictly increasing and continuously differentiable.

Assume that g ( · |ω−1−∞) is the Bernoulli law on {−1,+1} with parameter q(θ0 +∑
k>1θkω−k ),

that is,

g
(+1 |ω−1

−∞
)= q

(
θ0 +

∑
k>1

θkω−k

)
= 1− g

(−1 |ω−1
−∞

)
. (5.13)

Denote

rk = ∑
m>k

|θm |, k > 0. (5.14)

Proposition 5.3.1. Let (Xi )i∈Z be a regular g -chain with g defined by (5.13) and

f (x) = x −E(X0). (5.15)

1. If
∑

k>0 r 2
k <∞, then |G (g )| = 1.

2. If
∑

k>0 rk <∞, then the central limit theorem is satisfied with σ2 defined by (5.10) for f

defined by (5.15).

3. If there exists K > 0 such that rk 6C (log(k))a/kb , k >K , with C > 0, (a ∈R and b > 2) or

(a <−1 and b = 2), then the central limit theorem is satisfied with σ2 defined by (5.11) for

f defined by (5.15).
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5.3.2 Power-law Ising chain

For the usual Ising (Gibbs) model, a central limit theorem is well known (see the paper of

Charles M. NEWMAN [68]). In the chain context, since the relationship between one dimen-

sional Gibbs measures and chains, discussed in [32], does not allow to easily interpret Gibbs

results in a chain setting, the problem becomes relevant. In what follows, we give central limit

theorem for power-law Ising chains.

For the alphabet E = {−1,1}, consider the power-law Ising chain defined by

g
(
ω0 |ω−1

−∞
)= exp

[
−

−1∑
k=−∞

φk
(
ω0
−∞

)]
∑
σ0∈E

exp

[
−

−1∑
k=−∞

φk
(
ω−1
−∞σ0

)] (5.16)

with

φk
(
ω0
−∞

)=−β 1

|k|p ω0ωk , k 6−1,β> 0, p > 1. (5.17)

Proposition 5.3.2. Let (Xi )i∈Z be a regular g -chain with g defined by (5.16–5.17) and

f (x) = x. (5.18)

1. If p > 3/2, then |G (g )| = 1.

2. If p > 2, then the central limit theorem is satisfied with σ2 defined by (5.10) for f defined

by (5.18).

3. If p > 3, then the central limit theorem is satisfied with σ2 defined by (5.11) for f defined

by (5.18).

5.4 Proofs

5.4.1 Proof of Theorem 5.2.1

Take (Ti )i∈Z as given by Theorem 5.1.4 (ii) and write

Sn =
n−1∑
i=0

f (Xi ) =
T1−1∑
i=0

f (Xi )+
Ti (n)−1∑

i=T1

f (Xi )+
n−1∑

i=Ti (n)

f (Xi ) (5.19)

with

i (n) =
{

max{k > 1: Tk < n} if T1 < n,

0 otherwise.
(5.20)

Lemma 5.4.1. Under (5.4), both n−1/2 ∑T1−1
i=0 f (Xi ) and n−1/2 ∑n−1

i=Ti (n)
f (Xi ) tend to zero in prob-
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ability.

Proof. For any K > 0, we obviously have

P

(∣∣∣T1−1∑
i=0

f (Xi )
∣∣∣> K

p
n

)
6P

(
T1 sup

x∈E

∣∣ f (x)
∣∣> K

p
n

)
. (5.21)

Therefore,

sup
n>1

P

(∣∣∣T1−1∑
i=0

f (Xi )
∣∣∣> K

p
n

)
6P

(
T1 > K

p
n

M

)
(5.22)

with

M = sup
x∈E

∣∣ f (x)
∣∣ . (5.23)

On the other hand, by the shift-invariance of (Ti )i∈Z,

P

(∣∣∣ n−1∑
i=Ti (n)

f (Xi )
∣∣∣> K

p
n

)
6P

(Ti (n)+1−1∑
i=Ti (n)

∣∣ f (Xi )
∣∣> K

p
n

)
6P

(
(Ti (n)+1 −Ti (n))sup

x∈E

∣∣ f (x)
∣∣> K

p
n

)
=P

(
(T1 −T0)sup

x∈E

∣∣ f (x)
∣∣> K

p
n

)
,

(5.24)

where we used that i (0) = 0. Therefore,

sup
n>1

P

(∣∣∣ n−1∑
i=Ti (n)

f (Xi )
∣∣∣> K

p
n

)
6P

(
T1 −T0 > K

p
n

M

)
, (5.25)

where M is defined by (5.23). Noticing that, under condition (5.4), both P(T1 > K
p

n/M)

and P(T1 − T0 > K
p

n/M) tend to zero as n goes to infinity, we can conclude that both

n−1/2 ∑T1−1
i=0 f (Xi ) and n−1/2 ∑n−1

i=Ti (n)
f (Xi ) tend to zero in probability.

Proposition 5.4.2. Let (Xi )i∈Z be a regular g -chain satisfying (5.4) and f : E → R. Then the

following statements are equivalent:

(i) Sn/
p

n −→ N (0,σ2) in distribution for

σ2 =
E

((∑T2−1
i=T1

f (Xi )
)2

)
E(T2 −T1)

, (5.26)

where T1 and T2 are defined in(5.5–5.7);

(ii) (Sn/
p

n)n>0 is bounded in probability;

(iii) E
(∑T2−1

i=T1
f (Xi )

)
= 0 and E

((∑T2−1
i=T1

f (Xi )
)2)<∞.
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Proof. The direction (i) ⇒ (ii) is trivial, so we only have to show (ii) ⇒ (iii) and (iii) ⇒ (i).

To prove (ii)⇒ (iii), we first remark that equation (5.19), Lemma 5.4.1 and assertion (ii) imply

that n−1/2 ∑Ti (n)−1
i=T1

f (Xi ) is bounded in probability. Then, by the converse of the central limit

theorem for real i.i.d. sequences (see e.g. the book of Michel LEDOUX and Michel TALAGRAND

[57], Section 10.1), we must have (iii).

To prove (iii) ⇒ (i), we first see that

i (n)

n
−→ 1

E(T2 −T1)
a.s., (5.27)

which follows from Theorem 5.5.2 of [16] and the fact that (Ti+1−Ti )i>0 is an i.i.d. process. Let

us denote

ξk =
Tk+1−1∑

i=Tk

f (Xi ) and e(n) =
⌊

n

E(T2 −T1)

⌋
. (5.28)

Thanks to the Lemma 5.4.1, to prove (i), it is enough to show that

1p
n

i (n)−1∑
k=1

ξk −→ N

(
0,

E(ξ2
1)

E(T2 −T1)

)
in law. (5.29)

This follows from the standard central limit theorem result

1p
n

e(n)∑
k=1

ξk −→ N

(
0,

E(ξ2
1)

E(T2 −T1)

)
in law, (5.30)

and

1p
n

( i (n)−1∑
k=1

ξk −
e(n)∑
k=1

ξk

)
−→ 0 in probability. (5.31)

To prove the latter, for any ε> 0, let

K ′ =
⌊

ε3

2
(
1+E(ξ2

k )
)⌋

. (5.32)

First, remark that

P

(∣∣∣ i (n)−1∑
k=1

ξk −
e(n)∑
k=1

ξk

∣∣∣>p
nε

)

6 2P

(
max
j6nK ′

∣∣∣ j∑
k=1

ξk

∣∣∣>p
nε

)
+P

(
|i (n)−1−e(n)|> nK ′

)
.

(5.33)
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Then, use the Kolmogorov’s maximal inequality, (iii) and (5.32), to get

P

(
max
j6nK ′

∣∣∣∣ j∑
k=1

ξk

∣∣∣∣>p
nε

)
6

1

nε2 Var

( nK ′∑
k=1

ξk

)
= K ′ E(ξ2

k )

ε2 6
ε

2
. (5.34)

Since

lim
n→∞P

(
|i (n)−1−e(n)|> nK ′

)
= 0, (5.35)

it follows from (5.33–5.34) that

lim
n→∞P

(∣∣∣ i (n)−1∑
k=1

ξk −
e(n)∑
k=1

ξk

∣∣∣>p
nε

)
< ε. (5.36)

We now give the proof of Theorem 5.2.1.

Proof. First, using the shift-invariance of P, we see that for all n > 1

E(S2
n)

n
= 1

n

(
E

(n−1∑
i=0

f 2(Xi )

)
+2E

(n−2∑
i=0

n−1∑
j=i+1

f (Xi ) f (X j )

))

= E
(

f 2(X0)
)
+ 2

n

n−1∑
i=1

(n − i )E
(

f (X0) f (Xi )
)
.

(5.37)

Then, under assumptions (5.4) and (5.8), Theorem 1 in the paper of Xavier BRESSAUD, Roberto

FERNÁNDEZ, and Antonio GALVES [10] insures that∑
i>1

E
(

f (X0) f (Xi )
)
6C

∑
i>1

ρi <∞, (5.38)

for some C > 0. Therefore, it follows from Kronecker’s lemma that

lim
n→∞

E(S2
n)

n
= E

(
f 2(X0)

)
+2

∑
i>1

E
(

f (X0) f (Xi )
)
<∞. (5.39)

In particular, Chebyshev’s inequality implies that(
Snp

n

)
n>1

(5.40)

is bounded in probability. Then Proposition 5.4.2 concludes the proof of (5.9-5.10).

To show (5.11), we use first Proposition 5.4.2 (iii) to get

E

([ i (n)+1∑
k=1

ξk

]2
)
= E

( i (n)+1∑
k=1

ξ2
k

)
= E(ξ2

k

)
E
(
i (n)+1

)
, (5.41)
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where the rightmost equality follows from the Wald’s Equation and the fact that i (n)+1 is a

stopping time w.r.t. (ξk )k>1. Since

lim
n→∞

E
(
i (n)

)
n

= 1

E(T2 −T1)
(5.42)

(see Theorem 5.5.2 in the book of Kai Lai CHUNG [16]), (5.10) and (5.41) give

lim
n→∞

1

n
E

([ i (n)+1∑
k=1

ξk

]2
)
=σ2. (5.43)

But, we have

lim
n→∞

1

n
E

(
max
k6n

ξ2
k

)
= 0 (5.44)

(see p. 90 in the book of Kai Lai CHUNG [15] for a proof) and therefore

lim
n→∞

1

n
E
(
ξ2

k

)= 0, k ∈ {i (n), i (n)+1}. (5.45)

Hence, by (5.43) and (5.45), we finally have

lim
n→∞

1

n
E

([ i (n)−1∑
k=1

ξk

]2
)
=σ2. (5.46)

Now, if we show that

lim
n→∞

1

n
E

([T1−1∑
k=1

f (Xk )
]2

)
= 0 (5.47)

and

lim
n→∞

1

n
E

([ n−1∑
k=Ti (n)

f (Xk )
]2

)
= 0, (5.48)

then, using Theorem 5.1.4 (iii), (5.19) and (5.46), we can conclude the proof of (5.11).

The proofs of (5.47–5.48) are similar, we will prove (5.48) only. To that aim, we first remark that

kP(T1 −T0 > k) → 0 as k →∞, (5.49)

because P(T1 −T0 > k) is decreasing to 0 and

∑
k>0

P(T1 −T0 > k) = E(T1 −T0) = E([T2 −T1]2)

E(T2 −T1)
<∞, (5.50)

where the rightmost equality uses that P(T1 −T0 = k) = kP(T2 −T1 = k)/E(T2 −T1) (see e.g. the

book of Gregory F. LAWLER [55], Chapter 6, Section 6.2, equality (6.10)). Therefore, recalling
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(5.23) and using the shift-invariance of P, we have

1

n
E

([ n−1∑
k=Ti (n)

f (Xk )

]2)
6

M 2

n
E
(
[n −Ti (n)]

2
)

= M 2

n

n∑
k=1

k2P
(
n −Ti (n) = k

)
= M 2

n

n∑
k=1

(2k −1)P
(
n −Ti (n) > k

)
6

M 2

n

n∑
k=1

(2k −1)P(T1 −T0 > k),

(5.51)

which in view of (5.49), goes to zero as n tends to infinity.

5.4.2 Proof of Corollary 5.2.2

Proof. To prove (i), it suffices to see that when (ak )k>0 satisfies (5.12), then (a ∈R and b > 1)

or (a < −1 and b = 1) if and only if
∑

k>0(1− ak ) < ∞ which is equivalent to
∏

k>0 ak > 0.

Therefore, applying Theorem 5.2.1 first part, we get the result.

To prove (ii), we first denote

ãk = 1−C
(log(k))a

kb
(5.52)

and the associated ρ̃k , defined by the analogous of (5.6). Since b > 1, Proposition 5.5 (iv) in

Fernández, Ferrari and Galves [31] gives that there exists some constant C1 > 0 so that

ρ̃k 6C1(1− ãk ), k > 0. (5.53)

Therefore, using that ak > ãk implies ρk 6 ρ̃k , we have

E
(
(T2 −T1)2)= ∑

k>0
kρk 6C1

∑
k>0

k(1− ãk ), (5.54)

which is finite if and only if (a ∈R and b > 2) or (a <−1 and b = 2). Then, applying Theorem

5.2.1 second part, we get the result.

5.4.3 Proof of Proposition 5.3.1

Proof. Define the variation by

vark = sup
{
|g (

ω0 |ω−1
−∞

)− g
(
σ0 |σ−1

−∞
)| : ω0

−∞,σ0
−∞ ∈Ω0

−∞,ω0
−k =σ0

−k

}
, k > 0. (5.55)
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Then, because |E | = 2, we have for any k > 0 (with the convention σ−1
0 =;)

ak = inf
{

g
(
1 |ω−k−1

−∞ σ−1
−k

)+ g
(−1 | ξ−k−1

−∞ σ−1
−k

)
: σ−1

−k ∈Ω−1
−k ,ω−k−1

−∞ ,ξ−k−1
−∞ ∈Ω−k−1

−∞
}

= 1− sup
{
− g

(
1 |ω−k−1

−∞ σ−1
−k

)+ g
(
1 | ξ−k−1

−∞ σ−1
−k

)
: σ−1

−k ∈Ω−1
−k ,ω−k−1

−∞ ,ξ−k−1
−∞ ∈Ω−k−1

−∞
}

= 1−vark .

(5.56)

Therefore,

ak = 1− sup

{
q

(
θ0 +

∑
j=1

kθ j σ− j + rk

)
−q

(
θ0 +

k∑
j=1

θ j σ− j − rk

)
: σ−1

−k ∈Ω−1
−k

}
. (5.57)

Because q is continuously differentiable on a compact set, there exists C > 0 such that

vark 6Crk , k > 0. (5.58)

To prove (i), it suffices to remark that∑
k>0

var2
k <∞, (5.59)

which is a tight uniqueness criteria in terms on the variation (see the paper of Anders JO-

HANSSON and Anders ÖBERG [49] and the one of Noam BERGER, Christopher E. HOFFMAN and

Vladas SIDORAVICIUS [3]).

To show (ii), we simply note that

E
(

f (X0)
)= E(X0 −E(X0)

)= 0 (5.60)

and that∑
k>0

rk <∞ =⇒ ∏
k>0

ak > 0. (5.61)

Finally, to prove part (iii), it suffices first to combine (5.56) and (5.58) to get

ak > 1−Crk , k > 0, (5.62)

and then to apply Corollary 5.2.2 (ii).
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5.4.4 Proof of Proposition 5.3.2

Proof. We need the following well-known bound, whose proof can be found in Appendix of

[64] (we follow the idea of Lemma V.1.4 in the paper of Barry SIMON [72]).

Lemma 5.4.3. Let g be a g -function satisfying (5.16) with
∑−1

k=−∞ |φk | < ∞ and h be a F0-

measurable function. Then, for any ω−1−∞, σ−1−∞ ∈Ω−1−∞,∣∣∣ ∑
ω0∈E

h(ω0)
(
g
(
ω0 |ω−1

−∞
)− g

(
ω0 |σ−1

−∞
))∣∣∣

6 sup
x∈E

|h(x)| sup
ω0∈E

∣∣∣ −1∑
k=−∞

[
φk

(
ω0
−∞

)−φk
(
σ−1
−∞ω0

)]∣∣∣. (5.63)

Applying the previous lemma for h ≡ 1, we obtain that, for any ω≤i−1,σ≤i−1 ∈Ω≤i−1,

∣∣∣g (
ω0 |ω−1

−∞
)− g

(
ω0 |σ−1

−∞
)∣∣∣6 |β| sup

ω0∈E

∣∣∣ −1∑
k=−∞

1

|k|p
(
ω0ωk −ω0σk

)∣∣∣, (5.64)

from which

vark 6 2|β|
−k−1∑
j=−∞

1

| j |p 6 2|β| 1

kp−1 , k > 1, (5.65)

is an immediate consequence.

To prove (i), it suffices to see that (5.65) with p > 3/2 implies the validity of (5.59).

To prove (ii) and (iii), we first remark that similarly to the gibbsian setting, it can be easily

checked that E(X0) = 0 and therefore under (5.18), (5.8) is fulfilled. Then, we combine (5.56)

and (5.65) to get

ak > 1−2|β| 1

kp−1 , k > 1. (5.66)

Thus, the results are direct consequences of Corollary 5.2.2 (i) and (ii).

5.5 Law of the iterated logarithm

Now that we gave a central limit theorem, it seems logical to study the magnitude of the

fluctuation of the chain. In fact, as we considered a finite alphabet, a law of the iterated

logarithm is easy to deduce from the proof of Theorem 5.2.1.

Theorem 5.5.1. Let (Xi )i∈Z be a regular g -chain satisfying the regeneration assumption (5.4)

and f : E →R be a function such that

E
(

f (X0)
)= 0. (5.67)
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Then,

1p
n lnlnn

Sn = 1p
n lnlnn

n−1∑
i=0

f (Xi ) −→ p
2σ a.s. (5.68)

with

0 6 σ2 =
E

((∑T2−1
i=T1

f (Xi )
)2

)
E(T2 −T1)

< ∞. (5.69)

Furthermore, if E((T2 −T1)2) <∞, then

σ2 = E
(

f 2(X0)
)
+2

∑
i>1

E
(

f (X0) f (Xi )
)
<∞. (5.70)

Proof. Recall that E is a finite alphabet. In this situation, convergence in probability and

convergence almost sure are equivalent. Using the regenerative scheme in the exact same

way than Theorem 5.2.1, we can then show that the first and last part of sequence will vanish.

We then simply apply the law of iterated logarithm for an i.i.d. sequence to conclude the

proof.

It is now natural to extend these results to large deviations. It is quite clear that the last part

of the sum (between Ti (n) and n) will behave as the first random block. Sadly, we cannot

immediately conclude as in Theorem 5.5.1. We need to refine hypothesis on the behaviour of

the first block, between T1 and T0. We can see in the paper of Hacène DJELLOUT and Arnaud

GUILLIN [23] that regeneration is again the key to answer this question for a Markov process.

We are convinced that this technique should work in our situation and make it an interesting

forthcoming study.
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