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We derive scaling laws for the Rayleigh-Sommerfeld formulation we recently developed to

describe light scattering from nanotextured interfaces. These scaling laws provide precious

intuition on how to link scattering from different interfaces. In particular, we answer the question

how to obtain a Lambertian scatterer into silicon, starting from a Lambertian scatterer into air

relevant to the development of light trapping schemes in thin-film silicon solar cells. We also

define a Lambertionality factor which measures how close an arbitrary scatterer approaches

Lambertian scattering and extend the fundamental 4n2 light trapping limit to arbitrary scattering

distributions. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4761988]

I. INTRODUCTION

Light scattering has gained tremendous importance in

the field of photovoltaics, as absorption of sunlight in solar

cells can be enhanced drastically by proper engineering of

photonic nanostructures. Assuming a Lambertian scatterer,

theory predicts an upper limit of 4n2 for the absorption

enhancement inside a weakly absorbing planar optical

absorber of refractive index n.1 In particular, for thin-film sil-

icon solar cells, advanced light trapping schemes are crucial

to boost conversion efficiency, as the absorption coefficient

of silicon becomes small towards the near infrared region.

Significant progress has been made in recent years in

developing experimental methods for implementing arbitrary

scattering morphologies into high-efficiency thin-film silicon

devices.2–4 From a theoretical point of view, the rigorous nu-

merical solution of Maxwell’s equations has become feasible

for a limited number of simple morphologies,5–8 but often

becomes impractical for more complex morphologies, as it

requires massive computational resources.

Some of us recently presented a theoretical framework9

based on a slightly modified Rayleigh-Sommerfeld diffrac-

tion integral proposed by Harvey,10 for the calculation of the

angular and spectral dependence of light scattered at a nano-

textured interface. Our scalar approach requires only meas-

ured profile data and the refractive indices of the interface as

input and can be solved efficiently within seconds. The

model was validated in a variety of experimental configura-

tions9,11–15 and compared positively to other scalar and rig-

orous treatments.16,17

Here, we derive analytic scaling laws from our theory

which link scattering from different interfaces. From these

scaling laws, one can easily understand why a nanotextured

surface with a Lambertian scattering profile into air does not

scatter in a Lambertian fashion into silicon. More impor-

tantly, our scaling laws tell us what is needed to obtain a

Lambertian scatterer into silicon. Furthermore, we define a

Lambertionality factor that represents a useful and physically

meaningful measure of how close an arbitrary scatterer

approaches Lambertian scattering and discuss its relation to

the 4n2 limit.

II. SCATTERING MODEL

For the sake of completeness, we present again our scat-

tering model introducing a more explicit formulation then in

Ref. 9. Light passing across a nanotextured interface, with a

peak-to-valley roughness of z0, is assumed to acquire a pha-

seshift proportional to n1 � zþ n2 � ðz0 � zÞ, where z is the

distance from the maximum peak height to the interface trav-

eled in the first medium with refractive index n1, and ðz0 � zÞ
the distance traveled after the interface in the second medium

with refractive index n2 (see Fig. 1). Since the interface is tex-

tured, z depends on the morphology of the surface and is

therefore a function of the lateral coordinates x and y. Thus,

the local phaseshift acquired by a plane wave after passing

the interface is ðn1 � n2Þ � zðx; yÞ þ n2 � z0. Summing up all

plane waves exiting the roughness zone, taking into account

this phaseshift, we obtain the radiance L in direction cosine

space for a given wavelength k

Lða; b; kÞ ¼ cðkÞ
����
ð ð

dx � dy � e2�p�i�n2
k �ða�xþb�yÞ

� e2�p�i�jn1�n2 j
k � zðx;yÞ

����
2

: (1)

FIG. 1. A plane wave passing through the roughness zone acquires a phase

shift.a)Electronic mail: corsin.battaglia@epfl.ch. URL: http://pvlab.epfl.ch/.
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Note that the term n2 � z0 in the phaseshift leads to a position

independent phase which drops out when taking the absolute

value for the radiance. cðkÞ is a wavelength dependent nor-

malization constant. Here, a and b are direction cosines in

reciprocal space, related to the wavevector k via k ¼ 2�p
k

ða; b;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2 � b2

p
Þ. The double integral can be handled

efficiently using a fast Fourier transform approach.

For comparison of the angular dependence with experi-

ment, it is convenient to transform the radiance from direc-

tion cosine space ða; bÞ into projected (unit radius) spherical

coordinates ðh;/Þ, using a ¼ sin h � cos / and b ¼ sin h � sin /.

The angle resolved scattering (ARS) curve for a given wave-

length k is obtained by taking into account the projection factor

cos h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2 � b2

p

ARSðh;/; kÞ ¼ Lðh;/; kÞ � cos h:

When designing light trapping in solar cells with ran-

dom scatterers that do not show any azimuthal dependence /
at normal incidence, it is often more useful to consider the

azimuthally integrated ARS, labeled ARS�/ , as it reflects the

total amount of intensity scattered into a given polar angle h

ARS�/ðh; kÞ ¼
ð2p

0

d/ � sin h � cos h � Lðh;/; kÞ:

Here, sin h represents the Jacobian of the integration in

spherical coordinates. A pragmatic definition for the normal-

ization factor cðkÞ proposed by Harvey10 is obtained by

requiring that

ð2p

0

d/
ðp=2

0

dh � sin h � cos h � Lðh;/; kÞ ¼ 1; (2)

which guarantees that all propagating modes sum up to 1, i.e.,

to the total amount of transmitted light. This approximation is

appropriate as long as the amount of light that is scattered

into evanescent modes remains negligible. It is applicable to

the case of weakly absorbing media, such as a rough ZnO-air

interface, but fails for a rough silver-air interface, where sur-

face plasmon polaritons may cause strong absorption.18

With this definition, the spectral dependence of the scat-

tered light as measured by haze H may directly be obtained

from the radiance via

HðkÞ ¼
ð2p

0

d/
ðp=2

>0

dh � sin h � cos h � Lðh;/; kÞ:

Therefore, knowing the radiance L, we can determine

both ARS and haze.

III. LAMBERTIAN SCATTERING

For an ideal Lambertian scatterer which exhibits an iso-

tropic radiance, L ¼ 1=p. This definition satisfies the normal-

ization in Eq. (2). Consequently, ARSðh;/Þ has a simple

cos h dependency and ARS�/ðhÞ as shown in Fig. 2(b) is pro-

portional to sin h cos h. For an arbitrary scatterer, the radi-

ance at a given wavelength is completely defined by the

refractive indices n1 and n2 and the surface profile z(x, y) of

the interface which can be determined experimentally for

example by atomic force microscopy (AFM). Thin-film sili-

con solar cells (in p – i – n configuration) typically consist of

a glass substrate (n � 1:5), a transparent conductive oxide

(TCO) layer (n � 2) acting as front electrode, the silicon

layers (n � 4) and a back electrode. Light scattering is

achieved at the TCO-silicon interface by texturing the TCO

surface. A characteristic TCO surface morphology with a

root mean square roughness of 200 nm and a correlation

length of 400 nm used for light trapping in thin-film silicon

modules is shown in Fig. 2(a). In Fig. 2(b), we show the

experimentally determined ARS�/ for this TCO for scattering

into air at k ¼ 543 nm. The haze at this wavelength is equal

to 1. From comparison with the corresponding curve for the

ideal Lambertian scatterer, we conclude that light scattering

from this TCO into air is very close to Lambertian. Using the

theoretical expression in Eq. (1) for the radiance, we can also

calculate the ARS�/ from the AFM image. The calculated

ARS�/ curve reproduces the experimental ARS�/ curve well.

We note that it deviates slightly at large scattering angles

because we model the optical interface by a random phase-

screen with zero thickness which neglects diffraction within

the peak-to-valley depth of the rough interface.19 The oscil-

lations in the calculation are due to the finite AFM image

size and may be reduced by either taking larger images or

averaging over several images.20

FIG. 2. (a) AFM image of ZnO grown by low-pressure chemical vapor

deposition.33 Scale bar 1lm. (b) ARS�/ for an ideal Lambertian scatterer

(black curve), the ZnO morphology for scattering into air (blue curves), and

silicon (green curve) at k ¼ 543 nm. The dashed blue curve was measured

experimentally.
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The normalization in Eq. (2) should be applied with care

to cases where the haze drops below 1 as the Jacobian sin h
gives zero weight to the specular beam (h ¼ 0). In this case,

ARS�/ðhÞ can still take its maximum at h ¼ 45�, but its maxi-

mum will be below 1, which reflects the fact that a certain

fraction of light is not scattered at all, but remains in the spec-

ular beam. However, the scattered fraction of light will exhibit

an angular dependence identical to a Lambertian scatterer.

Although not measurable experimentally (see however

Ref. 16), we can calculate the ARS�/ for scattering into sili-

con using our scattering algorithm. The resulting curve, also

given in Fig. 2(b) at k ¼ 543 nm where haze equals 1, shows

that the scattering profile is far from Lambertian. Therefore,

a Lambertian scatterer into air is not necessarily a Lamber-

tian scatterer into silicon.

IV. SCALING LAWS

But then, what is needed to obtain a Lambertian scat-

terer into silicon? Inspection of Eq. (1) shows that the input

parameters n1; n2; k, and z(x, y) enter the radiance via the

three terms

n2 � x
k

;
n2 � y

k
and

jn1 � n2j � z
k

: (3)

Keeping these three terms constant will keep the radiance

invariant.

Different sets of parameters satisfying this conditions

are listed in Table I. Set A of parameters represents scatter-

ing from a nanotextured TCO (n1 ¼ 2) into air (n1 ¼ 1).

This is the case, we discussed above for which ARS and

haze can be measured experimentally. Set B of parameters

represents scattering from the TCO (n1 ¼ 2) into silicon

(n2 ¼ 4). To obtain the same values for the parameters in

Eq. (3), we have to scale k by a factor of 4 and the structure

heights given by z by a factor of 2. This means that if we

increase the aspect ratio of the structure by a factor of 2 and

go to 4 times the wavelength, we get the same ARS for scat-

tering into silicon as for scattering into air. Consequently if

scattering into air is Lambertian, as is almost the case for the

TCO in Fig. 2(a), we now have a way, to determine the cor-

responding structure which gives Lambertian scattering into

silicon.

More generally, to go from an arbitrary interface charac-

terized by the refractive indices n1 and n2 to another inter-

face with n1
0 and n2

0 , we can define a scaled wavelength k0 and

a scaled structure height z0

k0 ¼ n2
0

n2

� k; and z0 ¼ n2
0 � jn1 � n2j

n2 � jn1
0 � n2

0j � z;

so that the radiance, and with it ARS and haze remain invari-

ant when we replace k by k0 and z by z0.
Within scalar scattering theory as described for example

in Ref. 21, scattering from TCOs into air can be linked to

scattering from TCOs into silicon by going to twice the

wavelength as haze depends only on the fraction jn1 � n2j �
z=k (Ref. 22). This correctly reproduces the phaseshift in Eq.

(1) and therefore the amount of light that is scattered away

from the specular beam, i.e., the haze. However, by making

this approximation, one neglects light refraction described

by the lateral scaling by n2 introduced in Eq. (1) via the

terms n2 � x=k and n2 � y=k so that the angular scattering dis-

tribution, which is crucial for light trapping in solar cells, is

not correctly reproduced.

Set C of parameters provides a complementary prescrip-

tion how to link scattering into air to scattering into silicon,

with the advantage of working at the same wavelength. In

this case, the heights z have to be scaled by a factor 1/2,

while the lateral dimensions x and y must be scaled by a fac-

tor of 1/4. Note that in terms of aspect ratio, we also obtain a

scaling of 2 as before, while all space coordinates are inver-

sely scaled by the factor of 4. So according to the second pre-

scription, we obtain a Lambertian scatterer into silicon, by

reducing the feature size by a factor of 4 and by increasing

the aspect ratio by a factor of 2.

More generally, to go from an arbitrary interface charac-

terized by the refractive indices n1 and n2 to another inter-

face with n1
0 and n2

0 , we can define a set of scaled coordinates

x0, y0, and z0

x0 ¼ n2

n2
0 � x; y0 ¼ n2

n2
0 � y; and z0 ¼ jn1 � n2j

jn1
0 � n2

0j � z;

so that the radiance, and with it also ARS and haze, are

invariant.

In the considerations above, we neglected the dispersion

of the experimental refractive indices with wavelength. One

can account for the dispersion by making the scaling coeffi-

cients wavelength dependent. This of course leads to the in-

convenience that the scaling of the structure becomes

wavelength dependent. However, in the wavelength range in

which light scattering is important for thin-film silicon solar

cells, the refractive indices can be assumed constant.

We emphasize that the importance of these scaling laws

is that they provide an intuitive prescription how to obtain a

desired scattering profile, when going from one interface to

another. To improve light scattering of the TCO morphology

in Fig. 1(a) into silicon towards an ideal Lambertian scatterer,

we need to increase the aspect ratio. A similar conclusion was

derived by Fahr et al.23 from numerical calculations within

the much more complicated framework of rigorous coupled

wave analysis (RCWA). Although an increased aspect ratio is

beneficial for the optical cell performance, we stress that this

approach is usually detrimental for the electrical cell perform-

ance.4,24–26 So a trade-off must be found. However, the scal-

ing relations also tell us that features for scattering into

silicon can be four times smaller than for scattering into air.

Even if this requires a higher aspect ratio, we recently showed

that small sharp features harm the electrical cell performance

TABLE I. Set of parameters resulting in the same radiance.

Set n1 n2 k x y z n2 �x
k

n2�y
k

jn1�n2 j�z
k

A 2 1 k0 x0 y0 z0
x0

k0

y0

k0

z0

k0

B 2 4 4 � k0 x0 y0 2 � z0
x0

k0

y0

k0

z0

k0

C 2 4 k0
x0

4
y0

4
z0

2
x0

k0

y0

k0

z0

k0
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much less than large features.27,28 Our observations therefore

provide a clear roadmap for integration of such structures into

devices. Although nature does not allow the growth of ZnO

morphologies with arbitrary aspect ratio,12 a scaled ZnO mor-

phology, for quasi-Lambertian scattering into silicon, could

be fabricated using our recently developed nanomoulding

technique.3

V. LAMBERTIONALITY

To measure how close an arbitrary scatterer approaches

Lambertian scattering, we define the Lambertionality factor

aðkÞ

aðkÞ ¼
ð2p

0

d/
ðp=2

0

dh � sin h � 1

cos h
� ARSðh;/; kÞ;

aðkÞ represents the average light path length enhancement of

light rays obtained from a given scattering distribution. Here

the factor 1=cos h takes into account the path length enhance-

ment of an individual light ray which is scattered into an

angle h (see Fig. 3(a)). The contribution of each light ray is

weighted by ARSðh;/; kÞ. For an ideal Lambertian scatterer

a¼ 2 (ARS ¼ cosh=p), whereas for a flat specular interface

that does not scatter light at all a¼ 1 (ARS ¼ dðhÞ � dð/Þ=
sin h, where sin h is an integral part of the Dirac d in spheri-

cal coordinates). The Lambertionality factor can exceed val-

ues of 2 in a limited wavelength range, for instance, using a

grating with suppressed zero diffraction order which scatters

all light into an angle higher than h ¼ 60� (which corre-

sponds to a¼ 2), resulting in super-Lambertian scattering.

Fig. 3(b) shows the Lambertionality factor for the ZnO mor-

phology for scattering into air and scattering into silicon. For

scattering into air at short wavelengths, the ZnO scatters

almost like a Lambertian. For longer wavelengths, the scat-

tering profile deviates more and more from the Lambertian

profile. For scattering into silicon, light scattering is clearly

sub-Lambertian over the full wavelength range with values

between 1.2 and 1.3 and a significantly weaker wavelength

dependence. Note that the 1=cos h weighting factor diverges

at large angles and therefore correctly captures the importance

of large angle scattering observed in experiments. However,

as our scattering algorithm slightly underestimates the scatter-

ing intensity at large angles, aðkÞ extracted from calculations

has the tendency to underestimate the Lambertionality.

A second important quantity which can be derived from

the radiance is the fraction of light bðkÞ which is escaping

through the escape cone, i.e., is scattered into angles smaller

than the critical angle hc required for total reflection

bðkÞ ¼
ð2p

0

d/
ðhc

0

dh � sin h � ARSðh;/; kÞ;

bðkÞ can be interpreted as an angle averaged value of an

idealized transmission factor which is either 1 inside the

escape cone and 0 outside the escape cone, although this is

clearly an oversimplified description for a rough interface.

Consequently, 1 – b can be interpreted as an effective reflec-

tion coefficient. For an ideal Lambertian scatterer into air

b ¼ 1=n2. More generally, for Lambertian scattering from me-

dium n1 into a higher index medium n2; b ¼ n2
1=n2

2. Fig. 3(c)

shows 1/b as a function of wavelength. For a silicon absorber

in air, the Lambertian scatterer scatters 6% of light into

the escape cone. At short wavelengths, the ZnO morphology

FIG. 3. (a) Sketch illustrating the physical interpretation of the Lambertion-

ality factor. (b) Lambertionality factors a for an ideal Lambertian scatterer

(black curve), the ZnO for scattering into air (blue curve), and silicon (green

curve), with the corresponding (c) escape fractions b and (d) absorption

enhancements m. “ZnO all orders” corresponds to the case described by Eq.

(5), where the initial scattering distribution is used also for all subsequent

scattering events. “ZnO for zero order” corresponds to the case described by

Eq. (6), where only the zero order term is described by the calculated scatter-

ing distribution and all higher order scattering events are assumed to be

Lambertian. The values of m are only valid in the weak absorption regime.

For hydrogenated amorphous silicon, this corresponds to the wavelength

range between 700 and 800 nm. For (micro-) crystalline silicon the relevant

wavelength range extends from 700 nm to 1100 nm.
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scatters about 10% into the escape cone, but this value is

increasing rapidly with increasing wavelength.

VI. LIGHT TRAPPING LIMIT

To establish the link between the Lambertionality factor

and the 4n2 limit, we rewrite 4n2 as 2 � 2 � n2. The first factor

of 2 takes into account the effect of the (specular) back

reflector of the solar cell which doubles the light path. The

second factor of 2 can be identified with the Lambertionality

factor a. The factor of n2 is simply equal to 1/b. To show

this, we proceed similar to Deckman et al.29 and describe the

absorption of the photoactive absorber layer F as an infinite

series of absorption round trips

F¼ ð1� e�2�a�a�dÞ � ð1�RÞ �
X1
n¼0

e�2�a�a�d�n � ð1�bÞn � ð1�ApÞn:

(4)

Here 1� e�2�a�a�d describes one effective round trip of the

light ray in the absorber with wavelength dependent absorp-

tion coefficient aðkÞ and thickness d including the effect of

the Lambertionality factor a and the reflection at the back

reflector which is taken into account by the factor of 2. R
accounts for light which is reflected before ever entering the

absorber. Each round trip is weighted by a loss factor which

takes into account the (desired) absorption in the absorber

e�2�a�a�d, the effective reflection 1 – b at the front interface

and undesired parasitic absorption Ap in the heavily doped

layers and the electrodes which is always present in real

devices and which does not contribute to current generation.

Assuming ideal carrier collection which is closely satisfied

in real thin-film silicon devices, F can be identified with the

external quantum efficiency (EQE) of the cell.

Close to the band gap of the absorber, where a � d � 1,

and assuming no parasitic absorption Ap ¼ 0 (which can be

integrated out from experimental data30) and no primary

reflection R¼ 0 (which can be achieved closely with antire-

flection measures), this expression simplifies to

F ¼ 2 � a � a � d �
X1
n¼0

ð1� bÞn ¼ 2 � a � a � d � 1
b
:

The absorption enhancement m is obtained by dividing this

expression by the absorption of a single pass through the

absorber 1� e�a�d which reduces to a � d in the low absorp-

tion limit. So the final enhancement factor is given simply by

m ¼ 2 � a
b
; (5)

which correctly reproduces the 4n2 limit for a Lambertian

scatterer with a¼ 2 and b ¼ 1=n2. Fig. 3(d) compares the

absorption enhancement obtained for the ideal Lambertian

scatterer with the corresponding values for the ZnO mor-

phology which turns out to be much lower than the Lamber-

tian limit. As was already pointed out in Refs. 1 and 31,

there is an overriding tendency towards full randomization

after a few successive scattering events, i.e., a and b quickly

tend towards the Lambertian values of 2 and 1=n2, respec-

tively. Our estimation of the absorption enhancement does

not take this into account, but assumes an identical scattering

distribution for every pass. More realistic values for m will

necessarily fall somewhere in between the Lambertian limit

and the calculated value. A rudimentary but instructive way

to take into account this tendency towards full randomization

is by isolating the zero order term from the sum in Eq. (4)

and treat the higher order terms in the sum as Lambertian

m ¼ 2 � aþ 2 � a �
X1
n¼1

ð1� bÞn � 2 � aþ ð1� bÞ � 4 � n2;

(6)

(1 – b) is very important here, as it strongly damps the weight

of the Lambertian 4n2 factor. Physically this can be

explained by the important fraction of light which is lost af-

ter the first non-Lambertian round trip at the first front reflec-

tion event, described by the term (1 – b) which is then no

more available for Lambertian scattering during successive

round trips. From Fig. 3(d), we see that this first order cor-

rection leads to higher values of m which are closer to the

Lambertian limit. Higher order corrections can be taken into

account analogously, although a realistic description of how

successive scattering events are approaching a Lambertian

scattering profile is yet to be developed. Also the effect of a

non-specular back reflector can be taken into account by

attributing different values for a and b for forward and back-

ward traveling light rays of successively higher order, but of

course at the expense of increased mathematical complexity.

Several empirical merit criteria have been proposed to

characterize the light scattering capability of a given pho-

tonic nanostructure.32,33 The advantages of the Lambertion-

ality factor a and the escape fraction b as merit criteria are

their intuitive physical interpretation and their analytic link

to the EQE and the absorption enhancement m. Future work

will focus on establishing the link between these two param-

eters extracted from AFM images and corresponding values

extracted from experimental EQEs of real devices via Eq.

(4) (Ref. 34).

VII. CONCLUSION

Based on the relatively simple analytic expression for

the radiance within our Rayleigh-Sommerfeld formulation,

we derived useful scaling laws which relate the light scatter-

ing profiles from interfaces with different refractive indices.

For a given scattering profile into air which can be measured

experimentally, these scaling laws provide an intuitive pre-

scription how to obtain an identical scattering profile into sil-

icon which is not directly accessible by experiment. We

showed that analogous scaling relations derived from the tra-

ditional scalar scattering theory correctly reproduce haze,

but necessarily fail to describe the angular distribution of

scattered light. We further introduced the Lambertionality

factor and escape fraction as physically meaningful merit cri-

terions for the light scattering capabilities of a given scatterer

and highlighted their direct link to the fundamental light

trapping limit.

094504-5 Battaglia et al. J. Appl. Phys. 112, 094504 (2012)



ACKNOWLEDGMENTS

We thank Didier Domin�e for stimulating discussions,

Peter Cuony for providing the experimental data, and

acknowledge funding from the Velux Foundation and the

Swiss Federal Energy Office. Part of this work was carried

out in the framework of the FP7 project “Fast Track,” funded

by the EC under Grant Agreement No. 283501.

1E. Yablonovitch, J. Opt. Soc. Am. 72, 899 (1982).
2C. Battaglia, J. Escarr�e, K. S€oderstr€om, L. Erni, L. Ding, G. Bugnon, A.

Billet, M. Boccard, L. Barraud, S. D. Wolf, F.-J. Haug, M. Despeisse, and

C. Ballif, Nano Lett. 11, 661 (2011).
3C. Battaglia, J. Escarr�e, K. S€oderstr€om, M. Charrière, F.-J. Haug, M. Des-

peisse, and C. Ballif, Nat. Photonics 5, 535 (2011).
4C. Battaglia, C.-M. Hsu, K. S€oderstr€om, J. Escarr�e, F.-J. Haug, M. Char-

rière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui,

and C. Ballif, ACS Nano 6, 2790 (2012).
5C. Rockstuhl, F. Lederer, K. Bittkau, T. Beckers, and R. Carius, Appl.

Phys. Lett. 94, 211101 (2009).
6A. Naqavi, K. S€oderstr€om, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig,

and C. Ballif, Opt. Express 19, 128 (2011).
7R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, J. Appl. Phys. 110,

013101 (2011).
8V. E. Ferry, A. Polman, and H. A. Atwater, ACS Nano 5, 10055 (2011).
9D. Domin�e, F.-J. Haug, C. Battaglia, and C. Ballif, J. Appl. Phys. 107,

044504 (2010).
10J. E. Harvey, C. L. Vernold, A. Krywonos, and P. L. Thompson, Appl.

Opt. 38, 6469 (1999).
11C. Battaglia, K. S€oderstr€om, J. Escarr�e, F.-J. Haug, D. Domin�e, P. Cuony,

M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Bal-

lif, Appl. Phys. Lett. 96, 213504 (2010).
12S. Nicolay, M. Despeisse, F.-J. Haug, and C. Ballif, Sol. Energy Mater.

Sol. Cells 95, 1031 (2011).
13K. Bittkau, M. Schulte, M. Klein, T. Bekcers, and R. Carius, Thin Solid

Films 519, 6538 (2011).
14K. Bittkau, W. B€ottler, M. Ermes, V. Smirnov, and F. Finger, J. Appl.

Phys. 111, 083101 (2012).

15M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bl€asi, Proc.

SPIE 8438, 84380F (2012).
16M. Schulte, K. Bittkau, K. J€ager, M. Ermes, M. Zeman, and B. E. Pieters,

Appl. Phys. Lett. 99, 111107 (2011).
17K. J€ager, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, J. Appl.

Phys. 111, 083108 (2012).
18F.-J. Haug, A. Naqavi, and C. Ballif, J. Appl. Phys. 112, 024516 (2012).
19D. Domin�e, Ph.D. dissertation, Universit�e de Neuchâtel, 2009, p. 107.
20C. Battaglia, J. Escarr�e, K. S€oderstr€om, F.-J. Haug, D. Domin�e, A. Feltrin,

and C. Ballif, Mater. Res. Soc. Symp. Proc. 1245, A03 (2010).
21C. K. Carniglia, Opt. Eng. 18, 104 (1979).
22M. Boccard, P. Cuony, C. Battaglia, M. Despeisse, and C. Ballif, Phys.

Status Solidi (RRL) 4, 326 (2010).
23S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, Opt. Express 19, A865

(2011).
24H. Sakai, T. Yoshida, T. Hama, and Y. Ichikawa, Jpn. J. Appl. Phys., Part

1 29, 630 (1990).
25M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P.

Cuony, S. H€anni, L. L€ofgren, F. Meillaud, G. Parascandolo, T. S€oderstr€om,

and C. Ballif, Phys. Status Solidi A 208, 1863 (2011).
26C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif,

and Y. Cui, Adv. Energy Mater. 2, 628 (2012).
27M. Boccard, T. S€oderstr€om, P. Cuony, C. Battaglia, S. H€anni, S. Nicolay,

L. Ding, M. Benhaira, G. Bugnon, A. Billet, M. Charrière, F. Meillaud, M.

Despeisse, and C. Ballif, IEEE J. Photovoltaics 2, 229 (2012).
28M. Boccard, C. Battaglia, S. H€anni, K. S€oderstr€om, J. Escarr�e, S. Nico-

lay, F. Meillaud, M. Despeisse, and C. Ballif, Nano Lett. 12, 1344

(2012).
29H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, Opt. Lett. 8, 491

(1983).
30C. Battaglia, L. Erni, J. Escarr�e, K. S€oderstr€om, L. Ding, G. Bugnon, A.

Billet, M. Boccard, L. Barraud, S. D. Wolf, F.-J. Haug, M. Despeisse, and

C. Ballif, J. Appl. Phys. 109, 114501 (2011).
31H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, Appl.

Phys. Lett. 42, 968 (1983).
32C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T.

S€oderstr€om, C. Ballif, and F. Lederer, Opt. Express 18, A335 (2010).
33P. Cuony, Ph.D. dissertation, EPFL, 2011, p. 26.
34M. Boccard, C. Battaglia, F.-J. Haug, M. Despeisse, and C. Ballif, Appl.

Phys. Lett. 101, 151105 (2012).

094504-6 Battaglia et al. J. Appl. Phys. 112, 094504 (2012)

http://dx.doi.org/10.1364/JOSA.72.000899
http://dx.doi.org/10.1021/nl1037787
http://dx.doi.org/10.1038/nphoton.2011.198
http://dx.doi.org/10.1021/nn300287j
http://dx.doi.org/10.1063/1.3142421
http://dx.doi.org/10.1063/1.3142421
http://dx.doi.org/10.1364/OE.19.000128
http://dx.doi.org/10.1063/1.3602092
http://dx.doi.org/10.1021/nn203906t
http://dx.doi.org/10.1063/1.3295902
http://dx.doi.org/10.1364/AO.38.006469
http://dx.doi.org/10.1364/AO.38.006469
http://dx.doi.org/10.1063/1.3432739
http://dx.doi.org/10.1016/j.solmat.2010.11.005
http://dx.doi.org/10.1016/j.solmat.2010.11.005
http://dx.doi.org/10.1016/j.tsf.2011.04.122
http://dx.doi.org/10.1016/j.tsf.2011.04.122
http://dx.doi.org/10.1063/1.3703572
http://dx.doi.org/10.1063/1.3703572
http://dx.doi.org/10.1117/12.921774
http://dx.doi.org/10.1117/12.921774
http://dx.doi.org/10.1063/1.3640238
http://dx.doi.org/10.1063/1.4704372
http://dx.doi.org/10.1063/1.4704372
http://dx.doi.org/10.1063/1.4737606
http://dx.doi.org/10.1557/PROC-1245-A03-04
http://dx.doi.org/10.1117/12.7972335
http://dx.doi.org/10.1002/pssr.201004303
http://dx.doi.org/10.1002/pssr.201004303
http://dx.doi.org/10.1364/OE.19.00A865
http://dx.doi.org/10.1143/JJAP.29.630
http://dx.doi.org/10.1143/JJAP.29.630
http://dx.doi.org/10.1002/pssa.201026745
http://dx.doi.org/10.1002/aenm.201100514
http://dx.doi.org/10.1109/JPHOTOV.2011.2180514
http://dx.doi.org/10.1021/nl203909u
http://dx.doi.org/10.1364/OL.8.000491
http://dx.doi.org/10.1063/1.3592885
http://dx.doi.org/10.1063/1.93817
http://dx.doi.org/10.1063/1.93817
http://dx.doi.org/10.1364/OE.18.00A335
http://dx.doi.org/10.1063/1.4758295
http://dx.doi.org/10.1063/1.4758295

	s1
	s2
	d1
	f1a
	f1
	n1
	d2
	s2
	s3
	f2a
	f2b
	f2
	d3
	s4
	t1
	s5
	f3a
	f3b
	f3c
	f3d
	f3
	d4
	s6
	d5
	d6
	s7
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34

