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Abstract

Sequence dependent mechanics of DNA is believed to play a central role in the functioning
of the cell through the expression of genetic information. Nucleosome positioning, gene
regulation, DNA looping and packaging within the cell are only some of the processes that
are believed to be at least partially governed by mechanical laws. Therefore it is important
to understand how the sequence of DNA affects its mechanical properties.

For exploring the mechanical properties of DNA, various discrete and continuum models
have been, and continue to be, developed. A large family of these models, including the
model considered in this work, assume that bases or base pairs of DNA are rigid bodies.
The most standard are rigid base pair models, with parameters either obtained directly from
experimental data or from Molecular Dynamics (MD) simulations. The drawback of current
experimental data, such as crystal structures, is that only small ensembles of configurations
are available for a small number of sequences. In contrast, MD simulations allow a much
more detailed view of a larger number of DNA sequences. However, the drawback is that
the results of these simulations depend on the choice of the simulation protocol and force
field parameters. MD simulations also have sequence length limitations and are currently too
intensive for (linear) molecules longer than a few tens of base pairs. The only way to simulate
longer sequences is to construct a coarse-grain model.

The goal of this work is to construct a small parameter set that can model a sequence-
dependent equilibrium probability distribution for rigid base configurations of a DNA oligomer
with any given sequence of any length. The model parameter sets previously available were
for rigid base pair models ignoring all the couplings beyond nearest neighbour interactions.
However it was shown in previous work, that this standard model of rigid base pair nearest
neighbour interactions is inconsistent with a (then) large scale MD simulation of a single
oligomer [36]. In contrast we here show that a rigid base nearest neighbour, dimer sequence
dependent model is a quite good fit to many MD simulations of different duration and se-
quence.

In fact a hierarchy of rigid base models with different interaction range and length of
sequence-dependence is discussed, and it is concluded that the nearest neighbour, dimer
based model is a good compromise between accuracy and complexity of the model. A full
parameter set for this model is estimated. An interesting feature is that despite the dimer
dependence of the parameter set, due to the phenomenon of frustration, our model predicts
non local changes in the oligomer shape as a function of local changes in the sequence, down
to the level of a point mutation.

Keywords: coarse-grain DNA, rigid base model, Jacobian, parameter extraction, molec-
ular dynamics simulations, frustration energy.
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Résumé

La comportement mécanique de l’ADN basée sur la dépendence de sa séquence est pressentie
de jouer un rôle central dans le fonctionnement de la cellule au travers de l’expression de
l’information génétique. Le positionnement des nucléosomes, la régulation des gènes, la
formation de boucles d’ADN et son empaquetage dans la cellule ne sont que quelques-uns des
processus qui sont soupçonnés d’être au moins partiellement régis par des lois mécaniques.
Par conséquent, il est important de comprendre comment la séquence de l’ADN affecte ses
propriétés mécaniques.

Pour explorer les propriétés mécaniques de l’ADN, différents modèles discrets et continus
ont été, et continuent d’être développés. Une grande famille de ces modèles, notamment le
modèle considéré dans ce travail, suppose que les bases ou paires de bases de l’ADN sont des
corps rigides. Les plus standards sont les modèles ou les paires de bases sont rigides, avec
des paramètres obtenus soit directement à partir des données expérimentales, soit des simu-
lations de dynamique moléculaire (MD). L’inconvénient de données expérimentales actuelles,
telles que les structures cristallines, est que seuls les petits ensembles de configurations sont
disponibles pour un petit nombre de séquences. En revanche, les simulations MD permettent
une vision beaucoup plus détaillée d’un plus grand nombre de séquences d’ADN. Cependant,
l’inconvénient est que les résultats de ces simulations dépendent du choix du protocole de sim-
ulation et des paramètres du potentiel. Les simulations MD ont aussi des limites de longueur
de séquence et sont actuellement trop intensives pour des molécules linéaires plus longs que
les quelques dizaines de paires de bases. La seule façon de prédire les valeurs des paramètres
nécessaires pour des longs séquences est de construire un modèle gros grains.

L’objectif de ce travail est de construire un modèle qui génère les paramètres, dépendents
de la séquence, pour une distribution stationnaire de probabilités des configurations l’ADN,
et cela pour toute séquence d’ADN donnée de n’importe quelle longueur. L’ADN est modélisé
comme un système de bases rigides. L’ensembles de paramètres disponibles précédemment
étaient que pour des modèles qui ignorent tous les couplages au-delà de paires des bases rigides
les plus proches. Toutefois, dans un travail précédent il a été montré, que ce modèle standard
des interactions locales des paires de bases rigides est incompatible avec une simulation MD
d’échelle importante (a l’époque) d’un seul oligomère [36]. Ici nous montrons que le modèle
des bases rigides interagissants avec les bases voisines les plus proches, et avec la dépendence
locale d’une séquence (dimère), donne une assez bonne approximation de distribution de
probabilités pour les nombreuses simulations de dynamique moléculaire de durée différente
et des séquences différentes.

En fait, une hiérarchie de modèles avec une gamme d’interactions différentes et des dépen-
dances différentes en séquence est discutée. Il est conclu que le modèle ne regardant que les
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interactions des voisins les plus proches et les paramètres dépendents en séquence de dimère
est un bon compromis entre la précision et la complexité du modèle. Un ensemble complet
des paramètres pour ce modèle est estimé. Une caractéristique intèressante est que, malgré la
dépendance en dimère de l’ensemble des paramètres, en raison du phénomène de frustration,
notre modèle prévoit des modifications non locales de la forme d’un oligomère en fonction
des variations locales de la séquence, jusqu’au niveau d’une mutation ponctuelle.

Mots-clés: modèle d’ADN gros grains, modèle des bases rigides, jacobien, extraction des
paramètres, simulations de dynamique moléculaire, énergie de frustration.
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Santrauka

Manoma, kad DNR molekulės mechaninės savybės, priklausančios nuo jos sekos, veikia genų
raišką ir todėl yra reikšmingos ląstelės funkcionavimui. Nukleosomų išsidėstymas, genų regu-
liavimas, DNR kilpų susidarymas ir DNR pakavimas lastelėje - tai tik keletas procesų, kurie,
kaip manoma, yra bent iš dalies nulemti mechaninių dėsnių. Taigi svarbu suprasti kaip DNR
seka veikia jos mechanines savybes.

Mechaninių DNR savybių tyrimui yra sukurta ir vis dar kuriama daug įvairių diskrečių ir
tolydžių modelių. Didelė modelių grupė, kuriai priklauso ir šiame darbe aprašytas modelis,
remiasi prielaida, kad DNR bazės arba bazių poros yra kieti kūnai. Dažniausiai naudojami
kietų bazių porų modeliai, kurių parametrai gali buti gaunami tiesiogiai iš eksperimentinių
duomenų arba iš molekulinės dinamikos (MD) simuliacijų. Šiuolaikinių eksperimentų, pa-
vyzdžiui, kristalinių strukturų tyrimo, trūkumas yra tai, kad iš jų duomenų galima gauti
tik nedidelę DNR konfiguracijų aibę, ir tik nedideliam skaičiui DNR sekų. Tuo tarpu MD
simuliacijos leidžia susidaryti daug detalesnį daugelio DNR sekų vaizdą. Tačiau šio metodo
rezultatai priklauso nuo pasirinkto simuliacijų protokolo ir nuo potencialo parametrų. Be to,
MD simuliacijas galima atlikti tik riboto ilgio sekoms, kadangi šiuo metu skaičiavimų apim-
tis tiesinėms molekulėms, ilgesnėms nei keletas desimčių bazių porų, yra per didelė. Taigi
norint tirti ilgesnes sekas, vienintelė išeitis - sukurti stambių komponentų modelį, kuriame
pasirinkta DNR atomų grupė modeliuojama kaip vienas kietas kūnas.

Šio darbo tikslas - sukurti stambių komponentų modelį ir įvertinti jo parametrus, kurie
leistų gauti stacionarų DNR konfiguracijų tikimybių skirstinį bet kokiai norimo ilgio DNR
sekai. DNR molekulė yra modeliuojama kaip kietų bazių sistema. Iki šiol buvo įvertinti
tik parametrai kietų bazių porų modeliams, ignoruojantiems visas sąveikas, tolimesnes nei
tarp kaimyninių bazių porų. Ankstesniame darbe [36] buvo parodyta, kad šis standartinis
kietų bazių porų modelis, vertinantis tik lokalias sąveikas, neatitiko didelės apimties MD
simuliacijos vienam DNR oligomerui rezultatų. Šiame darbe parodoma, kad artimiausių kietų
bazių sąveikų modelis, kurio parametrai priklauso nuo dimero sekos, gerai atitinka skirtingos
trukmės ir įvairių DNR sekų MD simulacijų duomenis.

Darbe pateikiama hierachinė DNR kietų bazių modelių su įvairaus nuotolio sąveikomis ir
parametrų priklausomybe nuo skirtingo ilgio DNR sekos šeima. Daroma išvada, kad artimiau-
sių bazių sąveikų modeliui būdingas geras tikslumo ir sudėtingumo santykis. Darbe įvertinami
visi šio modelio parametrai. Įdomi modelio savybė, kad nepaisant parametrų priklausomybės
tik nuo dimero sekos, dėl frustracijos fenomeno jis gali numatyti platesnius oligomero formos
pasikeitimus, sukeltus lokalių DNR sekos pokyčių, pavyzdžiui, taškinės mutacijos.

Raktiniai žodžiai: DNR stambių komponentų modelis, DNR kietų bazių modelis, jako-
bianas, parametrų vertinimas, molekulinės dinamikos simuliacijos, frustracijos energija.
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Chapter 1

Introduction

Deoxyribonucleic acid (DNA) is one of the key molecules for life on our planet. As discovered
in 1953 [76], it carries genetic information encoded in its sequence. In addition, the sequence
influences mechanical properties of the molecule, which are believed to be important in the
expression of the genetic information. Various biological processes where the sequence depen-
dent intrinsic curvature and flexibility of DNA are believed to play a role include nucleosome
positioning [68], and gene regulation [50], as well as DNA looping [67] and packaging in the
cell. For this reason, understanding sequence dependent DNA mechanics is an important
question and is an active research topic.

For example, in eukaryotic cells DNA is packaged by wrapping around proteins. The
elementary unit of this compact structure is the nucleosome, consisting of a histone protein
core with a 147 base pair DNA segment tightly wound around it a bit less than two times.
Between every two nucleosomes there is a 10-50 base pair long linker DNA segment, which
means that there exists some freedom for where a nucleosome is centred. It has been shown
that the exact location of a nucleosome along the DNA depends on the sequence induced
DNA flexibility [68, 51]. While wrapped on a nucleosome, DNA is not easily accessible to
copying enzymes and other proteins. Hence the placement of nucleosomes influences gene
regulation, transcription, replication and recombination [50].

In prokaryotes and viruses, instead of forming nucleosomes, DNA is folded and wrapped
about itself, forming toroidal or interwound structures [26]. The formation of these super-
coiled DNA structures is generally also governed by the mechanical properties of the molecule,
which again influence the way proteins can approach and process the genetic material.

In general, many of the DNA-protein interactions occurring during various important
biological tasks in both eukaryotic and prokaryotic cells involve a combination of chemistry
and geometry, and so depend upon the mechanical ability of DNA to adopt necessary con-
figurations [11].

There exist various methods for experimentally quantifying the sequence dependent flexi-
bility of DNA. One popular approach is cyclisation experiments, where the rate of formation
of closed loops from initially linear molecules with cohesive ends is observed [71], [70]. Other
experimental studies of DNA mechanics include observing distributions of DNA configura-
tions in crystal structures or using cryo-electron microscopy, also separating circular DNA
molecules with different linking numbers, using the electrophoretic band-shift method [5],
[63], [11]. At larger length scales, where sequence dependence is believed to be less impor-
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CHAPTER 1. INTRODUCTION

tant, DNA mechanical properties are investigated by atomic force microscopy [34] or by force
spectroscopies, i.e. by pulling or twisting a single DNA molecule attached to a bead us-
ing magnetic or optical “tweezers" or a micropipette [63]. To be able to explain the results
of such experiments, and to further use these results for predicting processes that are not
experimentally observable, it is good to have an accurate mechanical model.

DNA is a very thin and long molecule: its width is approximately two nanometres
(10−9 m), while the total length of DNA in each human cell is about 2 m [11]. Modelling its
mechanical properties and behaviour at different length scales accordingly requires different
approaches [73]. For the length scales from several hundred to thousands of base pairs a
uniform elastic rod (or worm like chain) model is considered to be a good approximation [5].
However, for shorter polymers sequence-dependence cannot be ignored. In this case sequence
dependent rod models or discrete rigid base or rigid base pair models are more appropriate.
Finally, for some purposes atomistic representations of DNA are preferred, for example to
explore DNA interactions with ions or water. Various connexions between different models
can be made [2] to relate the experimental and computational results for various length scales
of DNA.

One large family of coarse-grain DNA models is based on the idea of representing several
atoms by one bead or rigid body. Different such models may have a different level of detail,
include different types of interactions, and may or may not account for sequence-dependent
behaviour [35]. This approach enables the exploration, usually by computer simulations, of
a range of DNA behaviours that would be too numerically intensive to explore using a fully
atomistic model. Such behaviour includes duplex formation and fraying, hairpin formation
etc. [56]

A standard coarse-grain way to model DNA is to assume that its bases or base pairs
are rigid bodies. The configuration of a molecule in such a model is described by relative
variables that have generally accepted, standard names, tilt, roll, twist, etc, although it should
be noted that they have some variation in their precise definitions [35]. Often a probability
distribution function of these internal configuration variables is considered, with a common
assumption being that this distribution function admits a quadratic potential (or free) energy
with sequence dependent shape and stiffness parameters, so that the associated probability
distribution is Gaussian. The most widely used description is a rigid base pair model with
local nearest-neighbour parameters, i.e. a model where the only interactions considered are
those between neighbouring base pairs, which are assumed to be rigid. For one particular
MD simulation this model was recently shown to poorly represent the data [36]. In contrast,
a local rigid base model was shown to be a quite good approximation for that simulation of
DNA [op. cit.].

Another family of models involve elastic rods or birods, which can actually be regarded
as continuum limits of respectively rigid base pair and rigid base DNA models [3], [53]. An
elastic rod model is a powerful tool to study long DNA polymers, with a possibility to account
for external loads and moments, and a great deal of work has been done in this direction
[3], [72], [27], [15]. For large length scales (thousands of base pairs) it can be appropriate
to approximate DNA by a uniform rod and ignore the sequence dependence. However for
shorter length scales (tens of base pairs), the sequence dependence can play an important
role [16], and thus has to be included in the model. Accordingly, the rigid base pair and rigid

2



base models are also useful for obtaining sequence dependent parameters for rods and birods.
Parameter extraction for coarse-grain DNA models represents a different area of research.

Experimental data from crystal structure experiments with naked DNA and DNA in com-
plexes with proteins can be used to parametrise rigid base and rigid base pair DNA models
[55]. However, the existing experimental data only allow the computation of average shape
parameters and on-diagonal blocks of covariance matrices assuming local dependence. In
addition, the data is available only for a relatively small number of oligomers. An alternative
to experimental observations for parameter fitting is provided by data taken from molecular
dynamics (MD) simulations, which have been used for modelling DNA since 1983 [44]. In
fact MD simulation is already quite widely used for coarse-grain DNA parameter estimation
[38], [39], [40], [8].

In this work we present a new dimer-dependent nearest-neighbour rigid base model of
the equilibrium probability distribution for configurations of a DNA oligomer with arbitrary
sequence at length scales up to several hundreds of base pairs. The model that we develop
assumes a local nearest-neighbour stiffness dependence, but predicts non local dependence
of average shapes, due to the fact that individual DNA bases have to compromise in their
interactions with their neighbours to find their minimal energy configuration. This non local
shape dependence is not possible in a local rigid base pair model.

We then develop a method for extracting a sequence-dependent parameter set for the
rigid base model, and find, in contrast to the nearest-neighbour rigid base pair description,
that a rather good approximation of MD data can be obtained. For the parameter extraction
we start from a large Molecular Dynamics data set, the main part of which was produced
by the Ascona B-DNA Consortium [42]. As a test for our parameter set, we reconstruct a
Gaussian probability distribution function for each of our training set oligomers, and then
compare these reconstructions with the distributions observed from MD. We conclude that
the two distributions are close for every oligomer, i.e. our reconstructions are quite good.
We are also able to predict non local changes of the intrinsic shape of an oligomer, caused
by a local (point) modification of its sequence. Consequently, we conclude that we have a
model and associated parameter set, which is dependent only on local dimer and monomer
steps, and which allows us to construct the average shape and stiffness of DNA sequences
that are too long to be explored directly using MD simulations. Our model parameters can
then be used, for example, to compute sequence dependent persistence lengths and looping
probabilities of DNA.

This thesis has the following structure. Chapters 2 and 3 contain background material,
which was mainly developed prior to our work, but which is necessary for the presentation of
our model. In Chapter 2 we give a definition of the rigid base and rigid base pair DNA con-
figuration parameters, and discuss their symmetry properties. The material of this chapter,
except Section 2.6, appears in the publications [41] (which is a description of the program
Curves+) and [36]. Then in Chapter 3 we introduce an oligomer dependent probability den-
sity function and the internal (free) energy of the rigid base DNA configurations, and explain
the relations for estimating the shape and stiffness parameters, appearing in this probability
density function. The material of this chapter comes from [23] and [36].

In Chapter 4 we describe the Molecular Dynamics simulations, which are the source of
our training data set. The estimation of coarse-grain oligomer-dependent parameters from
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CHAPTER 1. INTRODUCTION

atomistic data, and convergence issues are also discussed.
Our assumed probability density is not Gaussian because of a Jacobian factor, which in-

evitably arises due to the appearance of rotation group SO(3) in a rigid body description of
DNA [74]. In Chapter 5 we raise and address the question: can the presence of this Jacobian
factor explain the bimodal distribution of some coarse-grain DNA configuration parameters,
as observed in the MD data? We also discuss some errors associated with suppressing the
Jacobian in our subsequent developments. To quantify distances between probability distri-
butions the Kullback-Leibler divergence was chosen; its properties are reviewed in Section 5.5.

The material presented in Chapters 6, 7 and 8 (except for sections 7.4, 7.5 and part of Sec-
tion 7.3) is part of the joint publication [24]. In Chapters 6 and 7 a rigid base DNA mechanical
model with nearest-neighbour interactions is introduced. We show that the nearest-neighbour
assumptions imply a special structure in the manner in which the dimer-dependent stiffness
and shape parameters are manifested in the oligomer-dependent training set data. Accord-
ingly, we describe the procedure for, and the results of, deconvolving the best fit parameters
for this model. In Chapter 8 we discuss a parameter set for our dimer-dependent nearest-
neighbour model, and illustrate its properties with example data from our training set, as
well as from additional simulations.

A summary of the thesis, conclusions and discussion of further work are contained in
Chapter 9. In addition, there are two appendices with A) a full tabulation of our model
parameter set, and B) statistics of sequence variation in the training set data. The full
parameter set, together with corresponding Matlab® scripts that can be used to construct
stiffness matrices and intrinsic shapes of arbitrary length oligomers, are available from the
webpage http://lcvmwww.epfl.ch/cgDNA.

4

http://lcvmwww.epfl.ch/cgDNA


Chapter 2

Kinematics of rigid base and rigid
base pair models of DNA

The notations and configuration parameters for a rigid base and rigid base pair DNA model,
as presented in this chapter, have been described in [36] and [41].

2.1 DNA sequence and configuration of rigid bases

In this work we consider a right-handed, double-stranded, linear B form DNA in which bases
T, A, C and G are attached to two, oriented, anti-parallel backbone strands and form only the
standard Watson-Crick pairs (A,T) and (C,G). Choosing one backbone strand as a reference,
a DNA oligomer consisting of n base pairs is identified with a sequence of bases X1X2 · · ·Xn,
listed in the 5′ to 3′ direction along the strand, where Xa ∈ {T,A,C,G}. The base pairs
associated with this sequence are denoted by (X,X)1, (X,X)2, . . . , (X,X)n, where X is defined
as the Watson-Crick complement of X in the sense that A = T, T = A, C = G and G = C. The
notation (X,X)a for a base pair indicates that base X is attached to the reference strand while
X is attached to the complementary strand.

In our coarse-grain model of DNA the bases are assumed to be rigid and the configura-
tion of an oligomer is described by position (location and orientation) of all its bases. The
orientation of a rigid body can be described by fixing an orthonormal frame in it, and the
location can be specified by choosing a reference point of that body. This means that the
configuration of a rigid base n-mer X1X2 · · ·Xn can be given by a set of 2n base reference
points with 2n attached base frames.

We use the rules of the Tsukuba convention [54] to assign a reference point ra and a right-
handed, orthonormal frame {dai } (i = 1, 2, 3) to each base Xa ∈ {T,A,C,G}. The vector da1
points in the direction of the major groove, da2 points in the direction of the reference strand
and da3 is perpendicular to the plane of the base Xa and is pointing towards the base Xa+1,
as shown in Figure 2.1. Once the reference points and frame of each base are specified, the
positions of all the non-hydrogen atoms of the base are known. Likewise, we assign a point
ra and frame {dai } to each complementary base Xa. However, because the two strands are
anti-parallel, we flip the frame {dai } (change the signs of the vectors d2 and d3 to opposite),
so that the two frames overlap when the base pair is in its ideal shape.
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We will also consider matrices Da and Da with vectors {dai } and {dai } as columns, i.e.
Da = {dai } = [da1 d

a
2 d

a
3] and Da

= {dai } = [d
a
1 d

a
2 d

a
3].

(a)

ra+1

da+1
3

da+1
2

da+1
1

da
3

da
1

ra da
2 Xa

Xa+1

d
a

2

Xa+1

d
a+1

1

d
a+1

3

d
a+1

2

d
a

1

d
a

3

ra+1

ra
Xa

(b)

Figure 2.1: (a) Rigid bases of DNA with reference points and frames, corresponding to
the Tsukuba convention [54]. Base pair and junction frames, as introduced in Section 2.3,
are drawn in grey and black respectively. (Thanks to J. Głowacki for this figure.) (b)
A schematic view of rigid bases with their reference point and frames with the indicated
directions of vectors {dai } and {dai }, i = 1, 2, 3. Note that, despite the two strands of DNA
being antiparallel, the frames Da and Da are oriented in the same way.

For modelling purposes, it is convenient to describe the configuration of DNA in coor-
dinates that do not depend on the absolute translations and rotations of the molecule. In
particular, we would like to have a set of parameters and rules, that would still allow us to
reconstruct the position and orientation of each base, once the position and orientation of one
chosen base is given. To do this, we first need to parametrise rotations between orthonormal
frames.

2.2 Parametrisation of rotations

To describe rotations we will use Cayley (or Euler - Rodrigues) parameters. One other
popular choice is Euler angles, used, for example, in the 3DNA software package [46].

Having a unit axis k and an angle of rotation ϕ ∈ [0, π), the corresponding rotation matrix
Q ∈ SO(3) can be obtained using the Euler-Rodrigues formula

Q = cosϕ I + (1− cosϕ)k ⊗ k + sinϕk×, (2.1)

where I ∈ R3×3 is an identity matrix, k⊗ k = kkT is the rank-one outer product matrix and
k× is the skew matrix

k× =

 0 −k3 k2
k3 0 −k1
−k2 k1 0

 , (2.2)

satisfying (k×)v = k×v for all v ∈ R3. Then Qv gives the absolute coordinates of the vector
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2.2. PARAMETRISATION OF ROTATIONS

v rotated around the axis k by the angle ϕ for all v ∈ R3. Moreover, from (2.1) we get

Q−QT = 2 sinϕ k× and trQ = 1 + 2 cosϕ, (2.3)

which allows us to compute ϕ and k as

ϕ = arccos

(
trQ− 1

2

)
∈ [0, π) and

k =
1

2 sinϕ

Q32 −Q23

Q13 −Q31

Q21 −Q12

 =
1

2 sinϕ
vec[Q−QT ],

(2.4)

when the rotation matrix Q = {Qij} is known. Here vecA for a skew matrix A ∈ R3×3 is
defined as

vecA =

A32

A13

A21

 . (2.5)

On the other hand, for any two orthonormal frames D = [d1 d2 d3] and D̃ = [d̃1 d̃2 d̃3],
D, D̃ ∈ R3×3, a rotation from one frame to another can be written as

D̃ = QD = [Qd1 Qd2 Qd3], (2.6)

where
Q = D̃DT . (2.7)

Note that because Q is a proper right-handed rotation matrix (an orthonormal matrix
with a determinant 1), it has eigenvalues (1, e−iϕ, eiϕ), where ϕ is the angle of rotation, and
the real eigenvector of Q is its rotation axis k.

When Q is symmetric, which corresponds to the cases ϕ = 0 and ϕ = π, then Q−QT is
a zero matrix, and we can not use (2.4) for computing k. In the case ϕ = 0, Q = I and any
unit vector can be chosen to be the rotation axis. In the case ϕ = π, the rotation axis can be
computed as an eigenvector of the matrix Q+ I, which has eigenvalues (0, 0, 2). However, in
B-DNA, which we want to model, rotations through an angle π are very unlikely for relative
rotations between adjacent bases.

We can choose a scaling f(ϕ) for the rotation axis (where f is an invertible function), to
have a three parameter vector f(ϕ)k fully describing the rotation. Then, as k is a unit vector,
we can recover the angle ϕ from the relation f(ϕ) = ||f(ϕ)k||. For example, the scaling f(ϕ)

used in Curves+ [41] is the value of ϕ in degrees, in [36] f(ϕ) = 2 tan ϕ
2 , and we will use

f(ϕ) = 10 tan ϕ
2 as in [24]. We explain our choice of parameter scaling in Section 2.4.

If we introduce the Cayley vector η, defined by

η = 2 tan
ϕ

2
k, (2.8)

7



CHAPTER 2. KINEMATICS OF RIGID BASE AND RIGID BASE PAIR MODELS OF
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which is well defined for ϕ ∈ [0, π), then (2.1) is equivalent to

Q = (I +
1

2
η×)(I − 1

2
η×)−1 =: cay(η). (2.9)

For defining DNA configuration parameters, described in the next section, we will also
introduce a middle frame between any two frames D and D̃. We define the middle frame M
as

M =
√
QD, (2.10)

where
√
Q is a matrix of half rotation from D to D̃, i.e. rotation about the same axis k by

the angle ϕ
2 .

The same rotation as in (2.6) can be expressed multiplying D by a rotation matrix on
the right:

D̃ = DR =

[
3∑
i=1

Ri1di

3∑
i=1

Ri2di

3∑
i=1

Ri3di

]
, (2.11)

where
R = DT D̃ = DTQD = D̃TQD̃. (2.12)

The normalised axial vector kR of the skew matrix R−RT is

kR = Dk = D̃k, (2.13)

i.e. kR is equal to k written in the coordinates of the D frame (which are the same as the
coordinates in the D̃ frame, because k is the axis of rotation). Also, the eigenvalues of Q
and of R are the same, which means that the two matrices indeed correspond to the same
rotation, but expressed in different coordinates. We call R relative rotation matrix and Q

the absolute rotation matrix. It will be convenient to use relative rotations in our work.

2.3 Internal coordinates of rigid bases and base pairs

Having chosen a parametrisation of rotations, one can replace the absolute coordinates of
bases by vectors of relative translations (difference vectors) between the reference points and
vectors of relative rotations (Cayley vectors or scaled Cayley vectors) between the reference
frames. As we want these coordinates to be independent of global translations and rotations
of the whole molecule, they have to be expressed with respect to the frames attached to the
molecule, rather than to a fixed lab coordinate frame. We could choose an order of tracing
all the bases of an oligomer, for example X1,X1,X2,X2 . . . ,Xn,Xn, and compute the vectors
of translation and rotation between each consecutive pair of them, expressing both vectors
in the reference frame of one of the two bases. However, the values of the configuration
parameters of this kind depend on the choice of the reference strand. It would be convenient
if the relations between two parameter vectors, corresponding to the two different choices of
reference strand, were simple. In order to define relative coordinates with this property, it is
helpful to introduce base-pair reference points together with base pair and junction frames.
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2.3. INTERNAL COORDINATES OF RIGID BASES AND BASE PAIRS

We define the base pair frameGa = {gai } as the average orientation of the two base frames,

Ga = D
a√
Λa, (2.14)

where
Λa = (D

a
)TDa ∈ R3×3, (2.15)

is the relative rotation matrix that describes the orientation of the frame {dai } with respect
to {dai }.

The intra base pair rotational coordinate vector, describing the relative rotation between
Xa and Xa, is defined as the Cayley vector of the matrix Λa:

ϑa =
2

tr[Λa] + 1
vec[Λa − (Λa)T ]. (2.16)

Then
||ϑa|| = 2 sinϕa

1 + cosϕa
= 2 tan

ϕa

2
, (2.17)

where ϕa is the angle of rotation corresponding to Λa. Note that the coordinates of this
vector are the same with respect to all of the three frames Da, Da and Ga. We used a
relative rotation matrix in order to directly get the Cayley vector expressed in these frames.
We then use Ga as a reference frame for defining the intra base pair translational coordinate
vector between Xa and Xa:

ξa = (Ga)T (ra − ra). (2.18)

An illustration of intra base pair rotational and translational coordinates is shown in Fig-
ure 2.2.

Xa

Xa+1
ra+1

raXa

ra+1

ra

Xa+1

Λa

Λa+1

ξa

ξa+1

(a)

Xa

Xa+1
ra+1

ra

Xa+1

Xa

ra+1

ra

qa

ga+1
3

ga+1
2

qa+1

ga+1
1

ga
3

ga
2

ga
1

(b)

Figure 2.2: (a) A schematic illustration of the intra base pair translational and rotational
coordinates defined in (2.16) and (2.18). The base frames are shown in red, as in Figure 2.1(b).
Note that the intra coordinates are expressed in the base pair frames, shown in (b) and defined
in (2.14).

To describe the relative rotation and displacement between neighbouring base pairs along
the strands we consider the base pair frame Ga and a reference point qa, defined as the
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average position of the two base reference points:

qa =
1

2
(ra + ra). (2.19)

Similarly, we define a frame Ga+1 = {ga+1
i } and a point qa+1 associated with the base pair

(X,X)a+1.
Finally, the inter base pair, or junction, rotational coordinate vector, describing the rela-

tive rotation between base pairs (X,X)a and (X,X)a+1 is

θa =
2

tr[La] + 1
vec[La − (La)T ], (2.20)

where
La = (Ga)TGa+1 ∈ R3×3, (2.21)

is the relative rotation matrix that describes the orientation of frame {gai+1} with respect to
{gai }. Note that

||θa|| = 2 sinφa

1 + cosφa
= 2 tan

φa

2
, (2.22)

where φa is the angle of rotation corresponding to La. The inter base pair translational
vector, describing the relative rotation between base pairs (X,X)a and (X,X)a+1 is

ζa = (Ha)T (qa+1 − qa), (2.23)

where the junction frame Ha = {hai } is defined as

Ha = Ga
√
La. (2.24)

An illustration of inter base pair rotational and translational coordinates is shown in Fig-
ure 2.3.

Xa

Xa+1
ra+1

raXa

ra+1

ra

Xa+1 qa+1

qa

ζaLa

(a)

Xa

Xa+1
ra+1

ra

Xa+1

Xa

ra+1

ra

qa+1

qa

ha
2

ha
3

ha
1

(b)

Figure 2.3: (a) A schematic illustration of the inter base pair (junction) translational and
rotational coordinates defined in (2.20) and (2.23). The base frames are shown in red, as
in Figure 2.1(b). and the base pair frames in blue, as in Figure 2.2(b). Note that the inter
coordinates are expressed in the junction frames, shown in (b) and defined in (2.24).
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2.3. INTERNAL COORDINATES OF RIGID BASES AND BASE PAIRS

Thus the relative rotation and displacement between bases Xa and Xa across the strands
is described by the intra-base pair coordinates ya = (ϑ, ξ)a, whereas the relative rotation and
displacement between the pairs (X,X)a and (X,X)a+1 along the strands is described by the
inter base pair coordinates za = (θ, ζ)a. We define the vector of relative coordinates as

w = (y1, z1, y2, z2, ..., yn−1, zn−1, yn) ∈ R12n−6. (2.25)

Note that w does not depend on the global translations and rotations of the DNA molecule.

The definitions of these coordinates can be shown to satisfy all the qualitative guide-
lines set forth in the Cambridge convention [19] for nucleic acid structures, including the
symmetry conditions associated with a change of reference strand. Accordingly, we refer to
the components of the intra rotational parameters ϑa as Buckle-Propeller-Opening, the in-
tra translational parameters ξa as Shear-Stretch-Stagger, the inter rotational parameters θa
as Tilt-Roll-Twist, and the inter translational parameters ζa as Shift-Slide-Rise (see Figure
2.4). We remark that ϑa and θa are components of a Cayley rotation vector and so are not
conventional angular coordinates about various axes as employed by many authors; however,
they can be put into correspondence with conventional angular coordinates, and are nearly
identical in the case of small rotations when the angular ones are measured in radians (or
fifths of a radian for the scaling described in Section 2.4).

Buckle Propeller Opening Tilt Roll Twist

Shear Stretch Stagger Shift Slide Rise

Figure 2.4: Intra base pair (left) and inter base pair (right) parameters of a coarse-grain
DNA model; rotational parameters are on the top, translation parameters on the bottom;
bases/base pairs are represented as cuboids. (Thanks to J. Głowacki for this figure.)

The complete configuration of a DNA oligomer is specified by introducing six additional
coordinates z0 = (θ, ζ)0 for the first base pair frame and reference point with respect to
an external, lab-fixed frame. Ignoring these six degrees of freedom exactly corresponds to
eliminating the overall symmetry of rigid body motion that exists when there is no external
potential field. Given z0 = (θ, ζ)0 ∈ R6, the external base pair frame {g0i } (e.g. {g0i } = {ei}),
the reference point q0 (e.g. q0 = (0, 0, 0)), and the vector of relative coordinates w ∈ R12n−6,
we can recover all the frames and reference points for the bases Xa and Xa, a ∈ 1, . . . , n, using
the formulas
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d
a
j =

3∑
i=1

(
√
Λa)jig

a
i , ra = qa − 1

2

3∑
i=1

ξai g
a
i , (2.26)

daj =

3∑
i=1

Λaijd
a
i , ra = ra +

3∑
i=1

ξai g
a
i , (2.27)

ga+1
j =

3∑
i=1

Laijg
a
i , qa+1 = qa +

3∑
i=1

ζai h
a
i , (2.28)

where Λa = cay[ϑa] is the rotation matrix corresponding to ϑa, La = cay[θa] and {hai } is
defined by (2.24).

One could go further in coarse-graining DNA and make an assumption that the base pairs
of DNA are rigid bodies. In this case, it is enough to have base pair frames {gai } and base
pair reference points qa for describing the configuration of a molecule. Thus the vector of
relative coordinates for the rigid base pair DNA model is

wbp = (z1, z2, ..., zn−1) ∈ R6n−6. (2.29)

2.4 Non-dimensionalisation and scaling

For the purposes of numerics and analysis, it will be convenient to introduce scales and
transform the rigid-base model into a dimensionless form. To define dimensionless quantities
associated with the kinematics of the model, we introduce a characteristic scale ` for the
translational coordinates, a characteristic scale g for the rotational coordinates, and define
dimensionless variables by

ya = G−1ya, za = G−1za, w = G−1n w, (2.30)

where G = diag(g, g, g, `, `, `) ∈ R6×6 is a constant, diagonal matrix and Gn ∈ R(12n−6)×(12n−6)

is the diagonal matrix formed by 2n− 1 copies of the matrix G.
In any given application, the scales ` and g would normally be set by the phenomena of

interest. The scale ` is ideally chosen to describe the magnitude of the variation in the intra-
and inter-base pair translational variables, whereas the scale g is ideally chosen to describe
the magnitude of the variation in the intra- and inter-base pair rotational variables. In the
analysis of molecular dynamics data of DNA, the phenomena of interest are fluctuations of
atomic positions on the order of 1Å. Hence a reasonable scale for the translational variables
is ` = 1Å because variations in these variables are in direct correspondence to variations
in atomic positions. Moreover, a reasonable scale for the rotational variables is g = 1/5

(radians) because variations of this size in these rotation variables, about a zero reference
value, correspond to a variation of about 1Å in atomic positions of the atoms making up a
base. This follows from the fact that the characteristic size of both a base and the junction
between base pairs is approximately 5Å, so that rotational variations of 1/5 gives rise to
variations in atomic positions of approximately 1Å, as shown in Figure 2.5.
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1Å

5Å

1/5rad

Figure 2.5: Scaling of rotational parameters: a rotation of a 5Å length vector by 1
5 of a radian

corresponds to translating its endpoint by approximately 1Å.

In particular, with this choice of scaling we have

ϑa = 5ϑa, ξa = ξa, a = 1 . . . n,

θa = 5 θa, ζa = ζa, a = 1 . . . n− 1
(2.31)

so that
||ϑa|| = 10 tan

ϕa

2
and ||θa|| = 10 tan

φa

2
, (2.32)

where ξa and ζa are the scaled intra and inter base pair translational parameters, ϑa and θa are
the scaled intra and inter base pair rotational parameters, and ϕa, φa are the corresponding
angles of rotation (in radians). Further in this work we will use the nondimensionalised
configuration parameters with these scales and drop the underline notation for convenience.

2.5 Change of reference strand

The sequence identifying a DNA molecule depends on the choice of reference strand. There
are two strands in B-DNA, therefore there are two sequences, corresponding to the same
molecule. If the sequence along one strand is X1 · · ·Xn, along the other, anti parallel, strand
it is X∗1 · · ·X∗n, where X∗1 = Xn, X∗2 = Xn−1, . . ., X∗n = X1. This means that (X,X)a and (X∗,X

∗
)a∗

denote the same base pair when a∗ = n− a+ 1.X∗
n−a+1Xa =

d3

d2

3′

5′ 3′

5′

d∗2

d∗3

d1
= d∗1

ξ

ξ∗

Figure 2.6: A schematic illustration of how the coordinates change when choosing a different
reference strand. Here the base frames, corresponding to one initial choice of strand are
shown in red, and the inverted base frames, corresponding to the other choice of reference
strand are blue. Note that the internal coordinates are expressed in the middle frames, that
are also inverted.

The base reference points and base frames for the two different choices of reference strand
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are related in a simple way, as shown in Figure 2.6:

ra∗ = rn−a+1, ra∗ = rn−a+1,

da∗1 = d
n−a+1
1 , d

a
∗1 = dn−a+1

1 ,

da∗2 = −dn−a+1
2 , d

a
∗2 = −dn−a+1

2 ,

da∗3 = −dn−a+1
3 , d

a
∗3 = −dn−a+1

3 ,

(2.33)

i.e. the reference points stay the same in both cases (but get assigned a different index) and
the base frames are flipped when passing from one case to another, because, as described in
Section 2.1, we want the two base frames to be aligned and to be pointing along the reference
strand for the perfect shape of B-DNA, despite its anti parallel nature. From (2.33) we get
the relation between the orthogonal frame matrices

Da
∗ = Dn−a+1 E∗, (2.34)

where E∗ is a constant, diagonal rotation matrix E∗ = diag(1,−1,−1) ∈ R3×3, and E∗ =

(E∗)T = (E∗)−1. Similarly, we get the formulas for the base pair points qa, base pair frames
Ga and junction frames Ha:

qa∗ = qn−a+1, Ga
∗ = Gn−a+1 E∗ and Ha

∗ = Hn−a+1 E∗. (2.35)

And finally, from the definitions of the relative rotation and displacement coordinates, we
obtain the expressions

ϑa∗ = −E∗ ϑn−a+1, ξa∗ = −E∗ ξn−a+1, a = 1 . . . n,

θa∗ = −E∗ θn−a+1, ζa∗ = −E∗ ζn−a+1, a = 1 . . . n− 1,
(2.36)

that can be written as a relation between the two shape vectors:

w∗ = En w. (2.37)

Here En ∈ R(12n−6)×(12n−6) is a block, trailing-diagonal matrix formed by 2n− 1 copies of
the constant, diagonal matrix E = diag(−E∗,−E∗) = diag(−1, 1, 1,−1, 1, 1) ∈ R6×6, with the
property that En = ETn = E−1n . Specifically, we have

En =


E

E

. .
.

E

 . (2.38)

These relations can be described as follows. Characterise the twelve types of internal
coordinates as being odd or even, where the odd coordinates are Buckle, Shear, Tilt and
Shift, (one each of intra and inter and translation and rotation) and the remaining eight are
all even. Then under a change of reference strand the odd coordinates at any location along
the sequence change sign, whereas the even coordinates remain unaltered.
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2.6 Changing the rule of embedding base frames

In this section we will discuss the impact of the choice of the reference points ra and base
frames {dai } on the values of the internal coordinate vector w.

First let us consider introducing a new rule of embedding frames and reference points for
every one of the four possible bases T,A,C and G. We refer to the new frames as Da = {dai }
(and Da

= {dai } on the complementary strand) and to the new reference points as ra (and
ra), where

ra = ra + sa, ra = ra + sa,

Da = DaRa, and D
a

= D
a
R
a
.

(2.39)

Here Ra and Ra correspond to rotations smaller than π, and sa, sa are small enough for the
reference points ra and ra to stay close to their corresponding bases, as shown in Figure 2.7.

Note that we assume that the rotation Ra is applied to the flipped frame Da, i.e. when
the two strands are parallel.

Da

rara

Da

Ra

sa

Figure 2.7: A schematic illustration of changing the rule of embedding base frames and
reference points. Here Da is the new reference frame and ra is the new reference point on
the reference strand, as defined in (2.39).

Then the new base pair frame is

Ga = D
a√
Λa = D

a
√

(D
a
)TDa

= D
a
R
a
√

(R
a
)T (D

a
)TDaRa

= D
a
R
a
√

(R
a
)TΛaRa,

(2.40)

where Λa is defined in (2.15). In the special case, when R
a

= Ra, we have the identity√
(Ra)TΛaRa = (Ra)T

√
ΛaRa, which follows from the fact that if Λa has a rotation axis v

then both (Ra)T
√
ΛaRa and (Ra)TΛaRa have the same rotation axis Rav. Therefore

Ga = D
a
Ra(Ra)T

√
ΛaRa = D

a√
ΛaRa

= GaRa,
(2.41)
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ϑa =
2

tr[Λa] + 1
vec[Λa − (Λa)T ]

=
2

tr[Λa] + 1
(Ra)T vec[Λa − (Λa)T ]

= (Ra)Tϑa

(2.42)

and
ξa = (Ga)T (ra − ra)

= (Ra)T (Ga)T (ra − ra + sa − sa)

= (Ra)T ξa + (Ra)T (Ga)T (sa − sa).

(2.43)

The new base pair reference point is

qa = qa +
1

2
(sa + sa) (2.44)

and the new junction frame, still with Ra = Ra, becomes

Ha = Ga
√
La = Ga

√
(Ga)TGa+1 = GaRa

√
(Ra)TLaRa+1, (2.45)

where La is defined in (2.21). In the further simple special case when ∀a : Ra = R,

Ha = HaR, (2.46)

θa = RT θa (2.47)

and
ζa = RT ζa +

1

2
RT (Ha)T (sa+1 + sa+1 − sa − sa). (2.48)

With the further simplification when ∀a : sa = sa = 0, we get

w = [diag(R,R, . . . ,R)]Tw = RTnw, (2.49)

where Rn ∈ R(12n−6)×(12n−6) is a block diagonal matrix consisting of 4n−2 blocks R ∈ R3×3,
and n is the number of base pairs of the oligomer.

If we allow moving reference points, i.e. sa 6= sa 6= 0, or apply different rotations to
each base frame, i.e. Ra 6= Ra 6= R, the relation between the elements of w and w becomes
nonlinear, so there is no simple expression relating these two vectors.

16



Chapter 3

An oligomer dependent rigid base
model

In this chapter we describe a mechanical model of a rigid base DNA, which was presented in
[36] and [24]. This model is the starting point for developing a family of models, discussed
in Chapters 6 and 7.

3.1 Distribution of DNA configurations

Let w ∈ R12n−6 be a vector of internal coordinates of a rigid-base model of DNA for an
oligomer of n base pairs, with rotations scaled by 1/5 of a radian and translations scaled by
1Å, as described in the previous chapter. We assume that the equilibrium distribution of w

for a DNA molecule in contact with a heat bath at absolute temperature T is described by
the density function [36, 74]

ρ(w) =
1

ZJ
e−U(w)/kBT J(w) dw, ZJ =

∫
e−U(w)/kBT J(w) dw. (3.1)

Here kB is the Boltzmann constant, ZJ is a normalising constant, U(w) ∈ R is called the
internal elastic energy function (or the potential energy, or the free energy of the molecule)
and J is a Jacobian factor which arises due to the non-Cartesian nature of the rotational
coordinates, namely [36, 74]

J(w) =

[
n−1∏
a=1

1

(1 + 1
100 |θa|2)2

][
n∏
a=1

1

(1 + 1
100 |ϑa|2)2

]
. (3.2)

The 1
100 multiplier in the Jacobian factor, in contrast to 1

4 used in [36], arises due to the
choice of parameter scaling, as shown later in (3.6).

Further in this work we will only consider the case when the internal energy function U

is of the general quadratic form

U(w) =
1

2
(w− ŵ) · K(w− ŵ) + Û, (3.3)
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CHAPTER 3. AN OLIGOMER DEPENDENT RIGID BASE MODEL

where K ∈ R(12n−6)×(12n−6) is a symmetric, positive-definite matrix of stiffness parameters,
ŵ ∈ R12n−6 is a vector of shape parameters that defines the ground or minimum energy
state. Notice that because the coordinate vector ŵ is invariant under global rigid body
transformations of the whole DNA molecule, the energy (3.3) is also invariant under these
transformations, i.e. if the whole molecule is rigidly moved, its energy U remains unchanged.

The constant Û ≥ 0 represents the energy of the ground state ŵ compared to an unstressed
state. Thus Û = 0 implies that the ground state is unstressed, whereas Û > 0 implies that it
is stressed. In the latter case, the oligomer is referred to as being pre-stressed or frustrated.
We are unaware of a prior discussion of the concept of of pre-stress in the context of a coarse-
grain model of DNA. Indeed it cannot arise in a local rigid base pair description with their
topologically linear chain of interactions. However the possibility of pre-stress or frustration
is a natural consequence of the double chain topology of interactions associated with a rigid
base description.

Notice that the internal configuration density ρ, and hence the statistical mechanical
average of any internal state function φ, is invariant under shifts of the oligomer internal
energy U. Hence the actual value of the oligomer frustration energy Û appearing in (3.3) does
not explicitly affect the statistical properties of the system. This is consistent with the fact
that the internal energy of the system is itself only defined up to an arbitrary constant. In
(3.3), the arbitrary constant is chosen so that zero energy corresponds to an unstressed state,
which for a given oligomer may or may not correspond to an accessible state.

To define dimensionless quantities associated with the energies, we use the scale kBT and
define a dimensionless internal energy by U = U/kBT . Substituting this relation into (3.3),
we obtain

U(w) =
1

2
(w− ŵ) · K(w− ŵ) + Û, (3.4)

where
K = K/(kBT ), Û = Û/(kBT ). (3.5)

If we had decided to pick a new scaling for configuration parameters, so that w = G−1n w

and ŵ = G−1n ŵ, with G = diag(g, g, g, `, `, `) ∈ R6×6, then the scaled and nondimensionalised
stiffness matrix would become K = GnKGn/(kBT ) and the transformed Jacobian factor would
be

J(w) =

[
n−1∏
a=1

(
1 +

1

100
g2|θa|2

)−2][ n∏
a=1

(
1 +

1

100
g2|ϑa|2

)−2]
. (3.6)

The dimensionless form of the internal configuration density is then obtained as

ρ(w) =
1

ZJ
e−U(w) J(w), ZJ =

∫
e−U(w) J(w) dw. (3.7)

In our further developments, we will only use the dimensionless formulation (3.7) with the
scale, described earlier, and we will drop the underline notation for convenience.

Now let us consider the impact of rotating every base frame by the same matrix R, as
described in the Chapter 2, Section 2.6, on the configuration density function. We know that
the new configuration vector, after performing these rotations, is

w = RTnw. (3.8)
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3.2. MATERIAL ASSUMPTIONS AND SYMMETRIES

Therefore the new average shape vector is

ŵ = RTn ŵ. (3.9)

(And the underline notation is independent of the scaling notation in Section 2.4.) Moreover,
the Jacobian factor stays the same, i.e. J = J , because rotation of a vector does not change
its norm. As the rotated frames still present orientations of the same rigid bases, we want
the internal energy of the molecule to stay the same, as before the rotations, so that U = U.
Then the transformed stiffness matrix is

K = RTnKRn. (3.10)

Note that multiplying by a rotation matrix does not change the norm of a stiffness block,
therefore this transformation cannot change the general sparsity of a stiffness matrix. This
means that applying the same rotation to all reference frames we could diagonalise some of
the 3× 3 off-diagonal stiffness blocks, but not set them to zero.

3.2 Material assumptions and symmetries

We will assume that the material parameters Û, ŵ and K are completely determined by the
oligomer length n and sequence X1 · · ·Xn along the reference strand. This means that there
exist functions U, W and K such that

Û = U(n,X1, . . . ,Xn),

ŵ = W(n,X1, . . . ,Xn), K = K(n,X1, . . . ,Xn).
(3.11)

Let U(w) and U∗(w∗) denote the internal energies of an oligomer computed using the two
different choices of reference strand: the sequence along one is X1 · · ·Xn, and along the other
it is X∗1 · · ·X∗n. Thus U(w) is given by the expression in (3.3) with the parameters in (3.11),
and U∗(w∗) is given by an exactly analogous expression with the parameters

Û∗ = U(n,X∗1, . . . ,X
∗
n),

ŵ∗ = W(n,X∗1, . . . ,X
∗
n), K∗ = K(n,X∗1, . . . ,X

∗
n).

(3.12)

We would like the value of the internal energy function to be independent of the choice of a
reference strand, so then U(w) must equal U∗(w∗) for all possible configurations. Using the
change of reference strand relations, described in Chapter 2, we deduce that the functions U,
W and K must satisfy

U(n,X1, . . . ,Xn) = U(n,Xn, . . . ,X1),

W(n,X1, . . . ,Xn) = EnW(n,Xn, . . . ,X1),

K(n,X1, . . . ,Xn) = EnK(n,Xn, . . . ,X1)En,

(3.13)

with the matrix En ∈ R(12n−6)×(12n−6), defined in Chapter 2, Section 2.5. We conclude that
the stiffness parameters delivered by K must behave in concordance to the shape parameters
W; namely, parameters for odd-even couplings change sign under a change of reference strand,
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CHAPTER 3. AN OLIGOMER DEPENDENT RIGID BASE MODEL

whereas parameters for odd-odd and even-even couplings remain unaltered.
In the special case of a palindromic molecule, when the sequence is the same for both

choices of reference strand, i.e. when X1 · · ·Xn is the same as X1 · · ·Xn, the relations (3.13)
imply special symmetry conditions on the functions W and K. Specifically, the components
of ŵ = W(n,X1, . . . ,Xn) = (ŷ1, ẑ1, ŷ2, ẑ2, ..., ŷn, ẑn, ŷn+1) ∈ R12n−6 have to be such that
ŷa = E ŷn−a+1 and ẑa = E ẑn−a, a = 1 . . . n. This means that the equilibrium values of the
odd coordinates (Buckle, Shear, Tilt and Shift) have to be anti-symmetric about the middle
of the molecule, whereas the equilibrium values of the even coordinates must be symmetric.
We remark that for a palindromic oligomer the number of base pairs n has to be even. Then
for a = n/2 we get ẑa = E ẑa, so the equilibrium values of Tilt and Shift in the middle
junction must be zero.

Similarly, we deduce that the stiffness parameters, corresponding to odd-odd and even-
even couplings, must be symmetric, while the ones corresponding to odd-even couplings must
be antisymmetric. Also the stiffness parameters, associated with the odd-even couplings of
the middle junction have to vanish for a palindromic molecule.

3.3 Moment-parameter relations

Suppose we have a big enough data sample of configurations from the distribution (3.1). Then
the values of the parameters ŵ and K can be found by computing the statistical mechanical
averages of the appropriately chosen functions of the configuration vector w. The method for
extracting DNA average shape and stiffness parameters for a distribution with a Jacobian
was described in [23].

The statistical mechanical average of any state function φ = φ(w) with respect to the
density ρ(w) is defined as

〈φ〉 =

∫
R12n−6

φ(w)ρ(w) dw. (3.14)

It is not always possible to get an explicit expression of the integral (3.14). However, using
the standard results of the Gaussian integrals [29], it can be easily verified that〈wi

J

〉
=

1

ZJ

∫
R12n−6

wi e
− 1

2
(w−ŵ)·K(w−ŵ) dw =

ZN
ZJ

ŵi, (3.15)

where 1 ≤ i ≤ 12n − 6, K is a symmetric, positive-definite matrix and ZN is a normalising
constant of the Gaussian distribution with parameters (ŵ,K−1), ZN = (2π)−6n+3

√
det[K],

and ZJ is defined in (3.1). Similarly, it can be shown that〈
(wi − ŵi)(wj − ŵj)

J

〉
=

1

ZJ

∫
R12n−6

(wi − ŵi)(wj − ŵj) e
− 1

2
(w−ŵ)·K(w−ŵ) dw

=
ZN
ZJ

[K−1]ij ,

(3.16)

for 1 ≤ i, j ≤ n. And finally, one can get the missing constant:

ZN
ZJ

=
1

ZJ

∫
R12n−6

e−
1
2
(w−ŵ)·K(w−ŵ) dw =

〈
1

J

〉
. (3.17)
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3.4. RIGID BASE PAIR MARGINAL DISTRIBUTION

These results can be written in more compact vector and matrix forms, namely

〈w/J〉
〈1/J〉

= ŵ (3.18)

and
〈∆w⊗∆w/J〉
〈1/J〉

= K−1, (3.19)

where ∆w = w− ŵ.
We can discretise the relations (3.18) and (3.19) to get formulas for estimating param-

eters ŵ and K from a data sample. Let {w(i)}, i = 1 . . . N be a set of coordinate vectors,
corresponding to a sufficiently large number N of observed configurations of the oligomer at
a fixed temperature T . Then an estimate for equilibrium shape parameters ŵ, denoted ŵE ,
can be obtained as

ŵE =

N∑
i=1

w(i)/J (i)

N∑
i=1

1/J (i)

(3.20)

where the Jacobian factor J (i) is given by (3.2). Thus, ŵE is computed using a discrete
analogy of (3.18). Similarly, the computed estimate for the stiffness matrix K, denoted KE ,
can be obtained from a discrete version of (3.19):

N∑
i=1

(
∆w(i) ⊗∆w(i)/J (i)

)
N∑
i=1

1/J (i)

= [KE ]−1. (3.21)

where ∆w(i) = w(i) − ŵE .

3.4 Rigid base pair marginal distribution

One can decide to ignore the intra base pair configuration parameters, and consider a marginal
distribution, described by the density function

ρ̃(wbp) =
1

ZJ

∫
R6n

e−U(w)/kBT J(w) dwb, (3.22)

where wbp = (z1, z2, ..., zn−1) ∈ R6n−6 is a vector containing all inter base pair configuration
parameters and wb = (y1, y2, ..., yn) ∈ R6n is a vector of all intra base pair configuration
parameters. Unfortunately, in the presence of the Jacobian factor, we do not know how to
integrate (3.22) to find an explicit expression for the function ρ̃(wbp).

If we assume that the base pairs are always close to their ideal shape, defined by the
Tsukuba convention in [54], then the values of ya and ŷa are close to zero for all a. The intra
base pair term (1 + |ϑa|2/100)−2 in the Jacobian (3.2) can then be approximated by one, so
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CHAPTER 3. AN OLIGOMER DEPENDENT RIGID BASE MODEL

the Jacobian becomes

Jbp(wbp) =
n−1∏
a=1

1

(1 + 1
100 |θa|2)2

, (3.23)

and the distribution of wb is Gaussian.
Another standard result of Gaussian integrals is that a marginal of a Gaussian distribution

is also a Gaussian. Namely, if x ∼ N(x̂,Σ), then x1 ∼ N(x̂1,Σ11), i.e.(
β
π

)n
2√

det[K−1]

∫
Rm

e−β(x−x̂)·K(x−x̂) dx2 =

(
β
π

) k
2

√
detΣ11

e−β(x1−x̂1)·Σ
−1
11 (x1−x̂1). (3.24)

Here β > 0, n ≥ 0, K = Σ−1 ∈ Rn×n is a symmetric, positive - definite matrix,

x =

[
x1

x2

]
, x̂ =

[
x̂1

x̂2

]
, x1, x̂1 ∈ Rk, x2, x̂2 ∈ Rm,

Σ =

[
Σ11 Σ12

ΣT
12 Σ22

]
, Σ11 = ΣT

11 ∈ Rk×k, Σ12 ∈ Rk×m,

Σ22 = ΣT
22 ∈ Rm×m, and k +m = n.

Therefore, using (3.24) we deduce that, when base pairs are close to rigid, the marginal
probability density function of the inter base pair variables is

ρ̃(wbp) =
1

Zbp
J

e−U(w
bp) Jbp(wbp), Zbp

J = e−U(w
bp) Jbp(wbp) dw. (3.25)

Here
Ubp(wbp) =

1

2
(wbp − ŵbp) · Kbp(wbp − ŵbp) + Û

bp
, (3.26)

and a symmetric, positive definite matrix Kbp ∈ R(6n−6)×(6n−6), which is, as in (3.19), the
inverse of a “weighted" covariance matrix of wbp.
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Chapter 4

Molecular dynamics and data

In this chapter we describe the origin and properties of the molecular dynamics data set,
used for fitting the parameters of our model.

4.1 Molecular dynamics simulations

To be able to estimate the shape and stiffness parameters in the probability density function
(3.1) of a given oligomer, one needs a sufficient number of observations of its configurations.
There exists data from crystal structure and NMR experiments of short DNA oligomers [55, 1].
However, the existing methods only allow the computation of average shape parameters
and diagonal blocks of covariance matrices, assuming their local sequence dependence. In
addition, the data is available only for a relatively small number of oligomers.

An alternative to direct experimental observations is molecular dynamics (MD) simula-
tions, which have been used for modelling DNA since 1983 [44]. MD simulations consist of
numerically modelling the interactions of particles over a period of time, by creating tra-
jectories via integration of Newton’s equations. There exist different MD software packages
(AMBER, CHARMM, GROMACS, GROMOS), the most widely used ones for atomistic sim-
ulations of DNA being AMBER [57, 12] and CHARMM [10, 47, 9]. We used the AMBER
suite of programs in this work, mainly because it was used by the ABC consortium [7, 20, 42]
that provided a large part of our data set. However, it has been shown that AMBER and
CHARMM produce similar results for B-DNA [59, 61].

The idea of molecular dynamics simulations is based on Newton’s second law of motion

Fi = miai = mi
d2 ri

dt2
, (4.1)

applied to every particle i of the system, i = 1 . . . N . Here mi ∈ R is the mass of the particle,
ri ∈ R3 is its position in Cartesian coordinates and ai is acceleration. We performed atomistic
MD simulations, where the particles are atoms. The force Fi ∈ R3, acting on the atom i, is
given as a derivative of the potential energy of the system U ∈ R with respect to its position
ri:

Fi = −∂U(r1, r2, . . . , rN )

∂ri
. (4.2)
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CHAPTER 4. MOLECULAR DYNAMICS AND DATA

Knowing the force, it is possible to integrate numerically the equations of motion (4.1) for
every i, to get the trajectories ri(t) of all the atoms in the system.

The potential energy function (which is also called the force field) is usually the sum of
bonded and non-bonded interaction potentials,

U = Ubonded + Unon-bonded, (4.3)

where Ubonded is the interaction energy of particles connected by covalent bonds and Unon-bonded
is the interaction energy of particles that are not covalently bonded (electrostatic and van
der Waals energy). The AMBER potential, which we used for our simulations, is given by

U(r1, r2, . . . , rN ) =
∑

bonds
kb(rb − r̂b)2 +

∑
angles

ka(θa − θ̂a)2

+
∑

dihedrals

Vn
2

[1 + cos(nφd − δd)]

+
∑
i<j

[
Aij
r12ij
− Bij
r6ij

]
+
∑
i<j

[
qi qj
ε rij

]
,

(4.4)

where the first three terms describe the bonded interactions and the last two the non-bonded.
What do the terms in this equation mean? The first term corresponds to the energy of

stretching a covalent bond, modelled by a harmonic potential. Here kb is a stiffness constant,
r̂b is an equilibrium distance and rb is the observed distance between the two bonded atoms
for each bond b. The second term is the harmonic energy of the angle between two bonds,
that share a common atom (valence angle). Here, again, for each such angle a, ka is a stiffness
constant, θ̂a is the equilibrium value and θa is the observed value of the angle. The third
term depends on four successively bonded atoms and corresponds to a dihedral (torsion) angle
potential. A torsion angle for four such atoms i, j, k, l, associated with the bond between the
middle atoms j and k, is the angle between the two planes, going through the atoms i, j, k
and j, k, l. Then δd is the value corresponding to the minimal value of the energy term, n is
the number of energy minima as the angle d changes from 0 to 2π, Vn is the energy barrier
height and φd is the observed value of the angle d.

The fourth and fifth terms of equation (4.4) represent the van der Waals and electrostatic
interactions between atoms. The van der Waals force is the sum of attractive and repulsive
forces between a pair of atoms. One simple model, that approximates this interaction, is the
the Lennard-Jones potential (also called the 12-6 potential). It is the fourth term of equation
(4.4). In this model, the 1/r12ij term corresponds to a short-range repulsive force and the
1/r6ij term to a long-range attractive force. Here Aij = εij r̂

12
ij and Bij = 2 εij r̂

6
ij , where εij

is the potential well depth, r̂ij is the distance between the atoms i, j at which the potential
is zero, and rij is the observed distance. The electrostatic interaction between two atoms i, j
is represented by Coulomb potential, the last term of equation (4.4). Here ε is the Coulomb
constant, rij is the distance between the two atoms and qi, qk are their charges.

The non-bonded energy terms are defined for every pair of atoms in the system, which
makes evaluating these terms for big systems very expensive. One solution to this problem
would be to ignore interactions between atoms separated by a distance greater than a chosen
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4.1. MOLECULAR DYNAMICS SIMULATIONS

cutoff. However, non-bonded, especially electrostatic, interactions sometimes can be impor-
tant even over quite long distances. A number of models have been developed for efficiently
including an approximation of long-range interactions to the potential. AMBER uses the
Particle Mesh Ewald procedure [21] for estimating the long-range electrostatic interactions,
and a continuous cutoff for the long-range van der Waals interactions. Even still, evaluating
the function U is the most computationally intensive task during an MD simulation.

Setting the values of the parameters kb, r̂b, ka, θ̂a, Vn, etc. of the force field U is a whole
area of research. Usually these values are optimised to fit experimental data and results from
quantum mechanical simulations of a small number of particles. Subsequently, they are tested
on MD simulations for different systems. The parameter sets used for our MD simulations
are further detailed in Section 4.2.

To avoid modelling forces acting on the surface particles and effects of the container walls,
periodic boundary conditions, are imposed. This corresponds to surrounding the simulation
box by an infinite number of its copies. Then the particles close to the border of the box
interact to the images of the particles that are close to the opposite border.

Finally, having estimated a potential and chosen the boundary conditions, we can numeri-
cally solve the system of ordinary differential equations (4.1). The N second order differential
equations in (4.1) can be transformed to 2N first order equations:

d vi
dt

= ai

(
=
Fi

mi

)
,

dri
dt

= vi,

(4.5)

where vi is the velocity of a particle i. Then these equations can be discretised by choosing
a small enough integration time step ∆t. For solving them, AMBER uses the Leapfrog
integration algorithm, with a recursive scheme

rk+1
i = rki + vki ∆t+ 1

2 a
k
i ∆t 2,

vk+1
i = vi + 1

2 (aki + ak+1
i ) ∆t.

(4.6)

The time step must be chosen small enough to avoid discretisation errors, it should be
smaller than the fastest internal vibrations of the system, that are in the order of a femtosec-
ond. Placing constraints on the bonds which oscillate with the highest frequency allows to
the time step to be shortened and this reduces the computational cost.

The integration method is deterministic: given the positions and velocities of each atom
at a chosen time, they can be predicted for any future time. However, in practice, because
of the accumulating round-off errors these predictions become inaccurate. Having computed
the trajectories {rki } of all the atoms i = 1 . . . N , the macroscopic properties of the system,
such as temperature and pressure, can be obtained using statistical mechanics. More details
about the method of MD simulations can be found in the books [43] and [47].

To start a molecular dynamics simulation, the initial positions of all the atoms in the
system have to be assigned. It is important to choose the initial configuration not far from the
minimum of the potential. Otherwise, if we start from a configuration that is unrealistically
stressed, the structure of our molecule can get unrealistically distorted during the simulation.
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There exist databases with experimentally determined X-ray crystal or NMR structures for
some biomolecules. Otherwise, one can use various programs to build a starting structure
using experimentally obtained configurations of structural parts (e.g. nucleotides) of the
molecule that one wishes to model. After building a structure, an energy minimisation is
usually carried out to remove the largest strains and possible overlaps of atoms.

In simulations of DNA the solvent (usually water) plays an important role as it screens
electrostatic interactions and enforces the stability of the helical structure. There exist im-
plicit solvent models which estimate the approximate effect of the solvent without modelling
its every molecule. However in this work we used explicit solvent, which means that each
DNA oligomer was put in a sufficiently large box of water molecules. DNA is negatively
charged, and it is necessary to add neutralising counterions to balance this charge, again for
reasons of stability. Often some neutral pairs of salt ions are added to the system as well
to reproduce a physiologically realistic salt concentration. The final system for simulating
a solvated DNA 18-mer consists of about 36 000 atoms (this means 72 000 equations in the
system (4.5)) of which more than 90% is water (see Figure 4.1).

When the initial positions are set for all the atoms of DNA, water and ions, small ve-
locities are assigned to each atom, and the simulation is started. Then the velocities are
periodically increased to heat the system, until the chosen temperature is reached. Before
starting the final, or production, stage of the simulation, some equilibration, involving energy
minimisation, is performed.

Usually, in part to model the conditions of laboratory experiments, some chosen macro-
scopic values of the system, like temperature, volume, pressure or energy, are kept constant
during the simulation. This can be again done by rescaling the velocities of the atoms. A
set of all possible systems which have the same macroscopic or thermodynamic state, but
different microscopic states, is called a statistical ensemble: in the microcanonical ensemble
(NVE) the number of atoms N, volume V and energy E are fixed, in the canonical ensem-
ble (NVT) the properties held constant are the number of atoms N, the volume V and the
temperature T, and the isobaric-isothermal ensemble (NPT) is characterised by a constant
number of atoms N, a constant pressure P, and a constant temperature T.

The length of an MD simulation is chosen to reach an acceptable convergence of the
parameters of interest. However, as the number of particles in the simulated systems is big, the
simulations are computationally expensive. To accelerate the simulations, the computations
are usually run in parallel on distributed processors. Moreover, a special supercomputer has
been designed for molecular dynamics simulations [69], and various collaborations have been
established to carry out consistent sets of MD simulations.

4.2 ABC data set and simulation protocol

The main part of the data set, used to build our coarse-grain model of DNA, was a shared pool
of DNA MD trajectories produced by the ABC collaboration within a consortium of groups
[7, 20, 42]. The ABC collaboration was initiated precisely because of interest in coarse-grain
parameter extraction, although the data set is also being exploited in a variety of other ways
by other members of the consortium. The ABC sequence set are the 39 18-mers µ = 1, . . . , 36

and µ = 54, 55, 56 listed in Table 4.1, that were designed to include multiple instances of all
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4.3. OLIGOMERS WITH DIFFERENT ENDS, BREAKING HYDROGEN BONDS

(a) (b)

Figure 4.1: Two snapshots from an MD simulation of the sequence S3, given in Table 4.1 with
atoms marked as beads and covalent bonds as tubes. The system consists of 35 882 atoms of
which only 1 138 are DNA, 106 are neutralising and salt ions, and the rest is water. In (a) a
cubic simulation box containing all the atoms is shown, with water atoms being transparent.
In (b) only DNA and ions are left. Here green beads mark K+ ions and white beads are Cl-
ions. The figure was made with VMD [30].

136 possible tetramer sub-sequences away from the ends.
Each DNA sequence Sµ was simulated using atomic resolution, explicit solvent, molecular

dynamics. The AMBER suite of programs together with the parmbsc0 [62] modifications to
the parm99 force field [13, 12] was used. Simulations were run in a solution of 150 mM KCl
with the parameters from Dang [17], water was modelled using the SPC/E parameters [28] and
periodic boundary conditions were imposed. In order to have stable simulations with a 2 fs
time step, all chemical bonds involving hydrogen atoms were restrained using the SHAKE
[65] algorithm. For each sequence, the DNA duplex was built, neutralised, hydrated and
equilibrated as described in [42]. The simulations comprised approximately 36 000 atoms.
Each simulation was in the NPT ensemble with temperature 300 K and pressure 1 atm,
controlled by the Berendsen algorithm [6]. A trajectory of between 50-100 ns was generated
(with the length depending largely on the group running the simulation), and a snapshot was
saved every 1 ps. Further details of the simulation protocol can be found in [42].

The ABC database consists in total of almost 3 million snapshots of DNA configurations,
or 30 gigabytes of data in compressed format, sampled from approximately 2.75 microseconds
of (deterministic) simulation. In particular, the configuration of the solvent is discarded, and
correspondingly the DNA configurations are assumed to be sampling a stochastic dynamics.

4.3 Oligomers with different ends, breaking hydrogen bonds

Every ABC oligomer was chosen to have 5′GpC and GpC3′ ends. That choice was made to
minimise possible convergence issues in the simulations because the GpC end dimers were
known to be amongst the most stable against end fraying. In the development of the theory

27



CHAPTER 4. MOLECULAR DYNAMICS AND DATA

presented here, and as explained more below, we realised that while we did not need all
tetramer sub-sequences to be present in our training set, we did however need a greater
variety of sequences at the ends. We therefore enhanced the original ABC data set with the
oligomers labelled µ = 37, . . . , 53 in Table 4.1, which, when considering both the reference
and complementary strands, contain all 16 possible 5′-dimer-step ends, and all 16 possible
dimer-step-3′ ends. As the additional sequences were focused on enhancing the range of end
sequences, it was significantly faster to simulate 12-mers rather than 18-mers (the simulations
of nµ = 12 base pair sequences comprised approximately 17 000 atoms, which is more than
twice less than approximately 36 000 atoms for nµ = 18). We did also include three additional
18-mers, in part to verify consistency between the original simulations and those of the
extended oligomer set. The simulation protocol of these simulations was exactly the same as
ABC and their duration was between 100 ns to 200 ns.

(a) (b) (c)

Figure 4.2: Three snapshots from an MD simulation of the sequence S7, where backbones
are drawn as ribbons, bases are drawn as blue polygons and hydrogen bonds are marked as
dotted lines. In (a) all the bases are connected by hydrogen bonds, in (b) all the hydrogen
bonds are broken for two base pairs at each end (the two separated base pairs at the top end
are marked with a red circle) and in (c) two non Watson-Crick hydrogen bonds are formed
between bases A and T across the junction at the top end (inside the red circle ). The figure
was made with VMD [30].

One observation from these simulations is that indeed the 5′GpC ends tend to break apart
much less than the other ones. The least stable are the oligomers, ending with an AT (or TA)
base pair. This base pair has only two hydrogen bonds. For some simulations, at least one
hydrogen bond at the end was broken for more than 190 000 snapshots out of 200 000 (200 ns).
An interesting case are the sequences µ = 37, 38, 39, 45, 46, that have two AT base pairs at
one end and three at the other one. The hydrogen bonds at the ends of these oligomers
were often breaking and then re-forming. However, sometimes a hydrogen bond was forming
between bases across the junction (from neighbouring base pairs), as shown in Figure 4.2. We
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excluded these configurations from our analysis, as we were only interested in the equilibrium
distribution of B-DNA.

µ Sµ Sµ µ

1 GCTATATATATATATAGC GCTAGATAGATAGATAGC 29
2 GCATTAATTAATTAATGC GCGCGGGCGGGCGGGCGC 30
3 GCGCATGCATGCATGCGC GCGTGGGTGGGTGGGTGC 31
4 GCCTAGCTAGCTAGCTGC GCACTAACTAACTAACGC 32
5 GCCGCGCGCGCGCGCGGC GCGCTGGCTGGCTGGCGC 33
6 GCGCCGGCCGGCCGGCGC GCTATGTATGTATGTAGC 34
7 GCTACGTACGTACGTAGC GCTGTGTGTGTGTGTGGC 35
8 GCGATCGATCGATCGAGC GCGTTGGTTGGTTGGTGC 36
9 GCAAAAAAAAAAAAAAGC AAACAATAAGAA 37
10 GCCGAGCGAGCGAGCGGC AAAGAACAATAA 38
11 GCGAAGGAAGGAAGGAGC AAATAACAAGAA 39
12 GCGTAGGTAGGTAGGTGC GGGAGGTGGCGG 40
13 GCTGAGTGAGTGAGTGGC GGGCGGAGGTGG 41
14 GCAGCAAGCAAGCAAGGC GGGCGGTGGAGG 42
15 GCAAGAAAGAAAGAAAGC GGGTGGAGGCGG 43
16 GCGAGGGAGGGAGGGAGC GGGTGGCGGAGG 44
17 GCGGGGGGGGGGGGGGGC AAATAAAAATAAGAACAA 45
18 GCAGTAAGTAAGTAAGGC AAATAACAATAAGAACAA 46
19 GCGATGGATGGATGGAGC GGGAGGGGGAGGCGGTGG 47
20 GCTCTGTCTGTCTGTCGC GACATGGTACAG 48
21 GCACAAACAAACAAACGC ACGATCCTAGCA 49
22 GCAGAGAGAGAGAGAGGC ATGCTAATCGTA 50
23 GCGCAGGCAGGCAGGCGC AGCTGAAGTCGA 51
24 GCTCAGTCAGTCAGTCGC CGAACTTCAAGC 52
25 GCATCAATCAATCAATGC GTCTACCATCTG 53
26 GCGTCGGTCGGTCGGTGC GCATAAATAAATAAATGC 54
27 GCTGCGTGCGTGCGTGGC GCATGAATGAATGAATGC 55
28 GCACGAACGAACGAACGC GCGACGGACGGACGGAGC 56

Table 4.1: Sequences Sµ contained in the MD data set.

4.4 Estimates of the oligomer based model parameters and
their convergence

We will now discuss the process and some results of oligomer based model parameter estima-
tion from the MD data. The first step of this process was to analyse each snapshot coming
from the MD simulations with the program Curves+ [41], to get a set of reference points and
base frames, as described in Section 2.1. From these points and frames we computed a vector
of our non dimensional coarse-grain configuration parameters w, as defined in Sections 2.3
and 2.4. To obtain the desired oligomer parameters, we assume ergodicity of these time series,
i.e. we assume that the time series that stays in, but explores all of the quadratic potential
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well where the assumed form of U is valid. Then the statistical mechanical averages over
configuration space appearing in the moment relations (3.18) and (3.19) can be replaced with
averages over the time series, so that the average shape vector ŵ and the stiffness matrix K

that can be estimated using the formulas (3.20) and (3.21). To obtain parameters consistent
with the B-form DNA structural family, we follow the treatment in [36] excluding structures
with broken H-bonds. Broken bonds provide a signal that a structure is defective, for exam-
ple, it may have frayed ends. Following previous work [36, 46], we consider a hydrogen bond
to be broken if the distance between donor and acceptor is greater than 4 Å.

Various scripts for computing and plotting oligomer parameters were developed from those
used in [36]. The oligomer based parameter estimation from the ABC data set was done in
collaboration with J. Curuksu.

As mentioned previously, the values of the configuration parameters w and therefore also
the values of the average vector ŵ and the stiffness matrix K depend on the choice of a
reference strand, the two sets of parameters being related by simple formulas (3.13). For
example, the 12-mer described by the sequence S51 = AGCTGAAGTCGA from Table 4.1, can
alternatively be described by the sequence TCGACTTCAGCT, choosing a different reference
strand. Figure 4.3 shows the intra rotational variables of the vector ŵE (Buckle, Propeller
and Opening), computed from the same 200 ns simulation, but for two different choices of
reference strand. The base sequence along the reference strand is indicated on the abscissa,
with parameters evaluated at each base-pair and interpolated with piecewise-linear curves
for visualisation. While passing from one choice to another, the values of even coordinates
(Propeller and Opening) are just reordered, while the values of Buckle also change sign. In
our further examples, we use the sequences listed in Table 4.1 to describe the simulated
oligomers. However, we will be considering both choices of reference strand for computing
various statistics of parameters, dependent on dimer or trimer sequence, as described in later
chapters.
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Figure 4.3: Intra rotational average shape parameters of the same oligomer, computed from
the same 200 ns simulation, but for two different choices of reference strand, the sequence on
the left being S51. Note that Buckle changes sign while passing from one case to the other.

Figure 4.4 presents a standard set of parameter plots, that will be used throughout this
thesis. There are eight panels in the figure. The top four of them contain plots of the shape
vector ŵ4,E for the sequence S4 versus sequence position, with values interpolated by solid
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lines. The intra variables are evaluated at each base-pair and inter variables at each junction.
At the bottom of the page, the remaining four panels show the diagonal entries of the stiffness
matrix K4,E . Even though the stiffness matrix has many non zero entries, as shown in Figures
4.6 and 4.7, it is interesting to observe the sequence dependence of the diagonal entries. The
diagonal stiffness parameters are named according to the couplings that they represent, i.e.
Buckle-Buckle, Propeller-Propeller, etc. Their presentation in the plots is analogous to the
shape parameters above.

The goal of the current stage of the ABC project is to have a data set, which consists
of at least 1µs simulated trajectories for each of the 39 sequences Sµ, µ = 1, . . . , 36 and
µ = 54, 55, 56. Even though the complete microsecond data set was not available yet by
the time of writing this thesis, we already had the simulations accomplished for some of the
sequences, so the parameter values estimated from the original data set could be compared
to the ones estimated from the prolonged (ten or twenty times) simulations. The dashed
lines in Figure 4.4 show shape and diagonal stiffness parameters for the same sequence S4,
computed from a 1µs simulation, where the first 100 ns are the same as before. The biggest
differences between the two estimates are for the Twist-Twist diagonal stiffness parameters
close to the ends of the oligomer. Otherwise the two lines are almost overlapping, indicating
that the 100 ns simulation was converged enough to estimate our parameters of interest. In
later examples of this thesis we will not use the 1µs simulation data for consistency, unless
stated differently.

Another convergence check was done together with J. Curuksu. We ran ten independent
50 ns simulations of a palindromic sequence S3, with different random initial velocities as-
signed in each of them. Then we could compare the average shapes and diagonal stiffness
parameters computed from these simulations with the values obtained from the 100 ns ABC
simulation. The plots of these values are shown in Figure 4.5, the ABC simulation parame-
ters being interpolated by piecewise-linear curves and the other ten estimates marked with
crosses. To quantify the spread of these ten estimated values, we computed the standard
deviations of each parameter at each base pair or each junction. As can be noticed from the
plots, the deviation of the values is bigger close to the ends of the oligomer, which implies that
the estimates close to ends should be trusted less than the ones in the middle. The value of
standard deviation, averaged over all the shape parameters, is 0.04, and the analogous value
for the diagonal stiffness parameters is 0.02, which are quite small compared to the average
values of the estimates. The biggest average standard deviation, both for shapes and diagonal
stiffnesses, is in intra rotational parameters (0.05 for the shapes and 0.03 for the stiffnesses).
The smallest average standard deviation, again both for shapes and diagonal stiffnesses, is
in intra translational parameters (0.01 for the shapes and 0.00 for the stiffnesses). The con-
clusion from this experiment is that simulations of 50 ns and 100 ns (the lengths of ABC
simulations) are acceptable for estimating our model parameters, however the estimates are
obtained with an error.

Figures 4.6 and 4.7 contain plots of estimated stiffness matrices for the sequences S7 and
S51. The plots on the left are the matrices KE (the plot on the bottom of Figure 4.6 being
just a zoomed portion of the plot above), and on the right are the plots of the matrices K

bp
E ,

each computed as an inverse of the “weighted" covariance of the variables wbp, as discussed
in Section 3.4. The ordering of the parameters in the plots is from top to bottom and from
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left to right, the black lines separate 12 × 12 blocks of the matrices KE and 6 × 6 blocks of
the matrices K

bp
E . The observation that can be made from these plots is that the rigid base

model stiffness matrix is much more banded than the stiffness matrix for the rigid base pair
model, i.e. the interactions in the rigid base model are much more local than in the rigid
base pair model, which is in agreement with the conclusions of [36], made from different MD
simulation data of a different sequence and using a different force field. Moreover, the same
conclusion holds for all the 56 sequences in our training set. This motivates us to consider
rigid bases, rather than base pairs, for the development of our local nearest neighbour model.
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Figure 4.4: The shape parameter vector ŵ4,E (top four plots) and the diagonal entries of
the stiffness parameter matrix K4,E for the 18-base-pair sequence S4, where the parameter
values are interpolated by piecewise-linear curves. Solid lines correspond to the parameters,
computed from a 100 ns trajectory, dashed lines to the parameters, computed from a 1µs
trajectory. Note different coordinate scales in different panels.
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Figure 4.5: Shape parameters ŵ3,E (top four plots) and diagonal entries of the stiffness matri-
ces K3,E (bottom plots), estimated from ten independent 50 ns simulations of the sequence S3
and one 100 ns ABC simulation of the same sequence. The parameter values, computed from
the ABC simulation, are interpolated by piecewise-linear curves, the other ten are marked
with crosses. We remark that the values are wider spread close to the ends of the oligomer.
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Figure 4.6: Rigid base (left) and rigid base pair (right) stiffness matrices for the sequence S7,
computed from a 100 ns simulation. The two plots on the bottom are zoomed portions of
the corresponding figures on the top. The black lines in the rigid base figures limit 12 × 12
blocks (intra and inter parameters), while in the rigid base pair figures 6× 6 inter blocks are
limited by black lines. The rigid base model stiffness matrix is much more banded than the
stiffness matrix for the rigid base pair model, which is in agreement with the results of [36].
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Figure 4.7: Rigid base (left) and rigid base pair (right) stiffness matrices for the sequence
S51, computed from a 200 ns simulation. The black lines in the rigid base figures limit 12×12
blocks (intra and inter parameters), while in the rigid base pair figures 6×6 blocks are limited
by black lines. The rigid base model stiffness matrix again is more banded than the stiffness
matrix for the rigid base pair model. This conclusion holds for all the 56 sequences in our
training set. 35
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Chapter 5

The Jacobian and a Gaussian
approximation

Here we explore the properties of the probability density function, introduced in Chapter 3,
and explain our choice to approximate this density with a multivariate Gaussian.

5.1 Bimodality in parameter distributions

We have assumed that our rigid base DNA configuration parameter vector w ∈ R12n−6 follows
a distribution ρ(w), defined in (3.7). The marginal distribution of a single scalar parameter
wk, which is an element of w, is then given by

ρ(k)(wk) =
1

Zk

∫
R12n−6

ρ(w) dw1 . . . dwk−1 dwk+1 . . . dw12n−6, (5.1)

where Zk is the normalising constant. Due to the presence of the Jacobian in ρ, we do not
know how to compute this integral explicitly. However one can look at the distributions of
parameters wk, computed from a Molecular Dynamics trajectory, and then try to answer the
question: can this distribution be described by the function (5.1)?

Examples of histograms of all the parameters wk, k = 1 . . . 12n − 6, along the oligomer
S5 of our data set are shown in Figures 5.2, 5.6 and 5.7 and their wider description is in
Section 5.4. Also some additional histograms for other sequences can be found in Chapter 8.
It can be noticed, that most of these distributions are symmetric bell-shaped curves, looking
a lot like Gaussian curves. However, some parameters have an asymmetric or even a bimodal
distribution, particularly for Twist and Slide, and particularly for the steps CpG, as discussed
at length in [42] and [60].

There exist various definitions of bimodality. Here we call a probability density function
bimodal if it has multiple maxima. We now pose a more specific question: can the marginal
probability distribution (5.1) be bimodal, as are the observed distributions of some parameters
wk? We can deduce some properties of ρ(k)(wk), while exploring the behaviour of ρ.
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5.2 Can the Jacobian explain bimodality? A one dimensional
example

Let us first consider a simple case: a one dimensional function

f(x) =
1

Z
e−

1
2
k (x−h)2

︸ ︷︷ ︸
E(x)

1(
1 + 1

100 x
2
)2︸ ︷︷ ︸

J(x)

, k > 0, x, h ∈ R, (5.2)

with a normalising constant Z. f(x) can be seen as a product of 1
Z and two functions: a

Gaussian function E(x), and J(x), which is of the same form as the Jacobian J(w) in (3.2).
Can this product have multiple extrema? If f has multiple extremes, its derivative

f ′(x) = − 1

Z
e−

1
2
k (x−h)2 1(

1 + 1
100 x

2
)2
(
k(x− h) +

x

25
(
1 + 1

100x
2
)) (5.3)

must vanish for multiple values of x. The equation f ′(x) = 0 is equivalent to a cubic equation

x3 − hx2 +

(
100 +

4

k

)
x− 100h = 0, (5.4)

which can have one, two or three distinct real roots. We are interested in the case when there
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Figure 5.1: Normalised plots of the functions E(x), J(x) and f(x), where f(x) is the product
of the first two functions. The values of the parameter k increase from left to right and the
values of h increase from top to bottom, when passing from one plot to another. For some
combinations of the parameter values, f(x) has two distinguished peaks.
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are three distinct real roots. In this case the discriminant ∆ is bigger than zero, where

∆ = −16

k3

(
25 k3h4 +

(
5000 k3 − 500 k2 − k

)
h2 + 25 · 104 k3 + 3 · 104 k2 + 1200 k + 16

)
. (5.5)

For k > 0, ∆ is positive when h1 < h < h2, with

h1, h2 =

(
1 + 500k − 5000k2 ∓

√
1− 600 k + 12 · 104 k2 − 8 · 106 k3

50k2

) 1
2

, k ∈ (0, 0.005). (5.6)

This implies that the function f can have two peaks only for |h| > 51.96 and k < 0.005.
The behaviour of f(x) as a product of two single-peaked functions E(x) and J(x) is

illustrated in Figure 5.1. For the values of the parameters h and k, satisfying ∆ > 0, f(x)

can have two peaks of equal height, e.g. for (h; k) = (80; 0.0025), or two peaks of which one
is dominating, e.g. for (h; k) = (90; 0.0025). When ∆ < 0, the curve f(x) can be largely
asymmetric with a shoulder, e.g. when (h; k) = (80; 0.004), or it can get close to either to
E(x) or J(x), depending on the values of the parameters. Note that all three functions were
normalised before plotting, so that the area under each plots equals one. The normalising
function for E is Z1 =

√
2π
k , for J it is Z2 = 5π and for f(x) it was evaluated numerically.

From this simple example one could hope that the Jacobian factor could indeed explain
the bimodal distribution of some configuration parameters of rigid base DNA. Even though
the values of |h|, that allow the function f to be two-peaked, are far from the possible rigid
base DNA average shape values, it is still worth exploring the multidimensional case.

5.3 Can the Jacobian explain bimodality? The multidimen-
sional case

Consider a multidimensional probability density function of rigid base DNA configurations

ρ(w) =
1

ZJ
e−

1
2
(w−ŵ)·K(w−ŵ)J(w), (5.7)

with w ∈ R12n−6, n the number of base pairs, and the Jacobian J(w) given in (3.2). To
simplify further expressions, we reorder the variables in w to get

w =

(
u

v

)
, (5.8)

where u = (ϑ1, θ1, . . . , ϑn−1, θn−1, ϑn) = (u1, u2, . . . , u2n−1) with ui ∈ R3, i = 1 . . . 2n − 1, is
the vector of all the rotational parameters and v = (ξ1, ζ1, . . . , ξn−1, ζn−1, ξn) is the vector
of all translational parameters in w. The matrix of the transformation, that reorders the
variables in this way, can be written as

w = Rw, (5.9)

39



CHAPTER 5. THE JACOBIAN AND A GAUSSIAN APPROXIMATION

where

R =



I3 0 0

0 0 I3 0

0 0 0 0 I3
. . . 0 0

0 I3 0

0 I3 0 0

0 0 0 I3 0
. . . 0 0

0 0 I3


, (5.10)

with the property that R−1 = RT . Then the new stiffness matrix can be expressed as

K = RKRT , (5.11)

and the probability density function ρ can be written as

ρ(w) =
1

ZJ
e−

1
2
(w−ŵ)·K(w−ŵ)

2n−1∏
i=1

(
1 +

1

100
|ui|2

)−2

=
1

ZJ
e−

1
2
(w−ŵ)·K(w−ŵ)− 2

∑2n−1
i=1 ln(1+ 1

100
|ui|2).

(5.12)

A necessary condition for the function ρ to have multiple peaks, is that the equation ∇ρ = 0

has multiple solutions, or, equivalently, that the equation ∇ ln ρ = 0 has multiple solutions.
The gradient of ln ρ can be explicitly expressed as

∇ ln ρ(w) = −K(w− ŵ)− 1

25
D̃(u)w, (5.13)

where

D̃(u) =

[
Dn(u) 0n

0n 0n

]
with Dn(u) =


D(u1) 0 · · · 0

0 D(u2)
. . .

...
...

. . .
. . . 0

0 · · · 0 D(u6n−3)

 ∈ R(6n−3)×(6n−3),

D(ui) =
(

1
1+ 1

100
|ui|2 I3

)
∈ R3×3, I3 is an identity and 0n ∈ R(6n−3)×(6n−3) a zero matrix.

(5.14)
Then ∇ln ρ = 0 implies

K(w− ŵ) +
1

25
D̃(u)w = 0, (5.15)

which is a system of (12n − 6) equations. Actually, one can show that the function ln ρ is
concave in our domain of interest, so there can be only one solution to (5.15), which means
that the distribution ρ can only have one peak. To show this, we compute the Hessian of
ln ρ:

∇2 ln ρ = K +
1

25

[
D̃(u) + G̃(u)

]
(5.16)
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where

G̃(u) =

[
Gn(u) 0n

0n 0n

]
with Gn(u) =


G(u1) 0 · · · 0

0 G(u2)
. . .

...
...

. . .
. . . 0

0 · · · 0 G(u6n−3)

 ,

G(ui) = 1
50

−uiuiT

(1+ 1
100
|ui|2)2

∈ R3×3.

(5.17)

As K > 0, a sufficient condition for the Hessian (5.16) to be positive definite is that the block
diagonal matrix [Dn(u) +Gn(u)] is positive definite. The eigenvalues of this matrix are equal
to the eigenvalues of its blocks, which are

eig[D(ui) +G(ui)] = eig
[

1
1+ 1

100
|ui|2

(
I3 −

1
50
uiui

T

1+ 1
100
|ui|2

)]
=

[
1

1+ 1
100
|ui|2 ,

1
1+ 1

100
|ui|2 ,

1− 1
50
|ui|2

(1+ 1
100
|ui|2)2

]
,

(5.18)

and are all positive for |ui| < 5
√

2 ≈ 7. The value |ui| = 7 corresponds to a rotation angle
of 1.22 radians or about 70 degrees, which does not correspond to a likely configuration (a
maximum of a probability density) of B-DNA, for ui being a triple of either intra or inter
rotation parameters. And indeed, all the peaks in the observed marginal distributions of our
MD data, are in the domain |ui| < 7, i = 1 . . . 6n−3, where the assumed density ρ is concave.

There is still one remaining question: can the function ln ρ be concave, and the marginals
of ρ be bimodal? It is shown in [64] that if ρ is a logarithmic concave multivariate probability
density, i.e. if ln ρ is a concave function, then all the marginal densities of ρ are also loga-
rithmic concave. Therefore we conclude that our assumed probability density function with
a Jacobian cannot explain the bimodal distribution of some DNA configuration parameters.

The bimodality of DNA equilibrium configuration is observed not only in the Molecu-
lar Dynamics, but also in the crystallography experiments [32, 14, 48]. These experiments
indicate, that bimodality is a physical property of DNA, and not an outcome of the parametri-
sation of its configuration or the MD force field.

5.4 A Gaussian approximation

Having shown that ρ is a concave function for |ui| < 7, and having noticed that the Jacobian
J is close to one in this domain, it is reasonable to expect that variations in J can be neglected
and the distribution ρ can be approximated by a Gaussian. By the Gaussian approximation
of the internal configuration density ρ we mean the density obtained by assuming J to be
constant. In this approximation, we have

ρ(w) =
1

Z
e−

1
2
(w−ŵ)·K(w−ŵ), Z =

√
(2π)12n−6

K
, w ∈ R12n−6. (5.19)
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The moment-parameter relations (3.18) and (3.19) then become

〈w〉 = ŵ, 〈∆w⊗∆w〉 = K−1, (5.20)

and their discrete versions, that can be compared to (3.20) and (3.21), are

ŵµ,o =
1

N

N∑
l=1

w(l)
µ , K−1µ,o =

1

N

N∑
l=1

∆w(l)
µ ⊗∆w(l)

µ , (5.21)

where ∆wµ = wµ − ŵµ,o, µ is the number of an oligomer, l is the index of the observation
(the snapshot of the MD time series) and N is the total number of the observations used
for the oligomer Sµ. The notations ŵµ,o and Kµ,o are chosen to be different from ŵµ,E and
Kµ,E , denoting the parameters computed using the formulas (3.20) and (3.21) that include
the Jacobian factor.

The marginal densities can be explicitly computed for the Gaussian measure (5.19) and
they are also Gaussian. The expression for the one dimensional marginal density functions
(5.1) is

ρ(k)(wk) =
1

Zk
e
− 1

2

(
wk−ŵk
σk

)2
, Zk = σk

√
2π, σk =

√(
K−1

)
kk
, wk, σk ∈ R. (5.22)

One can plot the graph of ρ(k)(wk) for each parameter wk and compare it to the histogram of
this variable, as it is shown in Figures 5.6, 5.7, and the Figures 8.9, 8.10, 8.11, 8.12 and 8.13
in Chapter 8. The three examples in Figure 5.2 summarise the different cases that occurred
in our MD data. If the distribution of wk is symmetric, the Gaussian fits it very well. The
most likely value of the normal curve gets shifted a bit with respect to the observed one, if
the observed distribution is asymmetric. And, of course, the Gaussian fit is the worst for the
two peaked parameter distribution. Fortunately, most of the parameters have a symmetric
distribution, so ρ(k) in general seems to be a good fit.
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Figure 5.2: Examples of Gaussian fits to MD data. Plots of a marginal distribution of
Twist for three selected dimer steps (X6X7 = CG, X7X8 = GA and X8X9 = AT) of the oligomer
S8 = GCGATCGATCGATCGAGC. Solid line: marginal, observed from MD. Dotted line: Gaussian
marginal determined from the estimated density ρ8,o.

How different are the estimated shape and stiffness parameters for the distributions with
and without Jacobian? From the equations (3.18) and (3.19), one can remark that the vector
ŵE is the arithmetic average of all the observed values wk

J〈1/J〉 and the stiffness matrix KE

is obtained as the inverse of the matrix
〈

w√
J〈1/J〉

⊗ w√
J〈1/J〉

〉
− ŵ⊗ ŵ. We therefore first decided
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to look to the histograms of the functions wk
J〈1/J〉 and wk/

√
J〈1/J〉 for the oligomers of our

training set. As shown in Figure 5.3 for an example oligomer S5, the distribution of these
functions are unimodal for all the parameters wk, both unimodal and bimodal ones. One can
notice, that the centres (not the peaks) of all three histograms are close, and the width of
the distributions of wk/

√
J〈1/J〉 is close to the ones of wk. Therefore, one could expect the

estimates (ŵµ,o, Kµ,o) to be not very different from (ŵµ,E , Kµ,E). In addition we observe that
the distribution of the scalar function 〈1/J〉J is quite concentrated around one.
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Figure 5.3: Histograms of inter rotational parameters wk of the oligomer S5 (solid lines)
compared to histograms of functions wk

J〈1/J〉 (dashed lines), that are used to estimate the shape
vector ŵ5,E . The stiffness matrix K5,o is estimated from a different function, wk/

√
J〈1/J〉,

the histograms of which are plotted in dotted lines. Somewhat surprisingly, even though
the distribution of Twist is bimodal for the CpG steps, the distribution of these functions are
unimodal. The plot in the right bottom corner is the histogram of the scalar function J〈1/J〉.

The potential of the Gaussian distribution (5.19),

U =
1

2
(w− ŵ) · K(w− ŵ), (5.23)

can be considered as a quadratic approximation to

Ū =
1

2
(w− w̄) · K̄(w− w̄)− ln J(w). (5.24)

at the point ŵ. We know that (5.24) has only one minimum in our domain of interest. We
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want this minimum to coincide with the minimum of (5.23), so

ŵ = argmin
w

(
1

2
(w− w̄) · K̄(w− w̄)− ln J(w)

)
. (5.25)

This minimum is achieved when ŵ satisfies

K̄(ŵ− w̄)−∇ ln J(ŵ) = 0

which gives
w̄ = ŵ + K̄

−1 1

J(ŵ)
∇J(ŵ). (5.26)

Equation (5.23) is the quadratic approximation to (5.24) at the point ŵ, if

∇2

(
1

2
(w− ŵ) · K(w− ŵ)

)
= ∇2

(
1

2
(w− w̄) · K̄(w− w̄)− ln J(w)

)
. (5.27)

This implies
K̄ = K +∇2 ln J(ŵ). (5.28)
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Figure 5.4: Plots of relative distances of parameters, estimated in the following three different
ways: (ŵµ,E , Kµ,E) are oligomer based parameters estimated with the Jacobian, (ŵµ,o, Kµ,o)
are oligomer based Gaussian parameters, estimated assuming that the Jacobian is equal
to a constant, and (w̄µ,o, K̄µ,o) are parameters of the quadratic approximation to the dis-
tribution with the Jacobian. Solid black line is ||ŵµ,E − ŵµ,o||/||ŵµ,o||, dashed black line
is ||Kµ,E − Kµ,o||/||Kµ,o||, solid blue line is ||w̄µ,o − ŵµ,o||/||ŵµ,o|| and dashed blue line is
||K̄µ,o − Kµ,o||/||Kµ,o||. The number of an oligomer is indicated on the horizontal axis.

Using the results of Section 5.3, we obtain

w̄ =
(
I − 1

25 K̄
−1RT D̃(û)R

)
ŵ,

K̄ = K +RT G̃(û)R.
(5.29)

where I ∈ R(12n−6)×(12n−6) is an identity matrix, Gn(u) is defined in (5.17) and D̃(u) is
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5.4. A GAUSSIAN APPROXIMATION

defined in (5.14). Note that in general, evaluating (5.29)2 can lead to a matrix K̄ that is not
positive definite, which would mean that (5.23) cannot be a quadratic approximation to a
function of the form (5.24). However, for all the oligomers in our data set K̄ was positive
definite.

Comparing the values of the parameters (ŵµ,o, Kµ,o) to (w̄µ,o, K̄µ,o) and to (ŵµ,E , Kµ,E)
is one way to measure the error, introduced by suppressing the Jacobian. Figure 5.4 shows
relative Euclidean distances from vector ŵµ,o to the other two shape vector estimates and
from the matrix Kµ,o to the other two stiffness matrix estimates for every oligomer µ. For the
oligomers these relative distances were smaller than 3%, which suggests that the Gaussian
approximation is appropriate for our assumed distribution. Figure 5.5 contains plots of the
shape parameters and diagonal entries of the stiffness matrices for the sequence S5 computed
in these three ways. The plots are organised in the standard way, introduced in Section 4.4,
with values interpolated with piecewise linear curves. The three curves for three different
ways of estimation are almost indistinguishable, indicating that the difference between the
three probability densities is very small. Therefore we conclude that approximating our
observed parameter distributions by Gaussians and ignoring the presence of the Jacobian is
a reasonable choice.
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Figure 5.5: Shape parameters (top four plots) and diagonal entries of the stiffness matrices
(bottom plots) for the sequence S5. Solid line: elements of ŵ5,E and diag(K5,E), estimated
assuming the distribution with a Jacobian, dashed line: ŵ5,o and diag(K5,o), estimated as-
suming the Gaussian distribution, dashed-dotted line: w̄5,o and diag(K̄5,o), computed from
ŵ5,o and K5,o as (5.29).
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Figure 5.6: Examples of Gaussian fits to MD data. Plots of marginal distributions of intra
base pair parameters of the oligomer S5. Solid line: marginal densities, observed from MD.
Dotted line: Gaussian marginals, determined from the estimated density ρ5,o.
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Figure 5.7: Examples of Gaussian fits to MD data. Plots of marginal distributions of inter
base pair parameters of the oligomer S5. Solid line: marginal densities, observed from MD.
Dotted line: Gaussian marginals, determined from the estimated density ρ5,o. Histograms of
the inter rotational variables wk

J〈1/J〉 and w√
J〈1/J〉

for the same sequence are shown in Figure 5.3.
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5.5 Comparison of probability densities

The equilibrium statistical properties of the internal configuration of an oligomer are described
by the density ρ(w), which is completely defined by the internal energy parameters K and ŵ.
Throughout our developments it will be necessary to quantify the difference in two densities
ρm(w) and ρo(w) defined by two different sets of parameters {Km, ŵm} and {Ko, ŵo}. To this
end, we appeal to results from general probability theory and employ the Kullback-Leibler
divergence [33]

D(ρm, ρo) :=

∫
ρm(w) ln

[
ρm(w)

ρo(w)

]
dw. (5.30)

This quantity is a non-symmetric measure of the difference between two normalised proba-
bility densities: it satisfies D(ρm, ρo) ≥ 0 for any ρm and ρo, and D(ρm, ρo) = 0 if and only if
ρm = ρo. The divergence D(ρm, ρo) defines a pre-metric on the space of probability densities,
but is not a metric since it is non-symmetric and does not satisfy the triangle inequality.

It is not always possible to integrate (5.30) to find an explicit expression for D(ρm), for
example when ρm or ρo are distributions of the form (5.7) with a non-constant Jacobian
factor. In the special case when ρm and ρo are both Gaussian, the integral (5.30) can be
explicitly evaluated [33] to obtain

D(ρm, ρo) =
1

2

[
K−1m : Ko − ln(detKo/ detKm)− I : I

]
+

1

2
(ŵm − ŵo) · Ko(ŵm − ŵo), (5.31)

where a colon denotes the standard Euclidean inner product for square matrices and I denotes
the identity matrix of the same dimension n as Km and Ko. The term in parentheses involves
only the two stiffness matrices, and can be rewritten in the form

D†(Km,Ko) := Σn
i=1(νi − ln νi − 1), (5.32)

where the νi are the n positive eigenvalues of the symmetric generalised eigenvalue problem

Koξi = νiKmξi. (5.33)

It is evident that D† defined in (5.32) is non-negative and vanishes only when ν1 = · · · =

νn = 1, i.e. when Ko = Km, so that it is an appropriate measure of the difference between two
symmetric positive definite matrices [52]. Similarly it is evident that the eigenvalues defined
in (5.33) are non dimensional and so independent of the choice of length, rotation and energy
scales, and that

D†(Km,Ko) = D†(K−1o ,K−1m ). (5.34)

Analogously the second term in (5.31) is non-negative and vanishes only when the means ŵm

and ŵo coincide. It is also independent of length and rotation scales, but depends linearly on
the energy scale. Thus the divergence (5.31) is a linear combination of differences in stiffnesses
and averages of two Gaussians, with the relative weighting dependent on the energy scale, or
equivalently temperature.

The divergence D(ρm, ρo) is employed in various standard parameter estimation methods
in statistics. When ρo is interpreted as an observed density and ρm is interpreted as a model
density, then the minimisation of D(ρm, ρo) over a space of admissible ρm yields a best-fit

49



CHAPTER 5. THE JACOBIAN AND A GAUSSIAN APPROXIMATION

model density ρ∗m. Alternatively, due to the lack of symmetry, minimisation of D(ρo, ρm)

over ρm yields a generally different best-fit model density ρ∗∗m . In [49] the first approach is
described as model fitting via the maximum relative entropy principle, whereas the second
approach, in the Gaussian case, can be shown to correspond to model fitting via the maximum
likelihood principle. In the developments that follow we adopt the maximum relative entropy
principle when fitting models to data. However, we checked that the two ways of fitting the
data (i.e. the two choices of an objective function for a fitting procedure) gave very similar
results.
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Figure 5.8: A histogram of the symmetrised pairwise Kullback-Leibler divergences between
the 39 18-mers in the adopted training set. The average of this distribution Do ≈ 85 sets a
scale for variation in probability densities due to different sequences, and is used to estimate
closeness of model reconstructions.

To quantify various modelling and approximation errors it is desirable to set a scale for
the Kullback-Leibler divergence (5.30). To do so we use the training set (4.1) in the follow-
ing way. Figure 5.8 presents a histogram of the symmetrised divergences (D(ρµ1,o, ρµ2,o) +

D(ρµ2,o, ρµ1,o))/2 for all distinct pairs amongst the 39 18-mers retained in the training set.
Then we introduce the scale Do to be the average over this distribution, namely

Do = avg
nµ1=nµ2=18

µ1 6=µ2

D(ρµ1,o, ρµ2,o), (5.35)

where nµi is the number of base pairs in the sequence Sµi . Notice that Do ≈ 85 provides a
characteristic scale for the variation in probability density due to variation in sequence for
18-mers. Thus, if for any given oligomer we find that the divergence between a training set
distribution ρµ,o and a model distribution ρµ,m is small on this scale, then the modelling error
is small compared to variations due to sequence effects.
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Chapter 6

A nearest-neighbour rigid base
model

In this chapter we describe a model in which the assumed local interactions of the DNA rigid
bases imply a special structure of the stiffness and configuration parameters. Together with
the following two chapters, it forms part of the joint publication [24].

6.1 Mechanical assumptions

For the purposes of building an internal energy model, we consider different partitions of
an oligomer into different types of structural units. Here we restrict attention to a nearest-
neighbour model built on two types of units: 1-mers (or monomers) and 2-mers (or dimers).
However we intentionally establish a notation that generalises naturally to trimers, tetramers,
and so on to facilitate extensions in later work. Specifically, an oligomer of n base pairs and ar-
bitrary sequence X1 · · ·Xn can be partitioned into 1-mer units Xa, a = 1, . . . , n, and 2-mer units
XaXa+1, a = 1, . . . , n−1. Just as the internal configuration of the oligomer is specified by the
coordinate vector w = (y1, z1, y2, z2, ..., yn−1, zn−1, yn) ∈ R12n−6, the internal configuration of
each 1-mer Xa is specified by the coordinate vector wa1 = ya ∈ R6, and the internal configura-
tion of each 2-mer XaXa+1 is specified by the vector wa2 = (ya, za, ya+1) ∈ R18. For convenience,
the collection of all 1-mer coordinates will be denoted by w1 = (w1

1, . . . ,w
n
1 ) ∈ R6n, and the

collection of all 2-mer coordinates will be denoted by w2 = (w1
2, . . . ,w

n−1
2 ) ∈ R18(n−1). We

stress that there is considerable redundancy in this notation in that the intra variables ya ap-
pear in both wa2 and w

(a−1)
2 . This redundancy is both notationally convenient and physically

pertinent; it gives rise to the phenomenon of frustration.

In our developments, it will be necessary to consider various linear maps between the
vectors w, w1 and w2. The matrix which copies elements of w into the 1-mer vector w1 is
denoted by P1 ∈ R6n ×R12n−6, so that w1 = P1w, and the matrix which copies elements of w
into the 2-mer vector w2 is denoted by P2 ∈ R18(n−1) × R12n−6, so that w2 = P2w.
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P1 =


I 0 0

0 0 I 0

0 0 0 0 I
. . .

 P2 =



I 0 0 0

0 I 0 0

0 0 I 0

0 0 I 0

0 0 0 I

I
. . .


, (6.1)

where I ∈ R6×6 is the identity matrix and 0 ∈ R6×6 is the zero matrix. It will also be
necessary to consider the transpose matrix PT1 , which maps an arbitrary 1-mer vector u1 into
a particular oligomer vector u = PT1 u1. Here the entries in the 1-mer vector u1 (all of which are
intra-base pair coordinates) are mapped to their corresponding location in the oligomer vector
u, and the remaining entries of u (all of which correspond to inter-base pair coordinates) are
zero. The transpose matrix PT2 maps an arbitrary 2-mer vector u2 into the oligomer vector
u = PT2 u2 with the entries in the 2-mer vector u2 mapped to their corresponding location in
the oligomer vector u with overlapping contributions summed.

We consider an internal energy model based on local energies that describe physically
distinct interactions within the 1-mer and 2-mer units. Specifically, to any 1-mer Xa we
associate an energy of the form

Ua1(wa1) =
1

2
(wa1 − ŵa1) · Ka1(wa1 − ŵa1), (6.2)

where ŵa1 ∈ R6 is a vector of shape parameters that defines the minimum energy or ground
state of the interaction, and Ka1 ∈ R6×6 is a symmetric matrix of stiffness parameters that
describes the elastic stiffness associated with each internal coordinate and couplings between
them. The energy Ua1 is to be interpreted as a model for the intra-base pair interactions
between the two bases of the base pair (X,X)a. The description of these interactions involves
only the intra-base pair coordinates wa1 = ya, and the stiffness matrix Ka1 may in general be
dense.

Similarly, to any 2-mer XaXa+1 we associate an energy

Ua2(wa2) =
1

2
(wa2 − ŵa2) · Ka2(wa2 − ŵa2), (6.3)

where ŵa2 ∈ R18 is a vector of shape parameters and Ka2 ∈ R18×18 is a symmetric matrix
of stiffness parameters analogous to before. The energy Ua2 is to be interpreted as a model
for all the inter-base pair interactions involving a base of the base pair (X,X)a and a base
of the base pair (X,X)a+1, in other words any nearest-neighbour base-base interaction across
the junction between the base pairs (X,X)a and (X,X)a+1. The description of all of these
interactions naturally involves the internal coordinates wa2 = (ya, za, ya+1). The stiffness
matrix Ka2 may in general be dense and has the natural block form

Ka2 =

 Ka2,11 Ka2,12 Ka2,13
Ka2,21 Ka2,22 Ka2,23
Ka2,31 Ka2,32 Ka2,33

 , (6.4)
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where each entry is an element of R6×6. The assumption that the overall matrix is symmetric
implies that the diagonal blocks Ka2,11, Ka2,22 and Ka2,33 are each symmetric, and implies that
the off-diagonal blocks satisfy [Ka2,12]

T = Ka2,21, [Ka2,13]
T = Ka2,31 and [Ka2,23]

T = Ka2,32.

The local 1-mer and 2-mer energies can be summed in a natural way to obtain an overall
oligomer energy. Specifically, we define the oligomer energy as

U(w) =

2∑
j=1

n−j+1∑
a=1

Uaj (w
a
j ) =

1

2

2∑
j=1

n−j+1∑
a=1

(waj − ŵaj ) · Kaj (waj − ŵaj ). (6.5)

Here the index j = 1, 2 is a label for the 1-mer and 2-mer interactions, and for each j, the
index a = 1, . . . , n− j + 1 runs over all the j-mers along the oligomer. The oligomer energy
can be written in a more convenient matrix form as the sum of two shifted quadratic forms
(of different dimensions)

U(w) =
1

2

2∑
j=1

(Pjw− ŵj) · Kj(Pjw− ŵj), (6.6)

where ŵj = (ŵ1
j , . . . , ŵ

n−j+1
j ) is a vector of all the j-mer shape parameters (for j = 1, 2),

Kj = diag(K1
j , . . . ,K

n−j+1
j ) is a block-diagonal matrix of all the j-mer stiffness parameters,

and Pj is the matrix which copies oligomer coordinates into j-mer coordinates. By completing
squares this energy can be expressed in the standard form introduced in Chapter 3:

U(w) =
1

2
(w− ŵ) · K(w− ŵ) + Û, (6.7)

where

K =

2∑
j=1

PTj KjPj , ŵ = K−1(
2∑
j=1

PTj Kjŵj),

Û =
1

2

2∑
j=1

(Pjŵ− ŵj) · Kj(Pjŵ− ŵj).

(6.8)

The above expressions provide the relations between the oligomer based energy parameters
K, ŵ and Û and the j-mer based energy parameters contained in Kj and ŵj . Indeed, the
parameters of an oligomer are determined by those of its constituent j-mers in the following
way. From (6.8)1 and the definitions of Pj and Kj , we deduce that K is a banded, block matrix
whose entries depend locally on the entries of Kj (j = 1, 2) as illustrated below:

 +


���
���
���

���
���
���

���
���
���
���

���
���
���
���

����
����
����

����
����
����

 =


���
���
���

���
���
���

���
���
���
���

���
���
���
���

����
����
����

����
����
����

 .

PT1 K1P1 PT2 K2P2 K

(6.9)

In the illustration, the shaded entries denote the blocks K1
1, . . . ,K

n
1 ∈ R6×6 of K1, the ruled
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entries denote the blocks K1
2, . . . ,K

n−1
2 ∈ R18×18 of K2, grid lines denote elements of R6×6,

and entries in the triple overlaps are summed in the obvious way.
In contrast to the stiffness, the entries of the oligomer shape vector ŵ do not depend

locally on the entries of ŵj (j = 1, 2). Indeed, from (6.8)2 we see that the vector ŵ is
related to the vectors ŵj through the inverse matrix K−1. Specifically, the entries in the
product Kjŵj depend locally on the entries of ŵj ; the product is a j-mer vector of weighted
j-mer shape parameters. Moreover, by definition of PTj , the entries of the product PTj Kjŵj

also depend locally on those of ŵj ; the matrix PTj maps contributions from each j-mer into
its corresponding location in the oligomer, with overlapping contributions being summed.
However, the matrix K−1 will in general be dense; its diagonal blocks will be dominant and
its off-diagonal blocks will decay at an exponential rate in accordance with the bandwidth of
K [18]. From this we deduce that the oligomer shape parameters in ŵ will be a convolution of
the j-mer shape parameters in ŵj . The convolution window will be peaked along the diagonal
of K−1 and will decay at a rate as described above.

The oligomer energy introduced here provides a natural model for frustration. Indeed,
the term Û in (6.8)3 will in general be non-zero. This reflects the fact that, in the minimum
energy or ground state ŵ of the oligomer, each base cannot simultaneously minimise all of its
j-mer interactions. Explicitly each base cannot simultaneously minimise its intra base pair
interaction energy, and its two inter base pair cross-junction interactions. Instead, each base
must find a compromise, which provides the physical explanation for the non-local nature of
ŵ. We shall refer to the forces between bases required to maintain this state of compromise
as the frustration forces; their collective energy content over the entire oligomer is precisely
the frustration energy Û. Notice that a local measure Û

a of frustration for each base pair
(X,X)a can be obtained by summing over all the j-mer interactions involving that base pair.

6.2 Oligomer-based, nearest-neighbour model

A nearest-neighbour internal energy for an oligomer of length n is completely determined by
the shape and stiffness parameters {ŵa1,Ka1} (a = 1, . . . , n) and {ŵa2,Ka2} (a = 1, . . . , n − 1)
introduced above. In general, these parameters may depend on the oligomer length n, the
entire oligomer sequence X1 · · ·Xn, and the location a within the sequence. Of course we seek
the simplest possible sequence-dependence of the parameter set compatible with a desired
accuracy. In Chapter 7 we introduce a model, that assumes a local parameter dependence.
However, we will make use of the general model as well, as an intermediate step for passing
to the simpler one.

By an oligomer-based model we mean one in which the parameters {ŵa1,Ka1} and {ŵa2,Ka2}
depend on the oligomer length, sequence and location in the most general way. Specifically,
we assume there exists functions W1, K1, W2 and K2 such that

ŵa1 = W1(n,X1, . . . ,Xn, a) ∈ R6, Ka1 = K1(n,X1, . . . ,Xn, a) ∈ R6×6,

ŵa2 = W2(n,X1, . . . ,Xn, a) ∈ R18, Ka2 = K2(n,X1, . . . ,Xn, a) ∈ R18×18.
(6.10)

In view of the relations in (6.8), this assumption implies that the oligomer stiffness and
shape parameters K and ŵ would be arbitrary functions of the oligomer length and sequence,
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and moreover that K would have the nearest-neighbour sparsity structure as depicted below,
where grid lines denote 6× 6 blocks as before:

K =



 . (6.11)

In this model, every oligomer is described by a unique pair of parameters K and ŵ. While the
parameters for an oligomer with sequence X1 · · ·Xn are necessarily related by objectivity to
those for an oligomer with sequence Xn · · ·X1, there is in general no other relation and each
independent oligomer is described by an independent pair of parameters K and ŵ. Conse-
quently, there is no finite set of parameters that describes all possible oligomers of all possible
lengths.

6.3 Fitting model parameters for given oligomer data

In an oligomer-based model, each sequence Sµ is modelled by a Gaussian probability density

ρµ,M(w) =
1

Zµ,M
e−(w−ŵµ,M)·Kµ,M(w−ŵµ,M)/2, (6.12)

with shape vector ŵµ,M and positive definite, symmetric stiffness matrix Kµ,M, where now
the only difference from the training set distributions is that the stiffness matrices Kµ,M

must satisfy a specified sparsity pattern corresponding to the assumed type and range of
interactions. We will be primarily concerned with the nearest-neighbour rigid base sparsity
pattern illustrated in (6.11), but we will briefly discuss both a smaller and a larger stencil
corresponding respectively to a nearest-neighbour rigid base pair model, and to a next to
nearest-neighbour rigid base model.

For a specified sparsity pattern a best-fit oligomer model for each sequence Sµ is defined
by parameters K∗µ,M and ŵ∗µ,M with corresponding density ρ∗µ,M satisfying

ρ∗µ,M = argmin
ρµ,M

D(ρµ,M, ρµ,o). (6.13)

That is, among all model densities of the form (6.12) with specified sparsity pattern, the
best-fit density has a minimum divergence to the training set density. Using the explicit
expression in (5.31) for the divergence between Gaussian densities, we find that the best-fit
parameters defined by (6.13) must satisfy the necessary conditions

ŵ∗µ,M = ŵµ,o,

K∗µ,M = argmin
Kµ,M

1

2

[
K−1µ,M : Kµ,o − ln(detKµ,o/ detKµ,M)− I : I

]
,

(6.14)

where the minimum is taken over the set of symmetric matrices with the specified sparsity
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pattern. This minimum can be found by numerically searching in the direction of the gradient

∇Kµ,MD(ρµ,M, ρµ,o) =
1

2
(K−1µ,M − K−1µ,M Kµ,o K

−1
µ,M). (6.15)

Because of the identity (5.34) this optimisation problem can also be regarded as a best fit of
the training set covariance by the inverse of a stiffness matrix of specified sparsity. However
the optimisation procedure is simpler in terms of the stiffness matrix because the inverse of a
sparse matrix is in general not itself sparse. Since the functional in the minimisation problem
(6.14) is continuous and bounded below among positive-definite matrices, and becomes un-
bounded above as a definite matrix approaches a semi-definite one, we expect that a minimum
exists within the set of symmetric, positive-definite matrices of prescribed sparsity pattern.
Indeed, using two different numerical procedures, a numerical gradient flow, custom written
by O. Gonzalez, and an implementation using the optimisation code Hanso [31, 45], we have
been able to find a minimum for each sequence in the training set for each of three prescribed
sparsity patterns. While such minima may only be local, our computations suggest that any
possible multiple minima are rather isolated: for each sequence and sparsity pattern, small
changes to the initial condition did not change the location of the minima, and the outputs
of the two different codes were extremely close in all cases.

6.4 Model fitting results, approximation errors

Before presenting the results of our computations we explain in more detail the three sparsity
patterns that we consider. Figure 6.2 presents sub matrices of two of the training set stiffness
matrices Kµ,o for µ = 1, 3. The qualitative features are similar for all sub matrices of all
of the training set. All of the largest entries lie within a 6 × 6 block diagonal stencil (not
explicitly shown). Such a stencil can be interpreted as a rigid base pair model with an
internal energy that is an entirely local function of the inter coordinates at each junction.
Each set of junction variables are then decoupled from all other configuration variables, either
inter or intra. While such a model is rather standard in much of the literature of coarse-
graining DNA, such a localised rigid base pair internal energy is a rather poor fit with MD
simulations at the scale of tens of base pairs, as discussed in Chapter 4. Moreover we are
now in a position to quantify this observation by comparing with other stencils, and using
the Kullback-Leibler divergence. It is evident that considerably more of the signal in the
training set stiffnesses lie within the overlapping 18× 18 nearest-neighbour rigid base stencil
marked in red in Figure 6.2, and yet more within the overlapping 30 × 30 next to nearest-
neighbour rigid base stencil marked in blue. We remark that the next to nearest-neighbour
stencil still excludes entries of the same magnitude to those that it captures beyond the
nearest-neighbour stencil. This observation suggests that it would be interesting to consider
an even longer range interaction model. But here we content ourselves with discussing only
three stencils.

For each of the 53 training set oligomers, and for each of the three sparsity patterns,
Figure 6.1 provides the values of the Kullback-Leibler divergence between the best oligomer
based fit of that prescribed sparsity pattern (computed as described immediately above) and
the training set distribution, scaled by Do as defined in (5.35) for 18-mers and, to account for
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Figure 6.1: Relative errors in oligomer based models. As a function of sequence index µ
in the training set the red curves indicate the relative divergences in probability densities
D(ρ∗µ,M, ρµ,o)/Do (with Do ≈ 85 for 18-mers and Do ≈ 57 for 12-mers) while the blue curves
represent the relative Frobenius error in the stiffness matrices ||K∗µ,M−Kµ,o||/||Kµ,o||. In each
of three cases the line style indicates the enforced sparsity pattern: dashed, nearest-neighbour
rigid base pair; solid, nearest-neighbour rigid base; dash-dot, next to nearest-neighbour rigid
base.

the smaller number of degrees of freedom, by 2Do/3 for 12-mers. Because it is only differences
in stiffness matrices that contribute to the divergences, we also plot the relative errors in the
Frobenius matrix norm of the differences in stiffness matrices. For the nearest-neighbour
rigid base pair sparsity pattern the relative Kullback-Leibler divergence is 55% or more, with
the relative Frobenius error somewhat smaller. For the nearest-neighbour rigid base stencil
the relative Kullback-Leibler divergence is approximately 10% with the Frobenius error now
larger, around 20%. A visualisation of the entries of the difference of stiffness matrices for the
sequence µ = 3 is given in Figure 6.2. And for the next to nearest-neighbour rigid base stencil
the Kullback-Leibler divergence is less than 5% for nearly all sequences, with the Frobenius
error approximately 10%.

In this work we make a compromise between the complexity of the model and the qual-
ity of the oligomer based enforced sparsity fit, and hereafter consider only the stencil with
overlapping 18× 18 blocks corresponding to a rigid base model with nearest-neighbour inter-
actions.
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Figure 6.2: Top: A portion of two training set stiffness matrices (µ = 1, 3 on right and left
respectively) with stencils for nearest-neighbour (red) and next to nearest-neighbour (blue)
versions of our rigid base internal energy model. 12×12 blocks marked by black lines contain
entries corresponding to intra and inter base pair coordinates (ya, za) at positions a = 5, . . . , 9.
Bottom: On left the difference between the training set stiffness matrix K3,o and the oligomer
based, best fit, nearest-neighbour stiffness K3,M, on right the difference between K3,M and the
stiffness K3,m reconstructed from the dimer dependent model described in Chapter 7. All
entries outside the red stencil on the right vanish by definition, while on the left they are
identical with the plot immediately above, but now the colour scale is much different.
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Chapter 7

Dimer dependent nearest-neighbour
rigid base model

In this chapter we present a special case of the model, presented in Chapter 6, and the
procedure of getting model parameters from the data.

7.1 Material assumptions and model parameters

By a dimer-based model we mean one in which the parameters {ŵa1,Ka1} in (6.2) and {ŵa2,Ka2}
in (6.3) depend only on the local dimer sequence XaXa+1, but not explicitly on either the
oligomer length n or the location a. Specifically, we assume there exist functions W1, K1,
W2 and K2 such that

ŵa1 = W1(Xa) ∈ R6, Ka1 = K1(Xa) ∈ R6×6,

ŵa2 = W2(Xa,Xa+1) ∈ R18, Ka2 = K2(Xa,Xa+1) ∈ R18×18,
(7.1)

Notice that the above relations are assumed to hold in the interior as well as the ends of an
arbitrary oligomer; additional assumptions or parameters could be introduced to capture any
exceptional end effects, but we do not explore that line here. With the assumption of dimer
sequence-dependence there is a finite set of parameters that describes the energy of all possible
oligomers of all possible lengths. Specifically, each of the functions W1(Xa) and K1(Xa) can
assume only 4 possible values corresponding to the 4 possible choices of Xa ∈ {T,A,C,G}.
Similarly, each of the functions W2(Xa,Xa+1) and K2(Xa,Xa+1) can assume only 16 possible
values corresponding to the 16 possible choices of the pair Xa,Xa+1 ∈ {T,A,C,G}.

To satisfy objectivity, i.e. the relations (3.13), it is sufficient to assume that the functions
W1, K1, W2 and K2 are locally objective in the following sense, for any X,Y ∈ {T,A,C,G},

W1(X) = E1W1(X), K1(X) = E1K1(X)E1,

W2(X,Y) = E2W2(Y,X), K2(X,Y) = E2K2(Y,X)E2,
(7.2)

where the matrix En is defined in (2.38). These conditions imply that the values of the
functions are not all independent. Specifically, if we arrange the 4 possible values for X in a
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table as shown
A G T C

then the value of W1 for the entries on the right-half of the table are completely determined
by those of the left-half, namely W1(T) = E1W1(A) and W1(C) = E1W1(G), and similarly for
K1. Thus there are only 2 independent values of the monomer parameter functions {W1,K1}.
Similarly, if we arrange the 16 possible values of XY in a table as shown, where X is vertical
and Y is horizontal,

T C A G

A AT AC AA AG

G GT GC GA GG

T TT TC TA TG

C CT CC CA CG

then the value of W2 for the entries above the table diagonal are completely determined
by those below, namely W2(A,C) = E2W2(G,T) and so on, and similarly for K2. Moreover,
the value of W2 for each diagonal entry must satisfy the objectivity condition W2(A,T) =

E2W2(A,T) and so on, and similarly for K2. From this we deduce that there are only 10
independent values of the dimer parameter functions {W2,K2} corresponding to a triangular
portion of the table with the diagonal included, and that values on the diagonal entries
must be invariant under the transformation E2. Note that the four 2× 2 blocks of the table
correspond to purine-pyrimidine and pyrimidine-purine dimer steps on the diagonal, with the
off-diagonal blocks being purine-purine and pyrimidine-pyrimidine dimer steps.

Thus a dimer-based model is completely defined by the parameters

ŵα1 := W1(α) ∈ R6, Kα1 := K1(α) ∈ R6×6, α ∈ M,

ŵ
αβ
2 := W2(α, β) ∈ R18, K

αβ
2 := K2(α, β) ∈ R18×18, αβ ∈ D,

(7.3)

where M is a set of any 2 independent monomers and D is a set of any 10 independent dimers.

In our later developments, it will be convenient to work with weighted shape parameters
instead of the unweighted parameters ŵα1 and ŵ

αβ
2 above. Specifically, we introduce the

weighted shape parameters

σα1 := Kα1 ŵ
α
1 ∈ R6, σαβ2 := K

αβ
2 ŵ

αβ
2 ∈ R18. (7.4)

We remark that the variables σα1 and σαβ2 are stress-like in character, each being the product
of a strain variable by a stiffness matrix. Their physical interpretation is not immediately
evident, but they arise very naturally in the algebra of the problem. In particular a complete
dimer-based parameter set is defined by specifying the values of {σα1 ,Kα1 } for α ∈ M and the
values of {σαβ2 ,Kαβ2 } for αβ ∈ D. Parameters for all other monomers and dimers can be
obtained from the objectivity relations (7.2). One such explicit parameter set is presented
below.
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7.2. STRUCTURE AND PROPERTIES OF OLIGOMER PARAMETERS

7.2 Structure and properties of oligomer parameters

The shape, stiffness and frustration parameters ŵ, K and Û for any given oligomer X1 · · ·Xn
can be assembled from the monomer and dimer parameters {σα1 ,Kα1 } and {σαβ2 ,Kαβ2 } using the
relations in (6.8). Specifically, and omitting the expression for Û for brevity, the expressions
for the oligomer parameters ŵ and K take the forms

K = PT1 K1P1 + PT2 K2P2 ∈ R(12n−6)×(12n−6),
σ = PT1 σ1 + PT2 σ2 ∈ R12n−6,
ŵ = K−1σ ∈ R12n−6,

(7.5)

where
K1 = diag(K1

1, . . . ,K
n
1 ) ∈ R6n×6n,

σ1 = (σ11, . . . , σ
n
1 ) ∈ R6n,

K2 = diag(K1
2, . . . ,K

n−1
2 ) ∈ R18(n−1)×18(n−1),

σ2 = (σ12, . . . , σ
n−1
2 ) ∈ R18(n−1),

Ka1 = KXa
1 ∈ R6×6 (a = 1, . . . , n),

σa1 = σXa
1 ∈ R6 (a = 1, . . . , n),

Ka2 = K
XaXa+1

2 ∈ R18×18 (a = 1, . . . , n− 1),

σa2 = σ
XaXa+1

2 ∈ R18 (a = 1, . . . , n− 1).

(7.6)

The dependence of each block of the oligomer stiffness matrix K upon the oligomer sequence
X1 · · ·Xn is illustrated below, where on the left hand side each single number in a block denotes
a dependence on the monomer Xa, while each pair of numbers in a block denotes a dependence
on the dimer XaXa+1. On the right hand side the triple overlapping blocks denote sums as
before, with a trimer sequence dependence given by the union of the two overlapping block
dimer dependencies.

1

2

3

4

n

 +


2  3

1  2

3  4

n−1  n

 =


1

1  2
2

2  3
3

3  4
4

n−1  n
n

n−1

 .

PT1 K1P1 PT2 K2P2 K

(7.7)

Similarly, the dependence of each block of the weighted shape vector σ upon the oligomer
sequence X1 · · ·Xn is as follows:

1

2

3

4

n

 +


12

32

34

n−1

n

 =


12

32

34

n−1
n

2

3

4

n

1

n−1

 .

PT1 σ1 PT2 σ2 σ

(7.8)

In (7.5), notice that the oligomer stiffness matrix K and shape vector ŵ depend directly on the
local stiffness and weighted shape parameters {σα1 ,Kα1 } and {σαβ2 ,Kαβ2 }, but only indirectly on
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the local unweighted shape parameters ŵα1 and ŵ
αβ
2 via the definition (7.4). For this reason,

we henceforth restrict attention to the weighted parameters. The unweighted parameters
are needed explicitly only when the oligomer frustration parameter Û or the local energy
functions Ua1 and Ua2 are needed explicitly.

The overlapping structure of the map from local to oligomer parameters defined in (7.5)–
(7.6) and illustrated in (7.7)–(7.8) has some interesting implications. A first implication
concerns the observability of the local parameters. In positions within the oligomer arrays
where there are no overlaps, we find that the local parameters are directly observable: there
is no coupling and the oligomer parameters are equal to the relevant local parameters. In
particular the assumption of dimer sequence dependence of non-overlapping blocks in both
the stiffness matrix and weighted shape variables can be tested directly from the statistics of
the occurrences of dimer steps in the training set to be described below.

In contrast, in positions within the oligomer arrays where there are overlaps, we find
that the local parameters are not directly observable: there is coupling and the oligomer
parameters are sums of relevant local parameters. Specifically, for the stiffness parameters,
the structure of the coupling at interior positions within an oligomer are all identical, of the
form K

αβ
2,33 + K

β
1 + K

βγ
2,11, whereas the structure of the coupling at each of the two ends is

different, of the form K
β
1 + K

βγ
2,11 at the leading end, and K

αβ
2,33 + K

β
1 at the trailing end, for

some α, β and γ. Exactly analogous couplings hold for the weighted shape parameters. In
view of this, the inverse problem of determining local parameters from oligomer parameters
requires data from the ends as well as the interior of an oligomer so that the couplings can
be resolved.

A second implication of the structure of the map from local to oligomer parameters
concerns the positivity of the local stiffness parameters. The set of local stiffness parameters
{Kα1 ,K

αβ
2 } is called admissible if it yields a positive-definite oligomer stiffness matrix K for an

arbitrary sequence X1X2 · · ·Xn of arbitrary length n ≥ 2. In view of the additive, overlapping
structure of the map from local to oligomer parameters, a sufficient condition for admissibility
is that each of the local stiffness parameter matrices be positive-definite. Alternatively, a
weaker set of conditions is also sufficient, namely that each of the local stiffness parameter
matrices be only semi-positive-definite, provided additionally that the reconstructed oligomer
matrices for any ten independent sequences of length two, i.e. physical dimer oligomers,
are positive-definite. This latter weaker set of sufficient conditions is mathematically more
convenient than the former in dealing with certain optimisation problems associated with
the estimation of local parameters. As it happens the parameter set we extract below has
positive definite local stiffness parameter matrices, but some extremely small eigenvalues
arise. While all the physical dimer stiffness matrices are positive definite with much larger,
smallest eigenvalues. Thus the weakened sufficient conditions are of some importance to
ensure robustness.
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7.3 Compatibility between model assumptions and the MD data

For estimating a parameter set P = {σα1 ,Kα1 , σ
αβ
2 ,Kαβ2 } from our training data set (4.1), we

first considered the over-determined system of equations

Kµ,m = K∗µ,M
σµ,m = σ∗µ,M

}
, µ = 1, . . . , N. (7.9)

The number of equations is determined by the number of training oligomers. The left hand
sides are the explicit combinations of the parameter set given in (7.5). The matrices K∗µ,M
on right hand side of (7.9) are known data at this stage of the process, because they have
been determined from the oligomer based fit. For the data on the right hand side of the
vector equations in (7.9), we chose σ∗µ,M = Kµ,mŵ∗µ,M, which means that we first solved the
decoupled least squares system for Kµ,m in (7.9), and then used the resulting solution to
construct the data on the right hand sides of the equations for σµ,m. Alternatively we could
have instead used σ∗µ,M = K∗µ,Mŵ∗µ,M, but we rejected this approach because we found that
the resulting, intermediate, parameter set gave less good reconstructions of oligomer shapes.
One explanation of this observation is that the choice σ∗µ,M = Kµ,mŵ∗µ,M eliminates a part of
variation in the elements of σ∗µ,M that is due to possible errors in the matrix K∗µ,M.

There are two significant features of system (7.9): i) there is a block by block localised
dependence of the parameter set on sequence, and ii) the equations decouple into independent
least squares systems entry by entry in the matrix equations, with the vector equations
decoupling in the same way, once the solution of the matrix least squares system has been
found.

The localised dependence on sequence of the unknown parameter set is encoded in the
overlapping structures illustrated in diagrams (7.7) and (7.8)—away from ends the parameters
in non-overlap regions depend only on the local dimer sequence, while the parameters in
overlap regions depend on the local trimer sequence. The extent to which these assumptions
are compatible with the data can then be assessed.

For the sequences µ ≤ 36 (which had on average considerably more snapshots retained
after filtering for broken hydrogen bonds), and staying two base pairs away from the ends,
there were approximately 65 instances of each of the 10 independent dimers, and approxi-
mately 15 instances of each of the 32 independent trimers, reading along both backbones of
each oligomer. To verify our hypotheses about dimer and trimer dependence of the entries
of matrices K∗µ,M and vectors σ∗µ,M, we first computed and compared entry by entry for both
stiffness matrices and weighted shape vectors, the averages and standard deviations for each
independent instance of the dimer, respectively trimer.

Figure 7.1 shows plots of diagonal entries of inter base pair (non-overlap) stiffness blocks
and weighted shape parameters, averaged over all instances of each independent dimer in the
sequences µ ≤ 36, the error bars indicating standard deviations with a group of observations
for each dimer. We observed that the average values of both stiffness and weighted shape pa-
rameters are quite similar for all purine-pyrimidine steps, all pyrimidine-purine steps and all
purine-purine steps, but quite different between the groups. The standard deviations are rel-
atively big for stiffness blocks, which could be due to convergence errors in the data, or could
indicate the dependence of the corresponding entries of the wider base pair neighbourhood.
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The weighted shape parameter error bars are relatively small, however, as mentioned before,
they only account for variation in shape vectors ŵ, as we chose to use σ∗µ,M = Kµ,mŵ∗µ,M.
The same conclusions hold for the intra base pair (overlap) parameters, averaged over each
independent trimer (see Figure 7.2). One can notice, that the parameter values are quite
different for the XAZ steps than for the XGZ steps, X,Z ∈ {A,G,C,T}, even though both A and
G are purines. Inside these groups, the values are similar for all the trimers, where the pair
X,Z is purine-pyrimidine, where it is pyrimidine-purine and so on. The plots of dimer and
trimer averages of complete stiffness blocks, centred by subtracting averages of each entry
over all dimers/trimers can be found in the Appendix B. The observation that can be made
from these plots is that the conclusions about the diagonal stiffness entries can be generalised
for other entries as well. However, many of the off-diagonal stiffness entries are close to zero
and have a small variation among all the instances in all the dimers/trimers.
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Figure 7.1: Diagonal elements of inter base pair stiffness blocks (top plots) and weighted
shape parameters (bottom plots), averaged over all instances of each independent dimer step
on both strands of the sequences µ ≤ 36. The dimers in each plot are ordered in three groups,
the first group on the left being RY (three dimers), the second group YR (three dimers), the
third RR (four dimers), where R denotes a purine and Y a pyrimidine. Error bars indicate
standard deviations for each dimer, dashed lines mark averages over all dimers.
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Figure 7.2: Diagonal elements of intra base pair stiffness blocks (top four plots) and weighted
shape parameters (bottom four plots), averaged over all instances of each independent trimer
on both strands of the sequences µ ≤ 36. The trimers in each plot are ordered in groups of
four, the first group on the left being RRY, the second group YRR, the third RRR and the fourth
YRY, where R denotes a purine and Y a pyrimidine. Error bars indicate standard deviations
for each trimer, dashed lines mark averages over all trimers in a plot.
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Finally, it can be concluded that the observed stiffness and weighted shape parameters
are sequence dependent, as can already be seen by looking to individual oligomer parameters.
Trying to approximate this dependence by dimer/trimer dependence of corresponding entries
seems to be a reasonable choice, even though models with wider sequence dependence could
also be considered.

7.4 Least-squares system without end data

In the over-determined system (7.9) we are free to consider only a subset of all blocks that
appear, or to assign different weights to different blocks, reflecting differences in either im-
portance of the fit or confidence in the data. For both reasons, it is quite natural to first
consider only the system of equations that arise away from the ends. Then the least-squares
solution of (7.9) for the stiffness and the weighted shape entries, corresponding to the non-
overlapping regions of the oligomer parameters, are just the table averages of these entries
over all oligomers in the training set, as we explain further now.

For the entries of the overlapping regions, the system (7.9) decouples into separate equa-
tions

��
��
��

��
��
��

��
��
��

��
��
��

=++

i.e. K
αβ
2,33 + K

β
1 + K

βγ
2,11 = Kαβγ , (7.10)

for stiffness blocks and σαβ2,33 +σβ1 +σβγ2,11 = σαβγ for weighted shape vectors. These equations
further decouple into separate scalar equations for each entry of the stiffness and weighted
shape parameters.

Consider first the equations for stiffnesses and let kαβ33 = [Kαβ2,33 ]ij , kβγ11 = [Kβγ2,11 ]ij , kβ =

[Kβ1 ]ij and kαβγ = [Kαβγ ]ij for some fixed i and j, 1 ≤ i, j ≤ 6. Similarly, for weighted shape
equations we would denote kαβ33 = [σαβ2,3 ]i, kβγ11 = [σβγ2,1 ]i, kβ = [σβ1 ]i and kαβγ = [σαβγ ]i for
some fixed i ≤ 6. Then (7.9) becomes a linear system Ax = b, with A ∈ R16×9, x ∈ R9 and
b ∈ R16, that can be explicitly written as



1 0 0 0 1 1 0 0 0

0 1 0 0 1 1 0 0 0

0 0 1 0 1 1 0 0 0

0 0 0 1 1 1 0 0 0

1 0 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0 0

0 0 1 0 1 0 1 0 0

0 0 0 1 1 0 1 0 0

1 0 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1 0

0 0 1 0 1 0 0 1 0

0 0 0 1 1 0 0 1 0

1 0 0 0 1 0 0 0 1

0 1 0 0 1 0 0 0 1

0 0 1 0 1 0 0 0 1

0 0 0 1 1 0 0 0 1





kAβ33

kGβ33

kCβ33

kTβ33

kβ

kβA11

kβG11

kβC11

kβT11



=



kAβA

kGβA

...

...

...

kTβT



. (7.11)
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The corresponding system of normal equations ATAx = AT b is



4 0 0 0 4 1 1 1 1

0 4 0 0 4 1 1 1 1

0 0 4 0 4 1 1 1 1

0 0 0 4 4 1 1 1 1

4 4 4 4 16 4 4 4 4

1 1 1 1 4 4 0 0 0

1 1 1 1 4 0 4 0 0

1 1 1 1 4 0 0 4 0

1 1 1 1 4 0 0 0 4





kAβ33

kGβ33

kCβ33

kTβ33

kβ

kβA11

kβG11

kβC11

kβT11



=



∑
γ k

Aβγ∑
γ k

Gβγ∑
γ k

Cβγ∑
γ k

Tβγ∑
α,γ k

αβγ∑
α k

αβA∑
α k

αβG∑
α k

αβC∑
α k

αβT



(7.12)

This system has a two dimensional null space, and its general solution can be expressed as

x(c1, c2) =



1
4

∑
γ k

Aβγ − 1
32

∑
αγ k

αβγ − c2 − c1
1
4

∑
γ k

Gβγ − 1
32

∑
αγ k

αβγ − c2 − c1
1
4

∑
γ k

Cβγ − 1
32

∑
αγ k

αβγ − c2 − c1
1
4

∑
γ k

Tβγ − 1
32

∑
αγ k

αβγ − c2 − c1

2 c1

1
4

∑
α k

αβA − 1
32

∑
αγ k

αβγ + c2 − c1
1
4

∑
α k

αβG − 1
32

∑
αγ k

αβγ + c2 − c1
1
4

∑
α k

αβC − 1
32

∑
αγ k

αβγ + c2 − c1
1
4

∑
α k

αβT − 1
32

∑
αγ k

αβγ + c2 − c1



, c1, c2 ∈ R. (7.13)

For each choice of β we have 21 independent equations for entries of the symmetric 6 × 6

stiffness blocks, and 6 for weighted shape parameters. As there are two independent choices
of β, e.g. β = A and β = G, we have in total a rather high dimensional null space, of
dimension 84 for the stiffness matrix parameters and of dimension 24 for the weighted shape
parameters.

This means that if {Kα1 ,K
αβ
2 , σα1 , σ

αβ
2 }, α, β ∈ {A,G,C,T} is a parameter set, obtained as a

least-squares solution to (7.9), ignoring the ends of oligomers, then a set {K̃α1 , K̃
αβ
2 , σ̃α1 , σ̃

αβ
2 }

is also a solution, where

K̃
α
1 = Kα1 + 2∆α, K̃

αβ
2 = K

αβ
2 + Λα,11 + Λβ,33,

σ̃α1 = σα1 + 2δα, σ̃αβ2 = σαβ2 + λα,1 + λβ,3,
(7.14)
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with

Λα,11 =

Λα −∆α 0 0

0 0 0

0 0 0

 , Λα,33 =

0 0 0

0 0 0

0 0 −Λα −∆α

 , Λα = (Λα)T , ∆α = (∆α)T ∈ R6×6,

λα,1 =

λα − δα0

0

 , λα,3 =

 0

0

−λα − δα

 , λα, δα ∈ R6, for α ∈ {A,G}, and

Λα,11 = E2 Λ
ᾱ,33 E2, Λα,33 = E2 Λ

ᾱ,11 E2, ∆α = E1 ∆ᾱ E1,

λα,1 = E2 λ
ᾱ,3, λα,3 = E2 λ

ᾱ,1, δα = E1 δ
ᾱ, for α ∈ {T,C}.

Here ᾱ denotes the complementary base to α and the matrix En was previously defined by
(2.38) in Section 2.5.

Having obtained a general form of the least-squares solution, a search in the null space
for choosing the best solution for our model parameter set can be done. Alternatively, one
can consider a system with additional equations, leading to a unique solution.

7.5 Weighted least-squares system with end data

To eliminate the freedom in the null space of (7.12), we extended the original ABC set of
oligomers µ = 1, . . . , 36 in the training set to include oligomer sequences with all possible
dimer steps at the ends. There are then 72 instances of both types of GC ends, but only
one instance for most of the other possible dimer ends in our training set. Then to our
overdetermined linear system (7.11) we added the equations

��
��
��

��
��
��

��
��
��

��
��
��=+

i.e K
β
1 + K

αβ
2,11 = K5′αβ and

��
��
��

��
��
��

��
��
��

��
��
��+ = i.e K

αβ
2,33 + K

β
1 = Kαβ3

′
(7.15)

for the stiffness blocks and, similarly, σβ1 +σβγ2,1 = σ5
′βγ and σαβ2,3 +σβ1 = σαβ3

′ for the weighted
shape vectors.

Again first consider the stiffness equations, and let k5′βγ = [K5′βγ ]ij and kαβ3′ = [Kαβ3
′
]ij

for some fixed i and j, 1 ≤ i, j ≤ 6. Similarly, in the weighted shape equations we would
denote k5′βγ = [σ5

′βγ ]i and kαβ3′ = [σαβ3
′
]i for some fixed i ≤ 6.

Because we had much less data for the ends than for the interior of the oligomers, we
assigned a unit weight to all interior 6×6 and 6×1 blocks, and a small, variable weight to the
end-blocks corresponding to both leading and trailing ends of each sequence. The resulting
weighted linear system ĀWy = Wb, with Ā ∈ R24×9, W = diag(1, . . . , 1, ε, . . . , ε) ∈ R24×24,
and y ∈ R9, can be explicitly written as
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

1 0 0 0 1 1 0 0 0

0 1 0 0 1 1 0 0 0

0 0 1 0 1 1 0 0 0

0 0 0 1 1 1 0 0 0

1 0 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0 0

0 0 1 0 1 0 1 0 0

0 0 0 1 1 0 1 0 0

1 0 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1 0

0 0 1 0 1 0 0 1 0

0 0 0 1 1 0 0 1 0

1 0 0 0 1 0 0 0 1

0 1 0 0 1 0 0 0 1

0 0 1 0 1 0 0 0 1

0 0 0 1 1 0 0 0 1

0 0 0 0 ε ε 0 0 0

0 0 0 0 ε 0 ε 0 0

0 0 0 0 ε 0 0 ε 0

0 0 0 0 ε 0 0 0 ε

ε 0 0 0 ε 0 0 0 0

0 ε 0 0 ε 0 0 0 0

0 0 ε 0 ε 0 0 0 0

0 0 0 ε ε 0 0 0 0





kAβ33

kGβ33

kCβ33

kTβ33

kβ

kβA11

kβG11

kβC11

kβT11



=



kAβA

kGβA

...

...

...

kTβT

ε k5′βA

...

ε k5′βT

ε kAβ3′

...

ε kTβ3′



, (7.16)

and the corresponding weighted least-squares system ĀT W Āy = ĀTWb is



s 0 0 0 s 1 1 1 1

0 s 0 0 s 1 1 1 1

0 0 s 0 s 1 1 1 1

0 0 0 s s 1 1 1 1

s s s s 8s− 16 s s s s

1 1 1 1 s s 0 0 0

1 1 1 1 s 0 s 0 0

1 1 1 1 s 0 0 s 0

1 1 1 1 s 0 0 0 s





kAβ33

kGβ33

kCβ33

kTβ33

kβ

kβA11

kβG11

kβC11

kβT11



=



ε kAβ3′
+
∑
γ k

Aβγ

ε kGβ3′
+
∑
γ k

Gβγ

ε kCβ3′
+
∑
γ k

Cβγ

ε kTβ3′
+
∑
γ k

Tβγ

ε
∑
α k

αβ3′
+ ε
∑
γ k

5′βγ +
∑
α,γ k

αβγ

ε k5′βA +
∑
α k

αβA

ε k5′βG +
∑
α k

αβG

ε k5′βC +
∑
α k

αβC

ε k5′βT +
∑
α k

αβT



, (7.17)

with s = 4 + ε. The solution of this system is unique for any nonzero choice of end weighting
ε, and has the closed form
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y(ε) =
1

4 + ε



εkAβ3′
+
∑
γ k

Aβγ + ε
16

∑
α,γ k

αβγ − ε
4

∑
α k

αβ3′ − 4+ε
4

∑
γ k

5′βγ

εkGβ3′
+
∑
γ k

Gβγ + ε
16

∑
α,γ k

αβγ − ε
4

∑
α k

αβ3′ − 4+ε
4

∑
γ k

5′βγ

εkCβ3′
+
∑
γ k

Cβγ + ε
16

∑
α,γ k

αβγ − ε
4

∑
α k

αβ3′ − 4+ε
4

∑
γ k

5′βγ

εkTβ3′
+
∑
γ k

Tβγ + ε
16

∑
α,γ k

αβγ − ε
4

∑
α k

αβ3′ − 4+ε
4

∑
γ k

5′βγ

(4 + ε)
(

1
4

∑
α k

αβ3′
+ 1

4

∑
γ k

5′βγ − 1
16

∑
α,γ k

αβγ
)

εk5′βA +
∑
α k

αβA + ε
16

∑
α,γ k

αβγ − 4+ε
4

∑
α k

αβ3′ − ε
4

∑
γ k

5′βγ

εk5′βG +
∑
α k

αβA + ε
16

∑
α,γ k

αβγ − 4+ε
4

∑
α k

αβ3′ − ε
4

∑
γ k

5′βγ

εk5′βC +
∑
α k

αβA + ε
16

∑
α,γ k

αβγ − 4+ε
4

∑
α k

αβ3′ − ε
4

∑
γ k

5′βγ

εk5′βT +
∑
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αβA + ε
16

∑
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αβγ − 4+ε
4

∑
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αβ3′ − ε
4

∑
γ k

5′βγ



. (7.18)

Again, as we had comparatively little end data available, and the ultimate objective was
a model of DNA away from ends, we decided to take as our least squares solution the limit
of vanishing weight ε for the end data. This limiting vanishing weight solution has the rather
simple expression:

y(ε)
∣∣
ε=0

=



1
4

∑
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Aβγ − 1
4

∑
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1
4

∑
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∑
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5′βγ

1
4

∑
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4

∑
γ k

5′βγ

1
4

∑
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Tβγ − 1
4

∑
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1
4

∑
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αβ3′ + 1
4

∑
γ k

5′βγ − 1
16

∑
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αβγ

1
4

∑
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4

∑
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αβ3′

1
4

∑
α k

αβG − 1
4

∑
α k

αβ3′

1
4

∑
α k

αβC − 1
4

∑
α k

αβ3′

1
4

∑
α k

αβT − 1
4

∑
α k

αβ3′



. (7.19)

Moreover, (7.19) is also a particular solution of the least squares system (7.12) that does not
use the end data, i.e. y(ε)

∣∣
ε=0

= x(c1, c2) with c1 = 1
8

∑
α k

αβ3′ + 1
8

∑
γ k

5′βγ − 1
32

∑
α,γ k

αβγ

and c2 = 1
8

∑
α k

αβ3′ + 1
8

∑
γ k

5′βγ .
The least squares procedure described above leads to a parameter set that provides rea-

sonably good reconstructions, at least away from the ends of the oligomers. However it takes
no account of the constraint that the stiffness parameter matrices should be at least positive
semi definite. Somewhat to our surprise all of the least squares solutions that we found had
some indefinite stiffness parameter matrices with a small number of slightly negative eigen-
values. In particular even with the 84 dimensional freedom in the null space of the normal
equations for the system using only interior data, we were unable to find a single parameter
set that had all stiffness parameter matrices positive semi-definite. What we could do was
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to construct an ad hoc, low rank, perturbation scheme that numerically raised the negative
eigenvalues to yield a set of positive definite stiffness parameter matrices Kα1 and K

αβ
2 .

x(c1, c2)|c1=c2=0 y(ε)|ε=0 P†

Block nλ<0 min(λ) max(λ) nλ<0 min(λ) max(λ) nλ<0 min(λ) max(λ)

AT 1 -1.22 103.67 0 0.92 106.00 0 0.00 105.17
GC 1 -1.02 106.91 0 1.09 109.46 0 0.06 107.83
TA 1 -0.59 74.66 0 0.51 77.78 0 0.00 77.33
CG 1 -0.02 83.92 0 0.11 85.17 0 0.00 84.90
GT 1 -1.13 101.95 0 1.03 104.47 0 0.02 103.91
TG 1 -0.21 83.01 0 0.34 85.08 0 0.03 84.76
AG 1 -1.10 93.05 0 0.42 95.96 0 0.00 95.59
GA 1 -0.89 94.47 0 0.95 97.51 0 0.00 97.00
AA 1 -0.90 97.92 0 0.98 101.08 0 0.07 100.82
GG 1 -0.71 98.04 0 0.47 100.90 0 0.00 100.02
A 0 0 0 4 -10.76 16.61 0 0.00 15.29
G 0 0 0 3 -9.88 37.18 0 0.00 38.53

Table 7.1: Eigenvalues of the dimer based model parameter blocks, that are least squares
solutions of the form x(c1, c2)

∣∣
c1=c2=0

, y(ε)
∣∣
ε=0

and P†. nλ<0 denotes the number of negative
eigenvalues in that block.

The smallest and largest eigenvalues of the ten independent dimer stiffness blocks K
αβ
2

and two independent monomer blocks K
γ
1 for three parameter sets are listed in Table 7.1.

The dimers αβ and the monomers γ are given in the first column. The first two parameter
sets in the table are obtained as least squares solutions x(c1, c2)

∣∣
c1=c2=0

given in (7.13) and
y(ε)

∣∣
ε=0

7.19 for each independent entry of the block. The first parameter set has 10 negative
eigenvalues in total, and the second one has 7 negative eigenvalues. The third parameter set
P†, described in Section 7.6 and further in Chapter 8, is obtained by a numerical eigenvalue
perturbation and optimisation procedure from the second parameter set in the table.

Finally, for the reasons that are described next, this least squares solution is only taken
as an intermediate step before a numerical nonlinear fitting procedure, so that we do not
believe the particular choice that is made to be crucial.

7.6 Dimer-based fitting

In the dimer-based nearest neighbour rigid base model, each sequence Sµ is described by a
model probability density

ρPµ,m(w) =
1

Zµ,m
e−(w−ŵµ,m)·Kµ,m(w−ŵµ,m)/2. (7.20)

where, as described in Section 7.2, the stiffness matrix Kµ,m and shape vector ŵµ,m can be
reconstructed from a finite parameter set P = {σα1 ,Kα1 , σ

αβ
2 ,Kαβ2 }. By a best-fit parameter

set for the collection of training set sequences Sµ we mean a set P∗ satisfying

P∗ = argmin
P

N∑
µ=1

D(ρPµ,m, ρ
∗
µ,M). (7.21)
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That is, among all dimer-dependent parameter sets, the best-fit parameters P∗ should min-
imise the sum of the divergences between the Gaussian probability distributions with the
dimer based reconstructed parameters and the best oligomer based nearest neighbour fit to
the training set probability distributions. Presumably, if the collection of the training se-
quences is sufficiently rich, this best-fit parameter set P∗ should not only provide good model
reconstructions for the training set sequences, but also for oligomers of arbitrary length and
sequence.

We used the modified least squares parameter set as an admissible initialisation for a
numerical minimisation of the nonlinear Kullback-Leibler objective functional (7.21). We
were thereby able to find a numerical approximation to a minimum using a numerical gradient
flow algorithm. Our computations suggest that this optimisation problem is a rather delicate
one that is worthy of further study. Nevertheless in Section 8.1 below we describe one
numerical approximation P† to a best-fit parameter set, which seems typical of the optimal
approximations found thus far. In the numerical scheme that we constructed the explicit
constraint that the individual stiffness parameter matrices are all semi-definite was enforced
by factoring each stiffness matrix in the form K = A2 with the, possibly indefinite, symmetric
matrices A being adopted as the basic unknowns. The palindromic symmetries (7.2) of self-
symmetric dimers were enforced explicitly.
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Figure 7.3: Relative errors in dimer-dependent reconstructions. Red: the divergence
D(ρ∗µ,m, ρ

∗
µ,M)/Do; blue, relative error of stiffness matrices in the Frobenius norm ||K∗µ,m −

K∗µ,M||/||K∗µ,M||; black, relative error of shape vectors in Euclidean norm |ŵ∗µ,m− ŵ∗µ,M|/|ŵ∗µ,M|,
all versus training set index µ. Here ρ∗µ,m denotes a reconstructed density and ρ∗µ,M denotes
a nearest-neighbour best-fit oligomer density.

The modelling errors incurred in approximating an oligomer-based model density ρ∗µ,M by
a dimer-based model density ρ∗µ,m constructed with our best-fit parameter set P† can now
be quantified for each sequence Sµ, and are shown in Figure 7.3. Here the modelling error
for each sequence is due both to the difference between the oligomer stiffness matrices K∗µ,M
and K∗µ,m, and the oligomer shape vectors ŵ∗µ,M and ŵ∗µ,m. Both of these differences arise
due to the finiteness of the parameter set P†. In physical terms, this modelling error reflects
the difference between a quadratic, nearest-neighbour internal energy model in which the
parameters of the model are allowed to depend on the sequence composition of the entire

72



7.6. DIMER-BASED FITTING

oligomer, and one in which the parameters depend only on the composition of the local
dimer. As can be seen, the relative errors between the stiffness matrices, shape vectors and
probability density functions are all in the range 5−15% on the scale of Do for indices µ ≤ 36,
with slightly higher errors for higher indices. One possible explanation for these higher errors
is that for µ ≥ 37 the oligomers all have non GC dimer ends, which are much less represented
in the training set data. Nevertheless our conclusion is that this particular parameter set
P† of the dimer-based nearest neighbour rigid base model is able to well resolve sequence
variations across the training set. Particular examples of reconstructions are discussed in
more detail in Sections 8.2 and 8.3 below.
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Chapter 8

Parameters and tests for the dimer
dependent nearest-neighbour rigid
base model

In this chapter we present a full parameter set for the dimer dependent nearest-neighbour
model. We give examples of stiffness and shape parameter reconstructions for sequences from
the training data set and also show that we are able to predict non local changes in shapes
caused by local changes in sequence.

8.1 The P† parameter set

In this section we make a visual presentation of some properties of the first optimal fit
parameter set P†. Figure 8.1 provides colour plots of the 1-mer stiffness matrices and weighted
shape parameters. To be consistent with the analogous 2-mer parameters we plot the averages
and standard deviations over all four possible bases occurring on the reference strand, along
with differences ∆A and ∆G to two independent cases. As was to be expected there are
marked differences between the A and G parameters.

The 2-mer parameters have more interesting structure. In Figure 8.2 the sequence av-
eraged weighted shape and stiffness matrices are presented, along with their standard de-
viations, over all sixteen possible steps. Then in the first column the difference between
the values for three independent purine-pyrimidine steps and the average are given, and
analogously three sets of pyrimidine-purine parameters in the second column, and the four
purine-purine differences in the third column. While there is some variation within columns,
as there should be, there are striking patterns that are common within, and distinct between,
each column. This observation suggests that the parameter fitting is successfully capturing
sequence dependent effects of differing stacking interactions.

Figure 8.3 presents the logarithm of the (positive) eigenvalues of two independent 1-mer
parameter stiffness matrices and ten independent 2-mer parameter stiffness matrices. Several
eigenvalues are of order 10−6 or less. Depending on the desired level of error we observe that
the 1-mer parameter matrices could be approximated to be of rank only 2, 3 or 4. Similarly
several of the 2-mer parameter stiffness matrices could be approximated to not be of full rank.

75



CHAPTER 8. PARAMETERS AND TESTS FOR THE DIMER DEPENDENT
NEAREST-NEIGHBOUR RIGID BASE MODEL

2 4 6

2

4

6

Average

 

 

−20

0

20

2 4 6

2

4

6

Std. dev. 

 

 

−10

0

10

2

4

6

Average

 

 

−2

0

2

2

4

6

Std. dev.

 

 

−5

0

5

2 4 6

2

4

6

∆A

 

 

−10

0

10

2 4 6

2

4

6

∆G

 

 

−10

0

10

2

4

6

∆A

 

 

−5

0

5

2

4

6

∆G

 

 

−5

0

5

Figure 8.1: Averages and standard deviations over all four bases of 1-mer stiffness and
weighted shape parameters along with differences ∆A and ∆G to two independent cases. Non
dimensional units as described in Section 2.4 of Chapter 2. The indices 1, . . . , 6 correspond
respectively to Buckle, Propeller, Opening, Shear, Stretch, Stagger.

The eigenvalues presented in Figure 8.3 are non dimensional, but in dimension full terms they
have units Å2

kBT so that the eigenvalues are truly small. (Because the eigenvectors involve
both translational and rotational degrees of freedom, this single unit for an eigenvalue depends
on our scaling between translations and rotations in which an Å is taken to be equivalent to
1/5 radian, or approximately 11 degrees.) Interestingly when the dimer stiffness matrices are
constructed from the 2-mer parameter stiffness matrices by adding 1-mer stiffness blocks, the
resulting stiffness matrices, without exception, have a smallest eigenvalue of order 10−1. In
other words the soft modes of the 2-mer parameter stiffnesses are substantially stiffened in
the dimer stiffness matrices by the addition of the 1-mer 6× 6 stiffness blocks, despite them
each having four rather small eigenvalues.

The Euclidean averages of the parameter set illustrated in Figures 8.1 and 8.2 provide one
way to construct a homogeneous model of DNA in which the occurrence of every sequence is
assumed to be equally likely. The reconstructed oligomer shape vector ŵ∗h,m for a homogeneous
oligomer approaches the constant values shown in Table 8.1, where the values stabilise to
the three significant digits shown only six base pairs away from the ends, with the values
stabilising to one digit two base pairs from the ends. The “odd" parameters Buckle, Shear, Tilt
and Shift all vanish exactly, because with the averaging procedure we adopt the homogeneous
model is palindromic. A comparison with the sequence averaged MD values presented in
Table 1 of [42] are also given. Both sets of values share a common origin in the underlying
ABC MD data base [42], but the averaging procedures utilised to construct the homogeneous
parameters are quite different. The two sets of sequence independent B-form parameters are
rather close, so that in particular we can conclude that our coarse-grain parameter set is
consistent with accepted B-form sequence-averaged values to within an acceptable tolerance.
Interestingly our value of homogeneous Twist is slightly higher than that extracted directly
from the MD data. In fact this Twist is of the base pair frame, so that its precise value is
dependent upon the chosen embedding of the frame in the base pair; the partition between
Roll and Twist could be altered by choosing a slightly modified frame (the partition between
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Figure 8.2: 2-mer weighted shape and stiffness parameters. Averages and standard deviations
over the 16 possible dimer steps, then ten independent differences ∆AT etc from the average
with purine-pyrimidine, pyrimidine-purine, and purine-purine dimer steps in respectively
columns one, two and three. While there are differences within columns as there should be,
there are patterns common to each column that are quite distinct between columns. Non
dimensional units as described in Section 2.4 of Chapter 2. The intra indices 1, . . . , 6 and
13, . . . , 18 are ordered as in Figure 8.1 with inter indices 7, . . . , 12 being in order Tilt, Roll,
Twist, Shift, Slide Rise.
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Slide and Rise would then also be altered). In a homogeneous model a Twist and Rise per
base pair of the associated helical structure, which is independent of the precise choice of
base pair framing, can be computed in the following way. For a homogeneous configuration
the base pair frames lie on a circular helix, where, because we have adopted a Cayley vector
parametrisation of rotation matrices, the coordinates in the base pair frame of the central
axis of the helix are precisely the Tilt, Roll and Twist, so that the twist per base pair about
the helix centreline is the norm of the Cayley vector, or, for the homogeneous parameters
given in Table 8.1, 33.10 degrees. This is equivalent to a helical repeat of 360/33.10 = 10.9

base pairs, which is within 5% of the experimentally reported value of 10.4 ± 0.1 [75]. The
pitch or rise of the helical structure can be computed from the scalar product of the (Shift,
Slide, Rise) vector with a unit vector parallel to the Cayley vector which yields 3.25Å per
base pair, or 35.4Å per period. The radius of the circular helix on which the origins of the
base pair frames lie is 1.49Å.

Average coarse-grain, Average coarse-grain, Average MD
1
5 rad/Å ◦/Å ◦/Å

Buckle 0 0 1.2
Propeller -1.089 -12.43 -11.0
Opening 0.109 1.24 2.1
Shear 0 0 0.02
Stretch 0.022 0.02 0.03
Stagger 0.168 0.17 0.09
Tilt 0 0 -0.3
Roll 0.258 2.87 3.6
Twist 2.961 33.98 32.6
Shift 0 0 -0.05
Slide -0.562 -0.56 -0.44
Rise 3.314 3.31 3.32

Table 8.1: Homogeneous, sequence averaged, nearest-neighbour rigid base DNA shape pa-
rameters compared to analogous sequence-averaged MD parameters. Column 1, coarse-grain
values in the units of this work, Column 2 the same values in degrees and Å, which allows
direct comparison with the MD average values shown in Column 3 and taken from Table 1
of [42].

To prepare for our discussion of sequence dependence, and to quantify the depth of pen-
etration of end effects, properties of the reconstructed parameters for a homogeneous 18-mer
can be plotted as a function of position along the oligomer. Figure 8.4 has eight panels. The
top four panels plot the reconstructed shape parameter vector ŵ∗h,m versus oligomer position,
with discrete point values visualised using linear interpolation. Each of the four panels con-
tains plots of three of the twelve internal variables, grouped by inter and intra and translation
and rotation. All quantities use the non dimensional units introduced in Section 2.4 of Chap-
ter 2, although the numerical scale on the ordinate is varied and indicated panel by panel
to suit the scale of the pertinent data. Despite the sequence being homogeneous, the effect
of ends means that the expected values vary from those given in Table 8.1 as the ends are
approached, with the effects still being visible on this scale four base pairs from the end. The

78



8.1. THE P† PARAMETER SET

palindromic symmetry of the homogeneous model is evident, with oddness of Buckle, Shear,
Tilt and Shift (all plotted in black), and evenness of the remaining variables. The values of
the plotted shape parameters are also given in Table 8.2. The corresponding reconstructed
stiffness matrix has many non zero entries, but the decay of end effects are captured in the
diagonal entries, which are therefore plotted in the remaining four panels. The presentation
is directly analogous to the shape parameters above, except that now the diagonal entries of
the reconstructed stiffness matrix K∗h,m are plotted. In contrast to the nonlocal dependence
of ŵ∗h,m, it is a consequence of our nearest-neighbour model that the only end effects in stiff-
nesses are localised precisely to the first and last intra 6 × 6 blocks. However these changes
are significant, approaching 50%. Palindromy implies that all diagonal stiffnesses are even
functions. The stiffness panels of Figure 8.4 are included both to emphasise the difference
of end effects on shape and stiffness, and to provide a homogeneous reference point for the
analogous sequence-dependent plots described in the next section.

Buckle Propeller Opening Shear Stretch Stagger Tilt Roll Twist Shift Slide Rise
0.20 -0.97 0.03 -0.00 0.03 0.13 -0.02 0.26 2.98 0.03 -0.58 3.35
0.09 -1.12 0.11 -0.00 0.02 0.16 -0.01 0.26 2.98 0.00 -0.57 3.33
0.02 -1.11 0.11 -0.00 0.02 0.17 -0.00 0.26 2.96 0.00 -0.56 3.32

-0.00 -1.09 0.11 0.00 0.02 0.17 -0.00 0.26 2.96 0.00 -0.56 3.31
-0.00 -1.09 0.11 0.00 0.02 0.17 0.00 0.26 2.96 0.00 -0.56 3.31
-0.00 -1.09 0.11 0.00 0.02 0.17 0.00 0.26 2.96 -0.00 -0.56 3.31
-0.00 -1.09 0.11 0.00 0.02 0.17 0.00 0.26 2.96 -0.00 -0.56 3.31
0.00 -1.09 0.11 -0.00 0.02 0.17 -0.00 0.26 2.96 -0.00 -0.56 3.31
0.00 -1.09 0.11 -0.00 0.02 0.17 0.00 0.26 2.96 0.00 -0.56 3.31

-0.00 -1.09 0.11 0.00 0.02 0.17 0.00 0.26 2.96 0.00 -0.56 3.31
-0.00 -1.09 0.11 0.00 0.02 0.17 -0.00 0.26 2.96 0.00 -0.56 3.31
0.00 -1.09 0.11 -0.00 0.02 0.17 -0.00 0.26 2.96 0.00 -0.56 3.31
0.00 -1.09 0.11 -0.00 0.02 0.17 -0.00 0.26 2.96 -0.00 -0.56 3.31
0.00 -1.09 0.11 -0.00 0.02 0.17 0.00 0.26 2.96 -0.00 -0.56 3.31
0.00 -1.09 0.11 -0.00 0.02 0.17 0.00 0.26 2.96 -0.00 -0.56 3.32

-0.02 -1.11 0.11 0.00 0.02 0.17 0.01 0.26 2.98 -0.00 -0.57 3.33
-0.09 -1.12 0.11 0.00 0.02 0.16 0.02 0.26 2.98 -0.03 -0.58 3.35
-0.20 -0.97 0.03 0.00 0.03 0.13

Table 8.2: The elements of the reconstructed shape parameter vector ŵ∗hom,m for a homoge-
neous 18-mer sequence, ordered along the sequence from top to bottom. Note that parameter
values at the ends of the oligomer (top and bottom rows) are different from the ones in the
middle, especially for the intra base pair parameters.
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Figure 8.3: Logs of the eigenvalues of stiffness parameter matrices for two independent 1-
mers, and of ten independent 2-mer steps (black circles). There are small eigenvalues of
order 10−3 to 10−6 or less in several cases. However, when the 2-mer parameter stiffnesses
are combined with 1-mer parameter stiffnesses, to construct dimer stiffness matrices, in all
ten independent cases the smallest eigenvalues are of order 10−1 or larger (red circles).
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Figure 8.4: Reconstruction of model parameters for a homogeneous 18-mer. Top four panels:
Plots of the reconstructed shape parameter vector ŵ∗h,m along the sequence. Bottom four pan-
els: Diagonal entries of the reconstructed stiffness parameter matrix K∗h,m along the sequence.
Parameter values are interpolated by piecewise-linear curves. As a consequence of the recon-
struction model, the intra base pair stiffnesses change only at the first and last base pair,
while the inter base pair stiffnesses do not change at all. However the changes in oligomer
shape parameters, both intra and inter, are not localised to the ends. The magnitude and
decay rate of end effects are similar for both intra and inter parameters, but are more evident
in the figure for the intra variables because of the differences in axes scale between panels.
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8.2 Reconstructions of example oligomers from the training set

In this section we discuss in more detail the four training set sequences Sµ with µ = 1, 3, 8, 42

as detailed in Table 4.1. S1 is a palindrome with a period two sequence in the interior, S3 a
palindrome with a period four sequence, and S8 a non-palindrome again of period four. All
of these three sequences are 18-mers with CpG end dimers. In contrast S42 is a 12-mer with
GpG ends. The diagonal blocks in Table 8.3 record two scaled reconstruction errors for each
oligomer, namely the divergence D(ρi,M, ρi,o)/Do between the training set density ρi,o and
the nearest-neighbour oligomer model ρi,M, and the divergence D(ρi,m, ρi,M)/Do between the
nearest-neighbour oligomer fit and the reconstructed nearest-neighbour dimer model ρi,m.
The off-diagonal blocks in Table 8.3 record the pairwise divergences D(ρi,o, ρj,o)/Do and
D(ρi,m, ρj,m)/Do between pairs of training set and reconstructed probability density functions
for each oligomer. It is apparent that the model reconstruction is sufficiently accurate to
capture to a good approximation the variations due to differences in sequence in the overall
sense of divergences between probability distributions for each oligomer.

S1 S3 S8 S1′

S1 0.087 0.676 0.567 0.116
0.076 0.619 0.407 0.053

S3 0.616 0.095 0.541 0.621
0.489 0.075 0.297 0.466

S8 0.423 0.422 0.091 0.418
0.310 0.314 0.088 0.286

S1′ 0.139 0.679 0.588 0.089
0.040 0.574 0.364 0.082

Table 8.3: A table of pairwise divergences, all scaled by the characteristic scale Do ≈ 85,
between observed and reconstructed probability densities for four 18-mer oligomers. S1, S3,
and S8 are from the training set and are discussed in Section 8.2, while S′1 is a single nucleotide
permutation of S1 as discussed in Section 8.3. In the off diagonal cells, the top entries are the
divergences D(ρi,o, ρj,o)/Do between observed distributions, while the bottom entries are the
divergences D(ρi,m, ρj,m)/Do between reconstructed distributions, where i, j = 1, 3, 8 and 1′.
The top entries in the diagonal cells are the model error D(ρi,M, ρi,o)/Do, while the bottom
entries are the model error D(ρi,m, ρi,M)/Do.

We further discuss our reconstructions of the four oligomers in the context of a standard
set of Figures prepared for each oligomer Sµ. The figures illustrate pointwise differences in
the model parameters along the different oligomers. For µ = 1, 3, 8, 42, Figures 8.5, 8.6, 8.7,
and 8.8, are directly analogous to Figure 8.4, but now with information about the sequence
dependence at various different levels of model approximation. The base sequence of the
reference strand of each oligomer is indicated on the abscissa, with intra variables evaluated
at each base pair and inter variables evaluated at each junction. Discrete point values are
again visualised using linear interpolation, but now with different line styles for different
model approximations to the same quantities. For each of the four sequences, the top four
panels plot both the training set shape vector ŵµ,o (which are the MD time series averages)
in solid lines, and the reconstructed shape vector ŵµ,m, shown with dashed lines, each versus
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sequence position. The corresponding stiffness matrices have many non zero entries, as shown
by the two examples of Figure 6.2, but much of the sequence dependence is captured by the
diagonal entries, which are therefore plotted in the remaining four panels. The presentation
is directly analogous to the shape parameters above, except now three plots of each diagonal
stiffness is made corresponding to the diagonal entries of the training set stiffness matrix
Kµ,o (solid), the best nearest-neighbour oligomer fit stiffness matrix K∗µ,M (dash-dot), and the
reconstructed nearest-neighbour, dimer dependent stiffness matrix Kµ,m (dashed).

Our conclusion is that the coarse-grain reconstructions are remarkably good. Frequently
the different approximations are indistinguishable, and with very few exceptions the pointwise
differences in the various model approximations are less than the variation with sequence.
There is a tendency for the reconstruction errors to be larger at the ends, particularly for
the oligomer µ = 42 which may indicate a lack of sampling of GG end data in the training
set. Visually the errors in the intra variables appear larger, but the scales in the intra and
inter panels are of necessity different, although the units are identical. For both intra and
inter shape parameters, and away from the ends, rather few errors are larger than 0.1 Å in
translational variables or 2 degrees in rotational variables. All three model reconstructions
clearly reflect the interior period two or four sequence dependence in oligomers µ = 1, 3, 8.

By construction the nearest-neighbour, dimer dependent rigid base model exactly satisfies
the palindromy symmetry present in oligomers µ = 1, 3. The MD time series data expressed
in the solid lines for the most part also closely satisfies the requisite palindromy symmetries.
Note, however, that errors can arise from lack of convergence of the MD simulation of any
given sequence, rather than the reconstruction. For example the breaking of evenness of the
twist-twist stiffness plot of MD data shown in Figure 8.5 violates the palindromic symmetry
for the µ = 1 oligomer, and must reflect lack of convergence of the MD time series. Simi-
larly the profile of the MD Stagger expectations shown in Figure 8.5 noticeably violates the
evenness required by palindromy of the sequence.

Another way in which to judge quality of the training set data and of the reconstructions
is to consider histograms, or 1D plots, of the marginal distributions of each of the 12 internal
configuration variables along each oligomer according to each of the oligomer models. Figure
8.9 contains plots of the marginal distributions of all of the intra base pair internal coordinates
at each base along the oligomer S8, where there are four plots superimposed. Solid lines
correspond to a histogram of the data observed in the MD simulation, which in principle
could be far from Gaussian, but in most cases are quite close, as discussed in Chapter 5.
Dotted lines correspond to the Gaussian marginal determined from the Gaussian oligomer
training set density ρµ,o, dashed-dotted lines correspond to the Gaussian marginal determined
from the nearest-neighbour Gaussian distribution ρµ,M, and finally dashed lines represents
the Gaussian marginal determined from reconstructed Gaussian density ρµ,m. For almost
all of the histograms the four curves are practicably indistinguishable. For the other three
example sequences the four curves are even closer than for this µ = 8 case, so that we do
not include those plots. Figures 8.10, 8.11, 8.12, and 8.13 provide the analogous plots of the
marginal distributions of the inter base pair rotational coordinates. Now it can be seen that
there are cases where there is a noticeable deviation from a Gaussian marginal even away
from the ends, particularly for Twist and Slide, and particularly for the dimer step CpG whose
bimodal properties are discussed at length in [42]. We also observe that the MD time series
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histograms for the 12-mer oligomer S42 with GpG ends are particularly far from Gaussian.
Accordingly it is apparent that there are errors associated with our assumption of a

Gaussian coarse-grain model. Nevertheless it seems that our Gaussian, nearest-neighbour,
dimer dependent model captures the dominant features of sequence variation in a satisfactory
way. Specifically the differences between marginals at different dimer steps is almost always
qualitatively larger than the differences between the different model marginals at the same
dimer step.
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Figure 8.5: The palindromic, interior period two, training sequence S1. Top four panels:
Observed shape parameters ŵµ,o in solid lines, compared with reconstructed shape parame-
ters ŵµ,m in dashed lines. Bottom four panels: Diagonal entries of stiffness matrices; solid,
observed, dash-dot oligomer fit, and dashed reconstructed. See text in Section 8.2.
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Figure 8.6: The palindromic, interior period four, training sequence S3. Compare Figure 8.5
and text in Section 8.2.
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Figure 8.7: The non-palindromic, interior period four, training sequence S8. Compare caption
of Figure 8.5 and text in Section 8.2.

87



CHAPTER 8. PARAMETERS AND TESTS FOR THE DIMER DEPENDENT
NEAREST-NEIGHBOUR RIGID BASE MODEL

G G G C G G T G G A G G
−2

−1.5

−1

−0.5

0

0.5

1

1.5

 

 
buckle

propeller

opening

    G     G     G     C     G     G     T     G     G     A     G     G
−1

0

1

2

3

4

 

 

tilt

roll

twist

G G G C G G T G G A G G

−0.2

−0.1

0

0.1

0.2

0.3

 

 

shear

stretch

stagger

    G     G     G     C     G     G     T     G     G     A     G     G
−1

0

1

2

3

4

 

 

shift

slide

rise

G G G C G G T G G A G G
0

5

10

15

20

25

30

35

 

 buckle−buckle

propeller−propeller

opening−opening

    G     G     G     C     G     G     T     G     G     A     G     G
0

10

20

30

40

50

60

 

 

tilt−tilt

roll−roll

twist−twist

G G G C G G T G G A G G
0

20

40

60

80

100

120

140

 

 

shear−shear

stretch−stretch

stagger−stagger

    G     G     G     C     G     G     T     G     G     A     G     G
0

10

20

30

40

50

60

70

80

90

 

 

shift−shift

slide−slide

rise−rise

Figure 8.8: The non-palindromic 12-mer training sequence S42 with GG ends. Compare
caption of Figure 8.5 and text in Section 8.2.
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Figure 8.9: Plots of marginal distributions of the intra base pair parameters for the sequence
S8 to be read from right to left and top to bottom. The base on the reference strand is marked
in each panel. Each colour plot in each panel is actually an overlay of four different line styles
corresponding to histograms along the MD time series, which may be far from Gaussian, and
three Gaussian marginals of our hierarchy of Gaussian oligomer models. See text in Section
8.2. For intra variables the superposed plots are virtually indistinguishable.
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Figure 8.10: Plots of marginal distributions of the inter base pair parameters along the
sequence S1 to be read from right to left and top to bottom. The dimer step on the reference
strand at each junction is marked in each panel. Each colour plot in each panel is actually
an overlay of four different line styles corresponding to histograms along the MD time series,
which may be far from Gaussian, and three Gaussian marginals of our hierarchy of Gaussian
oligomer models. In contrast to the intra variable marginals, the solid lines representing
the MD histograms are now sometimes visibly far from Gaussian, with associated noticeable
differences in the various Gaussian marginals at the same or adjacent junctions. See text in
Section 8.2.
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Figure 8.11: Plots of marginal distributions of the inter base pair parameters for the sequence
S3. See caption of Figure 8.10 and text in Section 8.2.
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Figure 8.12: Plots of marginal distributions of the inter base pair parameters for the sequence
S8. See caption of Figure 8.10 and text in Section 8.2.
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Figure 8.13: Plots of marginal distributions of the inter base pair parameters for the sequence
S42. See caption of Figure 8.10 and text in Section 8.2. The Slide, Shift and Twist marginals
at the GpG steps both at the ends and in the interior of this oligomer have a pronounced
deviation from Gaussian.
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8.3 Example reconstruction of an oligomer not from the train-
ing set

As a further test of the discriminatory resolution of our sequence dependent model we made
a reconstruction of an 18-mer oligomer not in the original training set. Specifically, sequence
S1′ , is a point mutation from the training set oligomer S1. The two sequences differ by only
one base at position 6; S1′ has a T in this position, whereas S1 has an A. We reconstruct
the distribution ρ1′,m directly from the parameter set P† with no further MD simulation
necessary. However to assess the accuracy of the reconstruction, we also carried out a full
MD simulation of the oligomer S1′ . This MD data was not added to the training set, but we
do have available all quantities discussed for the training set oligomers.

As can be seen in Table 8.3 the scaled divergence D(ρ1,m, ρ1′,m)/Do between the two
reconstructed distributions is smaller than the scaled reconstruction error D(ρ1′,m, ρ1′,M)/Do,
so that this measure does not capture the effect of the point mutation in the sequence in a
significant way. However our reconstruction of the point mutation does exhibit significant
pointwise changes in the parameters. Figure 8.14 shows data for the sequence S1′ , which
should be directly compared with the analogous Figure 8.5 for the sequence S1. In addition
to the plots for the sequence S1′ in Figure 8.14 that are directly analogous to those for the
sequence S1 appearing in Figure 8.5, in order to enhance comparison, the observed vector
ŵ1,o for the original sequence S1 is also included in Figure 8.14 with a dotted line style.
The top four panels of Figure 8.14 show that a change of one base in the sequence can
have pronounced, non-local effects on the oligomer shape parameters, and that the coarse-
grain, nearest-neighbour, dimer dependent reconstructions accurately mimic the nonlocal
changes observed in the MD simulation. The non-local effects are most pronounced for
Buckle, Propeller and Stagger, where the major effects are spread over approximately five
bases, and are less pronounced, but still noticeable, for Shear, Twist, Shift and Slide, where
the effects are spread over approximately three bases. For other quantities, for example Roll,
the effect of the point mutation appears rather local, and for others, for example Opening,
Stretch and Rise, any effect is not clearly visible on the scale of the plots. A comparison of the
predicted vector ŵ∗1′,m with the observed vector ŵ1′,o shows that the nearest-neighbour, dimer-
based model introduced here can predict the local and non-local effects of the mutation rather
well. Figure 8.15 contains analogous plots for a sequence obtained by two point mutations
from S1. The same conclusions hold for this simulation, namely that our model is able to
predict non-local effects in shapes of the point mutations.

The nonlocal consequences of our nearest-neighbour, dimer dependent model on oligomer
shape parameters can be further quantified using the data associated with S1 and S1′ . In
particular Table 8.4 provides the expected values of the intra parameters buckle and propeller
of the central AT base pair in the two pentamer sub-sequences ATATA and TTATA of the
oligomers S1 and S1′ . In each case the expectations observed from the MD time series and
reconstructed from our model are given. We conclude that our model can accurately predict
changes in intra parameter expectations consequent upon changes in the sequence at a next
to nearest-neighbour base pair. Similarly differences in the expectation of the Slide inter base
pair junction variable at a TA step embedded in the tetramers ATAT and TTAT are accurately
predicted by our model reconstruction.
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ATATA TTATA
Observed Buckle -0.27 -0.73
Reconstructed Buckle -0.25 -0.53
Observed Propeller -1.03 -0.72
Reconstructed Propeller -1.09 -0.75

ATAT TTAT
Observed Slide 0.74 -0.29
Reconstructed Slide 0.84 -0.24

Table 8.4: Dependence of Buckle and Propeller of the central AT base pair of the ATATA
and TTATA pentamer subsequences of the oligomers S1 and S1′ , along with dependence of
Slide of the central TpA junction on surrounding ATAT and TTAT tetramers. In each case the
expected value of the parameter is both observed in an MD time series, and predicted by our
reconstruction model.

The bottom four plots of Figure 8.14 illustrate the effects of the point mutation between
the sequences S1 and S1′ on the diagonal entries of the stiffness parameter matrices K∗1′,m,
K1′,o and K1,o. For stiffnesses, as predicted by our model, the effects of the mutation are local,
and are again predicted rather well by our reconstruction.
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Figure 8.14: Data for the sequence S1′ , which is a point mutation of the training sequence
S1 described in Figure 8.5. The base sequence of the reference strand is indicated on the
horizontal axis, where the symbol T/A denotes the mutation site. Top four panels: Observed
shape parameters ŵ1′,o in solid lines, compared with reconstructed shape parameters ŵ1′,m in
dashed lines. For reference the vector ŵ1,o is also plotted in dotted lines. Bottom four panels:
Diagonal entries of the stiffness matrices; observed K1′,o in solid, reconstructed K∗1′,m dashed,
and for reference the observed K1,o for S1 in dotted. As predicted the changes between S1
and S1′ are local for stiffness parameters, but nonlocal for shapes. See text in Section 8.3.
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Figure 8.15: Data for a sequence that is obtained as a double point mutation of the training
sequence S1 described in Figure 8.5. The base sequence of the reference strand is indicated on
the horizontal axis, where the symbols T/A and A/T denote mutation sites. Top four panels:
Observed shape parameters in solid lines, compared with reconstructed shape parameters
in dashed lines. For reference the vector ŵ1,o is also plotted in dotted lines. Bottom four
panels: Diagonal entries of the stiffness matrices; observed in solid, reconstructed dashed,
and for reference the observed K1,o for S1 in dotted. As predicted the changes between the
two sequences are local for stiffness parameters, but nonlocal for shapes. See text in Section
8.3.
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Chapter 9

Summary, conclusions and
discussion

We have developed a sequence-dependent coarse-grain model of DNA that is able to predict
the non local dependence of oligomer shape parameters, despite the local sequence depen-
dence of the model parameters. The main novelty of the model is the concept of frustration
energy, which, as described in Section 6.1, is the reason for this non local shape depen-
dence. Therefore, the model can give more accurate oligomer shape and stiffness parameter
predictions than the widely used local rigid base pair models.

We first give an overview of the development presented in this thesis, emphasising open
questions. We model DNA as a system of interacting rigid bases. The configuration of a
rigid base DNA oligomer is described by a vector w of relative coordinates, which can be
partitioned into translational vi ∈ R3 and rotational ui ∈ R3 degrees of freedom for every
base pair and every junction. For the relative rotations ui we choose a scaled Cayley vector,
as in [36] and [41]. Following [36] and [74], we assume that the equilibrium distribution of
w ∈ R12n−6 for a DNA molecule of length n base pairs is described by the probability density
function

ρ(w) =
1

ZJ
e−U(w) J(w) dw. (9.1)

Here ZJ is a normalising constant, U(w) ∈ R is the non-dimensional free energy function,
and J is a Jacobian factor, which is present due to the non-Cartesian nature of the rotation
group SO(3), and which, for our choice of coordinates ui, takes the explicit form

J(w) =
2n−1∏
i=1

1

(1 + 1
100 |ui|2)2

. (9.2)

We further assume that the free energy is a shifted quadratic of the form

U(w) =
1

2
(w− ŵ) · K(w− ŵ) + Û, (9.3)

where ŵ ∈ R12n−6 is an equilibrium shape vector, K ∈ R(12n−6)×(12n−6) is a symmetric positive
definite stiffness matrix, and Û is the energy of frustration, which is a novel concept and an
important feature of our model. As discussed in [36] and [74], the equilibrium shape and
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stiffness parameters of the assumed potential can be estimated from MD time series using
the discrete version of the extraction relations

〈w/J〉
〈1/J〉

= ŵ and 〈∆w⊗∆w/J〉
〈1/J〉

= K−1, (9.4)

where ∆w = w−ŵ. Assuming ergodicity of simulations, data from Molecular Dynamics (MD)
simulations can be used for this purpose. As our training data set, we used an ensemble of
50-200 ns MD trajectories for 53 DNA oligomers, the main part of which was produced by
the ABC consortium [42], and the rest designed and simulated to get parameter estimates for
different oligomer ends. Following [36], we exclude snapshots with broken hydrogen bonds
from our analysis, as broken hydrogen bonds indicate possible structural defects of DNA,
such as fraying oligomer ends, a phenomenon that can not be captured by a quadratic energy
model.

For all 53 sequences of our training data set, we confirmed, as quantified in Figure 7.3, a
conclusion of [36], made from MD data for a single different sequence and using a different
MD force field, namely that a rigid base pair (in contrast to rigid base) DNA model with
only nearest-neighbour interactions is a poor representation of DNA.

Having noticed that most of the marginal distributions of our oligomer configuration vari-
ables are bell-shaped curves, it was tempting to approximate the Jacobian J by a constant, so
that (9.1) becomes a Gaussian distribution. To examine the consequences of this approxima-
tion, we quantified the differences between shape and stiffness parameters, corresponding to
both distributions, and concluded that those differences were small, as shown in Figure 5.4.
Most importantly, we showed that the density function ρ in (9.1) is logarithmically concave
(i.e. that ln ρ is concave), which implies that the presence of the Jacobian factor can not pre-
dict bimodal marginal distributions of some parameters (mainly Twist of the CpG junctions),
which is observed from the MD data. Still, most of the observed marginal distributions were
unimodal, hence the Gaussian approximation of the probability density function seems to be
a reasonable first approximation.

At this point we have prepared the ground for introducing a Gaussian nearest-neighbour
rigid base DNA model. The starting assumption of this model is that the oligomer potential
energy U(w) in (9.3) can be expressed as a sum of dimer and of monomer energies along the
oligomer:

U(w) =
1

2

2∑
j=1

n−j+1∑
a=1

(waj − ŵaj ) · Kaj (waj − ŵaj ). (9.5)

Here, for j = 1, 2, ŵaj ∈ R12j−6 and Kaj ∈ R(12j−6)×(12j−6) are equilibrium shape and stiffness
parameters of the base pair (X,X)a when j = 1, and of the junction between base pairs (X,X)a
and (X,X)a+1 when j = 2. Each variable vector waj ∈ R12j−6 is a collection of corresponding
(and overlapping) elements of the oligomer configuration vector w. This model is actually a
simple representative of a hierarchical family of models, where U(w) is the sum of energies of
all overlapping j-mers Xa . . .Xa+j−1, j = 1, . . . , k, 1 < k < n, and there are n − j + 1 such
j-mers for each j.

We were also lead to consider a stress-like variable σ = Kŵ, which we call a weighted
shape vector. The nearest-neighbour assumption implies that the stiffness matrix has a
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special structure and can be obtained by summing the blocks Kj , j = 1, 2. Analogously, the
weighted shape vector can be obtained by summing the vectors σj = Kjŵj , j = 1, 2.

Simply by completing squares, the energy (9.5) can be expressed in the form (9.3), thus
providing the expression of the parameters ŵ and Û in terms of monomer and dimer param-
eters. In particular, we find

ŵ = K−1σ. (9.6)

Next we introduce sequence-dependence by assuming that the parameters {ŵa1,Ka1} and
{ŵa2,Ka2} in (9.5) depend only on the local dimer sequence XaXa+1, and not explicitly on the
oligomer length n or the location a. This model is completely defined by the parameters
{σγ1 ,K

γ
1}, γ ∈ M and {σαβ2 ,Kαβ2 }, αβ ∈ D, where M is a set of any two independent monomers

and D is a set of any ten independent dimers. Due to the anti-parallel double stranded
structure of DNA, the parameters for the remaining two monomers and six dimers can be
found using simple symmetry relations. Given such a parameter set, one can reconstruct the
oligomer stiffness matrix K and shape vector ŵ for any desired oligomer. Notice that the
resulting stiffness matrix K has a local dependence on the base pair sequence, but, because
of identity (9.6), the shape vector ŵ does not. However, due to the banded structure of K,
the entries of K−1 decay away from the diagonal, and consequently so do the effects of the
remote base pairs on the entries of ŵ. This non local sequence dependence of shapes can be
explained in physical terms by the phenomenon of frustration, which arises due to the fact
that all of the rigid bases of the oligomer can not minimise their energy simultaneously and
so have to compromise. The minimum energy that can be achieved in a given oligomer is Û,
which is in general non zero. In this case the oligomer can be described as pre-stressed.

Having a model, we next have to fit a parametrisation to a training data set. The available
experimental data is insufficient for this purpose, so we instead use an extended version of the
aforementioned ABC data set [42]. First, for each simulated oligomer, we enforce sparsity
of the observed stiffness matrix, i.e. the range of interactions. We do this by minimising
the Kullback-Leibler divergence between the oligomer dependent distributions with full and
sparse stiffness matrices. Then we enforce the dimer sequence dependence of stiffness and
weighted shape parameters, i.e. we fit a dimer-based model parameter set to our simulation
data for all 53 oligomers. To achieve this goal, we first find all of the solutions in the null space
of a least squares system without the equations for the oligomer ends, because we trust the
MD data at the end of an oligomer less than in the middle. Then we choose a solution in this
null space by adding equations for the oligomer ends with a vanishing weight. The resulting
parameter set provides reasonably good reconstructions of oligomer shapes. However, and
surprisingly, this solution, as well as all others in the null space that we could find, led to
some indefinite stiffness parameter matrices. As a modelling decision, we choose to restrict
stiffness parameter matrices to be at least positive semi-definite. Accordingly we construct a
perturbation scheme that numerically raised the negative eigenvalues to yield a set of positive
definite stiffness parameter matrices Kα1 and K

αβ
2 . Finally, we numerically obtain our best-

fit parameter set P† as a maximum relative entropy [49] optimiser of a Kullback-Leibler
divergence. We note that the choice of the direction in the asymmetric Kullback-Leibler
divergence does not have a big impact on the final parameter set, i.e. the two choices of an
objective function for a fitting procedure give very similar results, consistently for each fitting
step.
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The first test of the parameter set P† was to compare the reconstructed oligomer param-
eters for the sequences from our training data set. Our conclusion was that these reconstruc-
tions were remarkably good, but that the reconstruction errors were larger at the ends, as
can be seen, for example, in Figure 8.5. We also looked at the MD scalar marginal histograms
of all of the individual observed configuration variables and compared with the correspond-
ing marginals determined from three, related Gaussian probability densities, namely directly
estimated from MD, nearest-neighbour fitted and dimer-based reconstructed (see, for exam-
ple, Figure 8.10). Certainly, there are apparent errors associated with our assumption of a
Gaussian coarse-grain model. However in general our Gaussian, nearest-neighbour, dimer
dependent model captures the dominant features of sequence variation.

Another test was to reconstruct oligomer parameters for a sequence that was not used in
the training set, and to compare these reconstructions with parameter estimations from a MD
simulation. To be able to quantify the non local dependence of shape parameters, we carried
out a simulation of two sequences, which were designed as point mutations from a training
set oligomer. We observed that a point mutation indeed had a non local effect on some shape
parameter values, as was well predicted by our model reconstruction, as shown in Figures
8.14 and 8.14. More plots of reconstructed parameters for oligomers both from and outside
of the training set can be found on the webpage http://lcvmwww.epfl.ch/cgDNA, together
with the full parameter set P† and the Matlab® scripts used to obtain these reconstructions.

Various limitations of our model arise from its simple origins. The first simplification is
that DNA is modelled only as a system of rigid bases. The behaviour of the sugar-phosphate
backbones is not explicitly taken into account, and the phosphate-base interactions only
appear implicitly in the interactions between bases. Ignoring the backbones may certainly
be a reason for some modelling errors. Another simplification is the linear approximation of
interactions (quadratic energy). In general, some interactions between DNA atoms are highly
nonlinear, such as van der Waals and electrostatic interactions. Also the contribution of the
solvent caused entropy to the energy of DNA does not have a simple functional form. This
nonlinearity could result in nonquadratic terms in the base interaction energy. One more
simplification of reality is the assumption that only nearest-neighbour interactions of rigid
bases contribute to the free energy of a DNA molecule.

The main strength of the model is that the parameter set is comparatively small, but,
nevertheless, in the Gaussian regime, apparently sufficient for relatively good reconstructions
of elastic parameters for any sequence of any reasonable length. One way to make use of our
model is to explore the properties of DNA fragments that are too long to be investigated
by Molecular Dynamics simulations, but still short enough to depend upon sequence. For
example, R.S. Manning and J.S. Mitchell are developing a Monte Carlo code with the goal
of computing sequence dependent DNA looping probabilities, which can then be compared
to experimentally determined values. J.S. Mitchell also used our parameter set to construct
the rigid base stiffness and shape parameters for eight 500 bp length sequences and then
carried out Monte Carlo simulations of these sequences to compute sequence dependent per-
sistence lengths. The persistence length is computed as a gradient of a line, fitted to the
points (n,−n/ ln 〈t1 · tn〉), for n = 2, . . . , 500, where ti, is a tangent to the centreline of the
oligomer at base pair i. The resulting persistence lengths were compared to those determined
through cyclisation experiments [22]. This comparison revealed that the persistence lengths
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obtained from our model reconstructions were 1.3-1.8 times larger than the ones fit to cy-
clisation experimental data. A possible reason for this stiffness estimation error could be in
the parametrisation of the MD force field, used for producing our training data set, or the
discrepancy could lie in one of our coarse-grain modelling assumptions.

Another numerical experiment with our data set done by J.S. Mitchell was running
Metropolis Monte Carlo simulations of the same sequences, but this time sampling the dis-
tribution with a Jacobian factor. The stiffness and shape parameters for these simulations
were constructed from the same “Gaussian" parameter set P† as in the previous simulations.
However, as shown in Chapter 5, the differences between the quadratic potential parameters
in distributions with and without the Jacobian are negligible. His conclusion was that even
though the Jacobian appears to soften DNA at short length scales, its overall effect on the
persistence length is small. Thus our conclusion that the Gaussian approximation of a rigid
base DNA probability density function is appropriate seems to hold. Using Metropolis Monte
Carlo to compute Kullback-Leibler divergences between distributions with and without Ja-
cobian would be another way to quantify errors of the Gaussian approximation.

As the method of parameter estimation for our dimer-based nearest-neighbour model
from an MD data set is now established, it is possible to repeat this procedure on other data
sets. The first new parameter extraction is planned from the latest ABC consortium data
set, which was almost ready at the time of writing this thesis. This data set will contain
simulations for the original 39 oligomers, but this time extended at least to one microsecond
for each oligomer. We expect that these simulations will be better converged, i.e. closer
to ergodic, thus hopefully resulting in a better dimer-based parameter set. It would also be
interesting to study the dependence of our parameter set on the MD force field, solvent model,
temperature, different ions and different salt concentrations. In particular, a dimer dependent
parameter set is a compact concentrated set of values that can be used to quantify the elastic
properties of DNA coming from any simulation, model or experiment. For example, there
is an increasing interest in effects of methylation on DNA elastic properties [58]. To explore
these effects, we plan to add parameters for the methylated CpG step to our parameter set.
One limitation of using these parameters for comparing different systems is that the amount
of data needed for their estimation is quite large.

Wider stencil (i.e. beyond nearest-neighbour) rigid base interactions could also be consid-
ered. Estimating a parameter set for the trimer based next to nearest-neighbour model and
comparing the performance of this model with the one developed here would be a natural
way of trying to improve the oligomer reconstructions. It is also possible (independently)
to assume that a nearest-neighbour parameter set has a wider sequence dependence than
dimers. Even though this choice appears to be not completely natural, it could still lead to
better oligomer reconstructions.

The continuum analog of a rigid base DNA model is an elastic birod [53]. A. Grandchamp
in his masters thesis [25] made a link between the parameters appearing in the Lagrangian
system for a birod, and the discrete nearest-neighbour rigid base DNA parameters. Solving
Lagrangian (or Hamiltonian) systems for a sequence dependent birod model could give inter-
esting insights about the sequence dependent elastic behaviour of DNA, for example in the
presence of external forces. Alternatively, using the rigid base pair (nonlocal) parameters ob-
tained from a marginal distribution of our rigid base reconstruction, DNA could be modelled
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as a sequence dependent rod with nonlocal energy.
Non Gaussian deformations of DNA, such as strand separation (“melting") [77], [66],

[4] and kinking [37], have also been widely investigated by various authors. One possible
direction for future development of our rigid base nearest-neighbour model of DNA would be
to try to encompass such deformations by including non quadratic terms in the free energy.
However, sequence dependent parameter fitting in such an extension seems to be a non trivial
task.
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Appendix A

A parameter set for the
nearest-neighbour model of DNA

Here we present tables with our model parameter set P†, described in Sections 7.1 and 8.1.
This parameter set is also available electronically (in Matlab® data format) on the webpage
http://lcvmwww.epfl.ch/cgDNA.

A.1 Monomer stiffness blocks K
γ
1

0.107 0 0 -0.268 0 0
0 0.328 0.206 0 1.389 0.346
0 0.206 2.085 0 -1.435 0.850

-0.268 0 0 6.470 0 0
0 1.389 -1.435 0 23.810 0.531
0 0.346 0.850 0 0.531 0.675

Table A.1: Average monomer (symmetric) stiffness block Kh
1 , computed over all four possible

monomers (A,G,T and C) and rounded to three decimal places. The ordering of parameters
(from top to bottom and from left to right) is Buckle, Propeller, Opening, Shear, Stretch,
Stagger. Zero entries corresponding to the couplings of the odd-even parameters (Buckle and
Shear are odd and the rest are even) arise due to the palindromic symmetry, i.e. because
Kh
1 = E1 K

h
1 E1, where En is defined in (2.38).

0.141 -0.000 -0.353 0.149 -1.381 -0.074
-0.000 0.031 0.138 0.436 -0.087 0.145
-0.353 0.138 1.511 1.566 3.117 0.835
0.149 0.436 1.566 6.269 -2.640 1.956

-1.381 -0.087 3.117 -2.640 13.845 0.344
-0.074 0.145 0.835 1.956 0.344 0.717

Table A.2: K
γ
1 for γ = A. The ordering of parameters is as in Table A.1.

0.073 -0.081 -0.435 -0.684 0.764 -0.170
-0.081 0.625 0.274 0.373 2.865 0.546
-0.435 0.274 2.659 4.210 -5.986 0.866
-0.684 0.373 4.210 6.671 -9.831 1.324
0.764 2.865 -5.986 -9.831 33.775 0.718

-0.170 0.546 0.866 1.324 0.718 0.632

Table A.3: K
γ
1 for γ = G.
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A.2 Eigenvalues of monomer stiffness blocks K
γ
1

A G Average
1.3e-07 1.4e-07 4.8e-02
1.6e-07 1.8e-07 9.6e-02
5.3e-06 2.0e-06 3.5e-01
1.4e-03 2.0e-04 2.5e+00

7.2e+00 5.9e+00 6.5e+00
1.5e+01 3.9e+01 2.4e+01

Table A.4: Eigenvalues (sorted in increasing order) of monomer stiffness blocks K
γ
1 for the

two independent monomers γ = A and γ = G. The last column contains eigenvalues of the
average block Kh

1 , given in Table A.1.

A.3 Monomer weighted shape vectors σγ1

A G Average
-0.117 0.233 0
0.743 -0.478 0.132
1.287 -3.189 -0.951
0.386 -4.495 0
5.011 -1.963 1.524
0.369 -1.579 -0.605

Table A.5: Monomer weighted shape vectors σγ1 for two independent monomers (γ =
A and γ = G), rounded to three decimal places. The last column is the average vector σh1 ,
computed over all four monomers (A,G,T and C). The ordering of parameters is as in Table
A.2. Zeros in the average column appear due to the palindromic symmetry, i.e. because
σh1 = E1 σ

h
1 , where En is defined in (2.38).
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A.4. DIMER STIFFNESS BLOCKS K
αβ
2

A.4 Dimer stiffness blocks K
αβ
2

8.741 1.058 -0.167 -2.100 -1.162 -0.652 0.660 -3.225 -6.113 -0.233 3.762 -21.366 -7.937 1.756 -0.174 2.346 -0.857 0.600
1.058 2.407 1.395 0.171 -1.828 1.888 -2.550 0.107 -0.130 1.613 0.404 -2.672 -1.756 -0.587 -1.278 0.334 0.863 -1.117

-0.167 1.395 8.489 0.265 -7.039 1.737 -4.237 -0.236 0.514 4.710 -0.963 0.399 0.174 -1.278 -3.555 0.363 1.503 -2.293
-2.100 0.171 0.265 5.839 -0.925 0.218 -1.557 1.543 4.551 0.552 -1.134 5.376 2.346 -0.334 -0.363 -1.309 1.371 -0.855
-1.162 -1.828 -7.039 -0.925 40.386 -2.464 4.012 0.974 2.066 -1.375 -0.822 3.458 0.857 0.863 1.503 -1.371 -2.286 2.196
-0.652 1.888 1.737 0.218 -2.464 19.786 -20.387 1.490 -0.789 5.395 1.597 2.652 -0.600 -1.117 -2.293 0.855 2.196 -13.697
0.660 -2.550 -4.237 -1.557 4.012 -20.387 33.571 0 0 -8.461 0 0 0.660 2.550 4.237 -1.557 -4.012 20.387

-3.225 0.107 -0.236 1.543 0.974 1.490 0 8.191 5.521 0 -1.777 8.762 3.225 0.107 -0.236 -1.543 0.974 1.490
-6.113 -0.130 0.514 4.551 2.066 -0.789 0 5.521 16.653 0 -6.320 9.270 6.113 -0.130 0.514 -4.551 2.066 -0.789
-0.233 1.613 4.710 0.552 -1.375 5.395 -8.461 0 0 7.950 0 0 -0.233 -1.613 -4.710 0.552 1.375 -5.395
3.762 0.404 -0.963 -1.134 -0.822 1.597 0 -1.777 -6.320 0 9.193 -5.460 -3.762 0.404 -0.963 1.134 -0.822 1.597

-21.366 -2.672 0.399 5.376 3.458 2.652 0 8.762 9.270 0 -5.460 75.855 21.366 -2.672 0.399 -5.376 3.458 2.652
-7.937 -1.756 0.174 2.346 0.857 -0.600 0.660 3.225 6.113 -0.233 -3.762 21.366 8.741 -1.058 0.167 -2.100 1.162 0.652
1.756 -0.587 -1.278 -0.334 0.863 -1.117 2.550 0.107 -0.130 -1.613 0.404 -2.672 -1.058 2.407 1.395 -0.171 -1.828 1.888

-0.174 -1.278 -3.555 -0.363 1.503 -2.293 4.237 -0.236 0.514 -4.710 -0.963 0.399 0.167 1.395 8.489 -0.265 -7.039 1.737
2.346 0.334 0.363 -1.309 -1.371 0.855 -1.557 -1.543 -4.551 0.552 1.134 -5.376 -2.100 -0.171 -0.265 5.839 0.925 -0.218

-0.857 0.863 1.503 1.371 -2.286 2.196 -4.012 0.974 2.066 1.375 -0.822 3.458 1.162 -1.828 -7.039 0.925 40.386 -2.464
0.600 -1.117 -2.293 -0.855 2.196 -13.697 20.387 1.490 -0.789 -5.395 1.597 2.652 0.652 1.888 1.737 -0.218 -2.464 19.786

Table A.6: Average dimer (symmetric) stiffness block Kh
2 , computed over all 16 possible dimer

blocks and rounded to three decimal places. The ordering of intra parameters with indices
1, ..., 6 and 13, ..., 18 (entries separated by lines) is as in Table A.2, with inter indices 7, ..., 12
being in order Tilt, Roll, Twist, Shift, Slide, Rise. Zero entries in the central sub-block
corresponding to the couplings of the odd-even parameters (Tilt and Shift are odd and the
rest are even) arise due to the palindromic symmetry, i.e. because Kh

2 = E2 K
h
2 E2, where En is

defined in (2.38). Note that, also due to the palindromic symmetry, the other 6×6 sub-blocks
Kh
2,ij also have symmetry relations, e.g. Kh

2,11 = E1 K
h
2,33 E1 and Kh

2,12 = E1 K
h
2,23 E1.

10.520 1.743 -0.443 -2.030 1.377 -1.868 1.906 -2.578 -5.112 -1.045 3.121 -25.888 -9.510 2.663 0.256 2.080 -0.638 2.155
1.743 2.822 1.315 0.255 -0.870 1.271 -1.797 -0.095 0.598 1.771 0.406 -5.230 -2.663 -0.986 -1.360 -0.234 1.055 -1.615

-0.443 1.315 5.681 0.065 -4.623 1.725 -3.402 -0.227 0.812 5.659 -0.960 0.334 -0.256 -1.360 -4.479 -0.229 1.706 -2.311
-2.030 0.255 0.065 6.718 -2.509 -1.270 -0.287 2.422 6.116 -0.381 -0.903 4.699 2.080 0.234 0.229 -2.411 1.394 0.294
1.377 -0.870 -4.623 -2.509 32.702 -1.653 3.687 0.784 2.426 -0.766 -1.425 3.454 0.638 1.055 1.706 -1.394 -2.913 0.474

-1.868 1.271 1.725 -1.270 -1.653 22.000 -25.443 0.581 -0.514 5.683 2.012 -0.884 -2.155 -1.615 -2.311 -0.294 0.474 -18.369
1.906 -1.797 -3.402 -0.287 3.687 -25.443 40.897 0 0 -7.124 0 0 1.906 1.797 3.402 -0.287 -3.687 25.443

-2.578 -0.095 -0.227 2.422 0.784 0.581 0 9.300 6.713 0 -2.086 6.561 2.578 -0.095 -0.227 -2.422 0.784 0.581
-5.112 0.598 0.812 6.116 2.426 -0.514 0 6.713 21.740 0 -6.556 8.015 5.112 0.598 0.812 -6.116 2.426 -0.514
-1.045 1.771 5.659 -0.381 -0.766 5.683 -7.124 0 0 9.189 0 0 -1.045 -1.771 -5.659 -0.381 0.766 -5.683
3.121 0.406 -0.960 -0.903 -1.425 2.012 0 -2.086 -6.556 0 12.778 -2.652 -3.121 0.406 -0.960 0.903 -1.425 2.012

-25.888 -5.230 0.334 4.699 3.454 -0.884 0 6.561 8.015 0 -2.652 84.384 25.888 -5.230 0.334 -4.699 3.454 -0.884
-9.510 -2.663 -0.256 2.080 0.638 -2.155 1.906 2.578 5.112 -1.045 -3.121 25.888 10.520 -1.743 0.443 -2.030 -1.377 1.868
2.663 -0.986 -1.360 0.234 1.055 -1.615 1.797 -0.095 0.598 -1.771 0.406 -5.230 -1.743 2.822 1.315 -0.255 -0.870 1.271
0.256 -1.360 -4.479 0.229 1.706 -2.311 3.402 -0.227 0.812 -5.659 -0.960 0.334 0.443 1.315 5.681 -0.065 -4.623 1.725
2.080 -0.234 -0.229 -2.411 -1.394 -0.294 -0.287 -2.422 -6.116 -0.381 0.903 -4.699 -2.030 -0.255 -0.065 6.718 2.509 1.270

-0.638 1.055 1.706 1.394 -2.913 0.474 -3.687 0.784 2.426 0.766 -1.425 3.454 -1.377 -0.870 -4.623 2.509 32.702 -1.653
2.155 -1.615 -2.311 0.294 0.474 -18.369 25.443 0.581 -0.514 -5.683 2.012 -0.884 1.868 1.271 1.725 1.270 -1.653 22.000

Table A.7: K
αβ
2 for αβ = AT, rounded to three decimal places. The ordering of parameters is

as in Table A.6. As the step AT is self-symmetric (i.e. the same reading along both strands),
the matrix KAT

2 = E2 K
AT
2 E2 has the same block palindromic symmetries as Kh

2 (see the caption
of Table A.6).
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10.052 1.359 0.535 -1.923 -3.214 -2.031 1.516 -3.763 -6.442 -0.524 3.351 -24.843 -8.809 2.831 0.496 2.906 -1.298 1.810
1.359 2.229 0.550 -0.741 -2.196 2.851 -3.582 -0.689 -0.236 2.004 0.110 -6.032 -2.831 -0.703 -0.920 0.138 0.456 -2.943
0.535 0.550 13.202 0.816 -11.659 -0.076 -3.952 -0.449 -0.193 4.246 -0.346 -0.852 -0.496 -0.920 -3.416 0.205 1.902 -1.987

-1.923 -0.741 0.816 6.102 -4.066 -1.761 -0.283 1.715 4.643 -0.093 -1.218 6.133 2.906 -0.138 -0.205 -1.798 2.188 0.170
-3.214 -2.196 -11.659 -4.066 59.764 1.732 4.063 0.925 3.064 -1.304 -1.035 4.252 1.298 0.456 1.902 -2.188 -3.580 1.723
-2.031 2.851 -0.076 -1.761 1.732 21.569 -22.113 0.497 0.166 4.379 0.454 -2.579 -1.810 -2.943 -1.987 -0.170 1.723 -16.197
1.516 -3.582 -3.952 -0.283 4.063 -22.113 34.772 0 0 -8.033 0 0 1.516 3.582 3.952 -0.283 -4.063 22.113

-3.763 -0.689 -0.449 1.715 0.925 0.497 0 7.057 4.659 0 -0.544 11.491 3.763 -0.689 -0.449 -1.715 0.925 0.497
-6.442 -0.236 -0.193 4.643 3.064 0.166 0 4.659 15.831 0 -5.308 11.672 6.442 -0.236 -0.193 -4.643 3.064 0.166
-0.524 2.004 4.246 -0.093 -1.304 4.379 -8.033 0 0 6.933 0 0 -0.524 -2.004 -4.246 -0.093 1.304 -4.379
3.351 0.110 -0.346 -1.218 -1.035 0.454 0 -0.544 -5.308 0 7.419 -5.145 -3.351 0.110 -0.346 1.218 -1.035 0.454

-24.843 -6.032 -0.852 6.133 4.252 -2.579 0 11.491 11.672 0 -5.145 84.189 24.843 -6.032 -0.852 -6.133 4.252 -2.579
-8.809 -2.831 -0.496 2.906 1.298 -1.810 1.516 3.763 6.442 -0.524 -3.351 24.843 10.052 -1.359 -0.535 -1.923 3.214 2.031
2.831 -0.703 -0.920 -0.138 0.456 -2.943 3.582 -0.689 -0.236 -2.004 0.110 -6.032 -1.359 2.229 0.550 0.741 -2.196 2.851
0.496 -0.920 -3.416 -0.205 1.902 -1.987 3.952 -0.449 -0.193 -4.246 -0.346 -0.852 -0.535 0.550 13.202 -0.816 -11.659 -0.076
2.906 0.138 0.205 -1.798 -2.188 -0.170 -0.283 -1.715 -4.643 -0.093 1.218 -6.133 -1.923 0.741 -0.816 6.102 4.066 1.761

-1.298 0.456 1.902 2.188 -3.580 1.723 -4.063 0.925 3.064 1.304 -1.035 4.252 3.214 -2.196 -11.659 4.066 59.764 1.732
1.810 -2.943 -1.987 0.170 1.723 -16.197 22.113 0.497 0.166 -4.379 0.454 -2.579 2.031 2.851 -0.076 1.761 1.732 21.569

Table A.8: K
αβ
2 for αβ = GC. Because the step GC is self-symmetric, KGC

2 has symmetries
described in the caption of Figure A.6.

6.718 0.360 -0.604 -2.086 -0.324 0.795 -0.447 -2.902 -5.876 0.113 4.218 -16.261 -6.367 0.793 -0.433 2.098 -0.865 0.006
0.360 1.772 1.036 0.969 0.056 1.604 -2.553 0.245 -0.071 1.211 0.291 0.077 -0.793 -0.288 -1.286 0.457 0.630 -0.433

-0.604 1.036 5.000 0.230 -4.318 1.226 -4.586 -0.279 0.726 3.612 -0.927 0.559 0.433 -1.286 -2.769 0.424 1.293 -2.785
-2.086 0.969 0.230 5.180 1.874 2.568 -2.828 0.775 2.945 0.930 -0.620 4.862 2.098 -0.457 -0.424 -0.632 1.181 -1.658
-0.324 0.056 -4.318 1.874 28.974 -0.778 4.205 0.673 0.787 -1.473 -0.588 3.169 0.865 0.630 1.293 -1.181 -1.148 2.714
0.795 1.604 1.226 2.568 -0.778 17.267 -17.254 1.856 -1.741 5.426 2.932 6.800 -0.006 -0.433 -2.785 1.658 2.714 -7.780

-0.447 -2.553 -4.586 -2.828 4.205 -17.254 27.315 0 0 -7.954 0 0 -0.447 2.553 4.586 -2.828 -4.205 17.254
-2.902 0.245 -0.279 0.775 0.673 1.856 0 6.688 5.252 0 -0.757 6.639 2.902 0.245 -0.279 -0.775 0.673 1.856
-5.876 -0.071 0.726 2.945 0.787 -1.741 0 5.252 12.258 0 -5.096 7.347 5.876 -0.071 0.726 -2.945 0.787 -1.741
0.113 1.211 3.612 0.930 -1.473 5.426 -7.954 0 0 5.538 0 0 0.113 -1.211 -3.612 0.930 1.473 -5.426
4.218 0.291 -0.927 -0.620 -0.588 2.932 0 -0.757 -5.096 0 7.220 -5.769 -4.218 0.291 -0.927 0.620 -0.588 2.932

-16.261 0.077 0.559 4.862 3.169 6.800 0 6.639 7.347 0 -5.769 61.877 16.261 0.077 0.559 -4.862 3.169 6.800
-6.367 -0.793 0.433 2.098 0.865 -0.006 -0.447 2.902 5.876 0.113 -4.218 16.261 6.718 -0.360 0.604 -2.086 0.324 -0.795
0.793 -0.288 -1.286 -0.457 0.630 -0.433 2.553 0.245 -0.071 -1.211 0.291 0.077 -0.360 1.772 1.036 -0.969 0.056 1.604

-0.433 -1.286 -2.769 -0.424 1.293 -2.785 4.586 -0.279 0.726 -3.612 -0.927 0.559 0.604 1.036 5.000 -0.230 -4.318 1.226
2.098 0.457 0.424 -0.632 -1.181 1.658 -2.828 -0.775 -2.945 0.930 0.620 -4.862 -2.086 -0.969 -0.230 5.180 -1.874 -2.568

-0.865 0.630 1.293 1.181 -1.148 2.714 -4.205 0.673 0.787 1.473 -0.588 3.169 0.324 0.056 -4.318 -1.874 28.974 -0.778
0.006 -0.433 -2.785 -1.658 2.714 -7.780 17.254 1.856 -1.741 -5.426 2.932 6.800 -0.795 1.604 1.226 -2.568 -0.778 17.267

Table A.9: K
αβ
2 for αβ = TA. Because the step TA is self-symmetric, KTA

2 has symmetries
described in the caption of Figure A.6.

6.914 0.294 -0.540 -2.163 -1.771 0.346 -0.079 -3.049 -6.247 0.088 3.902 -16.803 -6.273 0.589 -0.690 2.306 -0.805 -0.265
0.294 1.983 1.645 0.107 -2.543 2.132 -2.326 1.248 0.135 1.000 0.424 1.554 -0.589 0.102 -1.392 -0.162 0.667 0.639

-0.540 1.645 9.062 -0.391 -8.187 3.245 -4.737 -0.228 1.217 3.619 -1.083 1.180 0.690 -1.392 -2.558 0.145 0.689 -2.046
-2.163 0.107 -0.391 3.910 0.736 1.003 -2.126 1.199 2.863 0.431 -0.673 4.970 2.306 0.162 -0.145 -1.225 1.050 -1.451
-1.771 -2.543 -8.187 0.736 38.062 -4.523 4.034 1.235 0.942 -0.993 0.263 4.074 0.805 0.667 0.689 -1.050 -1.648 3.376
0.346 2.132 3.245 1.003 -4.523 17.530 -16.473 2.813 -1.848 4.564 1.791 8.745 0.265 0.639 -2.046 1.451 3.376 -6.976

-0.079 -2.326 -4.737 -2.126 4.034 -16.473 27.735 0 0 -8.563 0 0 -0.079 2.326 4.737 -2.126 -4.034 16.473
-3.049 1.248 -0.228 1.199 1.235 2.813 0 7.896 4.484 0 -1.191 9.236 3.049 1.248 -0.228 -1.199 1.235 2.813
-6.247 0.135 1.217 2.863 0.942 -1.848 0 4.484 11.701 0 -5.065 7.935 6.247 0.135 1.217 -2.863 0.942 -1.848
0.088 1.000 3.619 0.431 -0.993 4.564 -8.563 0 0 6.134 0 0 0.088 -1.000 -3.619 0.431 0.993 -4.564
3.902 0.424 -1.083 -0.673 0.263 1.791 0 -1.191 -5.065 0 8.035 -6.318 -3.902 0.424 -1.083 0.673 0.263 1.791

-16.803 1.554 1.180 4.970 4.074 8.745 0 9.236 7.935 0 -6.318 68.167 16.803 1.554 1.180 -4.970 4.074 8.745
-6.273 -0.589 0.690 2.306 0.805 0.265 -0.079 3.049 6.247 0.088 -3.902 16.803 6.914 -0.294 0.540 -2.163 1.771 -0.346
0.589 0.102 -1.392 0.162 0.667 0.639 2.326 1.248 0.135 -1.000 0.424 1.554 -0.294 1.983 1.645 -0.107 -2.543 2.132

-0.690 -1.392 -2.558 -0.145 0.689 -2.046 4.737 -0.228 1.217 -3.619 -1.083 1.180 0.540 1.645 9.062 0.391 -8.187 3.245
2.306 -0.162 0.145 -1.225 -1.050 1.451 -2.126 -1.199 -2.863 0.431 0.673 -4.970 -2.163 -0.107 0.391 3.910 -0.736 -1.003

-0.805 0.667 0.689 1.050 -1.648 3.376 -4.034 1.235 0.942 0.993 0.263 4.074 1.771 -2.543 -8.187 -0.736 38.062 -4.523
-0.265 0.639 -2.046 -1.451 3.376 -6.976 16.473 2.813 -1.848 -4.564 1.791 8.745 -0.346 2.132 3.245 -1.003 -4.523 17.530

Table A.10: K
αβ
2 for αβ = CG. Because the step CG is self-symmetric, KCG

2 has symmetries
described in the caption of Figure A.6.
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A.4. DIMER STIFFNESS BLOCKS K
αβ
2

9.783 0.977 -0.545 -1.653 -0.581 -1.574 0.262 -2.725 -5.197 -1.485 3.198 -23.637 -8.885 2.833 0.682 2.020 -1.125 1.352
0.977 2.219 0.717 -0.397 -1.994 2.621 -3.383 -1.427 -0.111 1.709 0.334 -5.224 -2.438 -0.919 -0.994 0.221 0.827 -2.662

-0.545 0.717 13.172 1.005 -13.081 0.192 -3.585 -1.086 -0.717 4.908 -1.158 0.600 0.260 -1.300 -4.002 0.491 1.576 -2.076
-1.653 -0.397 1.005 6.052 -4.505 -1.713 -1.375 1.951 5.449 -0.238 -1.126 5.761 2.441 -0.254 0.309 -1.279 1.598 -0.610
-0.581 -1.994 -13.081 -4.505 54.558 2.047 4.608 1.422 2.784 -1.402 -1.667 2.121 0.408 0.881 1.901 -1.664 -3.164 1.111
-1.574 2.621 0.192 -1.713 2.047 22.209 -23.324 -0.255 0.220 5.653 0.397 -3.764 -2.774 -1.621 -1.904 -0.565 0.486 -17.517
0.262 -3.383 -3.585 -1.375 4.608 -23.324 38.902 0.050 -1.222 -8.205 0.926 2.608 2.743 1.514 3.767 0.101 -4.037 23.995

-2.725 -1.427 -1.086 1.951 1.422 -0.255 0.050 8.459 5.855 -0.660 -0.882 9.231 3.482 0.617 0.255 -2.300 0.644 1.506
-5.197 -0.111 -0.717 5.449 2.784 0.220 -1.222 5.855 19.248 -1.310 -6.108 8.028 5.683 0.087 1.530 -5.148 3.243 -0.157
-1.485 1.709 4.908 -0.238 -1.402 5.653 -8.205 -0.660 -1.310 8.208 -0.428 0.754 0.169 -2.311 -5.372 -0.370 1.057 -5.123
3.198 0.334 -1.158 -1.126 -1.667 0.397 0.926 -0.882 -6.108 -0.428 10.700 -2.891 -3.222 -0.043 -0.376 1.047 -1.582 1.948

-23.637 -5.224 0.600 5.761 2.121 -3.764 2.608 9.231 8.028 0.754 -2.891 82.929 25.570 -4.848 -0.427 -4.512 4.509 0.430
-8.885 -2.438 0.260 2.441 0.408 -2.774 2.743 3.482 5.683 0.169 -3.222 25.570 10.302 -1.895 -0.476 -2.141 0.213 2.070
2.833 -0.919 -1.300 -0.254 0.881 -1.621 1.514 0.617 0.087 -2.311 -0.043 -4.848 -1.895 2.698 1.661 -0.025 -0.654 1.332
0.682 -0.994 -4.002 0.309 1.901 -1.904 3.767 0.255 1.530 -5.372 -0.376 -0.427 -0.476 1.661 5.587 -0.158 -2.830 1.302
2.020 0.221 0.491 -1.279 -1.664 -0.565 0.101 -2.300 -5.148 -0.370 1.047 -4.512 -2.141 -0.025 -0.158 6.330 2.552 1.174

-1.125 0.827 1.576 1.598 -3.164 0.486 -4.037 0.644 3.243 1.057 -1.582 4.509 0.213 -0.654 -2.830 2.552 34.481 -2.112
1.352 -2.662 -2.076 -0.610 1.111 -17.517 23.995 1.506 -0.157 -5.123 1.948 0.430 2.070 1.332 1.302 1.174 -2.112 20.712

Table A.11: K
αβ
2 for αβ = GT. Note that KAC

2 = E2 K
GT
2 E2, where En is defined in (2.38).

6.985 0.234 -0.842 -1.813 -0.233 0.586 -0.695 -3.270 -5.953 -0.085 3.838 -17.279 -6.416 0.419 -0.720 2.229 -0.691 -0.886
0.234 2.131 0.949 0.996 -0.286 1.850 -2.889 0.371 0.083 0.932 0.485 0.658 -0.882 -0.289 -1.404 0.191 0.666 0.173

-0.842 0.949 4.928 0.486 -3.231 1.016 -4.519 -0.207 1.187 3.477 -0.940 0.666 0.665 -1.240 -2.548 0.266 1.088 -2.233
-1.813 0.996 0.486 5.838 2.479 2.534 -3.308 0.312 2.629 2.096 -0.790 4.811 2.012 -0.580 -0.435 0.050 1.189 -1.998
-0.233 -0.286 -3.231 2.479 33.547 -1.534 4.099 1.085 0.405 -0.924 0.382 3.728 0.708 0.820 1.011 -0.739 -1.524 3.481
0.586 1.850 1.016 2.534 -1.534 18.068 -17.525 2.459 -2.260 5.097 1.566 8.567 0.015 0.431 -2.712 1.651 3.592 -7.224

-0.695 -2.889 -4.519 -3.308 4.099 -17.525 28.391 0.425 -0.135 -8.093 0.680 0.446 0.198 2.295 4.908 -2.375 -4.368 16.710
-3.270 0.371 -0.207 0.312 1.085 2.459 0.425 7.847 4.660 -0.269 -0.979 8.444 3.085 1.152 -0.097 -1.291 1.024 2.667
-5.953 0.083 1.187 2.629 0.405 -2.260 -0.135 4.660 11.713 0.488 -4.936 6.991 6.036 -0.094 0.936 -2.704 0.832 -2.139
-0.085 0.932 3.477 2.096 -0.924 5.097 -8.093 -0.269 0.488 6.160 -0.335 0.103 0.362 -1.177 -3.369 0.751 1.406 -4.868
3.838 0.485 -0.940 -0.790 0.382 1.566 0.680 -0.979 -4.936 -0.335 7.922 -5.332 -4.189 0.293 -1.213 0.342 -0.504 3.655

-17.279 0.658 0.666 4.811 3.728 8.567 0.446 8.444 6.991 0.103 -5.332 68.531 17.157 1.567 1.334 -4.983 3.969 9.503
-6.416 -0.882 0.665 2.012 0.708 0.015 0.198 3.085 6.036 0.362 -4.189 17.157 7.060 -0.278 0.471 -2.096 1.882 -0.282
0.419 -0.289 -1.240 -0.580 0.820 0.431 2.295 1.152 -0.094 -1.177 0.293 1.567 -0.278 1.981 1.854 -0.249 -2.728 2.063

-0.720 -1.404 -2.548 -0.435 1.011 -2.712 4.908 -0.097 0.936 -3.369 -1.213 1.334 0.471 1.854 9.074 0.308 -8.014 3.437
2.229 0.191 0.266 0.050 -0.739 1.651 -2.375 -1.291 -2.704 0.751 0.342 -4.983 -2.096 -0.249 0.308 3.945 0.132 -1.256

-0.691 0.666 1.088 1.189 -1.524 3.592 -4.368 1.024 0.832 1.406 -0.504 3.969 1.882 -2.728 -8.014 0.132 33.500 -5.399
-0.886 0.173 -2.233 -1.998 3.481 -7.224 16.710 2.667 -2.139 -4.868 3.655 9.503 -0.282 2.063 3.437 -1.256 -5.399 18.677

Table A.12: K
αβ
2 for αβ = TG. Note that KCC

2 = E2 K
TG
2 E2.

9.059 1.705 0.161 -2.525 0.295 -2.081 4.955 -3.268 -6.050 1.032 3.544 -22.689 -8.563 0.977 -1.140 2.388 -0.460 1.191
1.705 3.025 2.088 0.074 -1.368 1.407 -1.677 1.580 0.238 2.400 -0.394 -4.867 -2.580 -0.479 -2.029 0.248 0.825 -0.079
0.161 2.088 5.619 0.206 -6.410 1.718 -4.102 0.925 1.786 5.722 -1.010 -0.126 -0.250 -0.994 -4.118 0.518 2.344 -1.169

-2.525 0.074 0.206 6.249 -2.558 -1.583 0.226 1.401 5.125 -0.568 -1.765 4.752 2.307 0.155 -0.279 -2.194 1.301 -0.003
0.295 -1.368 -6.410 -2.558 35.258 -3.290 4.231 0.406 2.642 -1.696 -0.516 4.170 1.018 0.926 1.749 -1.928 -2.308 1.822

-2.081 1.407 1.718 -1.583 -3.290 19.598 -22.364 0.492 -1.137 5.558 1.956 -0.307 0.600 -0.609 -2.568 1.627 2.767 -14.246
4.955 -1.677 -4.102 0.226 4.231 -22.364 35.975 0.086 1.182 -8.120 0.676 -7.538 -3.326 2.649 3.859 -3.061 -4.458 19.521

-3.268 1.580 0.925 1.401 0.406 0.492 0.086 8.769 5.575 0.804 -2.802 7.236 2.480 -0.271 -1.070 -1.351 1.875 3.126
-6.050 0.238 1.786 5.125 2.642 -1.137 1.182 5.575 17.600 1.576 -6.279 9.141 5.949 0.102 -0.433 -4.878 1.821 -0.364
1.032 2.400 5.722 -0.568 -1.696 5.558 -8.120 0.804 1.576 8.922 1.080 -3.673 -1.567 -0.826 -5.031 0.437 1.868 -4.463
3.544 -0.394 -1.010 -1.765 -0.516 1.956 0.676 -2.802 -6.279 1.080 9.352 -5.667 -4.332 1.551 -1.303 0.106 -2.472 0.563

-22.689 -4.867 -0.126 4.752 4.170 -0.307 -7.538 7.236 9.141 -3.673 -5.667 74.441 21.562 -0.434 2.009 -5.345 2.450 6.048
-8.563 -2.580 -0.250 2.307 1.018 0.600 -3.326 2.480 5.949 -1.567 -4.332 21.562 9.266 -0.962 1.082 -1.979 1.258 -1.177
0.977 -0.479 -0.994 0.155 0.926 -0.609 2.649 -0.271 0.102 -0.826 1.551 -0.434 -0.962 2.483 2.027 -0.275 -4.287 1.590

-1.140 -2.029 -4.118 -0.279 1.749 -2.568 3.859 -1.070 -0.433 -5.031 -1.303 2.009 1.082 2.027 9.925 0.837 -8.115 3.823
2.388 0.248 0.518 -2.194 -1.928 1.627 -3.061 -1.351 -4.878 0.437 0.106 -5.345 -1.979 -0.275 0.837 5.617 -1.487 -1.533

-0.460 0.825 2.344 1.301 -2.308 2.767 -4.458 1.875 1.821 1.868 -2.472 2.450 1.258 -4.287 -8.115 -1.487 38.052 -5.626
1.191 -0.079 -1.169 -0.003 1.822 -14.246 19.521 3.126 -0.364 -4.463 0.563 6.048 -1.177 1.590 3.823 -1.533 -5.626 18.558

Table A.13: K
αβ
2 for αβ = AG. Note that KCT

2 = E2 K
AG
2 E2.
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APPENDIX A. A PARAMETER SET FOR THE NEAREST-NEIGHBOUR MODEL OF
DNA

8.521 1.370 0.737 -2.056 -3.340 -1.726 2.603 -3.403 -7.034 0.269 3.621 -20.142 -7.687 1.528 0.177 2.578 -1.272 0.775
1.370 2.338 1.354 -0.381 -2.409 2.299 -2.752 -0.825 -0.470 2.115 -0.268 -6.682 -2.200 -0.712 -1.168 0.924 0.904 -2.383
0.737 1.354 12.800 0.639 -11.114 1.048 -4.621 0.721 -1.028 5.121 -0.739 0.102 0.013 -0.916 -3.716 1.244 1.520 -2.444

-2.056 -0.381 0.639 5.383 -3.338 -1.298 -0.287 2.358 4.907 -0.044 -1.990 6.591 2.606 -0.309 -0.267 -1.950 1.327 0.744
-3.340 -2.409 -11.114 -3.338 53.597 -1.491 2.352 0.332 2.933 -1.354 0.058 1.955 0.404 0.922 1.502 -1.822 -2.241 1.452
-1.726 2.299 1.048 -1.298 -1.491 20.988 -19.296 -0.976 0.317 6.477 1.336 -6.922 -0.194 -1.875 -2.382 1.971 2.086 -15.182
2.603 -2.752 -4.621 -0.287 2.352 -19.296 31.288 -0.145 -0.595 -9.507 1.050 -2.902 -1.960 2.698 4.401 -2.539 -4.246 19.610

-3.403 -0.825 0.721 2.358 0.332 -0.976 -0.145 8.029 5.903 0.108 -2.272 9.485 3.474 -0.401 -1.132 -1.225 0.972 3.151
-7.034 -0.470 -1.028 4.907 2.933 0.317 -0.595 5.903 17.338 -0.986 -7.190 10.896 6.416 -0.992 0.492 -5.135 1.881 -0.385
0.269 2.115 5.121 -0.044 -1.354 6.477 -9.507 0.108 -0.986 8.435 0.968 -1.994 -0.457 -1.196 -4.714 2.115 1.184 -6.285
3.621 -0.268 -0.739 -1.990 0.058 1.336 1.050 -2.272 -7.190 0.968 8.642 -6.784 -4.239 0.998 -0.609 1.175 -1.130 1.527

-20.142 -6.682 0.102 6.591 1.955 -6.922 -2.902 9.485 10.896 -1.994 -6.784 75.542 20.964 -0.669 -0.199 -5.761 3.136 7.243
-7.687 -2.200 0.013 2.606 0.404 -0.194 -1.960 3.474 6.416 -0.457 -4.239 20.964 8.365 -0.670 0.209 -2.356 0.496 -0.807
1.528 -0.712 -0.916 -0.309 0.922 -1.875 2.698 -0.401 -0.992 -1.196 0.998 -0.669 -0.670 2.386 0.936 -0.688 -0.734 1.434
0.177 -1.168 -3.716 -0.267 1.502 -2.382 4.401 -1.132 0.492 -4.714 -0.609 -0.199 0.209 0.936 5.416 -0.634 -2.160 1.558
2.578 0.924 1.244 -1.950 -1.822 1.971 -2.539 -1.225 -5.135 2.115 1.175 -5.761 -2.356 -0.688 -0.634 6.695 -2.086 -2.682

-1.272 0.904 1.520 1.327 -2.241 2.086 -4.246 0.972 1.881 1.184 -1.130 3.136 0.496 -0.734 -2.160 -2.086 32.254 -0.861
0.775 -2.383 -2.444 0.744 1.452 -15.182 19.610 3.151 -0.385 -6.285 1.527 7.243 -0.807 1.434 1.558 -2.682 -0.861 18.859

Table A.14: K
αβ
2 for αβ = GA. Note that KTC

2 = E2 K
GA
2 E2.

9.426 1.792 0.362 -2.812 0.277 -2.165 5.066 -3.998 -6.572 0.430 3.033 -23.381 -8.755 1.459 0.071 2.279 -1.140 1.219
1.792 3.045 2.175 0.122 -1.501 1.355 -1.736 1.076 -0.013 3.145 -0.336 -5.493 -2.464 -0.854 -1.679 1.134 0.998 -0.909
0.362 2.175 6.043 0.359 -4.996 1.472 -3.937 0.607 2.040 5.962 -1.613 -0.498 -0.185 -1.180 -3.667 0.621 1.526 -2.425

-2.812 0.122 0.359 6.720 -2.394 -1.216 -0.130 2.376 5.763 0.431 -2.331 6.158 2.493 -0.257 -0.404 -1.045 1.035 0.324
0.277 -1.501 -4.996 -2.394 35.605 -5.447 1.984 0.824 2.730 -0.706 1.077 4.264 1.063 1.186 0.560 -1.500 -2.067 1.198

-2.165 1.355 1.472 -1.216 -5.447 20.213 -21.645 0.510 -0.999 5.912 3.259 -2.126 1.109 -1.342 -2.247 1.941 2.639 -15.695
5.066 -1.736 -3.937 -0.130 1.984 -21.645 35.555 -0.831 0.299 -8.676 0.284 -7.934 -4.080 3.313 3.155 -2.945 -4.069 20.934

-3.998 1.076 0.607 2.376 0.824 0.510 -0.831 9.201 6.535 0.914 -3.027 8.554 3.218 -1.010 -1.498 -0.995 1.572 2.281
-6.572 -0.013 2.040 5.763 2.730 -0.999 0.299 6.535 19.981 1.538 -7.990 10.825 6.443 -0.345 -0.931 -5.354 2.016 -0.608
0.430 3.145 5.962 0.431 -0.706 5.912 -8.676 0.914 1.538 10.681 1.283 -2.390 -0.911 -1.256 -4.962 1.458 1.396 -6.071
3.033 -0.336 -1.613 -2.331 1.077 3.259 0.284 -3.027 -7.990 1.283 11.304 -5.841 -3.986 1.760 -1.492 0.656 -1.185 0.802

-23.381 -5.493 -0.498 6.158 4.264 -2.126 -7.934 8.554 10.825 -2.390 -5.841 78.231 22.137 -1.305 -0.145 -5.659 2.870 5.943
-8.755 -2.464 -0.185 2.493 1.063 1.109 -4.080 3.218 6.443 -0.911 -3.986 22.137 9.246 -0.945 0.509 -2.130 0.073 -1.710
1.459 -0.854 -1.180 -0.257 1.186 -1.342 3.313 -1.010 -0.345 -1.256 1.760 -1.305 -0.945 2.796 0.616 -1.184 -0.727 1.676
0.071 -1.679 -3.667 -0.404 0.560 -2.247 3.155 -1.498 -0.931 -4.962 -1.492 -0.145 0.509 0.616 6.049 0.272 -3.646 0.733
2.279 1.134 0.621 -1.045 -1.500 1.941 -2.945 -0.995 -5.354 1.458 0.656 -5.659 -2.130 -1.184 0.272 7.824 -2.589 -2.813

-1.140 0.998 1.526 1.035 -2.067 2.639 -4.069 1.572 2.016 1.396 -1.185 2.870 0.073 -0.727 -3.646 -2.589 37.188 -0.498
1.219 -0.909 -2.425 0.324 1.198 -15.695 20.934 2.281 -0.608 -6.071 0.802 5.943 -1.710 1.676 0.733 -2.813 -0.498 19.752

Table A.15: K
αβ
2 for αβ = AA Note that KTT

2 = E2 K
AA
2 E2.

8.616 1.508 0.583 -1.459 -4.329 -2.259 2.958 -3.445 -6.346 0.221 3.825 -21.345 -7.709 0.967 -0.631 2.350 -1.156 0.182
1.508 2.255 0.893 -0.478 -2.801 2.315 -3.144 -0.371 -0.461 1.644 -0.227 -6.095 -2.476 -0.507 -1.391 0.734 0.833 -1.789
0.583 0.893 13.938 1.354 -13.701 0.496 -5.381 0.507 0.113 5.261 -0.953 0.454 0.349 -1.200 -3.779 1.226 1.748 -2.612

-1.459 -0.478 1.354 5.214 -4.756 -1.325 -1.071 1.384 4.476 0.553 -2.322 5.391 2.440 -0.451 0.184 -1.020 0.410 -1.106
-4.329 -2.801 -13.701 -4.756 60.874 0.187 4.433 0.874 2.727 -2.403 -0.865 3.900 0.663 1.220 1.938 -1.615 -2.335 3.124
-2.259 2.315 0.496 -1.325 0.187 20.776 -20.799 -0.642 -0.628 5.791 0.170 -3.433 -0.820 -0.859 -2.794 1.755 3.082 -15.050
2.958 -3.144 -5.381 -1.071 4.433 -20.799 33.102 0.413 -0.498 -9.253 1.585 -3.021 -1.054 2.491 4.885 -2.621 -5.325 19.180

-3.445 -0.371 0.507 1.384 0.874 -0.642 0.413 7.749 5.086 -0.070 -1.967 10.182 3.459 0.505 -0.524 -1.636 0.930 3.770
-6.346 -0.461 0.113 4.476 2.727 -0.628 -0.498 5.086 16.578 0.153 -7.045 10.796 6.451 -0.524 0.690 -4.676 1.819 -0.544
0.221 1.644 5.261 0.553 -2.403 5.791 -9.253 -0.070 0.153 7.296 0.508 -1.599 -0.343 -1.117 -4.326 1.325 2.064 -4.972
3.825 -0.227 -0.953 -2.322 -0.865 0.170 1.585 -1.967 -7.045 0.508 7.894 -7.222 -4.573 1.076 -0.680 1.078 -1.964 1.174

-21.345 -6.095 0.454 5.391 3.900 -3.433 -3.021 10.182 10.796 -1.599 -7.222 77.859 22.204 0.277 1.387 -5.620 3.300 9.164
-7.709 -2.476 0.349 2.440 0.663 -0.820 -1.054 3.459 6.451 -0.343 -4.573 22.204 9.018 -0.839 0.276 -2.373 2.827 0.363
0.967 -0.507 -1.200 -0.451 1.220 -0.859 2.491 0.505 -0.524 -1.117 1.076 0.277 -0.839 2.354 2.508 0.213 -4.212 2.401

-0.631 -1.391 -3.779 0.184 1.938 -2.794 4.885 -0.524 0.690 -4.326 -0.680 1.387 0.276 2.508 10.336 -0.089 -6.545 4.867
2.350 0.734 1.226 -1.020 -1.615 1.755 -2.621 -1.636 -4.676 1.325 1.078 -5.620 -2.373 0.213 -0.089 5.642 -0.753 -0.432

-1.156 0.833 1.748 0.410 -2.335 3.082 -5.325 0.930 1.819 2.064 -1.964 3.300 2.827 -4.212 -6.545 -0.753 37.765 -10.180
0.182 -1.789 -2.612 -1.106 3.124 -15.050 19.180 3.770 -0.544 -4.972 1.174 9.164 0.363 2.401 4.867 -0.432 -10.180 19.808

Table A.16: K
αβ
2 for αβ = GG. Note that KCC

2 = E2 K
GG
2 E2.
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A.5. EIGENVALUES OF DIMER STIFFNESS BLOCKS K
αβ
2

A.5 Eigenvalues of dimer stiffness blocks K
αβ
2

AT GC TA CG GT TG AG GA AA GG Average
6.8e-06 6.3e-02 2.0e-06 6.9e-04 2.1e-02 3.2e-02 9.2e-08 8.5e-08 6.6e-02 1.9e-05 4.9e-01
1.0e-01 1.1e-01 3.6e-04 3.1e-01 4.0e-01 3.1e-01 8.0e-04 5.0e-01 5.3e-01 5.5e-04 6.4e-01
6.7e-01 1.2e+00 3.3e-01 5.8e-01 9.1e-01 6.9e-01 3.8e-01 9.8e-01 7.0e-01 7.1e-01 2.0e+00

1.0e+00 1.5e+00 7.7e-01 1.0e+00 1.3e+00 9.2e-01 1.1e+00 1.4e+00 1.1e+00 1.6e+00 2.3e+00
1.5e+00 2.6e+00 1.1e+00 1.6e+00 1.7e+00 1.2e+00 1.4e+00 2.1e+00 1.8e+00 2.0e+00 2.4e+00
2.7e+00 2.8e+00 1.2e+00 2.0e+00 2.1e+00 1.4e+00 1.8e+00 2.4e+00 2.1e+00 2.2e+00 3.1e+00
3.1e+00 3.8e+00 1.7e+00 2.2e+00 3.1e+00 2.2e+00 2.3e+00 2.6e+00 2.3e+00 3.3e+00 3.3e+00
3.3e+00 3.9e+00 2.4e+00 2.6e+00 4.5e+00 2.8e+00 2.9e+00 3.3e+00 2.9e+00 3.4e+00 3.8e+00
4.9e+00 5.8e+00 2.4e+00 3.1e+00 5.2e+00 3.6e+00 4.7e+00 4.3e+00 4.8e+00 4.9e+00 4.0e+00
5.5e+00 5.9e+00 4.0e+00 4.4e+00 5.9e+00 4.7e+00 4.8e+00 5.7e+00 5.4e+00 5.1e+00 5.2e+00
6.7e+00 6.7e+00 4.8e+00 5.8e+00 7.4e+00 5.5e+00 8.3e+00 6.0e+00 8.0e+00 7.4e+00 6.3e+00
1.2e+01 8.9e+00 8.2e+00 1.0e+01 9.7e+00 9.6e+00 9.3e+00 8.6e+00 1.1e+01 8.1e+00 9.7e+00
1.5e+01 1.5e+01 1.0e+01 1.0e+01 1.5e+01 1.0e+01 1.5e+01 1.4e+01 1.6e+01 1.5e+01 1.3e+01
2.8e+01 1.9e+01 2.1e+01 2.1e+01 2.5e+01 2.2e+01 2.3e+01 2.2e+01 2.7e+01 2.1e+01 2.2e+01
3.2e+01 5.8e+01 2.8e+01 3.5e+01 3.4e+01 3.2e+01 3.5e+01 3.2e+01 3.5e+01 3.6e+01 3.9e+01
3.7e+01 6.4e+01 2.9e+01 3.8e+01 5.9e+01 3.3e+01 4.0e+01 5.5e+01 3.9e+01 6.1e+01 4.1e+01
8.1e+01 7.5e+01 5.8e+01 6.1e+01 7.7e+01 6.1e+01 7.2e+01 6.9e+01 7.2e+01 7.6e+01 7.0e+01
1.1e+02 1.1e+02 7.7e+01 8.5e+01 1.0e+02 8.5e+01 9.6e+01 9.7e+01 1.0e+02 1.0e+02 9.5e+01

Table A.17: Eigenvalues (sorted in increasing order) of dimer stiffness blocks K
αβ
2 for ten

independent dimers αβ . The last column contains eigenvalues of the average block Kh
2 , given

in Table A.6.

A.6 Dimer weighted shape vectors σαβ2

AT GC TA CG GT TG AG GA AA GG Average
-109.629 -108.010 -73.962 -77.076 -101.586 -77.696 -99.122 -93.619 -103.117 -94.929 -94.742

-19.496 -21.077 -1.102 3.946 -18.457 1.326 -18.316 -24.267 -21.710 -21.254 -11.486
4.012 -0.363 4.450 8.058 3.569 6.704 4.779 -0.546 4.111 6.342 4.052

33.137 38.560 23.717 23.551 38.916 22.757 32.156 42.193 40.010 36.782 32.385
17.659 27.485 10.236 18.249 18.848 11.267 18.512 17.626 18.986 22.763 18.229
-5.459 -6.034 17.306 24.334 -11.855 22.175 -4.152 -23.112 -12.499 -13.833 6.284

0 0 0 0 9.870 0.964 -27.386 -12.138 -30.365 -12.586 0
42.260 53.883 41.794 48.633 49.147 46.916 43.349 53.753 50.316 53.267 48.754
92.184 90.369 64.334 63.916 87.248 61.057 86.802 96.564 102.454 92.196 85.215

0 0 0 0 -1.774 2.825 -9.577 -12.534 -7.061 -5.949 0
-39.106 -36.725 -36.787 -37.628 -34.545 -35.089 -45.253 -49.498 -52.574 -52.023 -43.013
320.593 329.521 230.517 253.891 313.598 252.000 288.089 297.558 305.582 304.792 291.110
109.629 108.010 73.962 77.076 108.172 78.118 97.065 94.368 100.052 99.356 94.742
-19.496 -21.077 -1.102 3.946 -18.421 3.356 -6.017 -8.144 -9.985 -4.160 -11.486

4.012 -0.363 4.450 8.058 3.200 7.391 6.382 1.561 -1.132 6.310 4.052
-33.137 -38.560 -23.717 -23.551 -31.357 -22.939 -29.868 -35.422 -34.069 -32.731 -32.385
17.659 27.485 10.236 18.249 22.688 17.912 18.957 15.581 13.747 21.156 18.229
-5.459 -6.034 17.306 24.334 2.272 24.787 17.216 24.806 15.982 28.608 6.284

Table A.18: Dimer weighted shape vectors σαβ2 for ten independent dimers, rounded to three
decimal places. The last column is the average vector σh2 , computed over all 16 different
dimers. The ordering of parameters is as in Table A.7. Zeros in the first four columns and
in the average column appear due to the palindromic symmetry, i.e. because σαβ2 = E2 σ

αβ
2

for αβ ∈ {AT,GC,TA,CG} and σh2 = E2 σ
h
2 , where En is defined in (2.38). Note that σαβ2 for

αβ ∈ {AC,CA,CT,TC,TT,CC} can be found using the identity σαβ2 = E2 σ
βα
2 , where X is a

complementary base to X.
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Appendix B

Plots of sequence averaged
nearest-neighbour stiffness blocks

Here we present plots of averages and standard deviations of nearest-neighbour stiffness ma-
trix blocks, that are assumed to depend on a dimer (Figure B.3) and on a trimer (Figures B.4
and B.5). See discussion in Section 7.3. The positions of dimer and trimer dependent blocks
in a matrix are shown in Figures B.1 and B.2. Plots of averaged weighted shape vector ele-
ments, although ordered by parameter name, can be found in Section 7.3 of Chapter 7. We
conclude that our model assumptions are compatible with the MD data.

Figure B.1: The structure of a nearest-neighbour stiffness matrix K and a weighted shape
vector σ. Elements coloured in blue are assumed to have a dimer dependence.

Figure B.2: The structure of a nearest-neighbour stiffness matrix K and a weighted shape
vector σ. Elements coloured in red (intra base pair variables) are assumed to have a trimer
dependence.
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APPENDIX B. PLOTS OF SEQUENCE AVERAGED NEAREST-NEIGHBOUR
STIFFNESS BLOCKS

B.1 Dimer averages of the nearest-neighbour stiffness matrix
blocks with an assumed dimer dependence

6 12

6

12

∆AT

−10

0

10

6 12

6

12

AT std (n=74)

−5

0

5

6 12

6

12

∆TA

−10

0

10

6 12

6

12

TA std (n=74)

−5

0

5

6 12

6

12

∆GC

−10

0

10

6 12

6

12

GC std (n=76)

−5

0

5

6 12

6

12

∆CG

−10

0

10

6 12

6

12

CG std (n=70)

−5

0

5

6 12

6

12

∆GT

−10

0

10

6 12

6

12

GT std (n=61)

−5

0

5

6 12

6

12

∆TG

−10

0

10

6 12

6

12

TG std (n=57)

−5

0

5

6 12

6

12

∆AG

−10

0

10

6 12

6

12

AG std (n=58)

−5

0

5

6 12

6

12

∆GA

−10

0

10

6 12

6

12

GA std (n=61)

−5

0

5

6 12

6

12

∆AA

−10

0

10

6 12

6

12

AA std (n=62)

−5

0

5

6 12

6

12

∆GG

−10

0

10

6 12

6

12

GG std (n=61)

−5

0

5

6 12

6

12

All 16 dimer av.

−50

0

50

6 12

6

12

All std (n=1014)

−5

0

5

Figure B.3: Centred averages and standard deviations of the nearest-neighbour stiffness
blocks with an assumed dimer dependence, computed over all instances of each independent
dimer on both strands of all ABC oligomers. The dimers in each plot are ordered in three
groups: RY (blue titles), YR (red titles) and RR (magenta titles), where R denotes a purine and
Y a pyrimidine. The last two plots on the bottom right are averages and standard deviations,
computed over all instances of all 16 dimers. Centred averages mean that averages over
all dimers were subtracted from averages over a particular dimer. One can notice that the
observed stiffness parameters does depend on a sequence. The standard deviations within
the dimer groups are smaller than the total standard deviation, indicating that considering
a dimer sequence dependence of these stiffnesses seems a reasonable choice.
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B.2. TRIMER AVERAGES OF THE DIAGONAL INTRA BASE PAIR STIFFNESS
MATRIX BLOCKS

B.2 Trimer averages of the diagonal intra base pair stiffness
matrix blocks
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Figure B.4: Intra base pair stiffness block centred averages and standard deviations, computed
over all instances of each independent trimer XAZ, where X,Z ∈ {A,G,C,T}, on both strands
of all ABC oligomers. The trimers in each plot are ordered in groups of four: RRY (blue
titles), YRR (red titles), RRR (magenta titles) and YRY (cyan titles), where R denotes a purine
and Y a pyrimidine. The last two plots on the bottom right are averages and standard
deviations, computed over all instances of all XAZ trimers. Centred averages mean that
averages over all trimers were subtracted from averages over a particular trimer. Notice
that the average stiffness values for XAZ trimers are very different from the ones for XGZ
trimers, shown in Figure B.5. Even though there is still some variation within each of the
32 independent trimer groups, considering a trimer dependence of these stiffness parameters
seems a reasonable choice.
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APPENDIX B. PLOTS OF SEQUENCE AVERAGED NEAREST-NEIGHBOUR
STIFFNESS BLOCKS
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Figure B.5: Intra base pair stiffness block centred averages and standard deviations, computed
over all instances of each independent trimer XGZ, where X,Z ∈ {A,G,C,T}, on both strands of
all ABC oligomers. The trimers in each plot are ordered in groups of four: RRY (blue titles),
YRR (red titles), RRR (magenta titles) and YRY (cyan titles), where R denotes a purine and Y
a pyrimidine. The last two plots on the bottom right are averages and standard deviations,
computed over all instances of all XGZ trimers. Centred averages mean that averages over
all trimers were subtracted from averages over a particular trimer. Also see the caption of
Figure B.4.
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