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Abstract— These-dimensional (3-D) memory stacking is one of 

the most promising solutions to memory bandwidth problems in 

chip multiprocessors. In this work, we propose an efficient 

runtime 3-D cache management technique which takes 

advantage of the lower latencies through vertical interconnect as 

well as the runtime memory demand of applications which 

varies dynamically with time. Experimental results show that 

the proposed method offers performance improvement  by up to 

26.7% and on average 13.1% compared with the private cache 

organization. 

I. INTRODUCTION 

Chip-multiprocessors (CMPs) are quickly becoming a 
mainstream microprocessor as they overcome limitations of 
modern super-scalar uniprocessor by exploiting thread-level 
parallelism among multiple cores [1]. In the meantime, as the 
number of cores integrated in a chip increases, the on-chip 
interconnects that exchange data between caches and cores are 
to be longer and, thus, represent a major bottleneck with 
regard to both power and performance. Various technologies 
have been explored to address the interconnect problem such 
as the use of non-uniform cache architecture (NUCA) [2] 
and/or that of three-dimensional (3-D) memory stacking.  

In the recent years, 3-D memory stacking has received a 
great attention since it resolves the memory bandwidth 
challenges of 2-D integration by stacking cache memory onto 
a multiprocessor die using very dense through-silicon vias 
(TSVs) [3][4]. Fig. 1 shows a high-level view of a 3-D CMP 

and its vertically stacked cache. Each processor core has fast 
and large-bandwidth access to the cache banks directly 
stacked on it (i.e., local cache banks) though TSVs. The 
processor core can also address cache banks stacked on the 
other processors (i.e., remote cache banks), but corresponding 
memory transaction will have to be transported through a 
horizontal on-chip interconnect fabric, i.e., crossbar switch [5]. 
Such communication though a crossbar switch makes remote 
cache bank access even longer than local cache bank access 
because of the non-negligible latency caused by protocol 
translation and limited bandwidth in the crossbar switch.  

Proposals for the stacked cache memory hierarchy of 3-D 
CMPs have borrowed from the memory hierarchies of 
traditional multiprocessors. I.e., the stacked cache can be 
either private or shared. A shared cache organization is 
preferable if reducing the collective number of cache misses 
(i.e., off-chip memory accesses) is important, whereas an 
organization by using local cache banks as private caches of 
each core is preferable if reducing the average cache access 
latency, which might be longer due to remote cache accesses, 
is important. The main contribution of this paper is the 
development of an optimization method specialized 3-D CMP 
that achieves the benefits of both private and shared cache 
design. Using shared cache organization as the basic design 
point, cache bank partitioning [6] based on application's utility 
for the cache resource (e.g., the amount of cache misses with 
respect to the assigned cache capacity) is performed to reduce 
the collective number of cache misses. In order to reduce 
remote cache accesses for each core, power-gating of remote 
cache banks is performed based on memory access behavior 
of applications which dynamically changes at runtime. We 
demonstrated that such an online power-gating method gives 
both the capacity of shared cache and the latency of private 
cache in Section V.  

II. MOTIVATION 

Fig. 2 (a) shows a 3-D CMP consisting of two cores each 
of which has four stacked L2 cache banks on it and connects 
them through TSVs. Let us assume that capacity of each cache 
bank is 256KB and the cores are located next to the heat sink 
since cores are major heat sources. We assume that art and 
gzip, which are benchmarks in SPEC2000 [7], are assigned to 

 
Figure 1. Target architecture of a 3-D CMP and its vertically stacked cache 
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cores 1 and 2, respectively. Cache misses per instructions with 
respect to the assigned cache capacity are shown in Fig. 3.  

Table I shows performance results of three different cache 
management policies, i.e., private cache (PRIVATE), shared 
cache with cache bank partitioning (CBP), and shared cache 
with cache bank partitioning and power gating (CBP&PG). In 
Table I, the first and second columns show the number of 
cache misses per instruction and the average cache access 
latency during application execution. In order to evaluate the 
system performance, we use the fair speedup (FS) as the 
metric in (1). FS is the harmonic mean of normalized 
instructions per cycle (IPC). M is the number of cores. 

       (∑
          

            

 
   )  (1) 

In case of PRIVATE, the cache banks stacked on each core 
are used as a private cache for each core. This cache 
management gives the lowest value in average cache access 
latency because there is no remote cache banks accesses 
through a crossbar switch as shown in Table I. However, due 
to inefficient use of the cache capacity (i.e., the same amount 
of assigned capacity to each core without considering 
application’s utility for the cache resource), such a design 
result in many off-chip memory accesses, which sharply 
degrades the system performance.  

In case of CBP, the size of cache capacity (i.e., the number 
of cache banks) for each core is determined based on the 
cache utility shown in Fig. 3 so that the number of cache 
misses is minimized. The result of cache partition is shown in 
Fig. 2 (b). Core 1 (art) and core 2 (gzip) have 6 and 2 cache 
banks, respectively. The change of cache capacity assigned to 
each core can be adapted by increasing or decreasing the 

number of ways per cache set but keeping the number of 
cache sets fixed. Obviously, the potential benefit of CBP is 
exploiting the cache-size sensitivity of the applications that are 
to be run. However, this approach makes the average cache 
access latency longer than that of PRIVATE because of the 
overhead for looking up all the banks assigned to each core, 
which might include remote cache banks accesses (caused 
from core 1 in the motivational example).  

The basic idea of our method is exploiting runtime 
behavior of memory accesses which dynamically changes at 
runtime. Fig. 4 shows the average memory access latency of 
core 1 (art) with respect to the process time interval when the 
assigned cache capacity to core 1 is 1MB (i.e., four cache 
banks). Note that the large amount of cache capacity is not 
needed all the time during the application execution. By 
power-gating the remote cache banks assigned to core 1, when 
being unnecessary during application execution, CBP&PG 
reduces the number of remote cache bank accesses. As shown 
in Table I, the average cache access latency of CBP&PG is 
very close to that of PRIVATE while the number of cache 
misses is almost same as that of CBP. Thanks to the runtime 
cache management, CBP&PG gives 32% and 17% 
performance improvement in terms of fair speedup compared 
with PRIVATE and CBP, respective.  

III. PROBLEM DEFINITION AND SOLUTION OVERVIEW 

Our paper focuses on a 3-D CMP where last-level cache 
memory is stacked as shown in Fig. 1. In the system, cache 
bank partitioning and per-bank power-gating are dynamically 
performed at runtime. We assume that the utility of 
applications for cache resource is given by a static analysis. 
Our problem is to find: 1) the number of cache banks assigned 
to each core and 2) power-gating schedule of remote cache 
banks of each core such that the instruction throughput of the 
system is maximized. Instruction throughput of a multi-core 
system is defined as the total number of instructions executed 
by all the cores per cycle.   

Figure 2. (a) A motivational example of 3-D CMP, (b) The results of cache 

bank partitioning 

 
Figure 3. Cache misses per instruction for gzip and art with respect to the 

assigned cache capacity  

TABLE I. RESULTS OF THE MOTIVATIONAL EXAMPLE 
 

Method 
Cache misses rate 

( #miss/ #instruction) 

Avg. cache access 

latency (cycle) 

Fair. 

Speedup 

PRIVATE 0.1127 4.0 1.00 

CBP 0.0508 6.0 1.12 

CBP&PG 0.0777 4.9 1.32 
 

 
Figure 4. Average memory access latency of art benchmark with respect to 

the progress time interval when the assigned cache capacity is 1MB 



Fig. 5 shows the overall flow of the proposed method. Line 
2 – 4 present cache bank partitioning which is invoked at the 
start/end of applications running on cores. Line 5 – 8 present 
online power-gating of remote cache banks which is invoked 
at every 1ms. Runtime application profiling and estimation 
step (line 6) measures runtime information (e.g., the number 
of cache misses) of application running on each core, updates 
the historical runtime information, and estimates the runtime 
information for the next time interval of application execution. 
Based on the estimated runtime information, the proposed 
algorithm determine whether performing power-gating of 
remote cache banks or not.  

IV. RUNTIME CACHE MANAGEMENT ALGORITHM 

A. Cache Bank Partitioning 

As shown in Fig. 3, the number of cache misses is 
presented as a discontinuous function with respect to the 
assigned cache capacity. That means an exhaust search is 
necessary to find performance-maximal cache bank 
partitioning which minimizes the total number of cache misses. 
However this function is also presented as a non-increasing 
function. Thus, dynamic programming algorithm can be 
adapted by repeating de-allocation of one cache bank at each 
algorithm step such that the increased number of cache miss 
ratio at each algorithm step is minimized. Fig. 6 shows the 
dynamic programming algorithm. The de-allocation step (line 
6 – 11) is repeated until the total number of cache banks 
assigned to cores is equal to the maximum allowable number 
of cache banks (i.e., M ∙ B).  

B. Decision of Power-gating of Remote Cache Banks  

As shown in Fig. 4, memory access demand of an 
application shows some runtime phases with respect to time 
intervals. That means the cache capacity needed to cores also 
varies with time. Thus, during program execution, when the 
needed cache capacity to a core is low, power-gating of the 
remote cache banks reduces the average cache access time by 
not accessing the remote cache banks though the crossbar 
switch. In order to determine cores whose remote cache banks 
are power gated or turned on, the runtime algorithm shown in 
Fig. 7 is invoked at every time interval.  

For power-gating of remote cache banks of each core, the 
memory access penalty is estimated (line 9 – 10). Thus, if the 
gain resulting from power-gating is more than the given 
threshold, the remote cache banks are power-gated (line 11 – 
13). The method for estimating the number of cache misses 
(line 7) as a result of power-gating of the remote cache banks 
is derived from Suh et al. [8] and works as follows. If there is 

a hit in each cache bank for the requesting core, a counter is 
increased for that core. This counter represents the number of 
cache misses that would have occurred if the cache bank is 
power gated. For turning on remote cache banks of each core, 
the number of stall cycles is measured at every time interval. 
Thus, if there is huge change in the number of stall cycles 
from core i which is performing power-gating of remote cache 
banks, the remote cache banks are turned on (line 19 – 21).  

In order to follow the runtime phases of application 
memory demand and avoid unnecessary power-gating, time-
invariant moving average (MA) filter [9] is used. When the 
window size is W and the n

th
 value is v[n], n+1th value is to be







1W

0i
]in[v)W/1(]1n[v . To measure the number of 

cache hits and misses, hardware performance counters are 
adopted as they are provided in most modern processors. The 
delay overhead of accessing the performance counters is 
assumed as negligible.  

 
Figure 6. Dynamic programing algorithm for cache bank partitioning  

 
Figure 7. Runtime algorithm for power-gating of remote cache banks  

 
Figure 5. Overall algorithm flow  of the proposed  method 



V. EXPERIMENTAL RESULT 

A.  Setup  

We performed experiments using a 3-D multi-core system 
consisting of four cores in a layer and a stacked cache layer as 
shown in Fig. 1. A core studied in our experiments is based on 
the architecture of an Intel Core 2 Duo Merom processor [10] 
which is manufactured using 65nm technology. Each core has 
32KB L1 instruction and data cache. The number of L2 cache 
banks directly stacked on a core is four for each cache layer. 
Capacity of each cache bank is 256KB which is computed 
with CACTI [11] for 65nm technology. For the fast 
performance simulation, modified tsim [12] is used which is a 
trace-driven multi-processor simulator. Our experiment was 
performed with SPEC2000 [7], and BioBench. Benchmark 
programs are divided into two groups: computation-bounded 
benchmarks and memory-bounded benchmarks as shown in 
Table II. Based on the memory demand intensity, three 
combinations of benchmarks are made: computation bound 
benchmarks (CB), memory bound benchmarks (MB), and 
mixed benchmarks (Mix).  

B. Results 

We performed experiments with three different policies:  

1) PRIVATE: This technique assumes that the stacked 
cache banks on each core are used as a private cache for it.  

2) CBP: This technique assumes that the stacked cache 
banks are used as a shared cache and the amount of cache 
capacity is assigned to each core based on the proposed cache 
partitioning algorithm in Section IV.A.  

3) CBP&PG: This is the proposed method which 
dynamically performs cache bank partitioning and power-
gating of remote cache banks based on the time-varying 
memory access behavior.  

The results normalized with respect to PRIVATE are 
shown in Fig. 8. The results show that the proposed method is 
more effective with Mix and MB benchmarks. Cache capacity 
given in PRIVATE method is large enough for the 
benchmarks in CB, thus the performance does not vary with 
cache capacity increase. CBP offers performance 
improvement up to 13.6% and on average 6.8% by exploiting 
memory-boundedness of benchmarks. CBP&PG shows 
performance improvement by up to 26.7% and on average 
13.1%. Time-dependent benchmark behavior is considered in 
the runtime method. When a program need large cache 
capacity, remote cache banks are accessed to reduce cache 
misses. On the other hand, when the program does not need 

large cache capacity, the core only accesses the cache banks 
above the core with less access latency. Remote cache banks 
are power gated at the moment. 

Overhead: When performing power-gating of the remote 
cache banks assigned to a core, dirty cache blocks in the cache 
banks which will be applied to power-gating must be written 
back to off-chip DRAM for data coherency. When the power-
gated remote cache banks are turned on, it costs wakeup time 
to switch cache banks back to the active mode from the power-
gating mode. According to [13], the wake-up time is negligible 
(i.e., four clock cycles). The area overhead of implementing 
power-gating technique in L2 caches is about 5% [14]. 

VI. CONCLUSION 

In this paper, we proposed an online solution of cache 
management for CMP where 3-D cache memory is stacked. 
By exploiting the time-varying demand of cache memory for 
applications, the proposed method employed the benefits of 
private cache (i.e., lower access latency) and shared cache (i.e., 
higher cache capacity). The experimental results show that the 
proposed method achieves up to 26.7% (average 13.1%) 
performance improvement compared with the solution which 
uses the stacked cache as a private cache.  
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TABLE II. BENCHMARK CLASSIFICATION 

Group Benchmarks  

Computation-bounded art, mcf, tigr 

Memory-bounded 
equake, gzip, gcc, mesa, mgrid, parser,  

swim, vortex, wupwise 

 

 
Figure 8. Comparison of performance improvement in the metric of fair 

speedup with benchmark combinations. 


