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We develop a model for carrier generation by impact ionization in graphene, which shows that this

effect is non-negligible because of the vanishing energy gap, even for carrier transport in moderate

electric fields. Our theory is applied to graphene field effect transistors for which we parameterize the

carrier generation rate obtained previously with the Boltzmann formalism [A. Girdhar and J.

Leburton, Appl. Phys. Lett. 99, 229903 (2011)] to include it in a self-consistent scheme and compute

the transistor I-V characteristics. Our model shows that the drain current exhibits an “up-kick” at

high drain biases, which is consistent with recent experimental data. We also show that carrier

generation affects the electric field distribution along the transistor channel, which in turn reduces the

carrier velocity. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4761995]

I. INTRODUCTION

In recent years, graphene has emerged as a new elec-

tronic material with unusual physical properties, due to its

two-dimensional (2D) nature and its band structure, where

the carrier energy is linear in momentum and the gap sepa-

rating conduction and valence bands is reduced to the single

Dirac point.1 For this reason, a large amount of work has

been devoted to explore new physical effects and exploiting

them in various technological applications.2–7 In this context,

graphene’s 2D nature and high carrier velocity are well

suited for high speed and high performance electronics, for

which the interaction between charge carriers and static and

dynamic lattice defects has been studied well.8 By contrast,

less attention has been paid to interband interaction amongst

carriers.9,10 In conventional semiconductors, it is well known

that this kind of inter-carrier interaction is characterized by

an energy threshold of the order of the energy gap, which

restricts the energy exchange amongst carriers to the most

energetic ones and thus becomes significant in high electric

fields.11 In gapless graphene such a condition is not fulfilled.

Very recently, electron-hole generation rates caused by

interband carrier-carrier interaction in the presence of electric

fields have been obtained, which confirms the absence of

energy threshold for impact ionization.12 Moreover, it was

shown that the generation rate is quasi-quadratic in the elec-

tric field at constant carrier temperature and strongly

decreases with the carrier concentration as it reduces the den-

sity of final scattering states for both particles. Therefore, it

becomes evident that any analysis of the transport character-

istics of graphene without the consideration of impact ioniza-

tion and its consequence on the carrier concentration is

incomplete.

In this paper, we provide a physical model that takes

into account impact ionization in non-linear transport in gra-

phene and graphene-based devices, specifically field-effect

transistors that are mostly utilized to extract transport param-

eters as a function of carrier concentrations.13

II. IMPACT IONIZATION-LIMITED TRANSPORT MODEL

Let us consider a graphene sheet placed in an electric

field F in the x-direction. At steady state, and in the presence

of impact ionization, both electron and hole current densities

Jn and Jp satisfy the 1D continuity equations

dJn

dx
þ eGðxÞ ¼ 0 (1a)

and
dJp

dx
� eGðxÞ ¼ 0; (1b)

where G(x) is the net electron-hole pair (EHP) generation

rate. Combining these two equations yields

dðJp þ JnÞ
dx

¼ 0 (2a)

and
dðJp � JnÞ

dx
� 2eGðxÞ ¼ 0; (2b)

where Eq. (2a) expresses the total current conservation and

2 G(x)¼U is the particle generation rate given by12

U ¼ � 8

A

X
k1;k10

k2;k20

Sðk1; k10 ; k2; k20 Þ
½f ðk10 Þ�½f ðk20 Þ�½1� f ðk1Þ�½1� f ðk2Þ�
�½f ðk1Þ�½f ðk2Þ�½1� f ðk10 Þ�½1� f ðk20 Þ�

� �
dk1 þ k2;k10 þ k20 ; (3)
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where

Sðk1; k10 ; k2; k20 Þ ¼ ð2p=�hÞjMj2dðE1 þ E2 � E
1
0 � E

2
0 Þ: (4)

Here, M ¼ e2=ð2jef f j0qeðqÞÞ where jef f is the effective

dielectric constant of a single layer graphene on a insulat-

ing substrate and e(q) is the static screening dielectric func-

tion of the q¼ k1 2 k10 wave vector. The factor 8 accounts

for spin and valley degeneracies as well as two distinct par-

ticles, electron and hole. k10 and k20 are the initial wave

vectors of electrons in the conduction (C) band and valence

(V) band, respectively, and k1 and k2 are the final wave

vectors in the conduction band (CVCC process). A similar

equation also describes the VCVV process. f(k) is the car-

rier distribution function assumed to be a displaced Fermi-

like distribution with an electronic temperature,12,14 and A

is the sample area. The reduction of the 8-uple summation

in Eq. (3) to a quadruple integral to obtain numerically the

generation rate is demonstrated in Appendix A. Fig. 1 illus-

trates the quasi-quadratic variation of the particle genera-

tion rate U with electric fields for different carrier

concentrations and electronic temperatures. In particular, it

shows that U-rates increase (decrease) with temperature

(carrier concentration) as the latter increases (decreases) the

density of available final states for scattered electrons.12

The generation rate obtained numerically from Eq.

(A13) is cumbersome for the integration of Eqs. (2). For this

reason, we propose the following expression

U ¼ gFaexp½�ðn=n0Þ�; (5)

where g, n0, and a � 1:66� 1:75 are fitted from Fig. 1 data.

The a-value is slightly smaller than 2 (Fig. 2(a)), because U
deviates from the strictly quadratic dependence on the elec-

tric field at high fields12 and slightly increases with carrier

concentration. For the sake of simplicity, we will use

a ¼ 1:7. Fig. 2(b) shows the exponential variation of U with

carrier concentration for different temperatures, where the

n0-parameter is a linear function of the electronic tempera-

ture (Fig. 2(c)). It was also found that a variation g / T3=2

on the electronic temperature constitutes a good approxima-

tion. Finally, one can relate the electronic temperature (Te)

dependence on the electric fields by the usual quadratic

expression15

Te ¼ TL 1þ F

FCT

� �2
" #

; (6)

where TL is the lattice temperature and FCT is a critical field

for the onset of hot carrier effects, which depends on various

scattering mechanisms.

III. IMPACT IONIZATION IN GRAPHENE FIELD EFFECT
TRANSISTOR (FET)

In order to compare our carrier generation model with

available experimental data on high field transport, we con-

sider the standard configuration of a graphene FET shown in

FIG. 1. Current densities as a function of applied fields for temperature 300–

1200 K at various carrier concentrations. Squares are values obtained from

Ref. 12 and the solid lines are the data best fit. The carrier concentrations for

each electronic temperature are 1012 cm�2, 2� 1012 cm�2, 5� 1012 cm�2,

1013 cm�2 (from top to down).

FIG. 2. (a) a-coefficient as a function of carrier concentration. (b) Net gener-

ation rate as a function of carrier concentration for several values of elec-

tronic temperature. (c) n0-coefficient as a function of electronic temperature.
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Fig. 3 for n-channel. In the charge-control model, one can

write quite generally,

Qþ � Q� ¼ 6 CoxðVGT � VðxÞÞ; (7)

for the ambipolar nature of the graphene channel charge,

where Qþ and Q� are the hole and the electron charges,

respectively, Cox is the oxide capacitance (here, we neglect

the quantum capacitance16 CQ � Cox), and VGT ¼ VG � VT ,

where VG is the gate bias and VT is the gate voltage at mini-

mum conductance. The 6 sign is for electron (þ) and hole

(�) channels, so that VGT is positive and negative, respec-

tively, and V(x) is the potential drop along the channel

(source at x¼ 0). We define the hole/electron current as

Ip;n ¼ 6Qþ;�Wvp;nðFÞ, where W is the graphene channel

width and vp;nðFÞ is the carrier velocity given by17

vðFÞ ¼ 6
l0F

1þ F=FC
; (8)

where the 6 sign is for holes (þ) and electrons (�), respec-

tively, and F is the electric field. The parameters l0 and FC

are the low field mobility and the critical field for the onset

of non-linearity due to high energy carrier scattering, such as

by optic phonons.18,19 Both are assumed equal for electrons

and holes given the symmetrical band structure of graphene.

We also assume FC and FCT may be different as current non-

linearity and electronic temperature onset may have different

origins; the former is related to the carrier momentum relax-

ation, whereas the latter is related to the energy relaxation.15

Neglecting any diffusion processes, and integrating Eq. (2b),

we get

Idrif t
p � Idrif t

n � eW

ðL
x

UðxÞdx ¼ I: (9)

By using Eq. (7) and the hole current definition,

C0xWl0ðVGT � VÞF
1þ F

FC

þ 2eW

ðx
0

GðxÞdx ¼ I; (10)

where I is the total current. By integrating Eq. (10) along the

channel length (L), as usually done in the charge control model

(CCM) of conventional MOS device,17 we obtain the expres-

sion for the total current in the transistor (see Appendix B)

I ¼ CoxWl0½VGTVDS � V2
DS=2�

L 1þ VDS

VC

� �

þ 2eW

1þ VDS

VC

ðL
0

1� x0

L
þ VDS � VðxÞ

VC

� �
Gðx0Þdx0; (11)

with VC ¼ FCL. Additionally, the expression of the electric

field as a function of distance along the channel length20 can

be derived from Eq. (10) and is given in Appendix C, where

it is shown to be an implicit function of the potential V(x),

and solved by iteration with Eq. (11) for each current I
value.

A. Electric field and potential extrapolation beyond
pinch-off

Equations (7), (10) and (11) are obtained under the grad-

ual channel approximation within the CCM that ignores

potential and electric field spatial variations beyond the

channel pinch-off once current saturation is achieved.8 As

carrier generation by impact ionization mostly occurs in the

high field region close to the drain, the distribution of the

electric field and potential in that region should be assessed.

For this purpose, one can fit F along the channel given by

the actual CCM with a quadratic expression

FðxÞ ¼ F0 þ axþ bx2; (12)

where F0 is the field at the source and a and b coefficients

are function of VDS and VGT as shown in Fig. 4. Equation

(12) is a good approximation on the source side of the tran-

sistor, but it underestimates the field on the drain side (see

Sec. VI). By integration, one gets the corresponding expres-

sion for the electric potential

VðxÞ ¼ � F0xþ ax2

2
þ bx3

3

� �
; (13)

with VðLÞ ¼ VDS and Vð0Þ ¼ 0.

One can use self-similarity with expressions (12) and

(13) for two channels of different lengths L and L0, so that

FIG. 3. Schematic of G-FET device of channel length L (source-drain

separation).

FIG. 4. Electric field as a function of position in the channel for different

values of drain source voltage before saturation.
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electric potentials and fields are related by the following

equations:

VðL; a; bÞ ¼ VðL0; a0; b0Þ
FðL; a; bÞ ¼ FðL0; a0; b0Þ;

(14)

yielding

a0

b0

� �
¼ 6

L03

L0L
L

2
� L0

3

� �
L0L2 L� L0

3

� �

L
L0 � L

2

� �
L2 L0

2
� L

3

� �
0
BBB@

1
CCCA a

b

� �

þ 6F0

L02

L� L0

L0 � L

L0

0
@

1
A: (15)

With this approach, one can then extrapolate the electric

field and potential spatial profiles beyond pinch-off by

asserting for VDSðL0Þ > VDSATðL0Þ, VDSðL0Þ ¼ VDSATðLÞ if

L> L0 and, similarly, for F(L) and F(L0). From the field dis-

tribution, the carrier concentration along the channel

nðxÞ ¼ I=WevðFðxÞÞ is readily obtained by the usual defini-

tion of current.

IV. COMPUTATIONAL APPROACH

Because of the interdependence amongst generation rate

(G) (Eq. (5)), carrier concentration and potential and electric

field profile, we use a self-consistent loop to compute the I-V
characteristics of the G-FET (Fig. 5) in this scheme. For

each VDS value, we initialize the loop by computing the cur-

rent (Eq. (11)) in the absence of carrier generation to obtain

the electric field and potential (Eq. (C2)) along the channel,

which we then fit with Eqs. (12) and (13) to get the values of

a- and b-coefficients. We then use Eq. (14) to find L0, and

then we re-calculate a0 and b0 beyond pinch-off. From these

new sets of values, we compute the initial G-profile, which

we use to re-calculate the electric fields (Eq. (14)), carrier

concentration and total current (Eq. (11)). The iteration pro-

cess is repeated until convergence of I and n.

V. RESULTS

In order to illustrate the effects of carrier multiplication in

graphene under high fields, we consider a G-FET with the fol-

lowing parameters: W¼ 2 lm, L¼ 1 lm,l0¼2000 cm2=ðVsÞ,

FIG. 5. Flow-chart of the interaction scheme to cal-

culate the current by taking into account the genera-

tion rate self-consistently.

FIG. 6. (a) Drain current as a function of drain source voltage for several

values of VGT : 1 V, 1.5 V, and 2 V (from bottom to up). (b) Electric field as

a function of drain source voltage for several values of VGT : 1 V, 1.5 V, and

2 V (from top to down).
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Cox ¼ 500 nC=cm2, FC ¼ 15 kV=cm, and VT ¼ 0:5V.20 We

perform the simulation for an n-channel (positive top-gate

voltage), and positive drain source bias, but the model is valid

for a p-channel as well as long as we invert the signs of the

biases.

Fig. 6(a) illustrates the effect of carrier multiplication on

the I-V characteristics of the G-FET for three values of the

gate voltage, which shows an “up-kick” in the current at high

drain bias beyond pinch-off. For the three gate biases, the cor-

responding saturation voltages are VDSAT ¼ 0:79 V; 1:11 V,

and 1:38 V; successively. Here, we also assume a constant

critical field FCT ¼ 25kV=cm for the onset of electronic tem-

perature (Eq. (6)) for all gate and drain biases. From the fig-

ure, one can also see that the higher the gate bias, the weaker

the effect as the value of the excess current slightly decreases

compared to the saturation value. In Fig. 6(b), we display the

values of the electric field at the drain side as a function of

drain bias for the three different gate biases. Interestingly, we

note that the field continues to increase and remains finite

even beyond pinch-off unlike what was predicted in a conven-

tional CCM, where it remains constant at the saturation value.

Furthermore, the lower the gate bias, the higher the field,

which partially explains the decrease in the current “up-kick”

in Fig. 6(a). However, there is also an influence on the carrier

concentrations, which is a strong condition for the onset of

carrier generation (see, e.g., Fig. 1 and Eq. (5)).

Fig. 7(a) shows the net generation rate along the chan-

nel for different drain biases at a fixed gate voltage

VGT ¼ 1 V, which increases with the drain source voltage,

but also shows a quasi exponential increase away from the

source as the field and electronic temperature (right axis)

increase toward the drain. One notices however a tempering

of the generation rate toward the drain at high drain source

bias, which is due to the increase in the carrier concentra-

tion that limits the rate according to Eq. (5). In Fig. 7(b),

we show the effect of the critical field for the onset of elec-

tron temperature FCT on the generation rate. As expected,

the rate decreases with increasing FCT as the electronic tem-

perature decreases, which weakens the impact ionization

process and carrier multiplication. It is the most pronounced

on the drain side.

A. Comparison with experiment

In their seminal 2008 paper, Meric et al.13 reported fea-

tures similar to those shown on Fig. 6 in the I-V characteris-

tics of their double gate G-FET. In order to compare our

model with their experimental data, we modify our approach

to account for source and drain series resistances, and con-

sider a p-channel. For this purpose, we follow the approach

developed by Scott and Leburton,20 where the first part of

Eq. (11) becomes (for holes)

CoxWl0½VGTVDS � V2
DS=2�

L 1þ VDS

VC

� � !
VDS � VC þ IRS þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVDS � VC þ IRSÞ2 � 4IRSVDS

q
4RS

; (16)

where I is the current in the system and RS the series resist-

ance. For p-channel, the current is negative, and the sign

changes in front of the integral term (Eq. (11)). From Eq. (16),

it is clear that there will be a new term in the square root of

Eq. (C3), i.e., ½VGT � Vi�2 ! ½VGT � Vi � IRs�2. We also add

the ohmic drop IRS from the source in the potential (Eq. (13)).

Fig. 8 compares our model calculations (solid lines)

with the experimental data (stars) for two back gate voltages.

For both cases, we use the same values of the critical field

for onset of velocity non-linearities as in Scott and Lebur-

ton.20 In Fig. 8(a) (Vgback ¼ �40 V), the two current curves

for low top gate biases (Vgtop ¼ �0:3 V and �0.8 V) are fit-

ted quite well with FCT ¼ 22 kV=cm, for which the effect of

carrier generation by impact ionization is weak. For the high-

est top gate bias (Vgtop¼ 0 V), the best fit is obtained with a

lower critical field, FCT ¼ 16 kV=cm; which is understand-

able since the hole concentration is smaller, which enhances

carrier generation. There is a clear “up-kick” due to the

generation rate at high source drain (negative drain) bias in

good agreement with the experimental data. Fig. 8(b) dis-

plays the comparison between model and experiment for

Vgback ¼ 40 V and three different top gate biases. We obtain

FIG. 7. (a) Net generation rate and elec-

tronic temperature as a function of posi-

tion for different values of VDS ¼1.5 V,

2 V, and 2.5 V (from bottom to up). (b)

Net generation rate as a function of drain

source voltage for different values of

critical field: 25 kV/cm, 35 kV/cm,

45 kV/cm, and 55 kV/cm (from top to

down).
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a very good agreement with FCT ¼ 22 kV=cm for the lowest

top gate voltage (Vgtop ¼ �1:3 V), for which carrier multipli-

cation is weak owing to the high hole concentration. The

agreement is less evident for the two lower current curves,

where the best fit is obtained for FCT ¼ 15 kV=cm. Here,

again the effect of carrier generation is stronger for the high-

est top gate bias, because the hole concentration in the chan-

nel is the lowest while the discrepancy is also the largest.

Our analysis shows that a change in the series resistance

(dashed curve), not the low field mobility nor the critical

field FCT in Eq. (8), results in a better agreement between

theory and experiment at high source drain bias but overesti-

mates the conductance at low source drain bias in this case.20

Fig. 9 displays the hole concentration on the drain side as

a function of the source-drain bias for three top gate biases.

As the latter increases, the former decreases monotonously to

reach its minimum value at the onset of saturation, where,

according to conventional CCM and in absence of carrier gen-

eration (dashed lines), it remains constant beyond pinch-off. It

increases again at higher source drain bias due to carrier gen-

eration. We also plot the carrier drift velocity along the chan-

nel at saturation onset for the three top gate biases, where one

also can see that lower velocity values are achieved at the

drain side, where the velocity is saturating as well.

VI. CONCLUSIONS

Because of the vanishing energy gap, carrier multiplication

by impact ionization takes place in graphene without a carrier

energy threshold, even in moderate electric fields

(F � 20� 30 kV=cm), which affects the transport characteris-

tics at low carrier concentrations. Our theory based on a param-

eterization of the carrier generation rate within an extended

charge control model shows that this effect is observable in gra-

phene field effect transistors as a smooth “up-kick” in the cur-

rent characteristics mostly at low gate voltage and moderate

drain bias. A higher gate voltage lends to a higher drain bias for

current “up-kick”. We also showed that this effect is self-

limited as it reduces the electric field, and consequently, the

carrier velocity variation in the region along the channel where

it takes places as a result of current conservation. By using non-

linear velocity-field relation (Eq. (8)) within the CCM, our

approach is valid for short channels as long as one can apply

self-similarity (Eq. (14)) beyond pinch-off in the parameteriza-

tion of the electric field (Eq. (12)) in a quadratic function of dis-

tance from the source along the channel. While this approach

reduces the field on the drain side compared to the CCM (Fig.

6) we do not believe it alters our conclusions as these discrep-

ancies occur over a short distance, while it is well known that

the CCM leads to unphysical large fields on the drain side

beyond current saturation.17 Moreover, as mentioned previ-

ously, carrier generation itself softens the increase in the field

on the drain side, which tends to validate Eq. (12).
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APPENDIX A

Equation (3) is of the general formX
k1;k10

k2;k20

Hðk1;k10 ;k2;k20 Þdðk1�k2�k10 �k20 Þdk1þk2;k10 þk20 ;

(A1)

FIG. 9. (a) Carrier concentration as a function of source drain voltage for

Vgback ¼ 40 V and several values of Vgtop :�0.3 V, �0.8 V, �1.3 V (from

bottom to up). Carrier velocity as a function of normalized source drain volt-

age respect to saturation for Vgback ¼ 40 V and several values of

Vgtop :�0.3 V, �0.8 V, and �1.3 V (from bottom to up).

FIG. 8. (a) Drain current as a function of source drain voltage for Vgback ¼�40 V and several values of Vgtop :0 V, �0.3 V, and �0.8 V (from bottom to up) and

different critical field: 16 kV/cm for 0 V and 22 kV/cm for the other two curves. (b) Drain current as a function of source drain voltage for Vgback ¼ 40 V and

several values of Vgtop :�0.3 V, �0.8 V, and �1.3 V (from bottom to up) and different critical field: 15 kV/cm for the first two curves and 22 kV/cm for the

highest. The dashed curve is got with RS ¼600 X and FCT¼18kV/cm.
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where H is a general function of the wavevectors

k1; k10 ; k2; k20 . To evaluate the 8-uple summations, we first

exploit one identity of the delta function

d½ðk1 � k2Þ2 � ðk10 þ k20 Þ2�

¼ dðk1 � k2 � k10 � k20 Þ þ dðk1 � k2 þ k10 þ k20 Þ
2ðk1 � k2Þ

;
(A2)

where the second term on the right hand side (RHS) is zero

since the available phase-space is restricted by energy con-

servation. We then eliminate the summation over k20 by

using the momentum-conservation Kronecker delta,X
k1;k10 ;k2

2Hðk1; k10 ; k2; k20 Þðk1 � k2Þd½ðk1 � k2Þ2 � k2

1
0

� 2k
1
0 k

2
0 � ðk1 þ k2 � k10 Þ2�; (A3)

where k20 ¼ k1 þ k2 þ k10 . After expanding the last term in

the argument of the d-function and using momentum conser-

vation, we getX
k1;k10 ;k2

Hðk1; k10 ; k2; k20 Þ
ðk1 � k2Þ

2
dfk1k2cos2½ðh1 � h2=2�

þ k
1
0 k

2
0 sin2½ðh

1
0 � h

2
0=2�g; (A4)

where h1; h2; h1
0 ; h

2
0 are the angles of the respective wave-

vectors with respect to the field direction (Fig. 10). Now, we

transform the sums over the wavevectors k10 ; k2 into inte-

grals over their respective magnitudes and angles.

A2

ð2pÞ4
X

k1

ðð
k

1
0 k2dk

1
0 dk2

ð2p

0

dh
1
0

ð2p

0

dh2Hðk1;k10 ;k2;k20 Þ
ðk1�k2Þ

2

�dfk1k2cos2½ðh1�h2=2�þk
1
0 k

2
0 sin2½ðh

1
0 �h

2
0 =2�g:

(A5)

Let us focus on the double angular integral

ð2p

0

dh
1
0

ð2p

0

dh2Hðh
1
0 ;h2Þdfk1k2cos2½ðh1�h2Þ=2�

þk
1
0 k

2
0 sin2½ðh

1
0�h

2
0 Þ=2�g: (A6)

Here, H is the same function as in Eq. (A1) where the de-

pendence on other variables is omitted for brevity. The

d-function is of the form d½a2 þ b2� with

a �
ffiffiffiffiffiffiffiffiffi
k1k2

p
cos½ðh1 � h2=2�; b �

ffiffiffiffiffiffiffiffiffiffiffi
k

1
0 k

2
0

q
sin½ðh

1
0 � h

2
0=2�:

(A7)

By changing the variables h
1
0 ; h

2
0 ! a; b, the double angular

integral can be transformed into a simpler form

ðffiffiffiffiffiffiffik1k2

p

�
ffiffiffiffiffiffiffi
k1k2

p

da
j@a=@h2j

ðffiffiffiffiffiffiffiffiffik
1
0 k

2
0

p

�
ffiffiffiffiffiffiffiffiffi
k

1
0 k

2
0

p
db

j@b=@h
1
0 j 	H½h2ðaÞ;h1

0 ðbÞ�d½a2þb2�:

(A8)

One notes that since the only contribution to the integral

occurs at the origin, we can extend the integral limits to the

entire a, b plane

ð1
�1

da
j@a=@h2j

ð1
�1

db
j@b=@h

1
0 j 	 H½h2ðaÞ; h1

0 ðbÞ�d½a2 þ b2� (A9)

and proceed to changing the Cartesian coordinates a; b into

the polar coordinates q; /. This yields

ð2p

0

du
j@a=@h2j

ð1
0

qdq
j@b=@h

1
0 j 	Hfh2½aðq;uÞ�; h1

0 ½bðq;uÞ�gdðq2Þ

¼1

2

ð2p

0

du
j@a=@h2j

ð1
0

dq
j@b=@h

1
0 j	Hfh2½aðq;uÞ�;h1

0 ½bðq;uÞ�gdðqÞ;

(A10)

where we have used the identity 2qdðq2Þ ¼ dðqÞ. After car-

rying out the integrals, we get

p
2j@a=@h2ja¼0j@b=@h1

0 jb¼0

H½h2ða ¼ 0Þ; h
1
0 ðb ¼ 0Þ�

¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k10k20
p

sin½ðh1 � h2Þ=2�h2¼h1�p cos½ðh
1
0 � h

2
0 Þ=2�h

1
0 ¼h

2
0

Hðh2 ¼ h1 � p; h
1
0 ¼ h

2
0 Þ: (A11)

It should be noted that a ¼ 0; b ¼ 0 is equivalent to h2 ¼ h1 � p; h
1
0 ¼ h

2
0 , respectively. This allows us to write the original

expression (A1) as

X
k1;k10

k2;k20

Hðk1; k10 ; k2; k20 Þdðk1 � k2 � k10 � k20 Þdk1þk2;k10 þk20 ;
A2

16p3

X
k1

Ð Ð
k10k2dk10dk2

ð2p

0

dh
1
0

ð2p

0

dh2Hðk1; k10 ; k2; k20 Þ

� ðk1 � k2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k

1
0 k

2
0

p dðh2 � h1 þ pÞdðh
1
0 � h

2
0 Þ

sin½ðh1 � h2Þ=2�cos½ðh
1
0 � h

2
0 Þ=2� ;

(A12)
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which reduces our six-fold summation over k10 ; k2; k2
0 into a

two-dimensional integral over k2; k10 and finally write

¼ A2

16p3

X
k1

ð1
0

dk10k10

ð1
0

dk2k2

� ðk1 � k2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k10k20
p Hðk1k2; k10k20 Þ

���� k20¼k1þk2�k10 ;

h1¼h2þp;h10¼h20

;

(A13)

where h20 represents the angle of the vector k1 þ k2-k10 all

being co-linear.

The expression (A13), which is different from Eq. (14)

in Ref. 21 is equivalent to Eq. (8) in Ref. 12, except for a fac-

tor 1=2, which is readily corrected.

APPENDIX B

Equation (11) is obtained as follows:

After multiplying both sides of Eq. (10) by 1þF/FC and

integrating from source to the x-position in the channel,17

one gets

1þ VðxÞ
FC

� �
I

W
¼ Coxl0½VGT � VðxÞ=2�VðxÞ

þ 2e

ðx

0

1þ F

FC

� �
dx0
ðx00

0

Gðx00Þdx00: (B1)

The double integral in the last term of Eq. (B1) can be inte-

grated by parts, yielding

ðx

0

1þ F

FC

� �
dx0
ðx00

0

Gðx00Þdx00 ¼
ðx0
0

Gðx00Þdx0
ðx0
0

1þ F

FC

� �
dx00
����
x

0

�
ðx
0

Gðx0Þdx0
ðx0
0

1þ F

FC

� �
dx00

¼ xþ VðxÞ
FC

� �ðx
0

Gðx0Þdx0

�
ðx
0

Gðx0Þ x0 þ Vðx0Þ
FC

� �
dx0:

(B2)

After taking the limit x-> L and rearranging Eqs. (B1) and

(B2) one obtains Eq. (11).

APPENDIX C

Equation (12) for the electric field along the channel is

obtained by combining Eqs. (B1) and (B2), which yields

1þ V

FC

� �
I

W
¼ Coxl0½VGT � V=2�V

þ 2e xþ V

FC

� �ðx
0

Gðx0Þdx0

� 2e

ðx
0

Gðx0Þ x0 þ Vðx0Þ
FC

� �
dx0; (C1)

from which one obtains an implicit expression for the poten-

tial along the channel by solving the second order algebraic

equation in V

VðxÞ ¼

VGT � Vi þ
2e

FCCoxl0

ðx
0

Gðx0Þdx0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VGT � Vi þ
2e

FCCoxl0

ðx
0

Gðx0Þdx0

2
4

3
5

2

� 2FCVixþ
4e

Coxl0

ðx
0

x� x0 þ VðxÞ
FC

� 	
Gðx0Þdx0

vuuut

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
; (C2)

where Vi ¼ I
Wl0FCCox

.

Deriving Eq. (C2) with respect to position x yields the electric field

FIG. 10. The wavevectors k1; k10 ; k2; k20 and their angles measured with

respect to the electric field direction.

093707-8 Pirro et al. J. Appl. Phys. 112, 093707 (2012)



FðxÞ ¼ �

2eGðxÞ
FCCoxl0

�

2eGðxÞ
FCCoxl0

VGT � Vi � VðxÞ þ 2e

FCCoxl0

ðx
0

Gðx0Þdx0

2
4

3
5þ 2e

Coxl0

ðx
0

Gðx0Þdx0 � FCVi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VGT � Vi þ

2e

FCCoxl0

ðx
0

Gðx0Þdx0

2
4

3
5

2

� 2FCVixþ
4e

Coxl0

ðx
0

x� x0 þ VðxÞ
FC

� 	
Gðx0Þdx0

vuuut

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: (C3)
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