
Journal of Computational Physics 273 (2014) 598–617

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Inexact accurate partitioned algorithms for fluid–structure 

interaction problems with finite elasticity in haemodynamics

Fabio Nobile a, Matteo Pozzoli b, Christian Vergara c,∗
a CSQI – MATHICSE, École Polytechnique Fédérale de Lausanne, Switzerland
b AgustaWestland – A Finmeccanica Company, Cascina Costa (VA), Italy
c Dipartimento di Ingegneria, Università degli Studi Bergamo, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 January 2014
Received in revised form 16 April 2014
Accepted 16 May 2014
Available online 22 May 2014

Keywords:
Fluid–structure interaction
Finite elasticity
Robin transmission conditions
BDF schemes
Newton method
Haemodynamics

In this paper we consider the numerical solution of the three-dimensional fluid–structure 
interaction problem in haemodynamics, in the case of real geometries, physiological data 
and finite elasticity vessel deformations. We study some new inexact schemes, obtained 
from semi-implicit approximations, which treat exactly the physical interface conditions 
while performing just one or few iterations for the management of the interface position 
and of the fluid and structure non-linearities. We show that such schemes allow to improve 
the efficiency while preserving the accuracy of the related exact (implicit) scheme. To 
do this we consider both a simple analytical test case and two real cases of clinical 
interest in haemodynamics. We also provide an error analysis for a simple differential 
model problem when a BDF method is considered for the time discretization and only 
few Newton iterations are performed at each temporal instant.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

To obtain predictive accurate information about the blood fluid-dynamics in the arteries, one needs to consider the in-
teraction between the blood and the vascular vessel. This leads to the solution of a fluid–structure interaction (FSI) problem 
in three-dimensional (3D) real geometries [44,7,18,47,15,3,20,21]. To capture the complex dynamics characterizing such a 
problem, non-linear fluid and structure models have to be taken into account, leading to a complex non-linear coupled 
problem, formed also by the fluid domain subproblem when the fluid equations are written in Arbitrary Lagrangian–Eulerian
(ALE) formulation [29,14].

Efficient numerical strategies are mandatory to solve the FSI problem with non-linear fluid and structure models, in 3D 
real geometries and with physiological data. Only few works have focused on this aspect. We mention [7,25,37] among the 
monolithic schemes, which build the whole non-linear system, and [33] among the partitioned schemes, which consist in the 
successive solution of the subproblems in an iterative framework (see also [15,5,11,4,10] in the case of the linear elasticity). 
In this work, we focus on partitioned strategies, whose main difficulties are:

1. The high added mass effect, due to the similar fluid and structure densities, which makes the solution of the FSI problem 
very difficult [9,24,43];
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2. The treatment of the physical interface conditions, which enforce the continuity of velocities and tractions at the fluid–
structure (FS) interface between the fluid and the structure subproblems;

3. The treatment of the constitutive non-linearities in the fluid and structure models;
4. The treatment of the geometrical interface condition, which enforces the continuity of displacements at the FS interface 

between the fluid and the structure domains.

Regarding points 1 and 2, it has been clearly highlighted in several works that the physical conditions should be treated 
implicitly in haemodynamics, due to the high added mass effect [9,24,3,43,51]. However, some recent works proposed 
suitable explicit strategies which allow to obtain stable results. In particular, we mention [17], where the authors treated 
the case of a thin-walled structure by using Robin interface conditions, and [8], where the authors obtained stable results 
for the case of a thick structure by applying the Nitsche’s method in combination with a suitable interface stabilization 
term. This new generation of schemes is very promising in view of the reduction of the computational cost. However, their 
accuracy is still an open issue for real haemodynamic applications. In this work we consider partitioned algorithms, which 
treats implicitly the physical conditions, based on Robin interface conditions, which have good convergence properties, 
independent of the added-mass effect [3,4,1,26,41].

As for point 3, we have to consider the fluid and the structure constitutive non-linearities. A first approach to treat 
them consists in solving the non-linear fluid and structure subproblems in an iterative framework until convergence of the 
physical interface conditions (think for example to the classical Dirichlet–Neumann scheme [32,34,28,30,43]). Each iteration 
involves the solution of two non-linear subproblems, the fluid problem (for example through Picard iterations), and the 
structure problem (with the Newton method). In this case, the constitutive non-linearities are treated in an inner loop with 
respect to both the physical and the geometrical interface conditions. We refer to these schemes as “classical” partitioned 
algorithms. A second strategy considered so far consists in applying the Newton or the approximate-Newton method (the 
latter obtained by approximating the Jacobian) to the monolithic non-linear system (approximate-Newton-based algorithms). 
In [27], the author proposed a block-diagonal approximation of the Jacobian, leading to a partitioned algorithm where all 
the interface conditions and non-linearities are treated in the same loop (see also [36,28,33,13,48]). In [41], the authors 
considered alternative approximations of the Jacobian, leading to algorithms whose general structure consists in an external 
loop to manage the geometrical interface condition and the constitutive non-linearities and in an internal one to prescribe 
the physical interface conditions.

For what concerns point 4, we can distinguish between exact and inexact strategies. The first group consists in those 
schemes that satisfy exactly the geometrical interface condition (geometrical exact schemes [27,12,7,16]). On the contrary, 
in the geometrical inexact schemes this condition is not satisfied, due to an explicit treatment of the interface position by 
extrapolation from previous time steps (the so-called semi-implicit schemes [15,6,42]), or to an a priori fixed number of 
fixed-point or Newton iterations performed over the interface position [41]. In the framework of the approximate-Newton 
methods such schemes could be obtained by performing just few iterations [41]. For example, the semi-implicit scheme can 
be thought as one iteration of the approximate-Newton method.

The geometrical inexact schemes have been shown to be stable and accurate in haemodynamics [40,46,15,42,39,2,38,41]. 
It is moreover well accepted that also an inexact treatment of the fluid non-linearity is enough to recover accurate and 
stable solutions [15,6,41]. All these inexact schemes have been studied in combination either with the linear elasticity or 
with an exact treatment of the structure non-linearity. Therefore, it is worth asking if in haemodynamic applications with 
finite elasticity one really needs to solve exactly the structure non-linearity, or if the latter can be linearized around a state 
suitably extrapolated from previous time steps together with the fluid convective term and the FS interface position. In this 
work, we propose new inexact schemes derived by considering just few approximate-Newton iterations over the monolithic 
system at each time step, leading to an inexact treatment of the geometrical coupling, of the fluid non-linearity and also of 
the structure non-linearity.

To study theoretically such inexact schemes, we provide for a simple model problem an error analysis when a BDF 
scheme is used in combination with one or few Newton or approximate-Newton iterations to solve the non-linear prob-
lem arising after the time discretization. Such analysis showed that the global accuracy depends on the order of the BDF 
scheme, the order of the extrapolation used to build the initial guess and the number of Newton or approximate-Newton 
iterations. To test the accuracy of the proposed schemes for FSI problems, we first considered a simple analytical test case. 
The numerical results confirmed the theoretical results found for the model problem. In particular, when a globally third 
order accurate time discretization of the FSI problem is considered, performing at least two approximate-Newton itera-
tions allowed to recover a third order convergence in time even when starting from a first order extrapolation, while one 
approximate-Newton iteration was enough when starting form a third order extrapolation. Finally, we showed that the pro-
posed inexact schemes are very accurate for real 3D cases when comparing the solution with that obtained with exact 
schemes, allowing to improve the computational efficiency up to three times.

The outline of the work is as follows. In Section 2 we present the global FSI problem, its time discretization and a 
Lagrange multipliers formulation useful to derive the numerical schemes. In Section 3 we present the new inexact schemes, 
and in Section 3.1 we provide an error analysis of inexact schemes for a model problem. In Section 4 we detail a particular 
choice of the internal tolerance for the exact case. Finally, in Section 5 we show several numerical results. In particular, in 
Section 5.1 we study the efficiency of exact schemes by considering two real cases in haemodynamics, in Section 5.2 we 
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Fig. 1. Representation of the domain of the FSI problem: fluid domain on the left, structure domain on the right.

show the convergence rates of inexact schemes for an analytical test case, and in Section 5.3 we provide a study on the 
accuracy and efficiency of inexact schemes for real haemodynamic cases.

2. The FSI problem and its time discretization

Referring to the fluid domain Ωt
f like the one represented in Fig. 1, left, we denote, for any function v living in the 

current fluid configuration, by ṽ := v ◦ A its counterpart in the reference configuration Ω0
f , where A is the ALE map. By 

considering, instead, the structure domain Ωt
s like the one represented in Fig. 1, right, we denote, for any function g defined 

in the current solid configuration, by ̃g := g ◦L its counterpart in the reference domain Ω0
s , where L is the Lagrangian map. 

The strong formulation of the FSI problem, including the computation of the ALE map reads then as follows:

Find, at each time t ∈ (0, T ], fluid velocity u f , pressure p f , structure displacement ηs and fluid domain displacement ηm , 
such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�η̃m = 0 on Ω0
f ,

η̃m = η̃s on Σ0,

ρ f
D A u f

Dt
+ ρ f

(
(u f − um) · ∇)

u f − ∇ · T f (u f , p f ) = f f in Ωt
f ,

∇ · u f = 0 in Ωt
f ,

u f = ∂ηs

∂t
on Σ t,

T s(ηs)n − T f (u f , p f )n = 0 on Σ t,

ρs
∂2η̃s

∂t2
− ∇ · T̃ s (̃ηs) = f̃ s in Ω0

s ,

(1)

and then find accordingly the fluid domain velocity ũm := ∂η̃m
∂t , the ALE map and the new points xt

f of the fluid domain by 
moving the points x0

f of the reference domain Ω0
f :

A
(
x0

f

)= xt
f = x0

f + η̃m.

In the previous problem ρ f and ρs are the fluid and structure densities, μ is the constant blood viscosity, f f and 
f s the forcing terms, n the unit normal exiting from the structure domain, D A

Dt denotes the ALE derivative, T f (u f , p f )

is the Cauchy stress tensor related to a homogeneous, Newtonian, incompressible fluid, whereas T̃ s (̃ηs) and T s(ηs) are 
the first Piola–Kirchhoff and the Cauchy stress tensors of the solid, respectively, describing the structure problem. The 
two matching conditions enforced at the FS interface are the continuity of velocities (1)5 and the continuity of tractions (1)6
(physical interface conditions), whilst condition (1)2 enforces the continuity at the FS interface of displacements of the 
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fluid and structure subdomains (geometrical interface condition). Problem (1) has to be endowed with suitable boundary 
conditions on Ωt

f \ Σt and Ω0
s \ Σ0, and with suitable initial conditions.

Let �t be the time discretization parameter and tn := n�t , n = 0, 1, . . . . For a generic function z, we denote with zn the 
approximation of z(tn). We consider Backward Differentiation Formulae of order p (BDFp) of the form

D p vn+1

�t
:= 1

�t

(
β0 vn+1 −

p∑
i=1

βi vn+1−i

)
= ∂v

∂t

(
tn+1)+ O

(
�t p),

D2
p vn+1

�t2
:= 1

�t2

(
ξ0 vn+1 −

p+1∑
i=1

ξi vn+1−i

)
= ∂2 v

∂t2

(
tn+1)+ O

(
�t p), (2)

for suitable coefficients βi and ξi [41,43]. We report here the formulation of the time discretization of order p of prob-
lem (1).

Given the solution at previous time steps, find the fluid velocity un+1
f , the pressure pn+1

f , the structure displacement ηn+1
s

and the fluid domain displacement ηn+1
m , such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�η̃n+1
m = 0 in Ω0

f ,

η̃n+1
m = η̃n+1

s on Σ0,

ρ f

D p un+1
f

�t
+ ρ f

(
(un+1

f − un+1
m ) · ∇)

un+1
f − ∇ · T f

(
un+1

f , pn+1
f

)= f n+1
f in Ωn+1

f ,

∇ · un+1
f = 0 in Ωn+1

f ,

un+1
f = un+1

s on Σn+1,

T s
(
ηn+1

s

)
n − T f

(
un+1

f , pn+1
f

)
n = 0 on Σn+1,

ρs
D2

pη̃
n+1
s

�t2
− ∇ · T̃ s

(̃
ηn+1

s

)= f̃
n+1
s in Ω0

s ,

(3)

and then find accordingly the discrete fluid domain velocity ũn+1
m and the points xn+1

f of the new fluid domain by

ũn+1
m := D pη̃

n+1
m

�t
, xn+1

f = x0
f + η̃n+1

m . (4)

Notice that in problem (3) we have also introduced the structure velocity un
s := D pηn

s
�t .

We consider here an equivalent formulation of (3) based on the introduction of three Lagrange multipliers living at 
the FS interface, representing the fluid and structure tractions, λ f and λs , and the normal derivative of the fluid mesh 
displacement, λm [41]. For the sake of notation we remove the temporal index n+1. With Σ D

f , Σ D,0
s and Σ D

m we denote the 
parts of the boundary where Dirichlet boundary conditions are prescribed. Then, we define the following spaces

V f := {
v ∈ H1(Ω f ) : v|Σ D

f
= 0

}
, Q := L2(Ω f ),

V s := {
v ∈ H1(Ω0

s

) : v|
Σ

D,0
s

= 0
}
, Vm := {

v ∈ H1(Ω0
f

) : v|
Σ

D,0
m

= 0
}
.

Let v f := (u f , p f ) collect the fluid unknowns and F : V f × Q × V m → (V f × Q )′ be the fluid operator. Analogously, for 
the structure subproblem we define the operator S : V s → (V s)

′ , and for the harmonic extension we introduce the operator 
H : V m → (V m)′ . We then rewrite problem (3) as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hη̃m + γ̃ ∗
mλ̃m = 0 in (V m)′,

γ̃mη̃m = γ̃sη̃s on Σ0,

F(v f , um) + γ̃ ∗
f λ̃ f = G f in (V f × Q )′,

α f γ̃ f v f + λ̃ f = α f γ̃s
D pη̃s

�t
− λ̃s on Σ0,

αsγ̃s
D p η̃s

�t
+ λ̃s = αsγ̃ f v f − λ̃ f on Σ0,

S (̃ηs) + γ̃ ∗
s λ̃s = Gs in (V s)

′,

(5)

where γ̃ f : V f × Q → H 1/2(Σ0), γ̃s : V s → H 1/2(Σ0), γ̃m : V m → H 1/2(Σ0) are trace operators and γ̃ ∗
f , γ̃ ∗

s , γ̃ ∗
m are their 

adjoints, Gs and G f account for the right hand sides, (5)2 is the geometrical interface condition, and the physical interface 
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conditions (5)4–5 are linear combinations of conditions (3)5–6 through coefficients α f and αs . This will allow to obtain 
partitioned algorithms based on Robin interface conditions, which have good convergence properties, independent of the 
added-mass effect when the parameters α f and αs are suitably chosen [3,4,1,26].

Observe that, since we solve the FSI problem in a partitioned way with Robin conditions at the FS interface (see (5)), the 
pressure is always defined and L2(Ω f ) is the suitable pressure space for the weak formulation.

2.1. Outlook of the iterative algorithms

As discussed above, we have to face three sources of coupling and non-linearities, namely

(G) the geometrical interface condition;
(C) the constitutive fluid and structure non-linearities;
(P) the physical interface conditions.

We give here an outlook of the partitioned algorithms considered in the following sections. In principle, our model algorithm 
will consist of three nested loops, one for each of the three sources of coupling and non-linearities summarized above. Just 
to fix the ideas, we suppose here that the external loop will manage the geometrical interface condition, the intermediate 
one the constitutive non-linearities and the internal one the physical interface conditions. Our model algorithm is then of 
the type

while (geometrical interface condition not satisfied) do
...

while (constitutive non-linearities not satisfied) do
...

while (physical interface conditions not satisfied) do
...
end

end
end

We call this algorithm G∞-C∞-P∞, where ∞ means that we let the iterations continue until convergence. Starting from 
this model scheme, we can obtain many other algorithms as follows.

1. The order of the loops could be exchanged, leading to different schemes (G∞-P∞-C∞, ...);
2. We can merge two or more loops. For example, starting from the model algorithm G∞-C∞-P∞, we could decide to 

treat in the same loop the geometrical interface condition and the constitutive non-linearities, obtaining the algorithm 
GC∞-P∞.

3. The external loop could be solved not until convergence, but performing just few external iterations. In this case, the 
corresponding algorithm is inexact, since the external stopping criterion is not satisfied. For example, starting from our 
model scheme, we could decide to perform only 2 external iterations, obtaining the algorithm I-G2-C∞-P∞, where we 
put a letter I at the beginning to emphasize that such scheme is inexact.

4. In the case of inexact schemes where only few (even one) iterations are performed in the external loop, we could 
consider starting the iterations from an initial guess obtained by a q-th order extrapolation in time. In this case, we 
add the letter E after the number of iterations of the loop involving the extrapolation. For example, starting from the 
model algorithm with just 1 external iterations, if we decided to use an extrapolation of the interface position as initial 
guess, we name the corresponding scheme as I-G1E-C∞-P∞. In this work, we have always used the same order p for 
the extrapolation as the order of the temporal scheme.

3. Inexact schemes

As discussed in the Introduction, in this work we want to extend the semi-implicit schemes [46,15,6,42,10] and, more 
generally, the geometrical inexact schemes [41] to the case of finite elasticity structure models. In particular, we want to 
introduce a family of inexact schemes such that, together with the geometrical interface condition and the fluid constitutive 
non-linearity, also the structure constitutive non-linearity is not treated exactly. In other words, we ask if it is necessary in 
haemodynamic applications to handle exactly the structure constitutive non-linearity.

To do this, our starting point is the GC∞-P∞ scheme introduced in [41]. Such an algorithm is obtained by applying the 
approximate-Newton method to the monolithic non-linear system (5), and by considering as approximation of the exact 
Jacobian
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

H γ̃ ∗
m

γ̃m γ̃ ∗
s

∇umF ∇v f F γ̃ ∗
f

α f γ̃ f I I −α f
βs,0
�t γ̃s

−αsγ̃ f I I αs
βs,0
�t γ̃s

γ̃ ∗
s ∇ηsS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

the following expression

ĴDL =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

H γ̃ ∗
m

γ̃m

∇̂v f F γ̃ ∗
f

α f γ̃ f I I −α f
βs,0
�t γ̃s

−αsγ̃ f I I αs
βs,0
�t γ̃s

γ̃ ∗
s ∇ηsS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which neglects the term ∇umF involving the shape derivatives and the term γ̃ ∗
s which couples the fluid geometry and the 

structure problems, and where ∇̂v f F is the Oseen approximation of ∇v f F [41]. This algorithm has a double-loop nature, 
where the physical interface conditions are managed in the internal loop.

Now, to derive the inexact schemes, we start from the observation that, in the case of the linear infinitesimal elastic-
ity, the semi-implicit scheme, that treats explicitly the interface position, can be regarded as the GC∞-P∞ scheme where 
the number of external/approximate-Newton iterations is fixed and equal to 1 [41]. Now, the idea is to perform one ex-
ternal/approximate-Newton iteration also in the case of an FSI system with a non-linear structure. We name this new 
algorithm I-GC1-P∞. Of course, since in this scheme the constitutive non-linearities are treated in the external loop, we 
obtain an algorithm which treats inexactly the structure non-linearity. More generally, it is possible to perform m exter-
nal/approximate-Newton iterations for a fixed m ≥ 1, obtaining the I-GCm-P∞ scheme, detailed in Algorithm 1.

Algorithm 1 I-GCm-P∞ scheme.

Given the solutions ̃ηk
s and uk

f , m ∈N
+ and 0 < ω ≤ 1

UNTIL 0 ≤ k < m DO

1. Compute ̃ηk+1
m and ̃λk+1

m by solving the harmonic extension for the fluid domain{
H η̃k+1

m + γ̃ ∗
mλ̃

k+1
m = 0 in (V m)′,

γ̃mη̃k+1
m = γ̃sη̃

k
s on Σ0,

(6)

obtaining the new fluid domain Ωk+1
f and the fluid domain velocity uk+1

m by using (4);
2. Solve the linearized FSI problem. For its solution, we consider the following partitioned algorithm:

Given the solutions ηk+1
s,l−1 and λk+1

s,l−1

UNTIL P convergence DO

(a) Compute vk+1
f ,l and ̃λk+1

f ,l by solving the linearized fluid subproblem with a Robin condition at the FS interface⎧⎪⎨⎪⎩
∇̂v f F

(
uk

f − uk+1
m

)
vk+1

f ,l + γ̃ ∗
f λ̃

k+1
f ,l = G f in

(
V f

(
ηk+1

m

)× Q f
(
ηk+1

m

))′
,

α f γ f vk+1
f ,l + λk+1

f ,l = α f γs
D p ηk+1

s,l−1

�t
− λk+1

s,l−1 on Σk+1;
(7)

(b) Compute ̃ηk+1
s,l and ̃λk+1

s,l by solving the linearized structure subproblem with a Robin condition at the FS interface⎧⎪⎨⎪⎩
∇ηS

(̃
ηk

s

)
δη̃k+1

s,l + γ̃ ∗
s δλ̃

k+1
s,l = Gs −S

(̃
ηk

s

)− γ̃ ∗
s λ̃

k
s in (V s)

′,

αsγ̃s
D p η̃

k+1
s,l

�t
− λ̃

k+1
s,l = αsγ̃ f ṽk+1

f ,l − λ̃
k+1
f ,l on Σ0;

(8)

(c) Relaxation step

η̃k+1
s,l = ωη̃k+1

s,l + (1 − ω)̃ηk+1
s,l−1, λ̃

k+1
s,l = ωλ̃

k+1
s,l + (1 − ω)̃λ

k+1
s,l−1 (9)

(d) Update: l → l + 1;
END DO

3. Update: k → k + 1.

END DO
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We observe that at, step 2a, we have indicated in brackets the fluid convective term and we have highlighted the 
dependence of V f and Q f on ηk+1

m through the fluid domain updating. For the internal loop, we monitor the residual of 
condition (7)2, whereas the stopping criteria on the geometric interface condition and on the fluid and structure constitutive 
non-linearities are not checked. Then, for Algorithm 1 the only source of coupling/non-linearity which is solved exactly are 
the physical interface conditions. This fact makes very interesting the study of the accuracy of such schemes, since there is 
no a priori evidence that the structure problem needs to be solved exactly in order to recover a global accurate solution in 
real applications in haemodynamics.

3.1. Analysis of a model problem

In this section we provide a temporal error analysis of a BDFp method used in combination with the Newton or with 
the approximate-Newton method to solve the non-linear problem arising after the time discretization, where however 
only J iterations of such methods are performed. We refer in this section to such “inexact” methods as Newton-J and 
approximate-Newton-J, respectively. Our model problem is the simple first order ordinary differential equation{

y′(t) = f
(

y(t)
)
, t ∈ (0, T ],

y(0) = y0,
(10)

where f ∈ C2. By applying the BDFp method (see (2)) to the previous equation, we obtain

β0 yn+1 −∑p
i=1 βi yn+1−i

�t
= f

(
yn+1), (11)

leading to the solution of the non-linear scalar equation g(yn+1) = 0, with

g(x) = x − �t

β0
f (x) −

p∑
i=1

βi

β0
yn+1−i . (12)

Now, we apply the Newton-J method or the approximate-Newton-J method to solve such an equation. We denote by yn+1
J

the solution of such methods. In both cases we consider an extrapolation Eq of order q as initial guess at each time step 
tn+1. More precisely, we set

yn+1
0 = Eq

(
yn,q

J

) :=
q∑

i=1

(−1)i+1
(

q

i

)
yn+1−i

J , (13)

where yn,q
J = {yn+1−q

J , . . . , yn
J }. The global temporal error is then given by

E = E(p, J ,q) = max
n=1,...,N

∣∣y
(
tn)− yn

J

∣∣,
where N = T /�t is the total number of time steps. To compute such an error, we write

E ≤ max
n=1,...,N

∣∣y
(
tn)− yn

∣∣+ max
n=1,...,N

∣∣En
J

∣∣,
where En

J := |yn − yn
J |. The first term is related to the error due to the time discretization, that is the error obtained by 

reaching convergence at each time step in the Newton or in the approximate-Newton methods (the solution being the same 
at convergence). In particular, for a BDFp scheme, we have maxn=1,...,N |y(tn) − yn| ≤ C0�t p , for a suitable constant C0, 
provided that the exact solution y(t) is smooth enough. Then, to compute the global temporal order of the Newton-J and 
of the approximate-Newton-J methods, we have to provide an estimate for the term E J := maxn=1,...,N |En

J |, that is the error 
introduced by the fact that we are not reaching convergence in the Newton methods. This is what we are going to do in 
what follows.

We first recall the following result, which will be useful to our aims, see, e.g., [45].

Proposition 1. Consider the following discrete problem for n ≥ p − 1

β0zn+1 −
p∑

i=1

βi z
n+1−i = �tg1

(
zn+1)+ �tg2

(
tn+1),

where the β j ’s are the coefficient of the BDFp scheme, g1 is a Lipschitz function of the unknown with Lipschitz constant L, and g2 a 
function of time. Then, it follows∣∣zn

∣∣≤ K
(
(p + 1) max

j=0,...,p−1

∣∣z j
∣∣+ T max

j=p,...,n

∣∣g2
(
t j)∣∣),

where z j , j = 0, . . . , p − 1, are the initial conditions, and K = 2K0e2T (p+2)LK0 maxi |βi | , with K0 the stability constant of the problem 
with g1 = 0.
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We start from the analysis of the Newton-J method. We have the following

Theorem 1. Suppose that f y and f yy are globally bounded in R, i.e. there exist L1, L2 such that∣∣ f y(z)
∣∣≤ L1,

∣∣ f yy(z)
∣∣≤ L2, (14)

for all z. Moreover, assume that f yy is continuous. Then, assuming that the solution yn exists for all n, there exists �t0 with

�t0 <
β0

L1
, (15)

such that the BDFp method applied to (10) used in combination with the Newton-J method to solve equation (12) and with an extrap-
olation of order q ≤ p as initial guess at each time step, is globally of order

r = min
{

p;2 J (1 + q) − 2
}
,

for �t ≤ �t0 .

Proof. The exact Newton method applied to Eq. (12) reads

yn+1
k+1 = yn+1

k − β0 yn+1
k − �t f (yn+1

k ) −∑p
i=1 βi yn+1−i

β0 − �t f y(yn+1
k )

, (16)

which is well defined thanks to hypothesis (15). This leads to

yn+1
k+1 = �t

β0

[
f
(

yn+1
k

)+ f y
(

yn+1
k

)(
yn+1

k+1 − yn+1
k

)]+
p∑

i=1

βi

β0
yn+1−i. (17)

If we suppose to have performed at the previous time steps only J iterations, (17) becomes

yn+1
k+1 = �t

β0

[
f
(

yn+1
k

)+ f y
(

yn+1
k

)(
yn+1

k+1 − yn+1
k

)]+
p∑

i=1

βi

β0
yn+1−i

J . (18)

Moreover, by writing the Taylor expansion around yn+1
k , we obtain

f
(

yn+1)= f
(

yn+1
k

)+ f y
(

yn+1
k

)(
yn+1 − yn+1

k

)+ 1

2
f yy

(
ξn+1

k

) (
yn+1 − yn+1

k

)2
,

for a suitable ξn+1
k ∈ (min{yn+1; yn+1

k }, max{yn+1; yn+1
k }). Substituting the expression of f (yn+1) from (11) in the previous 

identity, we have

yn+1 = �t

β0

[
f
(

yn+1
k

)+ f y
(

yn+1
k

)(
yn+1 − yn+1

k

)+ 1

2
f yy

(
ξn+1

k

) (
yn+1 − yn+1

k

)2
]

+
p∑

i=1

βi

β0
yn+1−i . (19)

Now, by subtracting the identity (18) to (19), we obtain

yn+1 − yn+1
k+1 = �t

β0

[
f y
(

yn+1
k

)(
yn+1 − yn+1

k+1

)+ 1

2
f yy

(
ξn+1

k

) (
yn+1 − yn+1

k

)2
]

+
p∑

i=1

βi

β0

(
yn+1−i − yn+1−i

J

)
,

thus leading to

yn+1 − yn+1
k+1 = 1

β0 − �t f y(yn+1
k )

[
1

2
�t f yy

(
ξn+1

k

)(
yn+1 − yn+1

k

)2 +
p∑

i=1

βi
(

yn+1−i − yn+1−i
J

)]

= C1,k�t
(

yn+1 − yn+1
k

)2 +
p∑

i=1

C2,i,k
(

yn+1−i − yn+1−i
J

)
, (20)

where, thanks to hypotheses (14), we have set

C1,k = C1(n + 1,k) := 1

2

f yy(ξ
n+1
k )

β0 − �t f y(yn+1
k )

≤ 1

2

L2

β0 − �tL1
=: Ĉ1,

C2,i,k = C2,i(n + 1,k) := βi

β0 − �t f y(yn+1
k )

≤ maxi |βi|
β0 − �tL1

=: Ĉ2. (21)

We observe that hypothesis (15) guarantees that the previous quantities and thus identity (20) make sense.
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If we perform exactly J iterations in (20) also at time step n + 1, and setting ηn = yn − yn
J , we obtain

ηn+1 =
p∑

i=1

C2,i, J−1η
n+1−i + C1, J−1�t R

(
tn+1), (22)

where we have set

R
(
tn) := (

yn − yn
J−1

)2
. (23)

The recursive application of (20), leads to the following bound∣∣yn+1 − yn+1
k+1

∣∣≤ 23(2k+1−1)Ĉ2(2k+1−1)
1 �t2k+1−1

∣∣yn+1 − yn+1
0

∣∣2k+1

+
k∑

l=0

22(2l+1−1)Ĉ2l+1−1
1 �t2l−1

( p∑
i=1

Ĉ2
(

yn+1−i − yn+1−i
J

))2l

. (24)

We also notice that

yn+1 − yn+1
0 = yn+1 − Eq

(
yn,q

J

)= yn+1 − Eq
(

yn,q
J

)± Eq
(

yn,q)± y
(
tn+1)± Eq

(
y
(
tn,q))

= (
yn+1 − y

(
tn+1))︸ ︷︷ ︸

O (�t p)

+ (
y
(
tn+1)− Eq

(
y
(
tn,q)))︸ ︷︷ ︸

O (�tq)

+ Eq
(

y
(
tn,q)− yn,q)︸ ︷︷ ︸
O (�t p)

+Eq
(
ηn,q)= O

(
�tq)+ Eq

(
ηn,q), (25)

where in the last equality we have exploited that q ≤ p. Then, thanks to (25) and (13), we obtain from (24)

∣∣yn+1 − yn+1
k+1

∣∣≤ K1�t2k+1−1

(
K2�t2k+1q + K3

( q∑
i=1

(−1)i+1
(

q

i

)
ηn+1−i

)2k+1)

+ K4

k∑
l=0

�t2l−1

( p∑
i=1

Ĉ2 ηn+1−i

)2l

= K5�t2k+1(q+1)−1 + P2k+1

(
ηn,p), (26)

for suitable constants K j , j = 1, . . . , 5, and where P s is a suitable polynomial of order s with P s(0, . . . , 0) = 0.
Now, thanks to the bound (26) evaluated for k + 1 = J − 1, from (23) we have

R
(
tn+1)= (

yn+1 − yn+1
J−1

)2 ≤ 2K 2
5�t2 J (q+1)−2 + 2

(
P2 J−1

(
ηn,p))2

. (27)

This shows that R(tn+1) does not depend on ηn+1. In particular, from (24) we can write

R
(
tn+1)= (

yn+1 − yn+1
J−1

)2 = R
(
ηn,p, yn+1 − yn+1

0

)
,

and thus from (25) we obtain

R
(
tn+1)= R

(
ηn,p,εn+1,q+1,χn+1

q

)
,

where

εn := y
(
tn)− yn, χn

q := y
(
tn)− Eq

(
y
(
tn−1,q)). (28)

In what follows we will refer to R as either R(tn+1) or R(ηn,p).
Now, exploiting the definitions (21), we can rewrite problem (22) as follows

β0η
n+1 −

p∑
i=1

βi η
n+1−i = �t f y

(
yn+1

J−1

)
ηn+1 + 1

2
�t f yy

(
ξn+1

J−1

)
R
(
ηn,p). (29)

We now apply a fixed point strategy to the previous problem to show that its solution ηn,p exists and is bounded. In 
particular, starting from (29) and assuming that the solutions yn+1 and yn+1

k , k = 0, . . . , J , exist, we consider the following 
problem for the error

β0η
n+1 −

p∑
βi η

n+1−i = �t f y
(

yn+1
J−1

)
ηn+1 + 1

2
�t f yy

(
ξn+1

J−1

)
R
(̃
ηn,p), (30)
i=1
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for a given η̃n,p . We can now apply Proposition 1 to problem (30), with zn = ηn , g1(η
n+1) = f y(yn+1

J−1)η
n+1 and g2(tn+1) =

1
2 f yy(ξ

n+1
J−1)R (̃ηn,p), obtaining, thanks to (27) and hypothesis (14)2,∣∣ηn
∣∣≤ 1

2
K T max

j=p,...,n

∣∣ f yy
(
ξ

j
J−1

)
R
(
t j)∣∣

≤ K T L2

(
K 2

5�t2 J (q+1)−2 + max
j=1,...,n−p+1

(
P2 J−1

(̃
ηn− j,p))2

)
, (31)

where we have exploited the fact that yi = yi
J are given for i = 0, . . . , p − 1, so that ηi = 0 for i = 0, . . . , p − 1.

Now, we check that, if the sequence (η̃0, . . . , ̃ηn) verifies |η̃ j| ≤ C�tr , with r = 2 J (q + 1) − 2 and suitable C > 0, then the 
same holds for the solution (η0, . . . , ηn). Indeed, from (31) and recalling that P2 J−1 (0, . . . , 0) = 0, we have∣∣ηn

∣∣≤ K T L2
(

K 2
5�tr + K6�t2r),

for a suitable K6 = K6(C) which is a polynomial of degree 2 J−1 in C . Then, ηn belongs to the ball of radius C�tr provided 
that

K T L2
(

K 2
5 + K6(C)�tr)≤ C,

that is for �t small enough and C > K T L2 K 2
5 . Now, since R is a polynomial in ηn,q , the fixed-point map in (30) is contin-

uous, and thus we can apply the Brower’s Theorem to problem (30), obtaining the existence of a solution (η0, . . . , ηn) with 
|η j| ≤ C�tr for any j. �
Remark 1. Intuitively, thanks to the quadratic convergence of the Newton method, one could expect that the initial error 
O (�tq) due to the extrapolation is squared at each iteration, thus obtaining, after J iterations, an error which is O (�t2 J q). 
However, from the theory of the Newton convergence, we know that the constant appearing at each squaring is the Lipschitz 
constant related to the function which we are seeking the roots of, see [31]. In our case such a constant is O (�t), thus 
explaining our result.

Remark 2. We observe from definitions (21), that the stability condition (15) is not needed whenever the one-sided bound 
−L1 ≤ f y(z) ≤ 0 holds, instead of (14)1. In the case of a PDE model ∂t y + K (y) = g , with K a non-linear differential operator, 
the previous condition would correspond to having a coercive tangent operator K y .

We consider now the analysis of the approximate-Newton-J method. In particular, the term f y(yn+1
k ) in the Newton 

method (16) is replaced by a suitable approximation f̂ y(yn+1
k ). We have the following

Theorem 2. Suppose that f y is Lipschitz-continuous and globally bounded, and that∣∣ f̂ y(z)
∣∣≤ L3,

∣∣ f y(z) − f̂ y(z)
∣∣< M, (32)

for any z and for suitable constants L3, M < +∞. Then, assuming that the solution yn exists for all n, if M is small enough, there exists 
�t0 with

�t0 <
β0

L3
, (33)

such that the BDFp method applied to (10) used in combination with the approximate-Newton-J method to solve Eq. (12) and with an 
extrapolation of order q ≤ p as initial guess at each time step, is globally of order

s = min{p; J + q − 1},
for �t ≤ �t0 .

Proof. Proceeding as for the exact Newton case, the approximate-Newton method applied to Eq. (12) leads to

yn+1
k+1 = �t

β0

[
f
(

yn+1
k

)+ f̂ y
(

yn+1
k

)(
yn+1

k+1 − yn+1
k

)]+
p∑

i=1

βi

β0
yn+1−i .

If we suppose to have performed at the previous time steps only J iterations, the previous equality becomes

yn+1
k+1 = �t

β0

[
f
(

yn+1
k

)+ f̂ y
(

yn+1
k

)(
yn+1

k+1 − yn+1
k

)]+
p∑ βi

β0
yn+1−i

J . (34)

i=1
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Moreover, by writing the Taylor expansion around yn+1
k , we obtain

f
(

yn+1)= f
(

yn+1
k

)+ f y
(
ξn+1

k

)(
yn+1 − yn+1

k

)
,

for a suitable ξn+1
k ∈ (min{yn+1; yn+1

k }, max{yn+1; yn+1
k }). Substituting the expression of f (yn+1) in (11) in the previous 

equality, we have

yn+1 = �t

β0

[
f
(

yn+1
k

)+ f y
(
ξn+1

k

)(
yn+1 − yn+1

k

)]+
p∑

i=1

βi

β0
yn+1−i . (35)

Now, by adding and subtracting the term f̂ y(yn+1
k )(yn+1 − yn+1

k ) in (34), and by subtracting this new identity to (35), we 
obtain

yn+1 − yn+1
k+1 = �t

β0

[(
f y
(
ξn+1

k

)− f̂ y
(

yn+1
k

))(
yn+1 − yn+1

k

)+ f̂ y
(

yn+1
k

)(
yn+1 − yn+1

k+1

)]
+

p∑
i=1

βi

β0

(
yn+1−i − yn+1−i

J

)
.

By adding and subtracting in the previous equality the quantity f y(yn+1
k )(yn+1 − yn+1

k ), we obtain

yn+1 − yn+1
k+1 = �t

β0

[(
f y
(

yn+1
k

)− f̂ y
(

yn+1
k

))(
yn+1 − yn+1

k

)+ (
f y
(
ξn+1

k

)− f y
(

yn+1
k

))(
yn+1 − yn+1

k

)
+ f̂ y

(
yn+1

k

) (
yn+1 − yn+1

k+1

)]+
p∑

i=1

βi

β0

(
yn+1−i − yn+1−i

J

)
.

This leads to

yn+1 − yn+1
k+1 = 1

β0 − �t f̂ y(yn+1
k )

[
�t

(
f y
(

yn+1
k

)− f̂ y
(

yn+1
k

))(
yn+1 − yn+1

k

)
+ �t

(
f y
(
ξn+1

k

)− f y
(

yn+1
k

))(
yn+1 − yn+1

k

)
+

p∑
i=1

βi
(

yn+1−i − yn+1−i
J

)]

= C1,k�t
(

yn+1 − yn+1
k

)+ C2,k�t
(

yn+1 − yn+1
k

)2 +
p∑

i=1

C3,i,k
(

yn+1−i − yn+1−i
J

)
, (36)

where we have set, thanks to hypotheses (32),

C1,k = C1(n + 1,k) := f y(yn+1
k ) − f̂ y(yn+1

k )

β0 − �t f̂ y(yn+1
k )

≤ M

β0 − �tL3
=: Ĉ1,

C2,k = C2(n + 1,k) := f y(ξ
n+1
k ) − f y(yn+1

k )

(yn+1 − yn+1
k )(β0 − �t f̂ y(yn+1

k ))
≤ L4

β0 − �tL3
=: Ĉ2,

C3,i,k = C3,i(n + 1,k) := βi

β0 − �t f̂ y(yn+1
k )

≤ maxi |βi|
β0 − �tL3

=: Ĉ3, (37)

and where L4 is the Lipschitz constant related to f y . We observe that the assumptions (32) and (33) guarantee that the 
previous quantities and thus identity (36) make sense.

If we perform exactly J iterations in (36) also at time step n + 1, and setting again ηn = yn − yn
J , we obtain

ηn+1 =
p∑

i=1

C3,i, J−1η
n+1−i + �tC1, J−1 S

(
tn+1)+ �tC2, J−1

(
S
(
tn+1))2

, (38)

where we have set

S
(
tn)= yn − yn

J−1. (39)

Proceeding as in Theorem 1 (we skip the details for the sake of exposition), the recursive application of (36) leads, thanks 
to (25) and (13), to the following bound
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∣∣yn+1 − yn+1
k+1

∣∣≤ K1�tk+q+1 + P2k+1

(
ηn,p), (40)

for a suitable constant K1, and where again P2k+1 (0, . . . , 0) = 0.
Now, thanks to the bound (40) evaluated for k + 1 = J − 1, from (39) we have

S
(
tn+1)= yn+1 − yn+1

J−1 ≤ K1�t J+q−1 + P2 J−1

(
ηn,p). (41)

This shows that S(tn+1) does not depend on ηn+1, and in particular we can write

S
(
tn+1)= S

(
ηn,p, yn+1 − yn+1

0

)= S
(
ηn,p,εn+1,q+1,χn+1

q

)
,

where εn and χn
q are defined in (28). In what follows we will refer to S as either S(tn+1) or S(ηn,p).

Now, exploiting the definitions (37), we can rewrite problem (38) as follows

β0η
n+1 −

p∑
i=1

βiη
n+1−i = �t f̂ y

(
yn+1

J−1

)
ηn+1 + �t

(
f y
(

yn+1
J−1

)− f̂ y
(

yn+1
J−1

))
S
(
ηn,p)

+ �t
f y(ξ

n+1
J−1) − f y(yn+1

J−1)

yn+1 − yn+1
J−1

(
S
(
ηn,p))2

.

We now apply a fixed point strategy to the previous problem to show that its solution ηn,p exists and is bounded. In 
particular, starting from (38) and assuming that the solutions yn+1 and yn+1

k , k = 0, . . . , J , exist, we consider the following 
problem for the error

β0η
n+1 −

p∑
i=1

βiη
n+1−i = �t f̂ y

(
yn+1

J−1

)
ηn+1 + �t

(
f y
(

yn+1
J−1

)− f̂ y
(

yn+1
J−1

))
S
(̃
ηn,p)

+ �t
f y(ξ

n+1
J−1) − f y(yn+1

J−1)

yn+1 − yn+1
J−1

(
S
(̃
ηn,p))2

, (42)

for a given η̃n,p . We can now apply Proposition 1 to problem (42), with zn = ηn, g1(η
n+1) = f̂ y(yn+1

J−1)η
n+1 and g2(tn+1)

given by the second and third term at the right hand side in (42), obtaining, thanks to (41) and definitions (37),

∣∣ηn
∣∣≤ K T max

j=p,...,n

∣∣∣∣( f y
(

y j
J−1

)− f̂ y
(

y j
J−1

))
S
(
t j)+ f y(ξ

j
J−1) − f y(y j

J−1)

y j − y j
J−1

(
S
(
t j))2

∣∣∣∣
≤ K T max

j=1,...,n−p+1

∣∣M(
K1�t J+q−1 + P2 J−1

(̃
ηn− j,p))+ L4

(
K1�t J+q−1 + P2 J−1

(̃
ηn− j,p))2∣∣, (43)

where we have exploited again that ηi = 0 for i = 0, . . . , p − 1.
Now, we check that if the sequence (η̃0, . . . , ̃ηn) verifies |η̃ j| ≤ C�ts , with s = J + q − 1 and suitable C > 0, then the 

same holds for the solution (η0, . . . , ηn). Indeed, recalling that P2 J−1 (0, . . . , 0) = 0 so that |P2 J−1 (̃ηn,p)| ≤ K2(C)�ts for a 
suitable K2 which is a polynomial of degree 2 J−1 in C , from (43) we have∣∣ηn

∣∣≤ K T �ts(K1
(
M + 2L4 K1�ts)+ K2(C)

(
M + 2L4 K2(C)�ts)).

Then, ηn belongs to the ball of radius C�ts provided that

K T
(

K1
(
M + 2L4 K1�ts)+ K2(C)

(
M + 2L4 K2(C)�ts))≤ C,

that is for �t and M sufficiently small (i.e. for a good approximation of the Jacobian). Now, by exploiting the continuity 
of the fixed-point map in (42), we can apply the Brower’s Theorem to problem (42), obtaining the existence of a solution 
(η0, . . . , ηn) with |η j| ≤ C�ts for any j, provided that the approximation of the Jacobian is accurate enough. �
Remark 3. The FSI problem is a system of partial differential equations involving first and second order time derivative and 
can be written as a first order system. Its time discretization leads to a system of non-linear equations, whereas our analysis 
have been written for the scalar case. Therefore, to extend our analysis to the FSI problem, one needs to use vector and 
matrix norms, making the proofs quite complicate and technical. However, we believe that the first order system nature of 
the FSI problem allows us to apply our theoretical results to such a problem, and this is confirmed by the numerical results 
presented in what follows.

In Table 1 we report the predicted order of the proposed methods with respect to the solution obtained by solving 
until convergence the Newton or the approximate-Newton methods. This table gives us precise information about the BDF 
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Table 1
Order of the error E J for different values of the number of iterations J and of the order of extrapolation q.

J/q Newton-J Approximate Newton-J

1 2 3 1 2 3

1 2 4 6 1 2 3
2 6 10 14 2 3 4
3 14 22 30 3 4 5

schemes which could be used in combination with a particular choice of J and q. We observe, for example, that by perform-
ing only 1 iteration and by using an extrapolation of the first order as initial guess, the Newton-J allows to recover a second 
order scheme when used in combination with a BDFp method, p ≥ 2, whereas the approximate-Newton-J allows to recover 
a first order method when used in combination with a BDFp method, p ≥ 1. Instead, if we perform 2 iterations and use a 
first order extrapolation, we are able to recover order 6 for the Newton-J method and order 2 for the approximate-Newton-J
method. Finally, we observe that for the approximate-Newton-J method, which is the case we are interested in, each iteration 
allows us to gain an order in �t up to the maximum order p of the BDFp scheme.

4. The exact case: an efficient choice of the internal tolerance

From Algorithm 1 we can recover the exact Double-loop scheme GC∞-P∞ by allowing the number of external iterations 
to be enough to reach convergence over the geometrical interface conditions and the constitutive non-linearities (m = +∞). 
In such a case, for the external loop, we have to monitor the residual of condition (6)2 and the residuals related to the 
convergence of the non-linearities in the fluid and in the structure subproblems.

Now, we observe that when a Newton or an approximate-Newton method is considered to solve a non-linear system 
of equations, the linear system involved at each iteration does not need to be solved until convergence when an iterative 
method is considered for its solution, unless the external Newton residual has not become small. Indeed, as observed 
for example in [31], it is enough to stop the internal iterations when the residual is below a tolerance proportional to 
the Newton residual. This leads to a great saving in the computational times, without affecting the accuracy, since at 
convergence of the Newton iterations the tolerance of the internal linear system has become sufficiently small.

It is then possible to apply such an idea to our case, that is to the GC∞-P∞ scheme. In such a case, we conclude 
that the FSI linear system arising at each approximate-Newton iteration (step 2. in Algorithm 1) does not need to be 
solved until convergence. This means that the physical interface conditions does not need in fact to be satisfied at each 
approximate-Newton iteration. In particular, the tolerance of the internal loop is taken proportional to the external residual

Rk := ∥∥γ̃sη̃
k
s − γ̃sη̃

k−1
s

∥∥+ ∥∥((uk
f − uk−1

f

) · ∇)
uk

f

∥∥+ ∥∥Gs − S
(̃
ηk

s

)− γ̃ ∗
s λ̃

k
s

∥∥, (44)

where suitable norms are used in each term of (44). The first term is the residual of the geometrical interface condition, 
the second one is the residual related to the fluid non-linearity and the third one is the residual related to the structure 
non-linearity. Therefore, at convergence of the approximate-Newton loop, the physical interface conditions are satisfied too, 
so that this scheme is in fact exact. Observe that such an idea could not be applied to the inexact algorithms (m < ∞), 
because we would not guarantee the satisfaction of the physical interface conditions, since the internal tolerance would not 
become small enough.

In [31] such a strategy has been referred to as inexact-Newton. However, in order to avoid confusion with the inexact 
schemes presented in this work, we name these algorithms exact schemes with dynamic tolerance and we add the suffix DT 
at the end of the name of the algorithm. In Algorithm 2, we detail the GC∞-P∞-DT scheme.

For the choice of σ k at step 2 we follow [31]. In particular, we set

σ k =
⎧⎨⎩

σmax k = 0,

min(σmax, γ (Rk/Rk−1)2) k > 0, γ (σ k−1)2 ≤ 0.1,

min(σmax,max(γ (Rk/Rk−1)2, γ (σ k−1)2)) k > 0, γ (σ k−1)2 > 0.1.

(46)

In the numerical simulations presented in this work we have used σmax = 0.9999 and γ = 0.9. In practical implementations 
of the residuals (44) and (45) we considered the L2 norms.

Remark 4. In [31] it has been shown that the choice (46) guarantees a second order convergence when the exact Jacobian 
is used in the iterations. For approximate-Newton strategies, as in our case, this choice allows to recover at least first order 
of convergence.

Another exact scheme of this family, obtained by considering a different approximation of the Jacobian, is the so-called 
Single-loop (GCP∞) scheme [27,36,33,41], where all the non-linearities and interface conditions are treated in the same 
loop. Single-loop scheme could be obtained by Algorithm 1 with m = +∞ and by performing just 1 internal iteration, 
however monitoring the residual of condition (7)2.
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Algorithm 2 GC∞-P∞-DT scheme.

Given the solutions ̃ηk
s and uk

f and 0 < ω ≤ 1

UNTIL G-C convergence DO

1. Compute η̃k+1
m and λ̃k+1

m by solving the harmonic extension for the fluid domain (6), obtaining the new fluid domain Ωk+1
f and the fluid domain 

velocity uk+1
m by using (4);

2. Solve the linearized FSI problem. For its solution, given the external residual Rk defined by (44), we consider the following partitioned algorithm:

Given the solution at subiteration l − 1 and a suitable scalar σ k+1,

UNTIL ∥∥∥∥α f β0

�t

(
γ̃sη̃

k+1
s,l − γ̃sη̃

k+1
s,l−1

)+ λ̃
k+1
s,l − λ̃

k+1
s,l−1

∥∥∥∥≥ σ kRk, (45)

DO
(a) Compute vk+1

f ,l and ̃λk+1
f ,l by solving the linearized fluid subproblem (7)

(b) Compute ̃ηk+1
s,l and ̃λk+1

s,l by solving the linearized structure subproblem (8)
(c) Relaxation step (9);
(d) Update: l → l + 1;
END DO

3. Update: k → k + 1.

END DO

5. Numerical results

In all the numerical experiments of this work, we considered the nearly incompressible exponential material whose first 
Piola–Kirchhoff tensor reads

T̃ s(F s) = G J−2/3
s

(
F s − 1

3
tr
(

F T
s F s

)
F −T

s

)
eγ ( J

− 2
3

s tr(F T
s F s)−3) + κ

2

(
J s − 1 + 1

J s
ln( J s)

)
J s F −T

s . (47)

Here F s := ∇x0
s
xt

s , where x0
s are the coordinates in the reference configuration and xt

s those in the current configuration, 
J s := det(F s), κ is the bulk modulus and G the shear modulus. For small deformations such material behaves as a linear 
structure described by the infinitesimal elasticity, characterized by a Poisson’s ratio ν and a Young modulus E related to κ
and G as follows

κ = E

3(1 − 2ν)
, G = E

2(1 + ν)
.

The parameter γ in (47) characterizes the stiffness of the material for large displacements.
We used P 1bubble − P 1 finite elements for the fluid subproblem and P 1 finite elements for the structure subproblem, 

and the following data: viscosity μ = 0.03 g/(cm s), fluid density ρ f = 1 g/cm3, structure density ρs = 1.2 g/cm3, bulk 
modulus κ = 107 dyne/cm2, shear modulus G = 1.034 · 106 dyne/cm2 (corresponding for small displacements to E = 3 ·
106 dyne/cm2 and ν = 0.45), γ = 1. Moreover, if not otherwise specified, we used as time discretization parameter �t =
0.002 s. This value has been chosen in order to guarantee that the exact schemes provide a stable and physically significant 
solution. Then, the same value has been used also for the inexact schemes, providing again stable results. We did not 
experienced further stability problems induced by the inexactness of the new schemes. A systematic study of their stability 
will be addressed in future works.

For the prescription of the interface continuity conditions, in all the simulations we have considered the Robin–Robin 
(RR) scheme [3,4], with the optimized coefficients proposed in [26] and adapted to the various temporal schemes in [41]. 
In all the simulations of this work, RR scheme has converged without any relaxation (ω = 1), confirming its suitability 
for haemodynamic applications. The numerical experiments have been performed with the parallel Finite Element library 
LIFEV (www.lifev.org), see [41] for details.

5.1. Efficiency of exact schemes in two real cases

In the simulations of this section and of Section 5.3 we considered the computational domains depicted in Fig. 1, rep-
resenting the carotid of a patient after the removal of the atherosclerotic plaque, and in Fig. 2, representing the abdominal 
aorta (AA) in a patient characterized by the presence of an aneurysm. The vessel lumen has been reconstructed by using the 
code VMTK (see www.vmtk.org), while the structure geometry has been obtained by extrusion, setting the ratio between 
the lumen radius and the thickness equal to 0.24. The number of degrees of freedom is about 53 000 (carotid) and 380 000 
(AA) for the fluid velocity, about 10 000 (carotid) and 43 000 (AA) for the fluid pressure and about 24 000 (carotid) and 
72 000 (AA) for the structure displacement, and the fluid and structure meshes are conforming at the interface. For the har-
monic extension and for the structure, we prescribed at the artificial sections normal homogeneous Dirichlet conditions and 

http://www.lifev.org
http://www.vmtk.org
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Fig. 2. Computational fluid (left) and structure (right) models of the abdominal aorta.

Fig. 3. Patient-specific flow rate waveforms prescribed at the inlet of the carotid (left) and of the abdominal aorta (right).

tangential homogeneous Neumann conditions, that is we let the domain move freely in the tangential direction. At the fluid 
inlet we imposed the patient-specific flow rates depicted in Fig. 3, left, for the carotid, and in Fig. 3, right, for the abdominal 
aorta. In both cases, this datum has been prescribed through the Lagrange multipliers method (see [19,49,22,23]). At the 
fluid outlets, we used an absorbing resistance boundary condition, see [42,50,41] for details. At the external surface Σ0

out we 
prescribed a Robin boundary condition with Robin coefficient αe with the aim of modeling the presence of a surrounding 
tissue around the vessel [35,38,10,41]. In particular, we set αe = 3 · 106 dyne/cm3. This value allows to recover a pressure 
in the physiological range.

Here, we want to compare the performance of different exact schemes. In particular, we considered GC∞-P∞, 
GC∞-P∞-DT and GCP∞ schemes together with classical algorithms. Among them, we considered GP∞-C∞ scheme, cor-
responding to simple iterations at each time step between the fluid geometry and the fluid and the structure subproblems 
(see [28,32,34,30] for the Dirichlet–Neumann case). Here, we considered the Robin–Robin version of such schemes intro-
duced in [43]. At each iteration of the latter algorithm, the fluid and structure subproblems have to be solved with a proper 
strategy to handle the constitutive non-linearities. Here, we considered Picard iterations for the fluid and Newton iterations 
for the structure. We observe that in such a scheme the geometrical interface condition is treated together with the physical 
interface conditions. We also considered the treatment of the geometrical interface condition in an external loop, leading to 
an algorithm characterized by a triple loop nature (G∞-P∞-C∞ scheme).

As a representative case, we reported in Fig. 4 two snapshots of the streamlines at the sistole obtained with GC∞-P∞
scheme and BDF1/BDF1 time discretization.

In Table 2 we reported the number of iterations for these schemes. The number of external iterations reported in the 
table has to be interpreted as the average one over one heart beat, whilst the intermediate and the internal ones as the 
average per outer loop (the external and the intermediate ones, respectively). We reported also the CPU time normalized 
over that of GC∞-P∞-DT scheme, used here as our gold-standard.

Discussion of the numerical results. The results reported in Table 2 show an optimal qualitative agreement between the per-
formance obtained in the two geometries. They show that the approximate-Newton-based schemes are the most efficient 
among exact methods. In particular, we found that GC∞-P∞ scheme is slightly faster than GCP∞ and that the CPU time 
needed by GC∞-P∞-DT have been almost halved with respect to GC∞-P∞. Concerning the classical schemes, they showed 
a very poor efficiency in comparison to approximate-Newton schemes, their CPU time being more than three times greater 
with respect to that of GC∞-P∞-DT. Such schemes are however the most appealing from the implementation point of 
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Fig. 4. Streamlines of the velocity field at the sistole in the carotid (left) and in the abdominal aorta (right). GC∞-P∞ – BDF1/BDF1.

Table 2
Average number of iterations in the external loop and average number of iterations per outer loop in the intermediate and internal loops, and CPU time 
normalized with respect to that of GC∞-P∞-DT scheme. Exact schemes. BDF1/BDF1. For each box, left: carotid; right: abdominal aorta.

# of external 
iterations

# of intermediate 
iterations

# of internal 
iterations

Normalized 
CPU time

GC∞-P∞ 13.5 8.9 – – 7.7 7.6 1.72 1.69
GC∞-P∞-DT 13.9 9.4 – – 3.0 2.9 1.00 1.00
GCP∞ 20.4 17.4 – – – – 2.00 2.04
G∞-P∞-C∞ 12.9 8.5 6.7 6.5 3.5 3.5 3.76 3.35

GP∞-C∞ 15.3 11.4 – – 3.8 3.8 4.16 3.97

view, when one has at disposal two black-box solvers for the fluid problem in ALE formulation and for the structure, since 
one would need just to implement suitable routines to transfer the interface information between the two codes. Instead, 
approximate-Newton-based schemes can be implemented in a modular way provided that one can access the fluid and 
structure tangent problems (always possible by running just one Newton iteration).

In conclusion, we found that, at least for the two real cases considered in this work, GC∞-P∞-DT is the most suitable 
among the exact schemes presented here for real haemodynamic applications.

5.2. Numerical results for the inexact schemes: convergence with respect to time

In this section we want to validate the theoretical results developed in Section 3.1 by considering a 3D FSI problem. 
To this aim, we used the analytical test case proposed in [41] for the linear infinitesimal elasticity. This test consists in a 
translation of a cylinder of small thickness (the structure) filled by the fluid and in a rotation around its axis. Referring to 
the same data reported in [41], it is easy to check that the analytical solution of such a test is given by{

u f = ū in Ωt
f , p f = 0 in Ωt

f ,

η̃s = η̄ in Ω0
s , η̃m = η̄ in Ω0

f ,

where

η̄ :=
⎡⎢⎣ x0

s,1(cos θ − 1) − x0
s,2 sin θ + c1,

x0
s,1 sin θ + x0

s,2(cos θ − 1) + c2,

c3,

⎤⎥⎦ , ū :=
⎡⎢⎣ θ̇ (c2 − x f ,2) + ċ1,

θ̇ (x f ,1 − c1) + ċ2,

ċ3,

⎤⎥⎦
for given functions of time θ(t) and c(t) and for suitable forcing terms.

We considered, in particular, the cylindrical geometry depicted in Fig. 5, with length L = 5 cm, fluid domain radius 
R = 0.5 cm, structure thickness Hs = 0.1 cm. The space discretization parameter is h = 0.025 cm and the fluid and structure 
meshes are conforming at the interface. The number of degrees of freedom is about 16 000 for the fluid velocity, about 2000 
for the fluid pressure and about 9000 for the structure. We have also set c = 0 and θ(t) = 0.2(1 − cos(50π t)).

In Fig. 6 we show the convergence history of two selected inexact schemes, namely I-GC1-P∞ and I-GC2-P∞, chosen 
as the most representative, for three selected temporal schemes, namely BDF1/BDF1, BDF2/BDF2 and BDF3/BDF3. A relative 
L2 norm of the error is computed at time t = 0.002 s. The time discretization parameter is �t = 2 · 10−3, 10−3, 5 · 10−4,
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Fig. 5. Cylindrical geometry.

Fig. 6. Convergence rate of three temporal schemes considered. Relative errors of the fluid velocity (left), of the pressure (middle) and of the structure 
displacement (right) – BDF1/BDF1 (a), BDF2/BDF2 (b), BDF3/BDF3 (c) – t = 0.002 s.
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Table 3
Relative error over a selected section of inexact schemes with respect to the exact solution. BDF1/BDF1. Left: displacement. Middle: flow rate. Right: mean 
pressure. For each box, left: carotid; right: abdominal aorta.

η (%) Q (%) P (%)

I-GC1-P∞ 0.890 0.759 0.413 0.399 0.702 0.696
I-GC2-P∞ 0.003 0.002 0.005 0.004 0.003 0.002

Table 4
Relative error over a selected section of inexact schemes with respect to the exact solution. BDF2/BDF2. Left: displacement. Middle: flow rate. Right: mean 
pressure. For each box, left: carotid; right: abdominal aorta.

η (%) Q (%) P (%)

I-GC1-P∞ 1.013 0.986 0.832 0.795 1.342 1.187
I-GC1E-P∞ 0.066 0.059 0.084 0.081 0.054 0.049
I-GC2-P∞ 0.004 0.003 0.006 0.006 0.004 0.003

Table 5
Average number of iterations per outer loop in the intermediate and internal ones, and CPU time normalized with respect to that of GC∞-P∞-DT scheme. 
Inexact schemes. BDF2/BDF2. For each box, left: carotid; right: abdominal aorta.

# of external 
iterations

# of internal 
iterations

Normalized 
CPU time

I-GC1-P∞ 1.0 1.0 24.8 22.8 0.34 0.31
I-GC1E-P∞ 1.0 1.0 24.6 22.4 0.33 0.29
I-GC2-P∞ 2.0 2.0 20.3 16.8 0.70 0.65

2.5 · 10−4 s. For BDF2/BDF2 and BDF3/BDF3 schemes, I-GC1-P∞ featured just first order convergence, so that we have 
considered in these cases also the extrapolated versions I-GC1E-P∞.

Discussion of the numerical results. From the convergence rates depicted in Fig. 6, we observe that when BDF1/BDF1 is used, 
both the inexact schemes recovered first order convergence when a first order extrapolation of the interface position, of 
the fluid velocity and of the structure displacement is considered. Regarding BDF2/BDF2 and BDF3/BDF3, we observe that 
I-GC2-P∞ with a first order extrapolation featured second and third order convergence, respectively, whereas for I-GC1E-P∞
an extrapolation of order two and three, respectively, is needed to recover the right convergence order.

These results confirmed the theoretical results found in the previous section (see Table 1, right). In particular, the esti-
mate for the BDF3 method used in combination with 2 approximate-Newton iterations and with a first order extrapolation 
seems to be not sharp, since from the numerical simulations a third order convergence has been recovered, whereas the 
theoretical results predicted only a second order convergence.

5.3. Numerical results for inexact schemes: efficiency and accuracy for two real test cases

In this section we reported the numerical results obtained for the same test cases presented in Section 5.1 and by using 
the inexact schemes I-GC1E-P∞ and I-GC2-P∞. This allowed to study the accuracy and the efficiency of such schemes in 
real contexts.

In Tables 3 and 4 we report the relative errors of the inexact schemes for BDF1/BDF1 and BDF2/BDF2, respectively, by 
using the solution obtained with GC∞-P∞ and the same temporal scheme as the reference one. In particular, we report the 
L∞(L∞)-norm of average quantities, namely the mean structure displacement η, the flow rate Q and the mean pressure P
over a selected section. In Table 5 we report the number of iterations for BDF2/BDF2. In particular, the number of iterations 
in the internal loops has to be interpreted as the average per outer loop. We also report the CPU time normalized over that 
of GC∞-P∞-DT scheme, which is the fastest among the exact schemes.

Discussion of the numerical results. Again, the qualitative trends featured by the numerical performance of the two real cases 
are in optimal agreement. In particular, the results reported in Tables 3 and 4 show that the relative errors of inexact 
schemes with respect to the solution obtained with an exact scheme are in any case less than 1.35%. When performing only 
one external iteration, the accuracy improves of one order of magnitude by performing a second order extrapolation in the 
case of BDF2/BDF2 (see Table 4). Moreover, when performing two external iterations instead of one the accuracy improves 
of two orders of magnitude both for BDF1/BDF1 and for BDF2/BDF2. These results suggested that in real applications, an 
inexact treatment of the structure constitutive non-linearity (in addition to the one related to the geometrical interface 
condition and to the fluid non-linearity) could be sufficient to recover an accurate solution.

Regarding the efficiency, we found that performing just one external iteration allows a big saving in the computational 
effort with respect to the exact schemes, the CPU times being reduced up to three times, see Table 5. We did not experience 
significant differences between the cases with or without extrapolation. When moving from one to two external iterations, 
the CPU time doubles, being however smaller than the one of the most efficient exact scheme.
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6. Conclusions

In this work we studied the numerical performance of some partitioned schemes for the solution of the FSI problem with 
non-linear fluid and structure subproblems in two real haemodynamic applications. We considered approximate-Newton-
based and classical methods. For the first family of schemes, we considered both exact and inexact schemes, the latter 
being obtained by performing just one or two iterations in the external loop managing the geometrical coupling and the 
constitutive non-linearities, guaranteeing in any case the satisfaction of the physical interface conditions. We also performed 
an error analysis for a model problem.

The main features of such schemes are summarized in what follows:

1. Among exact schemes, approximate-Newton methods are in general better performing than classical schemes which are 
more than three times slower. In particular, GC∞-P∞ seems to be the most efficient for real applications;

2. For the latter scheme, we also experienced the excellent performance of a variant where the physical interface condi-
tions in the internal loop are solved with a precision which is proportional to the external residual (GC∞-P∞-DT). This 
scheme allowed to almost half the CPU times with respect to GC∞-P∞;

3. Our analysis for a model problem highlighted that performing only J iterations in the approximate-Newton method to 
solve the non-linear problem arising after the time discretization allows to recover at least order J in time when used 
in combination with the BDFJ method;

4. Inexact schemes, where both the geometrical interface condition and the constitutive fluid and structure non-linearities 
are not satisfied exactly, are accurate, recovering, for an analytical 3D test case, the expected convergence rate;

5. Inexact schemes, where two iterations in the external loops are performed, have been seen to be very accurate also for 
real haemodynamic applications. A very good accuracy has been experienced also when performing just one external 
iteration for BDF2/BDF2 (even if worse than that obtained with two external iterations), provided that a second order 
extrapolation is considered. These facts confirm the effectiveness of inexact schemes in haemodynamics, where the 
structure non-linear problem is not solved exactly;

6. Inexact schemes are more efficient than exact schemes, the CPU time being reduced by a factor three when just one 
external iteration is performed.

For these reasons, among all the schemes proposed in this work, we recommend I-GC2-P∞ as the best compromise be-
tween good accuracy and efficiency for real haemodynamic applications. For BDF2/BDF2 an effective alternative is provided 
by I-GC1E-P∞, which allows to half the CPU times with respect to I-GC2-P∞, with a slight reduction in the accuracy (the 
errors being however less than 0.1%).

Finally, we stress that the proposed inexact schemes could in principle be applied to any fluid–structure interaction 
problem. We expect however the accuracy of such schemes to deteriorate for problems characterized by large displacements 
where the structure non-linearity becomes crucial and should be solved exactly.
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