
Runtime 3-D Stacked Cache Management

for Chip-Multiprocessors

Jongpil Jung

Dept. of EE, KAIST

Daejeon, Korea

jpjung08@vslab.kaist.ac.kr

Kyungsu Kang

Dept. of EE, EPFL

Lausanne, Switzerland

kyungsu.kang@epfl.ch

Giovanni De Micheli

Dept. of EE, EPFL

Lausanne, Switzerland

giovanni.demicheli@epfl.ch

Chong-Min Kyung

Dept. of EE, KAIST

Daejeon, Korea

kyung@ee.kaist.ac.kr

Abstract— These-dimensional (3-D) memory stacking is one of

the most promising solutions to memory bandwidth problems in

chip multiprocessors. In this work, we propose an efficient

runtime 3-D cache management technique which takes

advantage of the lower latencies through vertical interconnect as

well as the runtime memory demand of applications which

varies dynamically with time. Experimental results show that

the proposed method offers performance improvement by up to

26.7% and on average 13.1% compared with the private cache

organization.

I. INTRODUCTION

Chip-multiprocessors (CMPs) are quickly becoming a
mainstream microprocessor as they overcome limitations of
modern super-scalar uniprocessor by exploiting thread-level
parallelism among multiple cores [1]. In the meantime, as the
number of cores integrated in a chip increases, the on-chip
interconnects that exchange data between caches and cores are
to be longer and, thus, represent a major bottleneck with
regard to both power and performance. Various technologies
have been explored to address the interconnect problem such
as the use of non-uniform cache architecture (NUCA) [2]
and/or that of three-dimensional (3-D) memory stacking.

In the recent years, 3-D memory stacking has received a
great attention since it resolves the memory bandwidth
challenges of 2-D integration by stacking cache memory onto
a multiprocessor die using very dense through-silicon vias
(TSVs) [3][4]. Fig. 1 shows a high-level view of a 3-D CMP

and its vertically stacked cache. Each processor core has fast
and large-bandwidth access to the cache banks directly
stacked on it (i.e., local cache banks) though TSVs. The
processor core can also address cache banks stacked on the
other processors (i.e., remote cache banks), but corresponding
memory transaction will have to be transported through a
horizontal on-chip interconnect fabric, i.e., crossbar switch [5].
Such communication though a crossbar switch makes remote
cache bank access even longer than local cache bank access
because of the non-negligible latency caused by protocol
translation and limited bandwidth in the crossbar switch.

Proposals for the stacked cache memory hierarchy of 3-D
CMPs have borrowed from the memory hierarchies of
traditional multiprocessors. I.e., the stacked cache can be
either private or shared. A shared cache organization is
preferable if reducing the collective number of cache misses
(i.e., off-chip memory accesses) is important, whereas an
organization by using local cache banks as private caches of
each core is preferable if reducing the average cache access
latency, which might be longer due to remote cache accesses,
is important. The main contribution of this paper is the
development of an optimization method specialized 3-D CMP
that achieves the benefits of both private and shared cache
design. Using shared cache organization as the basic design
point, cache bank partitioning [6] based on application's utility
for the cache resource (e.g., the amount of cache misses with
respect to the assigned cache capacity) is performed to reduce
the collective number of cache misses. In order to reduce
remote cache accesses for each core, power-gating of remote
cache banks is performed based on memory access behavior
of applications which dynamically changes at runtime. We
demonstrated that such an online power-gating method gives
both the capacity of shared cache and the latency of private
cache in Section V.

II. MOTIVATION

Fig. 2 (a) shows a 3-D CMP consisting of two cores each
of which has four stacked L2 cache banks on it and connects
them through TSVs. Let us assume that capacity of each cache
bank is 256KB and the cores are located next to the heat sink
since cores are major heat sources. We assume that art and
gzip, which are benchmarks in SPEC2000 [7], are assigned to

Figure 1. Target architecture of a 3-D CMP and its vertically stacked cache

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147992176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cores 1 and 2, respectively. Cache misses per instructions with
respect to the assigned cache capacity are shown in Fig. 3.

Table I shows performance results of three different cache
management policies, i.e., private cache (PRIVATE), shared
cache with cache bank partitioning (CBP), and shared cache
with cache bank partitioning and power gating (CBP&PG). In
Table I, the first and second columns show the number of
cache misses per instruction and the average cache access
latency during application execution. In order to evaluate the
system performance, we use the fair speedup (FS) as the
metric in (1). FS is the harmonic mean of normalized
instructions per cycle (IPC). M is the number of cores.

 (∑

) (1)

In case of PRIVATE, the cache banks stacked on each core
are used as a private cache for each core. This cache
management gives the lowest value in average cache access
latency because there is no remote cache banks accesses
through a crossbar switch as shown in Table I. However, due
to inefficient use of the cache capacity (i.e., the same amount
of assigned capacity to each core without considering
application’s utility for the cache resource), such a design
result in many off-chip memory accesses, which sharply
degrades the system performance.

In case of CBP, the size of cache capacity (i.e., the number
of cache banks) for each core is determined based on the
cache utility shown in Fig. 3 so that the number of cache
misses is minimized. The result of cache partition is shown in
Fig. 2 (b). Core 1 (art) and core 2 (gzip) have 6 and 2 cache
banks, respectively. The change of cache capacity assigned to
each core can be adapted by increasing or decreasing the

number of ways per cache set but keeping the number of
cache sets fixed. Obviously, the potential benefit of CBP is
exploiting the cache-size sensitivity of the applications that are
to be run. However, this approach makes the average cache
access latency longer than that of PRIVATE because of the
overhead for looking up all the banks assigned to each core,
which might include remote cache banks accesses (caused
from core 1 in the motivational example).

The basic idea of our method is exploiting runtime
behavior of memory accesses which dynamically changes at
runtime. Fig. 4 shows the average memory access latency of
core 1 (art) with respect to the process time interval when the
assigned cache capacity to core 1 is 1MB (i.e., four cache
banks). Note that the large amount of cache capacity is not
needed all the time during the application execution. By
power-gating the remote cache banks assigned to core 1, when
being unnecessary during application execution, CBP&PG
reduces the number of remote cache bank accesses. As shown
in Table I, the average cache access latency of CBP&PG is
very close to that of PRIVATE while the number of cache
misses is almost same as that of CBP. Thanks to the runtime
cache management, CBP&PG gives 32% and 17%
performance improvement in terms of fair speedup compared
with PRIVATE and CBP, respective.

III. PROBLEM DEFINITION AND SOLUTION OVERVIEW

Our paper focuses on a 3-D CMP where last-level cache
memory is stacked as shown in Fig. 1. In the system, cache
bank partitioning and per-bank power-gating are dynamically
performed at runtime. We assume that the utility of
applications for cache resource is given by a static analysis.
Our problem is to find: 1) the number of cache banks assigned
to each core and 2) power-gating schedule of remote cache
banks of each core such that the instruction throughput of the
system is maximized. Instruction throughput of a multi-core
system is defined as the total number of instructions executed
by all the cores per cycle.

Figure 2. (a) A motivational example of 3-D CMP, (b) The results of cache

bank partitioning

Figure 3. Cache misses per instruction for gzip and art with respect to the

assigned cache capacity

TABLE I. RESULTS OF THE MOTIVATIONAL EXAMPLE

Method
Cache misses rate

(#miss/ #instruction)

Avg. cache access

latency (cycle)

Fair.

Speedup

PRIVATE 0.1127 4.0 1.00

CBP 0.0508 6.0 1.12

CBP&PG 0.0777 4.9 1.32

Figure 4. Average memory access latency of art benchmark with respect to

the progress time interval when the assigned cache capacity is 1MB

Fig. 5 shows the overall flow of the proposed method. Line
2 – 4 present cache bank partitioning which is invoked at the
start/end of applications running on cores. Line 5 – 8 present
online power-gating of remote cache banks which is invoked
at every 1ms. Runtime application profiling and estimation
step (line 6) measures runtime information (e.g., the number
of cache misses) of application running on each core, updates
the historical runtime information, and estimates the runtime
information for the next time interval of application execution.
Based on the estimated runtime information, the proposed
algorithm determine whether performing power-gating of
remote cache banks or not.

IV. RUNTIME CACHE MANAGEMENT ALGORITHM

A. Cache Bank Partitioning

As shown in Fig. 3, the number of cache misses is
presented as a discontinuous function with respect to the
assigned cache capacity. That means an exhaust search is
necessary to find performance-maximal cache bank
partitioning which minimizes the total number of cache misses.
However this function is also presented as a non-increasing
function. Thus, dynamic programming algorithm can be
adapted by repeating de-allocation of one cache bank at each
algorithm step such that the increased number of cache miss
ratio at each algorithm step is minimized. Fig. 6 shows the
dynamic programming algorithm. The de-allocation step (line
6 – 11) is repeated until the total number of cache banks
assigned to cores is equal to the maximum allowable number
of cache banks (i.e., M ∙ B).

B. Decision of Power-gating of Remote Cache Banks

As shown in Fig. 4, memory access demand of an
application shows some runtime phases with respect to time
intervals. That means the cache capacity needed to cores also
varies with time. Thus, during program execution, when the
needed cache capacity to a core is low, power-gating of the
remote cache banks reduces the average cache access time by
not accessing the remote cache banks though the crossbar
switch. In order to determine cores whose remote cache banks
are power gated or turned on, the runtime algorithm shown in
Fig. 7 is invoked at every time interval.

For power-gating of remote cache banks of each core, the
memory access penalty is estimated (line 9 – 10). Thus, if the
gain resulting from power-gating is more than the given
threshold, the remote cache banks are power-gated (line 11 –
13). The method for estimating the number of cache misses
(line 7) as a result of power-gating of the remote cache banks
is derived from Suh et al. [8] and works as follows. If there is

a hit in each cache bank for the requesting core, a counter is
increased for that core. This counter represents the number of
cache misses that would have occurred if the cache bank is
power gated. For turning on remote cache banks of each core,
the number of stall cycles is measured at every time interval.
Thus, if there is huge change in the number of stall cycles
from core i which is performing power-gating of remote cache
banks, the remote cache banks are turned on (line 19 – 21).

In order to follow the runtime phases of application
memory demand and avoid unnecessary power-gating, time-
invariant moving average (MA) filter [9] is used. When the
window size is W and the n

th
 value is v[n], n+1th value is to be

1W

0i
]in[v)W/1(]1n[v . To measure the number of

cache hits and misses, hardware performance counters are
adopted as they are provided in most modern processors. The
delay overhead of accessing the performance counters is
assumed as negligible.

Figure 6. Dynamic programing algorithm for cache bank partitioning

Figure 7. Runtime algorithm for power-gating of remote cache banks

Figure 5. Overall algorithm flow of the proposed method

V. EXPERIMENTAL RESULT

A. Setup

We performed experiments using a 3-D multi-core system
consisting of four cores in a layer and a stacked cache layer as
shown in Fig. 1. A core studied in our experiments is based on
the architecture of an Intel Core 2 Duo Merom processor [10]
which is manufactured using 65nm technology. Each core has
32KB L1 instruction and data cache. The number of L2 cache
banks directly stacked on a core is four for each cache layer.
Capacity of each cache bank is 256KB which is computed
with CACTI [11] for 65nm technology. For the fast
performance simulation, modified tsim [12] is used which is a
trace-driven multi-processor simulator. Our experiment was
performed with SPEC2000 [7], and BioBench. Benchmark
programs are divided into two groups: computation-bounded
benchmarks and memory-bounded benchmarks as shown in
Table II. Based on the memory demand intensity, three
combinations of benchmarks are made: computation bound
benchmarks (CB), memory bound benchmarks (MB), and
mixed benchmarks (Mix).

B. Results

We performed experiments with three different policies:

1) PRIVATE: This technique assumes that the stacked
cache banks on each core are used as a private cache for it.

2) CBP: This technique assumes that the stacked cache
banks are used as a shared cache and the amount of cache
capacity is assigned to each core based on the proposed cache
partitioning algorithm in Section IV.A.

3) CBP&PG: This is the proposed method which
dynamically performs cache bank partitioning and power-
gating of remote cache banks based on the time-varying
memory access behavior.

The results normalized with respect to PRIVATE are
shown in Fig. 8. The results show that the proposed method is
more effective with Mix and MB benchmarks. Cache capacity
given in PRIVATE method is large enough for the
benchmarks in CB, thus the performance does not vary with
cache capacity increase. CBP offers performance
improvement up to 13.6% and on average 6.8% by exploiting
memory-boundedness of benchmarks. CBP&PG shows
performance improvement by up to 26.7% and on average
13.1%. Time-dependent benchmark behavior is considered in
the runtime method. When a program need large cache
capacity, remote cache banks are accessed to reduce cache
misses. On the other hand, when the program does not need

large cache capacity, the core only accesses the cache banks
above the core with less access latency. Remote cache banks
are power gated at the moment.

Overhead: When performing power-gating of the remote
cache banks assigned to a core, dirty cache blocks in the cache
banks which will be applied to power-gating must be written
back to off-chip DRAM for data coherency. When the power-
gated remote cache banks are turned on, it costs wakeup time
to switch cache banks back to the active mode from the power-
gating mode. According to [13], the wake-up time is negligible
(i.e., four clock cycles). The area overhead of implementing
power-gating technique in L2 caches is about 5% [14].

VI. CONCLUSION

In this paper, we proposed an online solution of cache
management for CMP where 3-D cache memory is stacked.
By exploiting the time-varying demand of cache memory for
applications, the proposed method employed the benefits of
private cache (i.e., lower access latency) and shared cache (i.e.,
higher cache capacity). The experimental results show that the
proposed method achieves up to 26.7% (average 13.1%)
performance improvement compared with the solution which
uses the stacked cache as a private cache.

REFERENCES

[1] M. Annavaram, E. Grochowski, and J. Shen, “Mitigating amdahl’s law
through epi throttling,” in Proc. ISCA, 2005, pp. 298 – 309.

[2] J. Huh et al., “A NUCA substrate for flexible CMP cache sharing,”
IEEE Trans. on Parallel and Distributed Systems, vol. 18, no. 8, pp.
1028 – 1040 Aug. 2007.

[3] N. Madan et al., “Optimizing communication and capacity in a 3D stacked
reconfigurable cache hierarchy,” in Proc. HPCA, 2009, pp. 262 – 273.

[4] A. Zia et al., “A 3-D cache with ultra-wide data bus for 3-D processor-
memory integration,” IEEE TVLSI, vol. 18, no. 6, pp. 967 – 977, June 2010.

[5] AMBA AXI Protocol v1.0 Specification. http://www.arm.com/
products/system-ip/interconnect/axi/index.php

[6] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: a low-
overhead, high-performance, runtime mechanism to partition shared
caches,” in Int. Symp. Microarchitecture, 2006, pp. 423–432.

[7] Standard Performance Evaluation Corporation [Online]. Available:
http://www.specbench.org

[8] G. Suh et al., “Dynamic cache partitioning for simultaneous
multithreading systems,” in Proc. PDCS, 2001.

[9] S.E.Said and D.A.Dickey, “Testing for unit roots in autoregressive-moving
average models of unknown order,” in Biometrika, 1984, pp. 599-607.

[10] Intel, “Intel core2 duo processors and Intel core2 extreme processors
for platforms based on mobile Intel 965 express chipset family,”
Datasheet, 2008, pp. 23–40.

[11] D. Tarjan, S. Thoziyoor and N. P. Jouppi, “CACTI 4.0,” HP
Laboratories, Palo Alto, CA, Tech. Rep. HPL-2006-86, Jun. 2006.

[12] S. Cho et al., “TPTS: A Novel Framework for Very Fast Manycore
Processor Architecture Simulation,” In Proc. ICPP, 2008, pp. 446-453.

[13] H. Homayoun et al., “Multiple sleep mode leakage control for cache
peripheral circuits in embedded processors,” in Proc. Compilers,
Architectures and Synthesis for Embedded Systems, 2008, pp. 197–206.

[14] M. Powell et al., “Gatedvdd: a circuit technique to reduce leakage in
deep-submicron cache memories,” in Proc. ISLPED, 2000, pp. 90–95.

TABLE II. BENCHMARK CLASSIFICATION

Group Benchmarks

Computation-bounded art, mcf, tigr

Memory-bounded
equake, gzip, gcc, mesa, mgrid, parser,

swim, vortex, wupwise

Figure 8. Comparison of performance improvement in the metric of fair

speedup with benchmark combinations.

