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More than 100 million tonnes of municipal solid waste are
incinerated worldwide every year1. However, little is known
about the fate of nanomaterials during incineration, even
though the presence of engineered nanoparticles in waste
is expected to grow2. Here, we show that cerium oxide
nanoparticles introduced into a full-scale waste incineration
plant bind loosely to solid residues from the combustion
process and can be efficiently removed from flue gas using
current filter technology. The nanoparticles were introduced
either directly onto the waste before incineration or into the
gas stream exiting the furnace of an incinerator that processes
200,000 tonnes of waste per year. Nanoparticles that attached
to the surface of the solid residues did not become a fixed part
of the residues and did not demonstrate any physical or
chemical changes. Our observations show that although it is
possible to incinerate waste without releasing nanoparticles
into the atmosphere, the residues to which they bind eventually
end up in landfills or recovered raw materials, confirming
that there is a clear environmental need to develop
degradable nanoparticles.

The amount of consumer goods containing engineered nano-
materials is expected to grow2, and the disposal of these products
represents an increasing proportion of the over one billion metric
tonnes of municipal solid waste disposed globally1. Although land-
filling is still common practice in many countries, thermal waste
treatment is becoming an important alternative. For example,
China plans to expand its capacity for waste incineration from 3%
in 2011 to 30% by 2020 (refs 3,4), and the European Commission
has been phasing out the landfill of biodegradable waste through
legislation5. These efforts aim to minimize the amount of untreated
landfill waste.

Engineered nanoparticles are often designed to be evenly distri-
buted, insoluble and stable when incorporated into consumer goods.
However, these characteristics can pose problems when the nano-
particles enter the natural environment6. For example, the use of
persistent chemicals such as fluoro-chloro-hydrocarbons in fridges
has depleted the stratospheric ozone layer7, and the use of fibrous
solids such as asbestos in building materials has resulted in high
incidences of mesothelioma8. Furthermore, the widespread use of
insecticides has seen various fluorinated compounds, dioxins and
halogenated biphenyl compounds accumulate in the food web9.
It is expected that exposure of the biosphere to persistent nano-
particles may also result in similar undesirable outcomes, so the

best precautionary measure is to limit their presence and residence
time in the environment. This means that there is a need for proper
disposal of persistent nanoparticles.

With the growing interest in using persistent nanomaterials in
products, we need information on the extent to which they are
modified and later made bioavailable through incineration.
Nanowaste is treated directly or indirectly. For instance, wastewater
treatment plants efficiently transfer engineered nanoparticles from
wastewater to sludge10,11, which is sometimes then incinerated. We
do not yet know the fate and removal efficiency of nanoparticles
in large-scale incinerators. A few attempts have been made to inves-
tigate individual flue gas cleaning steps, such as the electrostatic pre-
cipitator12, or to model the release of engineered nanoparticles from
incineration to air13. However, because waste incinerators are
complex systems that include interaction effects arising from hetero-
geneous waste matrices and changing process conditions, any model
predictions and laboratory studies are of limited value and require
verification by large-scale experiments14,15. We demonstrate this
necessity for large-scale experiments through an additional set of
small-scale ones, in which we account for the incineration behaviour
of different size classes of engineered nanoparticles. Although the
lower removal efficiency of nanoparticles in comparison to their
larger counterparts has been modelled13, no study has followed
the nanoparticles through the entire waste incineration chain.
Therefore, all previous research has only analysed fragments of
the waste incineration chain or developed models based on a few
assumptions from small-scale studies, which do not necessarily
reflect reality. In this Letter, we investigate the fate of engineered
nanoparticles quantitatively and qualitatively in a large-scale exper-
iment, and we account for the complex chemical environment with
simultaneously occurring matrix effects that influence the behaviour
of engineered nanoparticles during incineration.

In two separate cases we added engineered nanoparticles to the
thermal waste treatment line of a large-scale incinerator with
energy recovery, an electrostatic precipitator for the removal of
fine particles, a selective non-catalytic reduction to reduce the
NOx concentration, and a wet flue gas cleaning system (wet scrub-
ber) for further removal of particles (including heavy metals) and
corrosive gases (Fig. 1, Supplementary Table S1, Supplementary
Figs S1–S3). We chose nano-CeO2 with a hydrodynamic diameter
mode of 80 nm because of its industrial relevance, relatively low
background concentration and inertness. In case 1, nanoparticles
were introduced by spraying a 0.2 m3 volume of nano-CeO2
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suspension in H2O (concentration, 5 wt%; 10 kg CeO2) onto �7 t of
waste in the furnace entrance over 1 h. In case 2, we injected 0.1 m3

of diluted nano-CeO2 suspension in H2O (concentration, 1 wt%;
1 kg CeO2) directly into the space above the furnace over 2.75 h.
These settings represent worst-case scenarios with an exceptionally
high input of unattached nanoparticles (case 1) or an extremely high
particle transfer to the gas phase to test the removal efficiency of the
flue gas treatment (case 2). We focused on the gas phase because
nanoparticle emissions to air are seen as problematic from a
human health perspective16,17.

Flue gas was sampled after the electrostatic precipitator, and
clean gas was sampled after the wet scrubber. We also collected
samples from the fly ash (flue gas residues from the boiler and elec-
trostatic precipitator), slag (solid combustion residues from the
furnace grate), slag water (for the rapid cooling of the hot slag)
and quench water (discharge from the wet scrubber). We measured
cerium background concentrations as well as the gaseous and fluid
flows. To calculate the solid flows, we used monthly measurements.
We performed the experiment with stringent personal protection
measures while constantly measuring personal exposure at
the workplaces.

All samples were processed, digested and quantitatively analysed
for cerium content using inductively coupled plasma mass
spectrometry (ICP-MS, Supplementary Table S2–S8,S11,S12). We
used electron microscopy (scanning electron microscopy (SEM),

energy-dispersive X-ray spectroscopy (EDXS), transmission elec-
tron microscopy (TEM) and high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM)) at a maximal
resolution of 0.2 nm to characterize the structure, composition
and morphology of nano-CeO2 in the initial suspension, slag and
gases (Supplementary Fig. S5).

In the small-scale experiment, we sprayed three different sizes of
nano-CeO2 (d50¼ 16 nm, 83 nm, 1,600 nm) onto sawdust, which
represents a waste matrix (�20% w/w CeO2; total weight, 60 mg,
dry). We combusted the samples in a small-scale furnace and
used a combination of a thermogravimetric analyser with an
inductively coupled plasma optical emission spectrometry (ICP-
OES) for the continuous measurement of carbon and cerium18,19.
We attached silica filters to the exhaust gas for the subsequent analy-
sis with SEM and EDXS. Finally, we analysed the incineration resi-
dues remaining on the incineration bed with TEM and EDXS to
investigate morphological changes in the nano-CeO2.

After subtracting the cerium background concentration
(30 mg g21 in slag, 42 mg g21 in fly ash, 5 ng g21 in quench water
and ,1 ng m23 in clean gas), we recovered 39% (case 1) and 34%
(case 2) of the cerium input during the sampling period
(Fig. 2a,b, Supplementary Table S12). These values are high in
view of the complexity of the system, the point emission, the
extremely low nanoparticle concentrations (in the microgram
range) and the high waste flow of 7 t h21, as well as the compromise
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Figure 1 | Detection of CeO2 nanoparticles in all solid and fluid waste combustion residues. a, Nano-CeO2 was mixed with a waste stream (7 t h21) by

spraying the nanoparticles into the prefurnace storage container (10 kg, case 1), or by spraying them into the flue gas stream above the furnace (1 kg, case 2).

Fly ash, quench water, flue gas after it had passed the electrostatic precipitator, slag, clean gas and slag water were sampled at locations I–IV before,

during and after the addition of nanoparticles. b, Representative TEM, HAADF-STEM, and SEM images of 10–50 nm engineered crystalline nano-CeO2 particles

from the different sampling locations indicated in a. c, Schematic showing the expected travel times of nano-CeO2 in the flue gas (in seconds, blue arrows;

lighter colours indicate cleaner gas) and in the solid phase (in hours, brown arrows).
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in the temporal resolution of the analysed samples. Although the
quantified cerium flow in the gas streams is a very robust value,
we have larger uncertainties in the solid fraction. The undetected
cerium fraction most probably remained in the solid combustion
residues, and this is supported by the small-scale experiment
because no cerium was detected in the flue gas of the small-scale
incinerator (see Supplementary Methods and Supplementary Figs
S9,S10 and Tables S9,S10). Moreover, we could not detect a single
nano-CeO2 particle on the exhaust filters with SEM/EDXS, which
means that no volatilization or entrainment of the nano-CeO2 occurred.

The electrostatic precipitator in the large-scale experiment
removed the nano-CeO2 from the flue gas with .99.6% efficiency
in case 2 and .99.9% in case 1. In case 1, over 6 h, 0.04 g
(0.0005%) cerium was found in the flue gas sampled after passing
through the electrostatic precipitator; in case 2, 0.47 g (0.06%)
cerium had passed through the electrostatic precipitator over 4 h
(Supplementary Fig. S7). The wet scrubber removed cerium
with an efficiency of .99.9%. The mass of cerium on the measure-
ment filters in the clean gas was below the detection limit of
0.6 ng per measurement filter in case 1, but we quantified up to
0.499+0.099 mg h21 cerium in the clean gas stream in case 2.
Peak concentrations in the clean gas occurred at the same time as
maximal cerium concentration of 0.14 mg l21 in the quench water
(Fig. 2b). The precise gas flow and quench water flow measurements
allowed us to quantify a transfer coefficient of 0.0001% from the
incinerator to the emitted purified gas. We conclude that electro-
static precipitators and particularly wet flue gas purification
systems remove the nano-oxides effectively, so no relevant nano-
CeO2 emissions to air are expected from thermal waste treatment
plants equipped with state-of-the-art flue gas cleaning systems.

In the clean gas, the maximal cerium concentration of 10 ng per
sampling filter was too low for visual detection. The nano-CeO2 par-
ticles detected in the flue gas precipitated as loose agglomerates onto
the filter (Fig. 1b). Analysis by SEM, TEM, HAADF-STEM and
EDXS revealed little to no changes in morphology with respect to
the initially injected material (Fig. 1b, Supplementary Fig. S5).
Furnace temperatures up to 1,200 8C, rapidly changing reductive
and oxidative conditions and the presence of numerous chemical
compounds (made of almost all naturally occurring elements) did
not lead to substantial physical or chemical transformation of the

particles. Even though CeO2 is known to be inert with a high
melting temperature (2,500 8C), this observation is still surprising
and important, because commonly occurring matrix effects,
sintering and strong interactions with oxidants would usually
lead to physical or chemical transformations. Moreover, such influ-
ences are insufficiently captured with theoretical calculations
(Supplementary Figs S11–S13, Table S15) or small-scale exper-
iments (Supplementary Figs S9,S10).

In both experiments we found the majority of the recovered
cerium in the solid combustion residues (Fig. 3). In case 1, most
of the nano-CeO2 input was transferred to the slag via the furnace
grate. We observed the peak cerium flow in case 1 in the slag after
4 h (Figs 1c, 2a), with a measured cerium concentration of
835 mg g21. More cerium was in the slag than in the fly ash in
case 1, but in case 2 we observed almost equal amounts of cerium
in both slag and fly ash (Fig. 3). In case 2, the nano-CeO2 was
drawn immediately to the boiler and to the electrostatic precipitator
after injection in the gas above the furnace. The only route to the
slag is from the first section of the boiler via the fly ash (Fig. 1).
Analysis showed that in both cases, the nano-CeO2 remained
unchanged as crystalline particles in loose agglomerates on the
surface of the slag matrix (Fig. 2b).

The quasi-closed water quenching system of the wet scrubber
had a mean cerium retention time of 11 h with pulse releases
every 2 h. In these events, �10% of the total quench water is dis-
charged to the fly ash treatment system. In parallel with the nano-
CeO2 input in case 2, the concentration of cerium in the quench
water cycle increased steadily, and continued to do so 1 h after
cerium input (Fig. 2a,b, Supplementary Fig. S8). In case 1, the
cerium concentration decreased rapidly due to the washout that
started 2 h after the nano-CeO2 input. After combustion, the slag
is transferred through a slag sump to cool down and promote
compaction. Loose nano-CeO2 dispersed in this reservoir
(4 m3 slag water) with a mean retention time of 9.6 h and was con-
tinuously transferred to the slag bunker. We measured a cerium
background concentration of 0.6 ng g21 in the slag water in all
cases. This concentration steadily increased to 5.4 ng g21 in
case 1. In case 2, the cerium concentrations remained at the back-
ground level. Therefore, the absolute mass of cerium in the slag
water is insignificant in comparison to the cerium found in the
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was found in the slag and fly ash. a, Cerium flow and cumulated cerium recovery rate for the case where nano-CeO2 was sprayed onto the waste. b, Cerium
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time period for the addition of nano-CeO2. Cerium detection and quantification was carried out for more than 5 h (x axis). The cumulative cerium recovery
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cerium to the wastewater treatment (quantified in the olive coloured arrows). Error bars and the blue dashed line (cumulative cerium recovery rate) include

measurement uncertainty, heterogeneity of the samples and variability of the combustion residues.
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slag. Moreover, the decrease in cerium flow in all analysed residues
with retention times ,12 h in case 1 validates the assumption of
independency of the two cases.

We observed a considerable carryover of cerium in all investi-
gated solid, fluid and gaseous residues (Fig. 2a,b) compared to the
expected peak concentrations (Fig. 1c, Supplementary Fig. S4). As
nanoparticles have large surface-to-volume ratios, they tend to
adhere to surfaces in the furnace chamber, boilers, heat exchanger
tubes and the wet scrubber. This increases their travel time
through the system. Care therefore needs to be taken during main-
tenance operations in plants, as workers may be exposed to nano-
particles trapped in the system. Inhalable dust measurements
taken during and after this investigation showed only slightly
increased concentrations of 0.04–0.33 mg m23 at the slag and fly
ash sampling points compared to the background concentration
of 0.04 mg m23 (Supplementary Table S13). The share of cerium
was 0.04–0.27‰ of the total inhalable dust. During application of
the nano-CeO2 onto the waste (case 1), we observed increased
dust concentrations (1.43 mg m23 containing 0.09‰ cerium).

In contrast to the small-scale experiment, where we were not able
to observe an entrainment or volatilization of nano-CeO2, we did
find nanoparticles in the flue gas of the full-scale incineration
plant. Reassuringly, modern solid-waste incinerators efficiently
remove engineered nanoparticles from flue gas and the emitted
clean gas poses no risk to the environment. However, these plants
are not an effective end-of-life treatment for highly stable engin-
eered nanoparticles such as nano-CeO2; instead, they shift the dis-
posal problem to subsequent processing steps, landfills and final
deposits where the slag and fly ash residues are eventually
handled and stored. Furthermore, engineered nanoparticle emis-
sions can occur during further treatment of slag such as material
recovery, transportation and intermediate storage. In recent years,
in particular, there has been an increasing trend towards the use
of mechanical technologies to separate and recover metals (for
example, copper and aluminium) from slag, or even so-called
landfill mining. Although such technologies are prime examples
of industrial ecology and represent a great advancement towards
closing material cycles and increasing resource efficiency, the
results of this study indicate that engineered nanoparticles may be
released into the air during the recovery process and thus may
lead to increased worker exposure. Similarly, filter ash is increasingly
used as a resource for the recovery of metals (zinc, lead) through

acid washing. The fate of engineered nanoparticles during this
process, including washouts into wastewater streams, and the sub-
sequent metallurgical process is unclear and represents a potential
risk. Application of the precautionary principle therefore dictates
a careful evaluation of the use of persistent nanomaterials in consu-
mer products and reveals great similarities between the earlier risk
discussions on persistent chemicals or gases and the current discus-
sion on nanoecotoxicology.

Methods
Large-scale incinerator. We conducted nano-CeO2 inputs and residue samplings in
the municipal solid-waste incineration plant Emmenspitz (Zuchwil, Switzerland;
Fig. 1a). This plant makes use of a flue gas treatment found in modern waste
incinerators such as electrostatic precipitation, as well as wet flue gas treatment. Each
year, 220,000 t of waste are incinerated in four furnaces, resulting in 50,744 t of slag.
We selected the furnace of line 3 for the nano-CeO2 inputs; this furnace has an
incineration capacity of 8.5 t h21 and an average slag output of 1,850 kg h21. An
electrostatic precipitator with an installed capacity of 57,200 N m3 h21 removes
the fly ash after it has passed through the boiler (which serves for energy recovery).
The flue gas is then drawn through a wet scrubber with selective non-catalytic NOx
reduction, and an activated carbon treatment for dioxine removal. The fly ash
(450 kg h21, 140 kg per line per hour, 3,847 t per year) is mixed with the acidic
eluate from the wet scrubber. The remaining fluids are pretreated (flocculation and
precipitation) and then released into the wastewater stream.

Addition, sampling and analytics of the nano-CeO2 particles. CeO2 nanoparticles
were manufactured using flame spray synthesis20 with carboxylate precursors21,
and were dispersed in ultrapure, filtrated water (Millipore, S185, resistance
.18.2 MV cm) at a concentration of either 5 wt% or 1 wt%. A detailed description
and characterization of the nanoparticles can be found in the Supplementary
Information. At the incineration plant, we took control samples of all investigated
fractions. The sampling plan is shown in Supplementary Fig. S4. In case 1, we
sprayed 10 kg nano-CeO2 suspended in 0.2 m3 H2O onto the waste in the feed
hopper for 60 min (Supplementary Fig. S3). We fed 1 kg nano-CeO2 suspended in
0.1 m3 water through the ammonia nozzles directly into the furnace in case 2.
Estimated residence times in the incinerator (Fig. 1c) are based on tracer studies
(with metals other than cerium) as well as expert opinion. The exact sampling
procedure, sample preparation and analysis with ICP-MS and electron microscopy
are described in the Supplementary Information.

Indoor exposure measurements. The control room in the incineration plant is
mechanically ventilated and under slight overpressure. The waste bunker and the
waste feeding zone are under slight underpressure. Average temperature is 23+2 8C,
relative humidity is 26% (20–30%) and air pressure (decreasing over time) is
980–970 mbar. We sampled the inhalable dust fraction with silica filters with the
GSP-10 system according to a standard procedure (SAA 1.007, SUVA Swiss National
Accident Insurance Fund) with differentiation characteristic according to EN-48122.
Further details about the nanoparticle exposure measurements are presented
in the Supplementary Information.

Small-scale incineration experiment. For the small-scale incineration experiment
we sprayed samples of each CeO2-suspension size class (no overlapping size
distributions, d50¼ 16 nm, 83 nm, 1,600 nm, measured with a Lumisizer) onto
2–4 g sawdust (mimicking the waste matrix). The dried samples contained
15–22% w/w nano-CeO2. The combustion was carried out in a furnace (Mettler
TGA/SDTA851, temperature up to 950 8C, 8.5% O2). We used a thermogravimetric
analyser in combination with an ICP-OES (Varian Liberty 110). A detailed
description of the method and analysis is found in the Supplementary Information.

Further details, including tables and figures, are presented in the Supplementary
Information.
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