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Kinetic plasma simulation typically requires to handle a multiplicity of space and time scales. The
implicit moment particle in cell �PIC� method provides a possible route to address the presence of
multiple scales effectively. Here, a new implementation of the implicit moment method is described.
The present paper has two goals. First, the most modern implementation of the implicit moment
method is described. While many of the algorithms involved have been developed in the past, the
present paper reports for the first time how the implicit moment method is currently implemented
and what specific algorithms have been found to work best. Second, we present the CELESTE3D code,
a fully electromagnetic and fully kinetic PIC code, based on the implicit moment method. The code
has been in use for a number of years but no previous complete description of its implementation
has been provided. The present work fills this gap and introduces a number of new methods not
previously presented: a new implementation of the Maxwell solver and a new particle mover based
on a Newton-Krylov nonlinear solver for the discretized Newton’s equations. A number of
benchmarks of CELESTE3D are presented to shown the typical application and to investigate the
improvements introduced by the new solver and the new mover. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2173623�
I. INTRODUCTION

The presence of multiple scales in space and time is a
defining property of plasmas. The macroscopic evolution of
the whole system often is relatively slow and develops on
system scales, but is tightly coupled with smaller and faster
scales. Small scales determine dissipations and enable pro-
cesses such as topological changes of the magnetic field
�e.g., reconnection� that are not otherwise possible. From the
perspective of simulation, two approaches can be considered:
fluid and kinetic.1

Fluid models are most suitable to describe the overall
system scales but are not completely consistent and require
some information from microscopic kinetic models to deal
with the coupling between microscopic and macroscopic
scales. Conversely, kinetic models are most suitable for the
microscopic scales but are extremely costly to extend to full
system scales. However, it must be noted that progress in
computer speed and memory, software engineering, and al-
gorithms has extended the applicability of the full kinetic
description to significant macroscopic processes. In space
plasma physics, global hybrid �fluid electrons and kinetic
ions� simulations of large scale problems in the Earth’s
magnetosphere1,2 are common and in fusion devices gyroki-

a�
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netic transport simulations of tokamak plasmas are a crucial
tool in modern fusion research.3,4

However, hybrid and gyrokinetic models still are based
on a some limitations. Gyrokinetic models are based on av-
eraging the kinetic equations over the gyroradius of the
plasma species.3 The length scales resolved by the gyroki-
netic approach are limited by the condition that �s /Leq�1,
where Leq is the typical equilibrium scale and �s is the gyro-
radius of species s. The time scales covered by the gyroki-
netic model are limited by ��cs�1, where � is the typical
temporal scale of evolution and �cs is the cyclotron fre-
quency. Furthermore, small electron scales, such as the elec-
tron Debye length, are typically eliminated. Hybrid models
are based on fluid electrons and cannot properly describe
processes that depend on the electron physics, such as elec-
tron acceleration, heating, and most importantly resistivity
and viscosity. Hybrid models rely on using appropriate mod-
els to summarize the electron behavior and can become un-
reliable when such models fail. As an example, unless proper
models of high order moments such as the pressure tensor
and heat flux are included, the hybrid model can lead to
unphysical results.5 The predictive capability of hybrid mod-
els is limited by their reliance on fluid electrons.

We consider here a fully kinetic approach that removes
both the need to gyroaverage and to assume quasineutrality.
The assumption of quasineutrality leads to the removal of the

fastest �Langmuir waves� and smallest �Debye� scales. In

© 2006 American Institute of Physics4-1
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most cases, such scales are indeed very small compared with
the scales thought to be relevant. However, charge separation
can be important in affecting large scales as recent work on
reconnection has shown.6,7

The gyroaveraging approach is valid in most current ex-
perimental fusion devices where the electron and ion gyro-
radius are smaller than the scales of interest, satisfying the
condition of validity of the gyrokinetic approach. In ITER, as
in any future thermonuclear burning experiment, the pres-
ence of alpha particles �helium nuclei� will change this situ-
ation. As an example, in ITER, the gyroradius of deuterium
at 10 keV is of the order of a tenth of a centimeter, but the
gyroradius of alpha particles generated by fusion at 3.5 MeV
is of the order of 10 cm. The latter scale can in some cases
be too large to allow a gyroaveraged model. A complete
kinetic model will be needed to address the behavior of alpha
particles in ITER, while electrons and ions can still be gy-
roaveraged.

The implicit particle in cell �PIC� method was developed
as a general plasma simulation tool based on a fully kinetic
approach8,9 that did not rely on any physical approximation
but only on the use of advanced numerical methods to reduce
the cost of large scale kinetic simulations. As in any area of
scientific simulation, the basic approaches are appealing for
their direct natural interpretation but are subject to severe
numerical problems. In its simplest form the PIC method
uses explicit numerical techniques that require to resolve all
scales, including the Debye length and the Langmuir plasma
frequency.10 The need for hybrid and gyrokinetic approach
stems precisely from this limitation.1 However, the implicit
PIC method provide an alternative where the smallest scales
are not eliminated but are kept in a approximate inexact way
sufficient to deal with their coupling with larger scales.11

The implicit PIC method has been developed for a num-
ber of years since its original introduction. Two main ap-
proaches have emerged: the direct implicit method12 and the
implicit moment method.11 Here we consider the implicit
moment method. In the past few years, we have published a
number of papers on the application of CELESTE3D �e.g., see
Ref. 13 and 14 and references therein� but the code
CELESTE3D itself has never been described in the published
literature. In the present work, we describe for the first time
the combination of algorithms used in CELESTE3D. While
some of the algorithms used by CELESTE3D are not new, their
combined use and the reasons for selecting the methods we
have selected are new.

The present manuscript reports two types of new devel-
opments in the implicit moment PIC method. First, some of
the methods presented here are new: a new particle mover
and a new field solver are presented here and their perfor-
mance is tested. Moreover, other algorithms used in
CELESTE3D are based on previous work but have been modi-
fied to obtain better performances. Second, the overall com-
bination of schemes and algorithms that compose CELESTE3D

is in itself new. To make CELESTE3D work successfully a
number of algorithms and tools needed to be deployed and
refined. Here we describe precisely how this is done.

The paper is organized as follows. Section II summarizes

the methods used in CELESTE3D, focusing primarily on the
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specific implementation choices made to obtain the best per-
formances. Section II introduces two new algorithms: the
particle mover and the field solver. Section III discusses a
number of benchmarks used for the validation and verifica-
tion of CELESTE3D. Section IV analyzes the performances of
the new particle mover and filed solver.

II. MOMENT IMPLICIT PIC

The fundamental plasma description for a large variety
of physical systems in laboratory, space and astrophysics is
the Boltzmann-Maxwell model.

In the derivations below, we consider the full set of Max-
well’s equations in SI units:

� � E +
�B

�t
= 0,

� � B − �0�0
�E

�t
= �0J ,

�1�
�0 � · E = � ,

� · B = 0,

and the Boltzmann equation for the distribution function
fs�x ,v , t� in phase space for each species s:

� fs

�t
+ v ·

� fs

�x
+

qs

ms
�E + v � B� ·

� fs

�v
= St��fs�� . �2�

The last term in the Boltzmann equation is the collision in-
tegral.

In the present work we will assume classic and collision-
less plasmas. The extension to relativistic �special or general�
plasmas is possible15 but not trivial and beyond the scope of
the present paper. The inclusion of a collision term is also
possible and has indeed been done within the framework of
implicit PIC.16

Below we will focus on the implicit PIC solution of the
classic Vlasov-Maxwell model.

A. Particle in cell „PIC… approach

The fundamental assumption of the particle in cell
method is that the distribution function of each species s can
be described by a superposition of Ns finite elements �called
superparticles or computational particles� labeled by p and of
the form

fs�x,v,t� = �
p=1

Ns

S�x − xp�S�y − yp�S�z − zp�	�v − vp� , �3�

where S is the so-called shape function and 	 is Dirac’s delta.
The shape function is defined to be symmetric and with a
unitary integral and is typically chosen as a b spline of order
�17 in each direction. Introducing a particle and cell size 
x
in the x direction, we define S�x−xp�=bl��x−xp� /
x� and
similarly in the other directions. A typical example is the use
of b splines of order 1, leading to the so-called cloud in cell

18
�CIC� scheme:
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bl��� = �1 − 	�	 if 	�	 � 1

0 otherwise
. �4�

Each superparticle represents a small element of phase space
with finite size in each spatial direction but localized in ve-
locity. Each element is characterized by a constant �in time�
shape and by two parameters, the superparticle position xp

and velocity vp. We note that this has no relationship with
Eulerian methods where the distribution function is de-
scribed in terms of a spline fit.19

The linearity of the definition in Eq. �3� ensures that
the evolution of each superparticle is still described by the
Vlasov equation. Substituting Eq. �3� in the Vlasov equation
�2�, one derives the equations for the evolution of the param-
eters xp and vp:

dxp

dt
= vp,

�5�
dvp

dt
= ap.

The derivation of the PIC method directly from the Vlasov
equation provides also a unique definition of the average
acceleration acting on the finite-sized superparticle as
ap=Ep+vp�Bp, where

Ep = 

V

E�x�S�x − xp�dx ,

�6�

Bp = 

V

B�x�S�x − xp�dx

over the computational domain V.
The solution of the evolution equations requires the so-

lution of the Maxwell’s equation. The second defining prop-
erty of the PIC method is the use of a grid to do so. The
information needs to be carried between particles and grid.
To this end, the interpolation function is introduced defined
for each spatial direction as

W�xc − xp� = 

−



S�x − xp�b0� x − xc


x
�dx , �7�

where we used the flat-top function �or b spline of order 0�
equal to one only within the cell span 
x and zero otherwise.
We limit the attention here to uniform grids, but the gener-
alization to adaptive grids is straightforward.20

The computation of W is simplified if we recall the fol-
lowing general property of the b splines:

bl+1��� = 

−

+

bl����b0�� − ���d��. �8�

The interpolation function in the x direction simply becomes
W�x−xp�=bl+1�x−xp� /
x, and similarly in the other direc-
tions.

Using the interpolation functions, the particle fields can

be expressed more conveniently as
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Ep = �
g

EgW�x − xp� ,

�9�
Bp = �

g

BgW�x − xp� ,

where the cells are labeled with a single index g and the field
values in each cell are Eg and Bg.

Similarly the moments of the distribution function
needed for solving the field equations can be obtained easily
integrating the definition of the superparticle:

�s,g = �
p=1

Ns

qpW�x − xp� ,

�10�

Js,g�r� = �
p=1

Ns

qpupW�x − xp� ,

where qq is the charge of the superparticle p and the sum is
extended to particles belonging to species s.

Figure 1 summarizes the steps required for solving the
Vlasov-Maxwell model: the equations of motion �5� need to
be solved to advance the superparticle positions and veloci-
ties, the new superparticle position and velocity are used to
compute the moments using Eq. �10�. The field equations are
solved next and the fields on the particle are obtained from
Eq. �9�.

The fundamental issue of relevance here is that the mo-
tion and field equations are coupled via the fields. The equa-
tions of motion need the fields computed over the superpar-
ticle �Ep, Bp� and the field equations need the moments �s,g

and Js,g. The great majority of PIC codes in use today ad-
dress this problem relying on a explicit method.

In the explicit method, the field equations are discretized
with one in a number of different explicit methods available
�see Refs. 10 and 18 for a review� and the equations of
motion are usually discretized with the leapfrog
algorithm.10,18 The key point is that in the explicit method,
the field equations need only the sources from the previous
time cycle and the equations of motions need only the fields
from the previous time cycle. Even though the equations
remain coupled, no iteration is needed and the cycle depicted

FIG. 1. Blocks needed in a cycle of the PIC scheme.
in Fig. 1 becomes a simple marching order where each block
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is applied after its predecessor and needs only information
already available. This choice makes the explicit PIC very
simple.

As can be imagined this simplicity comes at a price. The
explicit PIC approach is subject to three very restrictive sta-
bility constraints.

First, the explicit discretization of the field equations re-
quires that a Courant condition must be satisfied on the fast-
est traveling wave speed, the speed of light:

c
t � 
x . �11�

Second, the explicit discretization of the equations of
motion introduces a constraint related to the fastest electron
response time, the electron plasma frequency:

�pe
t � 
x . �12�

Note that, instead, thanks to the Boris algorithm for the mo-
tion in a magnetic field, the gyromotion introduces no stabil-
ity constraints.10

Finally, the interpolation between grid and particles
causes a loss of information and a aliasing instability called
finite grid instability that results in an additional stability
constraint,


x � ��De, �13�

that requires the grid spacing to be of the order of the Debye
length or smaller, the proportionality constant � being of or-
der one and dependent on the details of the scheme
deployed.10,18

Thanks to ever faster computers, the explicit PIC method
has been able to achieve remarkable results over the 50 years
since its invention. But there are problems where multiple
scales still prevent its use. When large scales and slow pro-
cesses are what is of interest other approaches are needed.
The implicit PIC approach provides a viable alternative in
such problems.

B. Implicit PIC

The implicit plasma simulation method was in-
troduced8,9,11,12 with the goal of retaining a full kinetic model
but eliminating many of the numerical stability constraints
on the time and space steps described above. Below we de-
scribe the latest implementation of the moment implicit PIC
method developed for the CELESTE3D code.

We consider first the time discretization. The solution is
advanced in the time domain with discrete time steps, 
t,
from the initial time, t0=0, to the final time, tN=T. The ge-
neric quantity � at time step n �t= tn� is denoted with �n.

The equations of motion are discretized as21,22

xp
n+1 = xp

n + vp
n+1/2
t ,

�14�

vp
n+1 = vp

n +
qs
t

ms
�Ep

n+��xp
n+1/2� + vp

n+1/2 � Bp
n�xp

n+1/2�� ,

where all quantities evaluated at intermediate values are
computed as �n+�=�n�1−��+�n+1�. Note that the velocity

equation is more conveniently rewritten as
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vp
n+1/2 = v̂p + �sÊp

n+��xp
n+1/2� , �15�

where �s=qp
t /mp �independent of the particle weight and
unique to a given species�. For convenience, we have intro-
duced hatted quantities obtained by explicit transformation
of quantities known from the previous computational cycle:

v̂p = �s
n · vp

n ,

�16�
Ês

n+� = �s
n · Es

n+�.

The transformation tensor operators �s
n are defined as

�s
n =

1

1 + ��sB
n�2 �I − �sI � Bn + �s

2BnBn� , �17�

and represent a scaling and rotation of the velocity vector.
Semidiscrete, continuous space, temporal discretization

to Maxwell’s equations is written as

� � En+� +
1

c

Bn+1 − Bn


t
= 0,

� � Bn+� −
1

c

En+1 − En


t
=

4�

c
Jn+1/2,

�18�
� · En+� = 4��n+�,

� · Bn = � · Bn+1 = 0.

The parameter �� �1/2 ,1� is chosen in order to adjust
the numerical dispersion relation for electromagnetic waves
�for ��1/2, the algorithm is not unconditionally stable11�.
We note that for �=1/2 the scheme is second-order accurate
in 
t; for 1 /2���1 the scheme is first-order accurate.

The interpolation formulas derived above provide the
expression for the fields in the equations of motion and for
the sources in Maxwell’s equations. The coupling of the set
of equations is evident.

The fundamental problem to address in developing an
implicit PIC method is the coupling between the equations of
motion and the field equations for the presence of the time
advanced electric field �but not magnetic field, that is used
from the previous cycle, as no instability is introduced� in the
equations of motion and for the appearance �due to the pres-
ence of xp and vp in Eq. �10�� of the particle properties in the
sources of the Maxwell equations. In both cases the coupling
is implicit, so that the new particle properties need to be
known before the fields can be computed and likewise the
new fields need to be available before the new particle prop-
erties can be computed.

While a direct solution of the coupled system for fields
and particle motion is now within the reach of modern com-
putational methods and computer resources,23 we focus here
on the implicit moment method that removes the need for
iterative methods and provides a direct method to compute
the advanced fields without also having to move the par-

ticles.
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C. Moment implicit method

The implicit moment method reduces the number of
equations that must be solved self-consistently to a set of
coupled fluid moment and field equations. The solution of
these equations implicitly, and the subsequent explicit solu-
tion of the particle equations of motion in the resulting fields,
is stable and accurate.

The idea is summarized in Fig. 2 where the logic of the
sequence of operations involved in the implicit moment
method is shown. The coupling due to the implicit discreti-
zation of both field and particle equations is broken by ap-
proximating the sources of the field equations using the mo-
ment equations instead of the particle equations directly.
Once the field equations are solved within this approxima-
tion, the rest of the steps can be completed directly without
iterations: with the new fields, the particle equations of mo-
tion can be solved and the new current and density can be
computed for the next computational cycle.

The implicit moment method formulation used here is
described in Refs. 11 and 21. The key step is to derive a
suitable set of moment equations that can approximate the
particle motion over a computational cycle. The approach
followed in the present implementation of the implicit mo-
ment method is based on a series expansion of the interpo-
lation function appearing in the expression for the field
sources, eq. �10�. The expansion is done with respect to the
particle position, choosing the center of the expansion as the
particle position at the start of the computational cycle:

W�x − xp
n+1� = W�x − xp

n� + �x − xp
n� · �W�x − xp

n�

+
1

2
�x − xp

n��x − xp
n�:��W�x − xp

n� + ¯ ,

�19�

where a tensor notation is used.
The expansion �19� can be used to compute the field

sources directly using particle information only from the pre-
vious computational cycle and removing the need to iterate
the particle and field equations. The details of the simple but
tedious algebraic manipulations are provided in Ref. 21, the

FIG. 2. Blocks needed in a cycle of the implicit moment PIC scheme.
final answer being
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�s
n+1 = �s

n − 
t � · Js
n+1/2,

�20�

Js
n+1/2 = Ĵs −


t

2
�s · E� −


t

2
� · �̂s,

where the following expressions were defined:

Ĵs = �
p

qpv̂pW�x − xp
n� ,

�21�
�̂s = �

p

qpv̂pv̂pW�x − xp
n� ,

with the obvious meaning, respectively, of current and pres-
sure tensor based on the transformed hatted velocities. An
effective dielectric tensor is defined to express the feedback
of the electric field on the plasma current and density:

�s
n = −

qs�s
n

ms
�s

n. �22�

The expression �20� for the sources of the Maxwell’s
equations provides a direct and explicit closure of Maxwell’s
equations. When Eq. �20� is inserted in Eq. �18�, Maxwell’s
equations can be solved without further coupling with the
particle equations. This is the key property of the moment
implicit method and allows the implicit PIC method to retain
the once-through approach typical of explicit methods and
eliminates the need for expensive iteration procedures that
would require to move the particles multiple times per each
computational cycle.

D. Field solver

Previous versions of the implicit PIC method have relied
on different solution procedures for the Maxwell equations.
In the 1D version of CELESTE3D, a potential formulation was
applied,21 while early versions of CELESTE3D were based on a
time-staggered solution of the two divergence Maxwell’s
equations and of a second-order formulation of the two curl
Maxwell’s equations.28 More recently a consistent second-
order formulation has been presented24 and is used here.

In the continuum, the two curl Maxwell’s equations give
a solution with the property of satisfying also the two diver-
gence equations at all times, provided that appropriate initial
and boundary conditions are used. Based on this property,24

we solve the following second-order equation obtained from
the two time-discretized �but continuous in space� curl equa-
tions in Eq. �18�:

�c�
t�2�− �2En+� − �� · ��n · En+��� + �n · En+� = En

+ �c�
t��� � Bn −
4�

c
Ĵn� − �c�
t�2 � 4��̂n, �23�

where �n=�s�s
n and �n=I+�n, where I is the identity ten-

sor.
As shown in Ref. 24, the second-order formulation for

the electric field needs to be coupled with a divergence

cleaning step to ensure that

ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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�0 � · En = �n �24�

holds for the initial field of each time step.
The boundary conditions for the second-order formula-

tion for E can be derived from the natural boundary condi-
tions expressed in both E and B using theorems of classical
electrodynamics.24 The magnetic field is computed directly
once the new electric field is computed as

Bn+1 = Bn


t
+ � � En+�. �25�

Using the temporal second-order formulation above, the
field equations are further discretized in space using a finite
volume approach described in Ref. 25. The discretized equa-
tions and their boundary conditions form a nonsymmetric
linear system that is solved using generalized minimal re-
sidual algorithm �GMRES�.26 For the divergence cleaning
equation, conjugate gradient �CG� �or fast Fourier transform
�FFT� on a uniform grid�26 can be used since the discretized
equation leads to a symmetric matrix.

The field solver is implemented defining a Krylov vector
of unknowns constituted by all three components of the elec-
tric field on all nodes, including the boundary nodes. The
corresponding residuals are provided by the second-order
formulation of Maxwell’s equation �23� in the interior and by
the boundary conditions indicated in Ref. 24 on the boundary
nodes. GMRES is used as solver to minimize the residual
within a prescribed relative tolerance.

E. Particle mover

Once the fields are computed from the implicit moment
method, the particles can be advanced. The set of equations
of motions �14� have an inner coupling among themselves
due to the appearance of the new velocity in the equation for
the position and of the new position in the equation for the
velocity. This coupling is purely local at the level of each
particle and does not involve coupling with other particles.

In previous implementations of the implicit PIC method,
a predictor-corrector �PC� approach was used to solve the
nonlinear system of equations of motions.22 Here, we employ
the Newton-Krylov �NK� method27 to solve the set of equa-
tions of motion to convergence.

Instead of simply solving the six coupled equations of
motions considering position and velocity as unknowns, we
use the formal linearity of the explicit quadrature of the ve-
locity provided in Eq. �15�. Substituting the first of the New-
ton equations �14� in the second, the nonlinear �vectorial�
function expressing the discretized Newton equations is

f�xp
n+1� = xp

n+1 − xp
n − 
tv̂p − 
t�sÊp

n+��xp
n+1/2� . �26�

The three residual equations above have only three un-
knowns, the components of xp

n+1, all other quantities being
known.

The residual equation f�xp
n+1�=0 is solved using the NK

method. A crucial feature of the NK method is the fact that
the Jacobian matrix never needs to be computed or formed,
and the method uses a series of residual function

27
evaluations. The NK method is based on solving iteratively
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the residual equation. The new iteration xp
n+1,�k+1�=xp

n+1,�k�

+	xp is obtained by computing the displacement 	xp using
the Newton method,27 i.e., using a Taylor series expansion
truncated at first order �to ensure linearity of the resulting
equation for 	xp�. To avoid forming and storing the Jacobian
matrix needed for the Taylor series expansion, the equation
for 	xp is approximated numerically by replacing the deriva-
tives with differences:

f�xp
n+1,�k�� +

f�xp
n+1,�k� + �	xp� − f�xp

n+1,�k��
�

= 0. �27�

While formally nonlinear, Eq. �27� is linearized by choosing
� small enough to ensure the accurate replacement of the
first-order derivative with the difference in the Taylor expan-
sion. In practice, � is chosen according to the machine
precision.27 The Jacobian equation �27� is expressed only in
terms of residual function evaluations and there is no need to
form or store the matrix. To solve Eq. �27�, we use the
GMRES algorithm since the Jacobian matrix can be
nonsymmetric.26

The use of the new mover outlined above ensure solu-
tion of the equations of motion to convergence of the non-

FIG. 3. Newton challenge: �a� Final state at �cit=200. The flux surfaces are
superimposed over the current density. �b� Time evolution of the recon-
nected flux.
linear iteration, the old PC mover instead used a fixed num-

ense or copyright; see http://pop.aip.org/about/rights_and_permissions



055904-7 Kinetic approach to microscopic-macroscopic coupling¼ Phys. Plasmas 13, 055904 �2006�
ber of iterations allowing for an uncontrolled error. This
feature leads to an improved energy conservation in the over-
all scheme. We have recently extended the mover to treat
relativistic systems.15

F. Stability

The stability properties of the method described above
have been studied extensively in the past.11 All the stability
constraints discussed above for the explicit method are re-
moved. The implicit particle mover removes the need to re-
solve the electron plasma frequency, and the implicit formu-
lation of the field equations removes the need to resolve the
speed of light.

The time step constraints are replaced by an accuracy
limit arising from the derivation of the fluid moment equa-
tions using the series expansion in Eq. �19�. This limit re-
stricts the mean particle motion to one grid cell per time
step,11 i.e.,

vth,e
t/
x � 1. �28�

The finite grid instability limit for the explicit method, 
x
���De, is replaced by11


x/
t � �vth,e, �29�

that allows large grid spacings to be used when large time
steps are taken. The gain afforded by the relaxation of the
stability limits is twofold.

First, the time step can far exceed the explicit limit. In a
typical plasma the electron plasma frequency is far smaller
than the time scales of interest and its accurate resolution is
not needed. Within the current approach, the processes de-
veloping at the sub-
t scale are averaged and their energy is
damped by a numerically enhanced Landau damping. In
other approaches, such as the gyrokinetic or hybrid
approach,1 such processes are completely removed and the
energy channel towards them is interrupted, removing for
example the possibility to exchange energy between sub-
t
fluctuations and particles. In the implicit approach, instead,
the sub-
t scales remain active and the energy channel re-
mains open. This is a crucial feature to retain in full kinetic
approach. Furthermore, when additional resolution of the
smallest scales is needed, the implicit method can access the
same accuracy of the explicit method simply using a smaller
time step and grid spacing. This feature is not accessible to
reduced model, e.g., gyroaveraged methods, that remove the

TABLE I. Total energy error, defined as �E�T�−E�0�


t �ci /�pi=0

PC NK PC

0.001 2.1�10−3 2.1�10−3 2.6�1

0.01 5.5�10−3 5.6�10−3 1.9�1

0.1 5�104 2.7�10−3 1.1�1

0.5 1�1011 1.6�10−3 9.7�1

1 7�1014 4.9�10−3 2.3�1
small scales entirely.
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Second, the grid spacing can far exceed the Debye
length. Often the scales of interest are much larger than the
Debye length. The ability to retain a full kinetic treatment
without the need to resolve the Debye length results in a
much reduced cost for the implicit PIC method.

III. VERIFICATION AND VALIDATION

The implicit moment PIC method described above is
implemented in the CELESTE3D code. The CELESTE3D code
was originally conceived for the numerical tokamak
project28,29 but has found its main application in space phys-
ics.

Below we summarize first the benchmarks we have con-
ducted to validate and verify CELESTE3D when applied to
multiple scale problems. Next we discuss the performance of
the code, focusing particularly on the gains afforded by the
two innovations introduced in the present paper: the new
mover and the new Maxwell solver.

Five types of tests have been conducted to verify and
validate CELESTED in full 3D Cartesian geometry and in re-
duced geometries in 2D and 1D.

First, unit testing of all methods �or subroutines in For-
tran terminology� have been conducted. PIC codes are ex-
tremely modular and naturally prone to be coded in a object-
oriented, component-based framework. CELESTE3D is
currently written in Fortran 90 but a new implementation in
C�� has been recently developed for the new code project
PARSEK.30

Second, classic tests have been conducted of well known
benchmarks including shocks, the Weibel instability, Landau
damping, and ion acoustic waves.21

� for the PC and NK scheme for the particle solver.

/�pi=1 �ci /�pi=10

NK PC NK

2.6�10−11 1.3�10−13 1.3�10−13

1.9�10−11 1.5�10−14 1.5�10−14

1.0�10−10 1.1�10−13 1.1�10−13

7.1�10−4 9.8�10−6 9.8�10−6

1.5�10−4 2.1�10−5 2.1�10−5

TABLE II. Number of GMRES iterations required to reduce the residual of
the discretized Maxwell equation �23� by 3 orders of magnitude. Different
time steps, dimensionality, and grids are used. In all cases the standard
configuration of the GEM challenge is assumed initially. The number of
iterations is averaged over the first 200 iterations.

Nx Ny Nz �pi
t=0.01 �pi
t=0.1

25 25 25 4 6

50 50 50 5 9

25 1 25 4 12

50 1 50 4 10

1 25 25 4 14

1 50 50 4 10
� /E�0

�ci

0−11

0−11

0−10

0−4

0−3
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Third, we have participated in two community-based
benchmarking campaigns: the GEM challenge24,31,32 and the
Newton challenge.33

The GEM challenge is a standardized undriven recon-
nection problem where reconnection in a Harris sheet is ini-
tialized by adding a initial perturbation.31 We have shown
that CELESTE3D captures the large scale dynamics correctly,
computing the correct reconnection rate and onset time.24

Furthermore and more importantly, CELESTE3D includes cor-
rectly the effect of the electron kinetic response even though
the Debye length and the electron skin depth were not re-
solved. This is a crucial finding supported by two observa-
tions. First, we showed the ability to compute correctly the
electron acceleration and the divergence of the electron pres-
sure tensor in the outflow region of a reconnection site, even
when only the ion skin depth was resolved.24 Second, we
confirmed by simulation the electron scaling laws in the re-
connection region, conducting simulations up to a mass ratio
of 1836 �the physical value for hydrogen�.32

The Newton challenge is an extension of the GEM chal-
lenge where an initially thicker layer is compressed by a
gentle boundary perturbation localized in space and time.33

The typical onset time and reconnection rate of the Newton
challenge are observed in CELESTE3D in agreement with the
other kinetic codes used in the campaign.33 Figure 3 shows
the typical reconnected flux evolution and the final recon-
nected state.

Fourth, we have considered a study of reconnection in
systems with low betas. The systems are representative of the
conditions present in fusion devices or in some astrophysical
systems where a dominant toroidal field is present and recon-
nection is developing in the poloidal plane. In this case we
have investigated the reconnection process both at the mac-
roscopic and microscopic level obtaining agreement with the
explicit PIC code NPIC.14

Fifth, we validated the results of a 3D stability study of
a current sheet equilibrium with satellite observations ob-
tained from the CLUSTER and GEOTAIL mission.34

IV. PERFORMANCE

In the present paper we have proposed a new scheme for
the particle mover and we analyze the improvements it can
provide. Table I shows the error on total energy conservation,
for a uniform system composed by electrons and ions, with a
mass ratio of mi /me=1836 and temperature ration Te /Ti

=10 and with vth,e /c=0.1. The problem is simulated in a 1D
64 cells grid for a total number of 100 cycles using different
time steps. We report the average increase in total energy per
time step. Clearly the new scheme based on the Newton-
Krylov �NK� method provides an extended range of stability
and better energy conservation when compared with the old
predictor-corrector �PC� scheme.

The performance of the field solver is illustrated in Table
II. Even with no preconditioning the number of iterations
remains very low and largely insensitive to the number of
cells in any direction. A general trend appearing in Table II
and confirmed by other tests not shown can be observed. The

field solver tends to require fewer iterations on full 3D grids
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than in reduced 2D or 1D grids where one or two directions
are reduced to just one cell. In the reduced case, the system is
still completely determined and the problem well posed, but
the coupling is tighter and the number of iterations required
is larger. While a preconditioner might be beneficial, the per-
formance without it are adequate and the field solver contrib-
utes only a small fraction of the computational time. The
large number of particles typically used in a PIC code makes
particle operations far dominant over field operations.
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