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Kinetic simulation results reveal that the growth of the lower-hybrid drift instabilitysLHDI d in
current sheets has an important effect on the onset and nonlinear development of magnetic
reconnection. The LHDI does this by heating electrons anisotropically, by increasing the peak
current density, by producing current bifurcation, and by causing ion velocity shear. The role of
these in magnetic reconnection is explained. Confidence in the results is strongly enhanced by
agreement between implicit and massively-parallel-explicit particle-in-cell simulations. ©2005
American Institute of Physics. fDOI: 10.1063/1.1885002g

I. INTRODUCTION

The importance of the lower-hybrid drift instability
sLHDI d in the evolution of current sheets with thickness
comparable to the thermal ion gyroradius has been studied
for decades. The topic is of central relevance to the physics
of magnetic reconnection and has widespread application to
space, astrophysical, and laboratory plasmas.1 Early work on
LHDI by Krall and Liewer2 has been followed by numerous
papersssee Ref. 1 for a review of the literatured.

The LHDI is driven by the diamagnetic current that
arises because of the presence of inhomogeneities in the den-
sity and magnetic field in a current sheet. The fastest grow-
ing modes are primarily electrostatic, and are confined to the
edge region withkre,1, v,kUi øVlh, gøVlh, wherere is
the electron gyroradius,Ui the ion diamagnetic drift velocity,
Vlh<ÎVceVci is the lower-hybrid drift frequencysVce and
Vci are the electron and the ion gyrofrequencies,
respectivelyd.3 Longer wavelength LHDI modes,kÎrire,1,
show a slower growth rate,g,Vci, and have a significant
electromagnetic component that can penetrate into the cen-
tral region for sufficiently thin current layers.4

Since it is a relatively short wavelength and high fre-
quency instability, the LHDI has been considered for some
years a source of anomalous resistivity,5,6 and it is often in-
voked to explain the discrepancy between the rapid observed
rate of reconnection and the slow, theoretically predicted
Sweet–Parker rate based on classical resistivity. Indeed the

LHDI has been observed during magnetic reconnection in
the magnetotail,7 in the magnetopause,8 and in laboratory
experiments.9 However, two problems make the explanation
of anomalous resistivity based on LHDI difficult to accept.
First, both simulations10 and observations7,9 show that the
saturation level of the LHDI is determined primarily by the
electron dynamics, and it is far too low to justify the anoma-
lous resistivity that is required to obtain realistic reconnec-
tion rates within the Sweet–Parker model. Second, the LHDI
is mostly stabilized at high plasmab and thus it grows pri-
marily on the flanks of the current sheet,11 unless the current
layer is very thin.4

Recently, the effects of the LHDI have been
revisited.12–18In the present paper, it is shown that the LHDI
may play an important role in the onset of magnetic recon-
nection, but through a mechanism very different in nature
than anomalous resistivity. Although the LHDI is a micro-
scopic instability, it is also responsible for macroscopic
changes in the current sheet. The LHDI heats electrons an-
isotropically, preferentially in the perpendicular direction,
peaks and bifurcates the current sheet, and creates ion veloc-
ity shear.14,15 These effects have important consequences
both on reconnection onset and on the saturation of recon-
nection. In particular, simulation results show that both tem-
perature anisotropy withTe' /Tei .1 and current peaking
strongly enhance the linear growth rate of the tearing
instability.14

We note that the role of electron anisotropy on the onset
of other electron anisotropy driven instabilities was recently
reexamined for a neutral sheet.19 It has been previously ar-
gued that any electron anisotropy would be isotropized on a
very fast time scale due to a variety of electron anisotropy
driven modes, such as the whistler anisotropy instability.
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However, it does not appear that these modes really exist
within a neutral sheet. The new results indicate that for
T'e/Tie.1 the anisotropic tearing mode is the dominant in-
stability while in the opposite limitT'e/Tie,1 the current
aligned Weibel instability is driven unstable.19 Thus the elec-
tron anisotropy may in fact play a crucial role in governing
the onset physics.19

This paper reviews published results and introduces
some new results on the scaling of LHDI evolution with the
current sheet thickness. The scaling enables us to show that
the effect of the LHDI decreases with the thickness of the
current sheet profile, passing from current peaking in the
central region to current bifurcation. Moreover, it is shown
that the level of the electron anisotropy induced by the LHDI
is reduced for thicker current sheets.

The paper is organized as follows. Section II describes
the system we study and the simulation tools we use for the
task. Section III focuses on the macroscopic effects of the
LHDI, which are explained by a simple physical model in
Sec. IV. Section V reviews results on the effect of the LHDI
on the linear and nonlinear evolution of the tearing
instability.

II. PHYSICAL SYSTEM AND THE SIMULATION
APPROACH

Following the Geospace Environment ModelingsGEMd
magnetic reconnection challenge,20 a Harris current sheet is
considered.21 The usual magnetotail reference frame is used,
with the magnetic field aligned to thex direction,

B = B0 tanhsz/Ldex, s1d

and plasma density given by

n = n0 sech2sz/Ld. s2d

The current sheet parameters arevpe/Vce=2.88, Ti /Te

=5, mi /me=180, and three different current sheet thicknesses
are considered,ri /L=1.828, 0.915, and 0.457svth,s

=Î2Ts/msd. The boundary conditions are periodic for both
particles and fields in thex direction sfor simulation in the
tearing planed and y direction sfor simulations in the LHDI
planed. Conducting boundaries are imposed for the fields at
thez boundaries, and reflecting boundary conditions are used
for the particles. The domain considered isLy3Lz=12L
312L.

To investigate the evolution of the system, a linear Vla-
sov code and two different nonlinear particle-in-cellsPICd
simulation codes are used. The linear Vlasov results use the
formally exact approach described in Refs. 4 and 22. This
technique employs a normal mode calculation using a full
Vlasov description for both ions and electrons. The orbit
integrals arising from the linear Vlasov theory are treated
numerically using the exact unperturbed particle orbits and
including the form of the perturbation inside the integral.
Both electromagnetic and electrostatic contributions to the
field perturbation are retained and resulting system of inte-
grodifferential equations is solved using a finite element ex-
pansion of the eigenfunction.4

The nonlinear dynamics are simulated by two PIC codes,
an explicit simulation code NPIC and an implicit simulation
code CELESTE3D. The explicit plasma simulation code
NPIC is based on a well-known explicit electromagnetic
algorithm.23,24 The particle trajectories within NPIC are ad-
vanced using the leapfrog technique, and particle moments
are accumulated with area weighting. The simulations are
run on a massively parallel computer. The implicit plasma
simulation code CELESTE3Dssee Refs. 25–27d solves the
full set of Maxwell–Vlasov equations using the implicit mo-
ment method. Both Maxwell’s and Newton’s equations are
discretized implicitly in time. The implicit simulations are
run on a workstation.

The nonlinear simulations are performed by the two
codes with very different simulation parameters, as discussed
in Ref. 14.

III. NONLINEAR EVOLUTION OF THE LHDI

Two-dimensional simulations are performed in thesy,zd
plane of the Harris current sheet with several current sheet
thicknesses. The initial Harris equilibrium is unstable to the
LHDI and the early dynamics is dominated by this instabil-
ity. In the present paper the focus is on the nonlinear conse-
quences of the LHDI.

The LHDI modifies the current profile. In Fig. 1 the
y-averaged current profile for the three current sheets thick-

FIG. 1. The evolution of the current densityJy is shown from simulations in
the sy,zd plane. The dotted lines represent the current profiles att=0 aver-
aged alongy. Profiles attVci=4 are shown by a solid linesNPIC simulationd
and a dashed linesCELESTE3D simulationd for ri /L=1.828, casesad; at
tVci=8 for the ri /L=0.915, casesbd; and attVci=17 for theri /L=0.457,
case scd. The other current sheet parameters arevpe/Vce=2.88, mi /me

=180, andTi /Te=5.
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nesses is represented after the growth of the LHDI. For the
thinnest case,ri /L=1.828, the LHDI causes a peaking of the
current profile. This effect has been documented in previous
works12–14,16–18,28and the alteration is primary due to elec-
tron acceleration: the ion and electron density modifications
are weaker.12,13,16Within a fluid model, current peaking due
to LHDI was also predicted in Ref. 29. At a later stage in the
evolution of the current sheet, a strong kink instability domi-
nates the evolution of the current sheet.16–18 Simulations
have revealed that the current profile becomes bifurcated at
this stage.30

In the simulation of the current sheet with intermediate
thickness, both NPIC and CELESTE3D show bifurcation of
the current. Current bifurcation has been observed in satellite
measurements of thinsL,rid ssee Ref. 31d and thick current
sheetssL.rid ssee Refs. 32 and 33d, and in laboratory
experiments.34 The build-up of the bifurcated current sheet as
a result of the LHDI was also recently shown in particle
simulations by Sitnovet al.,35 starting from a non-Harris
current sheet equilibrium. It should be remarked that current
sheet bifurcation has also been explained as a consequence
of the kink that affects the dynamics of the current sheets36

or as a consequence of the physics in the reconnection
plane.37,38

For the thickest current sheet, the agreement between
NPIC and CELESTE3D is poor. We note that this simulation
is challenging for both codes and it is our plan to understand
the reason of the discrepancies between the two simulation
results. While CELESTE3D shows current bifurcation, NPIC
reveals small fluctuations of the current on the flanks of the
current sheet. Nevertheless, it should be pointed out that both
NPIC and CELESTE3D reveal no significant changes of the
current density atz=0, and that the peak value of the bifur-
cated current shown by CELESTE3D is smaller than the one
observed in the thinner current sheet. Thus, both codes show
that the effect of the LHDI decreases with the current sheet
thickness.

The nonlinear evolution of the LHDI not only heats elec-
trons san effect documented in many previous works, e.g.,
Ref. 9d but preferentially heats electrons in directions per-
pendicular to the magnetic field. The ratio of perpendicular
to parallel electron temperature, evaluated as the ratio of the
components of the electron pressure tensor,Te' /Tei, from
NPIC is shown in Fig. 2. The electron distribution functions
are not gyrotropic in the thinnest current sheet case. Perpen-
dicular heating decreases with increases in the current sheet
thickness. The values of anisotropy at the center of the cur-
rent sheet from NPIC and CELESTE3D are listed in Table I.

Finally, it is interesting to note that the LHDI creates
velocity shear. This latter consequence has been the subject
of a number of papersssee Ref. 16 and references thereind.
Its main effect is to promote the growth of a Kelvin–
Helmholtz instabilitysKHI d. Recent three-dimensional simu-
lations show that the KHI appears not to have an important
effect on reconnection onset since it grows on the same re-
connection time scales,14 but its role on reconnection onset in
more general configuration is still to be investigated.16

IV. A SIMPLE PHYSICAL EXPLANATION

A simple physical model is sufficient to explain the con-
sequences of the LHDI. We refer the reader to Refs. 15 and
17 for a complete description of the process, and in the fol-
lowing we summarize the basic mechanism. Particles can be
distinguished betweencrossing, with trajectories that
traverse both sides of the current layer, andnoncrossing,
with trajectories that are confined to one side of the
layer. The perpendicular kinetic energy,e=mssvz

2+vy
2d /2,

and canonical momentum, py=msvy+qsAy/c sAy

=−B0L lnf coshsz,Ldg in a Harris sheetd, are constants of the
particle motion, and only particles withe.py

2/2ms can cross
the layer. The boundary between crossing and noncrossing
particles can also be written as

vy

vth,s
=

a

2
−

1

2a
S vz

vth,s
D2

, s3d

where a=sL /rsdlnfcoshsz/Ldg. The approximate phase ve-
locity of the LHDI for cold electrons isv /ky<Ui /2 and it is

FIG. 2. The electron pressure ratiosPezz/Pexx ssolid lined and Peyy/Pexx

sdashed lined are averages alongy and plotted at timetVci=4 for theri /L
=1.828, casesad; at tVci=8 for theri /L=0.915, casesbd; and attVci=17 for
the ri /L=0.457, casescd. The other current sheet parameters arevpe/Vce

=2.88, mi /me=180, and Ti /Te=5. The results are from the NPIC
simulations.

TABLE I. Electron pressure anisotropyPe' /Pei at the center of the current
sheet for different thicknesses of the current sheet at timetVci=4 sri /L
=1.828d, tVci=8 sri /L=0.915d, andtVci=17 sri /L=0.457d.

ri /L=1.828 ri /L=0.915 ri /L=0.457

NPIC 2.20 1.09 1.04

CELESTE3D 1.84 1.01 0.95
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in the proper region to permit resonant scattering of ions
from crossing trajectories to noncrossing trajectories and
vice versa. As is shown in Fig. 3, because of the slope of the
distribution function in the vicinity of the resonance, the
scattering from the crossing to the noncrossing region is
more frequent. It should be remarked that scattering can only
occur if the ion meandering lengthÎ2riL, which measures
the spatial extent of the crossing ion orbits, overlaps with the
localization of the LHDI.

Scattering has two consequences:sid it leads to a loss of
positive charge in the center, in conjunction with a gain in
the edge region, and therefore gives rise to an electrostatic
potential structure across the layer;sii d since the ion scatter-
ing is asymmetric invy sparticles with smallervy are prefer-
entially scatteredd, a significant velocity shear is induced at
the edge of the current sheets17 that induce a KHI.18

The electron flow velocity can be approximated as

Vey< Ue −
c

Bx

]f

]z
, s4d

where the first term is the equilibrium flow velocity, the sec-
ond term is theE3B velocity induced by the electrostatic
potential, the inertia terms are neglected, and the equilibrium
distributions are used to evaluate the pressure tensor. As is
shown in Fig. 4, the agreement between the velocity evalu-
ated from Eq.s4d and the actual velocity resulting from
NPIC simulation is remarkable at early stage of the current
sheet evolution, before the current sheet profile strongly de-
viates from its initial shape.

Electron anisotropy is closely related to the plasma sheet
structure. Anisotropic heating can be explained considering
that for the case of noncrossing electrons with helical trajec-
tories, the magnetic momentm=mv'

2 / s2Bxd is an adiabatic
invariant, since the time scales of the evolution of the system
are slow compared to the typical electron scales. This implies
that the perpendicular temperature is related to the local
magnetic field,

Te'sz,td
Te'sz,t = 0d

<
Bxsz,td

Bxsz,t = 0d
. s5d

Where the electron orbits are helical, this expression
provides a good estimate of the perpendicular heating at
early stage of the current sheet evolution, as shown in Fig. 5.
In the central region, the electron trajectories undergo a va-
riety of complicated crossing orbits andm is no longer the
relevant adiabatic invariant.fThe comparison for the thickest
case is poor, more likely because the actual physical heating
due to Eq.s5d is masked by a fair amount of numerical
heating, rather than because other physical mechanisms pro-
duce electron anisotropic heating.g

FIG. 3. Cross section of phase spacestopd in the vz-vy plane, illustrating a
drifting Maxwellian ion distribution and the phase space boundary in Eq.s3d
for two different spatial positions in the layer. The shaded region in the
upper figure corresponds to the approximate phase velocity of the waves
v /ky<Ui /2, which are in the proper region to resonantly scatter crossing
ions into the noncrossing region of phase space. This scattering process and
the resulting charge accumulation is illustrated in the lower figure. FIG. 4. sColor onlined. They-averaged,y-velocity profile is shown from the

NPIC simulationsred lined and compared with the estimate of Eq.s4d sblue
lined. The three cases areri /L=1.828 stopd, ri /L=0.915 smiddled, and
ri /L=0.457sbottomd. The black line is the initial velocity profile att=0.

FIG. 5. sColor onlined. The y-averagedTe' /Tei profile is shown from the
NPIC simulationsred lined and compared with the estimate of Eq.s5d sblue
lined. The three cases areri /L=1.828 stopd, ri /L=0.915 smiddled, and
ri /L=0.457sbottomd.
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V. EFFECT OF LHDI ON THE TEARING INSTABILITY

We focus attention on the effect of the nonlinear conse-
quences of the LHDI on the tearing mode in the caseri /L
=1.828. In two-dimensional simulations without an initial
perturbation, linear analysis and simulations give the same
growth rate for the fastest growing tearing mode,g
=0.176Vci, but tearing saturates at such a low amplitude that
only a thin reconnected region results. The half-width,w
<0.46L at tVci=83, should be compared with the GEM
challenge with a large initial perturbation, which covers the
whole domain,w<10L at tVci<30.14

Nonlinear theoriesse.g., see Refs. 39–41d predict that
anisotropic heating of electrons during the growth of the in-
stability reducesTe' /Tei below 1, which strongly stabilizes
tearing. Two-dimensional simulations performed by NPIC
and CELESTE3D confirm the prediction and show that by
tVci=80, Te' /Tei is reduced from 1 to the range 0.83–0.87,
for which the linear code predicts that the maximum growth
rate, g=0.04Vci, is a fraction of its initial value.14 For a
larger system, small islands will eventually coalesce into
larger islands, but this process is too slow to account for the
rapid reconnection observed in simulations extended in the
third dimension.14

The LHDI also heats electrons anisotropically, but in
contrast to the tearing instability, it increases rather than de-
creasesTe' /Tei. The linear growth rates of the tearing insta-
bility obtained by the linear Vlasov code, Fig. 6, increases
with Te' /Tei: for Te' /Tei=2 the maximum growth rate,g
<3.8Vci, is more than an order of magnitude larger than the
maximum growth rate,g<0.18Vci, for Te' /Tei=1. The
wavelength of the fastest growing tearing mode decreases
with increasing anisotropy: in the caseTe' /Tei=2 the maxi-
mum occurs forkxL=2.25, considerably larger than the typi-
cal wavelength,kxL=0.5, for isotropic electrons. These re-
sults are consistent with earlier analysis.42–47

Since the anisotropic heating due to the LHDI occurs
more rapidly than tearing growth, we consider simulations

with an anisotropic electron temperature as an initial condi-
tion. With Te' /Tei .1, NPIC and CELESTE3D simulations
show that short wavelength modes grow to form small is-
lands, which then merge to form a single large islandsthe
dominant mode numbermx=1 covers the whole domain by
tVci<20d. The reconnected flux is shown in Fig. 7. For
Te' /Tei between 1.5 and 2, reconnection involves the whole
domain and the growth of the tearing instability does not
saturate until all of the available magnetic flux is recon-
nected, similar to the GEM challenge. Consistent with earlier
results, the ratioTe' /Tei decreases to<0.8 due to tearing,
but then increases with the onset of fast reconnection.14

Our results and othersssee Refs. 12 and 13d show that
thinner current sheets and higher current densities also en-
hance the linear growth rate and nonlinear evolution of the
tearing instability. The linear growth rate, Fig. 8, is higher for
thinner current sheets:g=0.176Vci for ri /L=1.828 sGEM
challenge thicknessd compared withg=0.632Vci for ri /L
=3.656. The wavelength of the fastest growing mode, how-
ever, is the same in all cases. For sufficiently thin current
sheets, the tearing mode does not saturate at low levels and
covers the whole domain. The reconnected flux increases
until it exhausts the supply bytVci<20.14

VI. CONCLUSIONS

The evolution of the LHDI and its influence on recon-
nection is studied using results from a linear kinetic code and
two PIC codes employing very different algorithms: NPIC is

FIG. 6. The growth rateg /Vci of the tearing mode is plotted as a function
of kxL for Te' /Tei=0.9 sdottedd, Te' /Tei=1 ssolidd, Te' /Tei=1.5 sdashedd,
Te' /Tei=2 sdash dottedd. The other current sheet parameters arevpe/Vce

=2.88,mi /me=180,ri /L=1.828, andTi /Tei=5.

FIG. 7. The change in the reconnected fluxDC with time is compared for
NPIC sad and CELESTE3Dsbd simulations. The parameters of the current
sheets areTe' /Tei=1 ssolidd, Te' /Tei=1.5 sdottedd, Te' /Tei=2 sdashedd,
vpe/Vce=2.88,mi /me=180,ri /L=1.828, andTi /Tei=5.
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a massively parallel explicit code and CELESTE3D is a
implicit-moment method PIC code.

LHDI produces strong changes in the current profile.
Depending on the current sheet thickness, current peaking or
current bifurcation are observed. The changes in the current
profile decrease with the thickness of the current sheet.
Moreover, LHDI causes anisotropic heating of electrons.
Also anisotropic heating decreases with the thickness of the
current sheet.

The effects of the LHDI can be explained with a simple
physical model. The nonlinear evolution of the LHDI gives
rise to a resonant scattering of ions into the noncrossing re-
gion of space. This in turn produces an electrostatic potential
structure across the sheet leading to a strong change of the
current density profile and perpendicular electron heating
through an adiabatic process.

It is shown that both current peaking and anisotropic
heating of the current sheet are effective in enhancing the
linear growth rate of tearing instability. Although it is clear
that the peaking of a monotonic current profile will enhance
the growth rate of collisionless tearing, the influence of a
bifurcated current profile on the stability of the tearing mode
deserves a careful investigation that recent simulations per-
formed with CELESTE3D have started to approach.48 With a
favorable anisotropy and a thin enough current sheet, the
tearing instability grows large enough to decouple electrons
and ions and reconnection can encompass the whole domain.
The scaling study indicates that the effect of the LHDI is
reduced with the thickness of the current sheet: when the
spatial extent of the crossing ion orbits intersect with the
region of strong LHDI activity, the onset mechanism is trig-
gered leading to a bifurcated current profile and anisotropic
heating.

It should be remarked that the approach followed in the
present study considers an isotropic and single peaked equi-
librium, like the Harris current sheet, that is affected by the
LHDI. The LHDI modifies the current profile and makes the

electron distribution anisotropic: the same relation between
current sheet profiles and anisotropic electron distribution
has been pointed out in the study of current sheet equilibria.
Within the Grad–Shafranov theory49 and the Vlasov
theory,35,50 it has been shown that an anisotropic electron
distribution sTe'.Teid leads to a bifurcated current profile.

Finally, it is important to note that the initial configura-
tion examined in this study did not include a background
plasmaslobed nor did it examine the influence of a guide
field or normal component. Each of these factors is known to
influence the stability properties of the LHDI, so further
work is needed to examine the feasibility of this onset
mechanism for more realistic conditions.
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