
Synthetic Linear Analysis with Applications to

CubeHash and Rabbit⋆

Yi Lu1, Serge Vaudenay2, and Willi Meier3

1 National Engineering Research Center of Fundamental Software,
Institute of Software, Chinese Academy of Sciences, Beijing, China

2 EPFL, Lausanne, Switzerland
3 FHNW, Windisch, Switzerland

Abstract. In linear cryptanalysis, it has been considered most impor-
tant and difficult to analyze the bias and find a large bias. The demon-
stration of a large bias will usually imply that the target crypto-system
is not strong. Regarding the bias analysis, researchers tend to look for a
theoretical solution for a specific problem. In this paper, we take a first
step towards the synthetic approach on bias analysis. We successfully
apply our synthetic analysis to improve the most recent linear attacks
on CubeHash and Rabbit respectively.

CubeHash was selected to the second round of SHA-3 competition. The
best linear attack on 11-round CubeHash with 2470 queries was proposed
in [2]. We present an improved attack for 11-round CubeHash with com-
plexity 2414.2. Based on our 11-round attack, we give a new linear attack
for 12-round CubeHash with complexity 2509. It is the first known at-
tack on 12 rounds with complexity below the security parameter 2512 of
CubeHash.

Rabbit is a stream cipher among the finalists of ECRYPT Stream Cipher
Project (eSTREAM). It has also been published as informational RFC
4503 with the Internet Engineering Task Force (IETF), which is the main
standardization body for Internet technology. For Rabbit, the best linear
attack with complexity 2141 was recently presented in [9]. Our synthetic
bias analysis yields the improved attack with complexity 2136.

Keywords: bias, linear cryptanalysis, synthetic analysis, conditional de-
pendence, CubeHash, Rabbit.

1 Introduction

It is one of most important and difficult problems to analyze the bias
and find a large bias regarding the security of crypto-systems, since the

⋆ Preliminary version appeared in the proceedings [10] of ICISC 2011, the 14th Annual
International Conference on Information Security and Cryptology. In this paper, the
new advanced two-round bias analysis for CubeHash is added; further, we give an
improved 12-round attack with reduced complexity 2509, compared with 2513 in [10].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147991919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

invention of linear cryptanalysis [11] almost 20 years ago. The demon-
stration of a large bias will usually imply that the target crypto-system is
not as strong as expected. Regarding the bias analysis, researchers often
focus on a theoretical solution for a specific problem. For a broad class of
problems, this does not help much to analyze the bias unfortunately.

Most often, we need to study the combined bias of multiple Boolean
functions (such as multiple linear approximations) with many input vari-
ables. Assuming that these Boolean functions are all independent pair-
wise, the problem reduces to the bias computation of each Boolean func-
tion separately. Apparently, if the terms involved in each Boolean function
are statistically independent of the terms in the others, we are sure that
all are independent pairwise and it is “safe” to concentrate on bias com-
putation of each Boolean function. Further, it is worth pointing out that
it is incorrect to conclude independence when the terms involved in each
function appear to be different from the terms occurring in the others. It
is thus essential to conduct synthetic analysis to study the bias problems.
In this paper, we take a first step towards the synthetic approach on bias
analysis. We also propose a conditional dependent bias problem and we
give the analysis to estimate the bias.

We apply our synthetic analysis to improve the most recent linear at-
tack [2] on the hash function CubeHash [4]. CubeHash was selected to the
second round of SHA-3 competition [12]. In [2], based on the bias analy-
sis for 11-round CubeHash, the best linear attack on 11-round CubeHash
with 2470 queries was proposed. Our results improve the bias analysis
of [2]. We show the largest bias 2−207.1 for 11-round CubeHash, and we
present an improved linear attack for 11-round CubeHash with complex-
ity 2414.2. Further, based on our 11-round attack, we give a new linear
attack for 12-round CubeHash with complexity 2509. This is the first
known attack on 12 rounds with complexity below the critical security
parameter4 2512 of CubeHash.

Meanwhile, our synthetic analysis is applied to the recent linear at-
tack [9] on stream cipher Rabbit [5]. Rabbit is a stream cipher among
the finalists of ECRYPT Stream Cipher Project (eSTREAM). It has also
been published as informational RFC 4503 with the Internet Engineering
Task Force (IETF), which is the main standardization body for Internet
technology. In [9], the best linear attack with complexity 2141 was pre-
sented. As reference, Rabbit designers claim the security level of 2128 ([5,
Page 18]). Our synthetic analysis applies to the main part of the bias

4 As reference, we note that for the 1024-bit internal state size like CubeHash, the
critical security parameter is 2512, which implies a collision attack.

2

analysis [9]. Our results yield the improved linear attack with complexity
2136.

The rest of the paper is organized as follows. In Section 2, we intro-
duce the idea of synthetic approach to linear analysis; we also propose the
synthetic bias analysis for a conditional dependent problem. In Section
3, we discuss step by step how to apply synthetic analysis to CubeHash
round function and present our improved attacks on CubeHash. Our im-
proved new result is the first known attack on 12-round CubeHash with
complexity below the critical security parameter 2512. In Section 4, we ap-
ply our conditional dependent problem to improve the best known linear
attack on Rabbit. Finally, we conclude in Section 5.

2 Synthetic Bias Analysis

2.1 The Idea

Define the bias of a binary random variable A by

bias(A)
def
= Pr(A = 0)− Pr(A = 1). (1)

The range of bias is always between -1 and +1. Given multiple Boolean
functions, e.g., linear approximations, f1(X1), f2(X2),. . . , fk(Xk), for the
fixed k, we often need to study the combined bias, i.e., the bias for
f1(X1)⊕ f2(X2)⊕ · · · ⊕ fk(Xk). It is common and convenient to assume
that the inputs X1, X2, . . . , Xk are all statistically independent pairwise.
Thus, with our definition on bias in (1), the bias of the combination of
independent Boolean functions (such as linear approximations) is equal
to the product of the individual biases as asserted by Piling-up lemma
[11]. Consequently, the bias problem reduces to the bias computation of
each Boolean function fi(Xi) (for i = 1, 2, . . . , k) separately.

When it comes to the bias computation of a single Boolean function
(e.g., linear approximation), in general, it is a hard problem, although
in certain cases it might be feasible to calculate the bias. For example,
[6, 13] is applicable to analyze the bias of a single linear approximation
in our CubeHash problem. Nevertheless, when the bias is large5, we can
always compute it empirically, as successfully showed with recent results
on RC4 biases (e.g., [14]).

Henceforth, it leads us to resort to the well-known approach of Divide-
and-Conquer method to the bias analysis involving multiple Boolean func-
tions, when the bias is small and direct computing is infeasible. That is, we

5 The bias computation when the bias is small is beyond the scope of this paper.

3

try to group multiple dependent Boolean functions together (e.g., linear
approximations with regards to CubeHash). The aim is that the Boolean
functions in each group are dependent jointly and the Boolean functions
in different groups are all independent. For example, suppose we have
three groups with functions f1(X1), f2(X2),. . . , f9(X9). Group One con-
tains f1(X1), f2(X2), f3(X3), Group Two contains f4(X4), f5(X5), f6(X6)
and Group Three contains f7(X7), f8(X8), f9(X9). Then, f1(X1), f2(X2)
(both from Group One) are not necessarily independent; f1(X1), f5(X5),
f7(X7) (each from a different group) are all independent; f2(X2), f6(X6),
f7(X7) are all independent, and so on.

When grouping, it is desirable to make each group size as small as
possible, where the group size is referred to as the number of Boolean
functions contained in the group. The rationale behind grouping is that,
we are dividing originally one (big) group of a larger number of functions
into multiple independent groups; once grouping is done, we just need to
study the combined bias for each group of smaller size individually. This
helps make the task of bias analysis easier by reducing the number of the
functions, which have to be studied simultaneously. In our above example
for instance, computing the combined bias for f1(X1), f2(X2), . . . , f9(X9)
might turn out to be impossible. After we divide into three groups, our
problem reduces to computing the combined bias for three groups indi-
vidually. When the combined bias for each group is large enough, we can
compute it empirically, or if the input space is not too large we can even
compute it directly. In Section 3, we will apply this technique to analyze
CubeHash.

2.2 Bias in the Conditional Dependent Problem

Let X,Y, Z be random variables. X,Y are statistically independent vari-
ables, but X,Z are dependent as well as Y, Z. We say that X,Y are con-
ditional dependent6 given Z. We are concerned with the combined bias
of f1(X)⊕ f2(Y)⊕ f3(Z). For convenience, we say f1(X), f2(Y) are con-
ditional dependent given f3(Z) rather than that X,Y are conditional de-
pendent given Z. Formally speaking, we consider that u0, u1, u2, v1, v2 are
independent variables of binary strings (of fixed length). Three Boolean
functions fA(u0, u1, u2), fB(u2, v2), fC(u1, v1) are defined over those vari-
ables. They are denoted by A,B,C in short. We assume that we know the

6 Note that this is in contrast to the concept of conditional independence in statistics.
Recall that X,Y are conditional independent given Z, if X,Y, Z satisfy Pr(X =
x, Y = y|Z) = Pr(X = x|Z) Pr(Y = y|Z) for all x, y.

4

bias for A,B,C respectively. We want to estimate the bias for A⊕B⊕C,
and due to the dependence we do not want to use the Piling-up approxi-
mation. Our first solution is to obtain the bias for A⊕C (or A⊕B). Then,
estimate the bias for A ⊕ B ⊕ C by taking either bias(A ⊕ C) · bias(B),
or bias(A⊕B) · bias(C).

By considering the functions as black-boxes (of random functions),
we propose to use the heuristics and make a more delicate estimate as
follows. As u1 affects both A ⊕ B and C, we make a simple assumption
about the two distributions of the bias for A⊕B and for C over u1: the
absolute value of the bias is (almost) a constant and can only take values
in a set of two elements. Thus, it leads us to compute the average p+ (resp.
p−) of the positive (resp. negative) biases for A⊕B over randomly chosen
u1 and the percentage q of the positive biases for A ⊕ B over randomly
chosen u1. Similarly, we also compute the average of the positive p′+ (resp.
negative p′

−
) biases for C over randomly chosen u1 and the percentage q′

of the positive biases. The distribution of the bias for A ⊕ B over u1 is
independent of the distribution of the bias for C over u1, so we combine
the results and give an estimate on the bias of A⊕B ⊕ C by

qq′p+p
′

+ + (1− q)(1− q′)p−p
′

−
− q(1− q′)p+p

′

−
− (1− q)q′p−p

′

+ (2)

3 Our Analysis on CubeHash

3.1 Preliminaries

The hash function CubeHash [4] was designed by D.J. Bernstein. It was
one of the 14 candidates which were selected to the second round of SHA-
3 competition [12]. SHA-3 was initiated by the U.S. National Institute of
Standards and Technology to push forwards the development of a new
hash standard, following the recent fruitful research work on the hash
function cryptanalysis. CubeHash is a family of cryptographic hash func-
tions, parameterized by the performance and security requirement. At
the heart of it, CubeHash consists of an internal state of 1024 bits, round
transformation T , round number r, between introduction of new message
blocks. At the end, T is repeated 10r times before outputting h bits of its
state as the final hash value. Security/performance tradeoffs are provided
with different combinations h, r and the message block length b. The nor-
mal security parameters are r = 16, b = 32, according to [4]. Note that for
CubeHash (regardless of r, b, h), we consider 2512 as one critical security
parameter for reference, because CubeHash has a compression function

5

with the 1024-bit internal state size, which implies that a generic collision
attack is possible due to the birthday attacks.

We let CubeHash internal states of 1024 bits be represented by 32
words x00000, x00001, . . . , x11111 with each word being 32-bit long. Cube-
Hash round transformation T can be described by the following 10 steps
of operations:

Step 1: add (modulo 232) x0n into x1n, i.e.,

x0n + x1n → x1n for all 4-bit n

Step 2: rotate x0n left by 7 bits, i.e.,

x0n ≪ 7 → x0n for all 4-bit n

Step 3: swap x00n with x01n, i.e.,

x00n ↔ x01n for all 3-bit n

Step 4: xor x1n into x0n, i.e.,

x0n ⊕ x1n → x0n for all 4-bit n

Step 5: swap x1jk0mwith x1jk1m, i.e.,

x1jk0m ↔ x1jk1m for all 1-bit j, k,m

Step 6: add (modulo 232) x0n into x1n, i.e.,

x0n + x1n → x1n for all 4-bit n

Step 7: rotate x0n left by 11 bits, i.e.,

x0n ≪ 11 → x0n for all 4-bit n

Step 8: swap x0j0km with x0j1km, i.e.,

x0j0km ↔ x0j1km for all 1-bit j, k,m

Step 9: xor x1n into x0n, i.e.,

x0n ⊕ x1n → x0n for all 4-bit n

Step 10: swap x1jkm0 with x1jkm1, i.e.,

x1jkm0 ↔ x1jkm1 for all 1-bit j, k,m

Within the round, xn will denote the initial state before the round begins,
and xin will denote the state xn after Step i, for all 1 ≤ i ≤ 10. The round
number of the internal states which we study is clear from the context,
and we omit it from the notations.

Recently, [1, 2] studied distinguishing attacks on CubeHash compres-
sion function. In [2], linear cryptanalysis technique [11] is used to con-
struct the distinguisher; while in [1], the relatively new technique of rota-
tional analysis is used. We refer to [7] for a survey of cryptanalysis results
on CubeHash. In this section, we will investigate the largest bias [2] for

6

CubeHash. It was shown that due to this largest bias, a non-trivial linear
attack on 11-round CubeHash with 2470 queries exists [2]. We will conduct
synthetic analysis to improve the bias analysis of multiple linear approxi-
mations in [2]. Each round of CubeHash consists of two half rounds with
five steps. For each half round, only one step introduces nonlinearity to
the internal state by performing the modular addition operations. Our
main focus is that, within each round, the multiple linear approximations
are not necessarily all independent pairwise. This can be justified by the
fact that nonlinearity is introduced by two separate steps (i.e., Step 1 and
Step 6) instead of one single step within a round.

3.2 Our Detailed Analysis on CubeHash Round Function

Let us start from a simple case of Round 7 now. Note that a similar anal-
ysis is applicable to all other rounds. We give our analysis for CubeHash
Round 8 in Appendix A and complete results in Section 3.3. We want to
analyze the following bias for the linear approximation at Round 7,

0x300 · (x10100 ⊕ x10110) ≈ 0x180000 · (x1000000 ⊕ x1000010 ⊕ x1010001 ⊕ x1010011)

⊕0x300 · (x1010101 ⊕ x1010111)⊕ 0x18000 · (x1011101 ⊕ x1011111) (3)

We begin with a trivial equation

0x300 · (x10100 ⊕ x10110) = 0x300 · (x10100 ⊕ x00100 ⊕ x00100

⊕x10110 ⊕ x00110 ⊕ x00110)

We introduce the two linear approximations at Step 1,

0x300 · (x10100 ⊕ x00100)

≈ 0x300 · (x10100 + x00100) = 0x300 · x110100 (4)

0x300 · (x10110 ⊕ x00110)

≈ 0x300 · (x10110 + x00110) = 0x300 · x110110 (5)

Note that the bias for linear approximation (4), (5) is 2−1 respectively by
[6, Corollary 1, Page 232]. We have

0x300 · (x10100 ⊕ x10110) ≈ 0x300 · (x110100 ⊕ x110110 ⊕ x100100 ⊕ x100110) (6)

7

Going from Step 2 through Step 5, we continue on (6)

= 0x300 · x210100 ⊕ 0x300 · x210110 ⊕ 0x18000 · x200100 ⊕ 0x18000 · x200110

= 0x300 · x310100 ⊕ 0x300 · x310110 ⊕ 0x18000 · x301100 ⊕ 0x18000 · x301110

= 0x300 · x410100 ⊕ 0x300 · x410110 ⊕ 0x18000 · x401100 ⊕ 0x18000 · x411100 ⊕

0x18000 · x401110 ⊕ 0x18000 · x411110

= 0x300 · x510110 ⊕ 0x300 · x510100 ⊕ 0x18000 · x501100 ⊕ 0x18000 · x511110 ⊕

0x18000 · x501110 ⊕ 0x18000 · x511100

= 0x300 · x510110 ⊕ 0x300 · x500110 ⊕ 0x300 · x500110 ⊕ 0x300 · x510100 ⊕

0x300 · x500100 ⊕ 0x300 · x500100 ⊕ 0x18000 · x501100 ⊕

0x18000 · x511100 ⊕ 0x18000 · x501110 ⊕ 0x18000 · x511110 (7)

At Step 6, four linear approximations are introduced:

0x300 · (x510110 ⊕ x500110) ≈ 0x300 · (x510110 + x500110) (8)

0x300 · (x510100 ⊕ x500100) ≈ 0x300 · (x510100 + x500100) (9)

0x18000 · (x501100 ⊕ x511100) ≈ 0x18000 · (x501100 + x511100) (10)

0x18000 · (x501110 ⊕ x511110) ≈ 0x18000 · (x501110 + x511110) (11)

Note that the bias for linear approximation (8), (9), (10), (11) is 2−1

respectively by [6, Corollary 1, Page 232]. Because of the step operation,
the right hand-sides of (8), (9), (10), (11) are equal to 0x300 · x610110,
0x300 · x610100, 0x18000 · x611100 and 0x18000 · x611110 respectively. So, (7)
can be approximated by

0x300 · (x610110 ⊕ x600110 ⊕ x610100 ⊕ x600100)⊕ 0x18000 · (x611100 ⊕ x611110).

It is equal to

0x300 · x710110 ⊕ 0x180000 · x700110 ⊕ 0x300 · x710100 ⊕ 0x180000 · x700100

⊕0x18000 · x711100 ⊕ 0x18000 · x711110

= 0x300 · x810110 ⊕ 0x180000 · x800010 ⊕ 0x300 · x810100 ⊕ 0x180000 · x800000

⊕0x18000 · x811100 ⊕ 0x18000 · x811110

= 0x300 · x910110 ⊕ 0x180000 · x900010 ⊕ 0x180000 · x910010 ⊕ 0x300 · x910100

⊕0x180000 · x900000 ⊕ 0x180000 · x910000 ⊕ 0x18000 · x911100

⊕0x18000 · x911110

= 0x300 · x1010111 ⊕ 0x180000 · x1000010 ⊕ 0x180000 · x1010011 ⊕ 0x300 · x1010101

⊕0x180000 · x1000000 ⊕ 0x180000 · x1010001 ⊕ 0x18000 · x1011101

⊕0x18000 · x1011111

8

which is just the right-hand side of (3). From our calculations, it is clear
that the bias for the linear approximation (3) at Round 7 equals the com-
bined bias of the six approximations (4), (5), (8), (9), (10), (11) holding
simultaneously. We observe that the terms occurring in any linear ap-
proximation never occur in the other approximations. If we assume these
approximations to be independent from that observation, we can deduce
the total bias as (2−1)6 = 2−6 by Piling-up lemma [11], since we know
(4), (5), (8), (9), (10), (11) has bias 2−1 each as mentioned before. Unfor-
tunately, as we demonstrate later, this independence assumption is not
true. The following results will be useful for us before we move on.

Theorem 1. Suppose that the 32-bit random variables A,B,A′, B′ are

independent. Then, for any 32-bit m,m′, the two bits m · (A + B) ⊕m ·
(A⊕B) and m′ · (A′ +B′)⊕m′ · (A′ ⊕B′) are independent.

Proof. First, we let U = (A+B)⊕A⊕B and U ′ = (A′+B′)⊕A′⊕B′. As
A,B,A′, B′ are independent, we know U,U ′ are independent. Given 32-
bit m and 1-bit v, we define the set E<m,v> = {X ∈ GF (2)32 : m·X = v}.
We let |E<m,v>| denote the cardinality of the set E<m,v>, and let Ei

<m,v>

denote the element of E<m,v> for i = 1, 2, . . . , |E<m,v>|. Hence, for any
v, v′ ∈ {0, 1}, we have

Pr(m · U = v,m′ · U ′ = v′)

=
∑

i,j

Pr(U = Ei
<m,v>, U

′ = E
j
<m′,v′>)

Since U,U ′ are independent, we have

Pr(m · U = v,m′ · U ′ = v′)

=
∑

i

Pr(U = Ei
<m,v>)

∑

j

Pr(U ′ = E
j
<m′,v′>)

= Pr(m · U = v) Pr(m′ · U ′ = v′)

Thus, we see that the two bits m · U and m′ · U ′ are independent. �

We further note that assuming the 32-bit random variables A,B are
independent with uniform probability distribution, the bias for the linear
approximation m · (A ⊕ B) ≈ m · (A + B), i.e., the bias for the bit m ·
(A⊕B)⊕m · (A+B), for any7 32-bit m can be efficiently evaluated by
[13, Theorem 1, Page 156]. With regards to CubeHash round function,
we have the following results.

7 For special patterns of m such as those we have mentioned before, we have quick
results on the bias (see [6, Corollary 1, Page 232] for details).

9

Theorem 2. Assume that the 1024-bit initial state of CubeHash com-

pression function is random and uniformly distributed before Round 1

begins, then, the 1024-bit state of CubeHash is random and uniformly

distributed at any step of any round.

Proof. Because the ten step operations are all invertible, the state tran-
sition function is a permutation over GF (2)1024 from Step i to Step i+1
within the round. By induction, we know that the 1024-bit state of Cube-
Hash compression function is random and uniformly distributed at any
step of any round, assuming that the 1024-bit initial state of CubeHash
is random and uniformly distributed before Round 1 begins. �

We can immediately justify that Approximations (4), (5) are inde-
pendent as follows. By Theorem 2, the involved states x10100, x00100 in
(4) and the involved states x10110, x00110 in (5) are all independent. And
we apply Theorem 1 with

m = m′ = 0x300, A = x10100, B = x00100, A
′ = x10110, B

′ = x00110,

to see that Approximations (4), (5) are independent. Similarly, Approxi-
mations (8), (9), (10), (11) are independent pairwise.

Our main focus here is to show below that these two groups of approx-
imations are, however, not independent. Note that the internal states are
invertible with the CubeHash round function T , as each step operation is
invertible. Thus, Step 1 operation allows to have the equalities hold true
always, x0m = x10m and x1m = x11m−x10m for all 4-bit m within the round.
So, we can substitute all those state variables of xn’s in Approximations
(4) and (5) and get the equivalent expression in terms of x1n’s (i.e., states
right after Step 1) only. We obtain

0x300 · x110100 ⊕ 0x300 · x100100 ≈ 0x300 · (x110100 − x100100) (12)

0x300 · x110110 ⊕ 0x300 · x100110 ≈ 0x300 · (x110110 − x100110) (13)

Here, note that rewriting the Approximations as shown above does not
change the bias8, because the state variables are always replaced by their
equivalents variables. Similarly, we rewrite Approximations (8), (9), (10),

8 That is, (4) and (12) have exactly the same bias, and (5) and (13) have exactly the
same bias.

10

(11) in terms of states right after Step 1 as follows respectively,

0x300 · (x110100 + (x101110 ≪ 7⊕ x110110)) ≈ 0x300 · (x110100 ⊕ (14)

x101110 ≪ 7⊕ x110110)

0x300 · (x110110 + (x101100 ≪ 7⊕ x110100)) ≈ 0x300 · (x110110 ⊕ (15)

x101100 ≪ 7⊕ x110100)

0x18000 · (x111110 + (x100100 ≪ 7⊕ x111100)) ≈ 0x18000 · (x111110 ⊕ (16)

x100100 ≪ 7⊕ x111100)

0x18000 · (x111100 + (x100110 ≪ 7⊕ x111110)) ≈ 0x18000 · (x111100 ⊕ (17)

x100110 ≪ 7⊕ x111110)

Next, we will apply the synthetic bias analysis for CubeHash Round 7
to analyze (12), (13), (14), (15), (16) and (17). We will group the six
approximations.

Both (14) and (15) arise at Step 6, and they are independent. As x110100
occurs in both (12) and (14), we group (12) and (14) together. Likewise,
as x110110 occurs in both (13) and (15), we group (13) and (15) together.
Both (16) and (17) arise at Step 6, and they are independent. As (16),
(17) relates to x100100, x

1
00110 respectively, x100100 is related to (12), (14),

and x100110 is related to (13) and (15). Therefore, we are able to make the
two groups. Group One contains (12), (14), (16). Group Two contains
(13), (15), (17).

To show these two groups are independent, we need9 to show the four
pairs [(12), (15)], [(12), (17)], [(13), (14)] and [(13), (16)] are independent
respectively. By Theorem 1, we can immediately verify independence for
the two pairs [(12), (17)], [(13), (16)] as follows. We verify independence
for [(12), (17)] by applying Theorem 1, with m = 0x300, A = x100100,
B = x110100 − x100100, m

′ = 0x18000, A′ = x111100, B
′ = x100110 ≪ 7 ⊕

x111110; and the assumption that A,B,A′, B′ are independent is justified
by applying Theorem 2. And we verify independence for [(13), (16)] with
m = 0x300, A = x100110, B = x110110 − x100110, m

′ = 0x18000, A′ = x111110,
B′ = x100100 ≪ 7 ⊕ x111100. We can similarly check the two pairs [(12),
(15)], [(13), (14)] are independent respectively. Hence, we have justified
that the two groups are independent.

With regards to the joint bias for each group, our computations show
that the joint bias for the group of approximations (12), (14), (16) holding
simultaneously is around 2−2.5 and the joint bias for (13), (15), (17) is

9 Note that these five pairs [(12), (13)], [(14), (15)], [(14), (17)], [(16, (15)] and [(16),
(17)] are independent respectively, because each pair arises from the same step.

11

around 2−2.5. Consequently, the total bias for the linear approximation
(3) at Round 7, is calculated as 2−2.5 × 2−2.5 = 2−5. In contrast, recall
that if the dependency within the individual groups of functions of the
round is ignored, that is, all the linear approximations of the round were
assumed to be independent, we would have a smaller bias 2−6 at Round
7, as we have explained earlier.

3.3 Improved Attack on 11-round CubeHash

Using our synthetic analysis technique in Section 3.2, we analyzed all the
11 rounds for CubeHash. We give our results10 in Table 1. Note that in
Table 1, we see no bias improvement for Round 5. This is because we can
actually show all the linear approximations for Round 5 are independent.
Similar arguments hold true for Round 6. We now briefly explain. For
Round 5, we can apply the same technique to demonstrate that the four
linear approximations are involved:

0xc00000 · (x101001 ⊕ x111001) ≈ 0xc00000 · (x111001 − x101001) (18)

0xc00000 · (x101011 ⊕ x111011) ≈ 0xc00000 · (x111011 − x101011) (19)

0x6 · (x111111 + (x100101 ≪ 7⊕ x111101)) ≈ 0x6 · (x111111 ⊕ (20)

x100101 ≪ 7⊕ x111101)

0x6 · (x111101 + (x100111 ≪ 7⊕ x111111)) ≈ 0x6 · (x111101 ⊕ (21)

x100111 ≪ 7⊕ x111111)

And these four approximations are pairwise independent. For Round 6,
two independent linear approximations arise at Step 6:

0x300 · (x500101 ⊕ x510101) ≈ 0x300 · (x500101 + x510101) (22)

0x300 · (x500111 ⊕ x510111) ≈ 0x300 · (x500111 + x510111) (23)

Due to the dependence within each round (except Round 5 and Round
6), we are able to improve the bias estimate for 11-round CubeHash from
2−234 in [2] to 2−207.1. Recall a well-known fact in coding theory, that
is, if the bias of the bit A is ǫ, then we can successfully distinguish the
distribution of randomly and uniformly chosen (1

ǫ
)2 samples of A from

uniform distribution with probability of success higher than 1
2 . This gives

an improved attack for 11-round CubeHash with complexity 2414.2.

10 Note that our definition of bias in (1) is twice in quantity of that in [2], which was
defined as Pr(X = 0) − 1/2. In Table 1, the biases of [2] were adjusted using our
definition, and thus were twice of those in [2, Table 6, Page 472]; and the total bias
for 11-round CubeHash were calculated as 2−234 in Table 1 rather than 2−235 in [2].

12

Table 1. Our analysis results on 11-round linear approximations of CubeHash

round 1 2 3 4 5 6

our bias 2−29 2−35.7 2−16.9 2−13 2−4 2−2

paper [2] 2−34 2−40 2−18 2−14 2−4 2−2

round 7 8 9 10 11 total

our bias 2−5 2−13.8 2−18.7 2−36.5 2−32.5 2−207.1

paper [2] 2−6 2−16 2−22 2−42 2−36 2−234

3.4 Improved Attack on 12-round CubeHash

We can extend our above results to attack 12-round CubeHash. Our anal-
ysis shows that by choosing the same output masks from the set

{0x600, 0x18000, 0x180000, 0xc000000, 0xc0000000}

for x01101 and x01111 at the end of Round 5, going backwards 6 rounds,
forwards 6 rounds, we get11 five new linear approximations (given in Ap-
pendix B) on 12-round CubeHash. They all have the same bias of around
2−261.1. In particular, with this construction, the last 11 rounds all have
the same bias as our 11-round CubeHash above; moreover, the bias for
its first round, if we assume all linear approximations are independent, is
2−54. With our synthetic analysis in Section 3.2, we can improve the bias
for its first round to 2−51, which leads to the total improved bias 2−258.1

for 12-round CubeHash.
Additionally, from each of the five linear approximations on 12-round

CubeHash, we can deduce 8 linear approximations of equal bias as fol-
lows. Observe that the above construction is derived by letting the pair
(x01101, x01111) at the end of Round 5 going backwards and forwards. We
further found that we can similarly derive five linear approximations from
each of the other seven pairs:

(x00000, x00010), (x00001, x00011), (x00100, x00110), (x00101, x00111),

(x01000, x01010), (x01001, x01011), (x01100, x01110).

11 Note that in above analysis on 11-round CubeHash, the 11-round linear approxima-
tion can be obtained by going backwards 5 rounds and forwards 6 rounds with mask
0x6 for x01101 and x01111 at the end of Round 5.

13

Therefore, for 12-round CubeHash, we have 8× 5 = 40 linear approxima-
tions of equal bias.

Advanced Two-round Analysis In above analysis, the analysis is fo-
cused within each round. According to the specification of CubeHash, no
randomization is introduced between consecutive rounds, and the biases
of consecutive rounds of CubeHash are likely to be dependent. Here, we
illustrate the two-round analysis on Round 6 and Round 7. Note that a
similar approach works for all consecutive two rounds.

To apply our synthetic analysis on Round 6 and Round 7 jointly, we
rewrite (22), (23) in terms of states after Step 1 at Round 7:

0x300 · (x110100 − x100100) ≈ 0x300 · ((x110100 − x100100)−

(x100001 ⊕ (x110000 − x100000)) ≫ 11⊕

(x100001 ⊕ (x110000 − x100000)) ≫ 11) (24)

0x300 · (x110110 − x100110) ≈ 0x300 · ((x110110 − x100110)−

(x100011 ⊕ (x110010 − x100010)) ≫ 11⊕

(x100011 ⊕ (x110010 − x100010)) ≫ 11) (25)

Now, we apply our synthetic analysis on the eight linear approximations
(24), (25), (12), (13), (14), (15), (16) and (17), which are involved at
Round 6 and Round 7 and all expressed by the states at the same step.
It is easy to see that (25) is independent of (24), (12), (14), (16); likewise,
(24) is independent of (25), (13), (15), (17). Thus, based on our previous
results within one round, we have two independent groups for Round 6
and Round 7 together. Group one contains (24), (12), (14), (16). Group
two contains (25), (13), (15), (17). Our computations show that both
Group one and Group two has bias 2−3. So, Round 6 and Round 7 yield
the combined improved bias 2−6.

Finally, we calculate the overall bias for 12-round CubeHash. Recall
that before the two-round advanced analysis, the bias for each of the 40
linear approximations for 12-round CubeHash was 2−258.1; in particular,
the combined bias of Round 6 and Round 7 was 2−2 × 2−5 = 2−7, if
we assume Round 6 and Round 7 to be independent. With our above
advanced two-round analysis, the combined bias of Round 6 and Round
7 improves to 2−6. Thus, we have the improved bias estimate 2−257.1 for
12-round CubeHash. By using the aforementioned 40 equal biases, we
have an improved attack with complexity

1

40
× (

1

2−257.1
)2 = 2509.

14

4 Improved Analysis on Stream Cipher Rabbit

4.1 Preliminaries

Rabbit [5] is a stream cipher among the finalists of EU-funded ECRYPT
Stream Cipher Project (eSTREAM). Rabbit encryption algorithm has
been published as informational RFC 4503 with the Internet Engineering
Task Force (IETF), the standardization body for Internet technology.
We give a short description on Rabbit here. We refer to [5, 9] for full
description. Rabbit outputs the 128-bit keystream block si from the eight
state variables x’s of 32 bits at each iteration i,

s
[15..0]
i = x

[15..0]
0,i ⊕ x

[31..16]
5,i s

[31..16]
i = x

[31..16]
0,i ⊕ x

[15..0]
3,i

s
[47..32]
i = x

[15..0]
2,i ⊕ x

[31..16]
7,i s

[63..48]
i = x

[31..16]
2,i ⊕ x

[15..0]
5,i

s
[79..64]
i = x

[15..0]
4,i ⊕ x

[31..16]
1,i s

[95..80]
i = x

[31..16]
4,i ⊕ x

[15..0]
7,i

s
[111..96]
i = x

[15..0]
6,i ⊕ x

[31..16]
3,i s

[127..112]
i = x

[31..16]
6,i ⊕ x

[15..0]
1,i

The state variables x’s are computed from intermediate variables g’s of
32 bits,

x0,i+1 = g0,i + (g7,i ≪ 16) + (g6,i ≪ 16) (26)

x1,i+1 = g1,i + (g0,i ≪ 8) + g7,i (27)

x2,i+1 = g2,i + (g1,i ≪ 16) + (g0,i ≪ 16) (28)

x3,i+1 = g3,i + (g2,i ≪ 8) + g1,i (29)

x4,i+1 = g4,i + (g3,i ≪ 16) + (g2,i ≪ 16) (30)

x5,i+1 = g5,i + (g4,i ≪ 8) + g3,i (31)

x6,i+1 = g6,i + (g5,i ≪ 16) + (g4,i ≪ 16) (32)

x7,i+1 = g7,i + (g6,i ≪ 8) + g5,i (33)

where ≪ denotes left bit-wise rotation and all additions are computed
modulo 232. The description of computing g’s (see [5, 9]) is not relevant
for us and we omit it here.

Prior to [9], the work of [3, 8] focused on the bias analysis within one
keystream sub-block of 16 bits, and the best distinguishing attack [8]
has complexity 2158. Recently, [9] studied the bias of Rabbit involving
multiple sub-blocks of one keystream block. More formally, [9] proposed
to estimate the bias for Rabbit keystream outputs of the form

Mask0 · s
[15..0]
i+1 ⊕Mask1 · s

[31..16]
i+1 ⊕ · · · ⊕Mask7 · s

[127..112]
i+1 , (34)

15

(with 16-bit Maski’s) as two parts separately, i.e., the linear part α0 ·
g0,i ⊕ α1 · g1,i ⊕ · · · ⊕ α7 · g7,i (with appropriate 32-bit αi’s) and the non-

linear part Mask0 ·s
[15..0]
i+1 ⊕· · ·⊕Mask7 ·s

[127..112]
i+1 ⊕α0 ·g0,i⊕· · ·⊕α7 ·g7,i.

In particular, [9] showed that for

0x606 · s
[47..32]
i+1 ⊕ 0x606 · s

[79..64]
i+1 ⊕ 0x606 · s

[111..96]
i+1 , (35)

the bias12 for the linear part and the nonlinear part is 2−50.5, 2−20 re-
spectively. It thus makes the total bias of around 2−70.5 and yields the
best distinguishing attack with complexity 2141, which is still above the
claimed security level 2128 ([5, Page 18]).

4.2 Our Synthetic Analysis on Rabbit

In this section, we apply our new conditional dependent problem in Sec-
tion 2.2 to analyze the nonlinear part13 of the bias analysis, i.e., the total
combined bias of the six linear approximations below form = 0x606,m′ =
0x6060000 (for simplicity we omit the irrelevant subscripts i from the vari-
ables g):

m · (g2 + g1 ≪ 16 + g0 ≪ 16) ≈ m · (g2 ⊕ g1 ≪ 16⊕ g0 ≪ 16)(36)

m · (g4 + g3 ≪ 16 + g2 ≪ 16) ≈ m · (g4 ⊕ g3 ≪ 16⊕ g2 ≪ 16)(37)

m · (g6 + g5 ≪ 16 + g4 ≪ 16) ≈ m · (g6 ⊕ g5 ≪ 16⊕ g4 ≪ 16)(38)

m′ · (g1 + g0 ≪ 8 + g7) ≈ m′ · (g1 ⊕ g0 ≪ 8⊕ g7) (39)

m′ · (g3 + g2 ≪ 8 + g1) ≈ m′ · (g3 ⊕ g2 ≪ 8⊕ g1) (40)

m′ · (g7 + g6 ≪ 8 + g5) ≈ m′ · (g7 ⊕ g6 ≪ 8⊕ g5) (41)

Let Group One contain (36), (37), (40) and Group Two contain (38), (41).
We can demonstrate that the linear approximations in Group One are
independent from those in Group Two. Nonetheless, given (39), the two
groups are not independent. We let A denote the corresponding Boolean
function of (39) by replacing ‘≈’ with ‘⊕’ in (39), and let B,C denote the
corresponding Boolean function for Group One, Group Two respectively
by replacing ‘≈’ with ‘⊕’ in all the linear approximations in the group
and XORing them together. Obviously, this is a conditional dependent
bias problem as we proposed in Section 2.2.

Using our first solution in Section 2.2, we compute the bias for A⊕B,C

respectively and get the results 2−11.4, 2−6. We estimate the combined bias

12 with our definition (1) on bias
13 Note that the bias of the linear part cannot be improved.

16

for above six linear approximations by

2−11.4 × 2−6 = 2−17.4. (42)

Now, we want to apply our black-box solution (2) in Section 2.2. In

our case, we have u1 = g
[31..16]
7 . For A⊕B, we compute with 226 random

samples for each randomly chosen u1 and we run it 214 times. We obtain
the results in hexadecimal form,

q =
0x24a6

0x4000
, p+ =

0x1e0e6fc1

0x24a6× 225
, p− =

0x123210ab

0x1b5a× 225
.

They correspond to the percentage of positive bias 57.3%, the average of
positive bias +2−9.3, the average of negative bias −2−9.6, and the average
bias +2−11.43 of all. For the function C, we compute with 222 random
samples for each randomly chosen u1 and we run it 216 times. We obtain
the results in hexadecimal form,

q′ =
0xafed

0x10000
, p′+ =

0xd4698c87

0xafed× 221
, p′

−
=

0x4ea00ceb

0x5013× 221
.

They correspond to the percentage of positive bias 68.7%, the average
of positive bias +2−4.73, the average of negative bias −2−5.03, and the
average bias +2−5.94 of all14 .

By (2), we estimate the bias 2−17.5 for A⊕B ⊕C. This result agrees
with our first estimation (42). Note that based on the naive independence
assumption, this combined bias was estimated in [9] to be smaller, i.e.,
2−20. Consequently, based on [9], we have an improved attack on Rabbit
with complexity

(2−50.5 × 2−17.5)−2 = 2136.

5 Conclusion

In this paper, we take a first step towards the synthetic approach on bias
analysis. We apply the “Divide-and-Conquer” method to our synthetic
bias analysis. When multiple (possibly dependent) Boolean functions are
involved, we propose to group dependent ones together and make inde-
pendent groups. This allows to split the original complicated bias prob-
lem into smaller ones separately. Thus, for each split problem, the input
space is reduced and the combined bias is enlarged. The former might
make exhaustive computation possible now, while the latter might make

14 The computations were run 3 ∼ 5 times and we always got these same statistics.

17

computing empirically possible. Obviously, with our synthetic approach,
the task of bias analysis becomes easier. In the meantime, we also pro-
pose a conditional dependent bias problem. Based on naive heuristics and
certain ideal assumptions, we give the bias analysis to estimate the bias.

Our synthetic approach is successfully applied to improve the best
linear attacks [2, 9] on CubeHash and Rabbit respectively. We present an
improved attack on 11-round CubeHash with complexity 2414.2. Based on
our 11-round attack, we give a new linear attack for 12-round CubeHash
with complexity 2509. It is the first known attack on 12 rounds with
complexity below the security parameter 2512 of CubeHash. We also give
an improved attack on Rabbit with complexity 2136.

As for the future work, we note that our current analysis on grouping
is done manually. When too many variables are involved in the combined
bias problem for multiple Boolean functions, a tool to make groups au-
tomatically is essential for the synthetic analysis. We believe that with
the tool, we can perform three-round (or even more rounds) analysis and
improve our bias analysis for 12-round CubeHash.

Acknowledgments

We gratefully thank the anonymous reviewers for many helpful and valu-
able comments. The first author is supported by the National Science and
Technology Major Project No. 2010ZX01036-001-002 and the Knowledge
Innovation Key Directional Program of Chinese Academy of Sciences un-
der Grant No. KGCX2-YW-125, and the National Natural Science Foun-
dation of China under Grant No. 90818012.

References

1. J. Alizadeh, A. Mirghadri, A new distinguisher for CubeHash-8/b and CubeHash-
15/b compression functions, IACR eprint, http://eprint.iacr.org/2011/550,
2011.

2. T. Ashur, O. Dunkelman, Linear analysis of reduced-round CubeHash, ACNS 2011,
LNCS vol. 6715, pp. 462-478, Springer-Verlag, 2011.

3. J. P. Aumasson, On a bias of Rabbit, SASC 2007, http://www.ecrypt.eu.org/
stream/papersdir/2007/033.pdf, 2007.

4. D. J. Bernstein, CubeHash specification (2.B.1), submission to National Institute
of Standards and Technology (NIST), 2009.

5. M. Boesgaard, M. Vesterager, T. Christensen and E. Zenner, The stream cipher
Rabbit (version 1.1), the ECRYPT stream cipher project, http://www.ecrypt.
eu.org/stream/.

6. J. Y. Cho, J. Pieprzyk, Multiple modular additions and crossword puzzle attack on
NLSv2, ISC 2007, LNCS vol. 4779, pp. 230-248, 2007.

18

7. ECRYPT II SHA-3 Zoo, CubeHash Profile, http://ehash.iaik.tugraz.at/wiki/
The_SHA-3_Zoo.

8. Y. Lu, H. Wang, S. Ling, Cryptanalysis of Rabbit, ISC 2008, LNCS vol. 5222, pp.
204-214, Springer-Verlag, 2008.

9. Y. Lu, Y. Desmedt, Improved distinguishing attack on Rabbit, ISC 2010, LNCS
vol. 6531, pp. 17-23, Springer-Verlag, 2011.

10. Y. Lu, S. Vaudenay, W. Meier, L. Ding, J. Jiang, Synthetic linear analysis: Im-
proved attacks on CubeHash and Rabbit, to appear in the proceedings of the 14th
Annual International Conference on Information Security and Cryptology (ICISC
2011), LNCS vol. 7259, Springer-Verlag, 2012.

11. M. Matsui, Linear cryptanalysis method for DES cipher, EUROCRYPT 1993,
LNCS vol. 765, pp. 386-397, 1994.

12. National Institute of Standards and Technology (NIST), Cryptographic hash algo-
rithm competition, http://www.nist.gov/hash-competition.

13. K. Nyberg, J. Wallen, Improved linear distinguishers for SNOW 2.0, FSE 2006,
LNCS vol. 4047, pp. 144-162, 2006.

14. P. Sepehrdad, S. Vaudenay, M. Vuagnoux, Discovery and exploitation of new biases
in RC4, SAC 2010, LNCS vol. 6544, pp. 74-91, 2011.

Appendix A: Analysis on CubeHash Round 8

For CubeHash Round 8, six pairwise independent approximations arise
at Step 1. They are presented in terms of states right after Step 1.

0x180000 · (x100001 ⊕ x110001) ≈ 0x180000 · (x100001 − x110001) (43)

0x180000 · (x100011 ⊕ x110011) ≈ 0x180000 · (x100011 − x110011) (44)

0x300 · (x100101 ⊕ x110101) ≈ 0x300 · (x100101 − x110101) (45)

0x300 · (x100111 ⊕ x110111) ≈ 0x300 · (x100111 − x110111) (46)

0x18000 · (x101101 ⊕ x111101) ≈ 0x18000 · (x101101 − x111101) (47)

0x18000 · (x101111 ⊕ x111111) ≈ 0x18000 · (x101111 − x111111) (48)

Note that each of above six approximation has bias 2−1 by [6]. Eight
pairwise independent approximations arise at Step 6. They are presented

19

in terms of states right after Step 1.

0x180000 · (x110011 + (x101001 ≪ 7⊕ x110001)) ≈

0x180000 · (x110011 ⊕ x101001 ≪ 7⊕ x110001) (49)

0x180000 · (x110001 + (x101011 ≪ 7⊕ x110011)) ≈

0x180000 · (x110001 ⊕ x101011 ≪ 7⊕ x110011) (50)

0xc00300 · (x110111 + (x101101 ≪ 7⊕ x110101)) ≈

0xc00300 · (x110111 ⊕ x101101 ≪ 7⊕ x110101) (51)

0xc00300 · (x110101 + (x101111 ≪ 7⊕ x110111)) ≈

0xc00300 · (x110101 ⊕ x101111 ≪ 7⊕ x110111) (52)

0xc000000 · (x111010 + (x100000 ≪ 7⊕ x111000)) ≈

0xc000000 · (x111010 ⊕ x100000 ≪ 7⊕ x111000) (53)

0xc000000 · (x111011 + (x100001 ≪ 7⊕ x111001)) ≈

0xc000000 · (x111011 ⊕ x100001 ≪ 7⊕ x111001) (54)

0xc000000 · (x111000 + (x100010 ≪ 7⊕ x111010)) ≈

0xc000000 · (x111000 ⊕ x100010 ≪ 7⊕ x111010) (55)

0xc000000 · (x111001 + (x100011 ≪ 7⊕ x111011)) ≈

0xc000000 · (x111001 ⊕ x100011 ≪ 7⊕ x111011) (56)

Thus, we have 6+8=14 linear approximations involved in this round. Note
that (49), (50), (53), (54), (55), (56) has bias 2−1 each; both (51) and
(52) has bias 2−2 by [13]. As was done for Round 7 in Section 3.2, we
can demonstrate that these 14 approximations fall into four independent
groups. Group One contains (43), (44), (49), (50), (54), (56). Group Two
contains (45), (46), (47), (48), (51), (52). Group Three contains (53).
Group Four contains (55).

As Group Three and Group Four each contains only one approxi-
mation, we know the bias is 2−1 for each group. Group One and Group
Two each contains six approximations. We compute the total bias for each
group separately. Our results show that the bias for Group One is 2−5 and
the bias for Group Two is 2−6.8. Note that the independence assumption
would yield a smaller bias 2−6, 2−8 for Group One, Group Two respec-
tively. Consequently, we deduce the total bias 2−5 × 2−6.8 × 2−1 × 2−1 =
2−13.8 for Round 8, by considering the dependence within the round.
Note that, if the dependency within the round is ignored, we would have
a smaller bias (2−1)12 × (2−2)2 = 2−16.

20

Appendix B: New Linear Approximations on 12-round

CubeHash

The five new linear approximations on 12-round CubeHash, which we
used in Section 3.4, are given below (x, x′ denote the inputs, outputs
respectively):

0x18199800 · x00000 ⊕ 0x18199800 · x00010 ⊕ 0xe7999f81 · x01101

⊕ 0xe7999f81 · x01111 ⊕ 0x18199800 · x10001 ⊕ 0x18199800 · x10011

⊕ 0x30333 · x10101 ⊕ 0x30333 · x10111 ⊕ 0x1819980 · x11101

⊕ 0x1819980 · x11111 ≈ 0x99800181 · x′00000 ⊕ 0x99800181 · x′00010

⊕ 0x18006018 · x′01101 ⊕ 0x18006018 · x′01111 ⊕ 0x99800181 · x′10001

⊕ 0x99800181 · x′10011 ⊕ 0x30333000 · x′10101 ⊕ 0x30333000 · x′10111

⊕ 0x19980018 · x′11101 ⊕ 0x19980018 · x′11111

0x6660006 · x00000 ⊕ 0x6660006 · x00010 ⊕ 0xe667e079 · x01101

⊕ 0xe667e079 · x01111 ⊕ 0x6660006 · x10001 ⊕ 0x6660006 · x10011

⊕ 0xc0ccc0 · x10101 ⊕ 0xc0ccc0 · x10111 ⊕ 0x60666000 · x11101

⊕ 0x60666000 · x11111 ≈ 0x60006066 · x′00000 ⊕ 0x60006066 · x′00010

⊕ 0x180606 · x′01101 ⊕ 0x180606 · x′01111 ⊕ 0x60006066 · x′10001

⊕ 0x60006066 · x′10011 ⊕ 0xccc000c · x′10101 ⊕ 0xccc000c · x′10111

⊕ 0x66000606 · x′11101 ⊕ 0x66000606 · x′11111

0x66600060 · x00000 ⊕ 0x66600060 · x00010 ⊕ 0x667e079e · x01101

⊕ 0x667e079e · x01111 ⊕ 0x66600060 · x10001 ⊕ 0x66600060 · x10011

⊕ 0xc0ccc00 · x10101 ⊕ 0xc0ccc00 · x10111 ⊕ 0x6660006 · x11101

⊕ 0x6660006 · x11111 ≈ 0x60666 · x′00000 ⊕ 0x60666 · x′00010

⊕ 0x1806060 · x′01101 ⊕ 0x1806060 · x′01111 ⊕ 0x60666 · x′10001

⊕ 0x60666 · x′10011 ⊕ 0xccc000c0 · x′10101 ⊕ 0xccc000c0 · x′10111

⊕ 0x60006066 · x′11101 ⊕ 0x60006066 · x′11111

21

0x30003033 · x00000 ⊕ 0x30003033 · x00010 ⊕ 0x3f03cf33 · x01101

⊕ 0x3f03cf33 · x01111 ⊕ 0x30003033 · x10001 ⊕ 0x30003033 · x10011

⊕ 0x6660006 · x10101 ⊕ 0x6660006 · x10111 ⊕ 0x33000303 · x11101

⊕ 0x33000303 · x11111 ≈ 0x3033300 · x′00000 ⊕ 0x3033300 · x′00010

⊕ 0xc0303000 · x′01101 ⊕ 0xc0303000 · x′01111 ⊕ 0x3033300 · x′10001

⊕ 0x3033300 · x′10011 ⊕ 0x60006066 · x′10101 ⊕ 0x60006066 · x′10111

⊕ 0x303330 · x′11101 ⊕ 0x303330 · x′11111

0x30333 · x00000 ⊕ 0x30333 · x00010 ⊕ 0xf03cf333 · x01101

⊕ 0xf03cf333 · x01111 ⊕ 0x30333 · x10001 ⊕ 0x30333 · x10011

⊕ 0x66600060 · x10101 ⊕ 0x66600060 · x10111 ⊕ 0x30003033 · x11101

⊕ 0x30003033 · x11111 ≈ 0x30333000 · x′00000 ⊕ 0x30333000 · x′00010

⊕ 0x303000c · x′01101 ⊕ 0x303000c · x′01111 ⊕ 0x30333000 · x′10001

⊕ 0x30333000 · x′10011 ⊕ 0x60666 · x′10101 ⊕ 0x60666 · x′10111

⊕ 0x3033300 · x′11101 ⊕ 0x3033300 · x′11111

22

