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Abstract

An adaptive reduced basis finite element heterogeneous multiscale method (RB-FE-HMM)
is proposed for elliptic problems with multiple scales. The multiscale method is based on
the RB-FE-HMM introduced in [A. Abdulle and Y. Bai, J. Comput. Phys, 2012, in press].
It couples a macroscopic solver with effective data recovered from the solution of micro
problems solved on sampling domains. Unlike classical numerical homogenization methods,
the micro problems are computed in a finite dimensional space spanned by a small number
of accurately computed representative micro solutions (the reduced basis) obtained by a
greedy algorithm in an offline stage. In this paper we present a residual-based a posteriori
error analysis in the energy norm as well as an a posteriori error analysis in quantities of
interest. For both type of adaptive strategies, rigorous a posteriori error estimates are derived
and corresponding error estimators are proposed. In contrast to the adaptive finite element
heterogeneous multiscale method (FE-HMM), there is no need to adapt the micro mesh
simultaneously to the macroscopic mesh refinement. Up to an offline preliminary stage, the
RB-FE-HMM has the same computational complexity as a standard adaptive FEM for the
effective problem. Two and three dimensional numerical experiments confirm the efficiency
of the RB-FE-HMM and illustrate the improvements compared to the adaptive FE-HMM.

Keywords: numerical homogenization, reduced basis method, residual based adaptive
FEM, quantity of interest, heterogeneous multiscale method

1. Introduction

A basic problem for many applications is the characterization of effective properties of a
physical process occurring on multiple scales (e.g., elastic properties of composite materials,
fluid flow through heterogeneous porous media, thermal diffusion in composite structures,
etc). Such problems are often modeled by partial differential equations (PDEs) with highly
oscillating coefficients varying over multiples scales, whose numerical solution is difficult to
compute (if not impossible) with classical numerical methods such as the finite element
method (FEM). Indeed, the computational cost needed to resolve the smallest scale in the
problem is often overwhelming. Simply ignoring the fine scales does usually not allow to
capture the correct effective behavior. The development of multiscale methods capable of
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capturing the effective behavior of a problem without scale resolution on the whole computa-
tional domain has therefore received major attention during the past few years [1, 2, 3, 4, 5].

In this paper we focus on the finite element heterogeneous multiscale method (FE-HMM),
a numerical homogenization method developed in the framework of the heterogeneous mul-
tiscale method (HMM) proposed in [6]. The main idea of the FE-HMM is to apply a macro
FEM based on a macro partition of the computational domain with effective coefficients
recovered (on the fly) by solving micro finite element (FE) problems defined on sampling
domains located at quadrature points within each element of the macro partition (see [7]
for a review). The fully discrete error analysis in [8] indicates that the optimal convergence
rates can be obtained only when the macro and micro meshes are refined simultaneously.
This simultaneous mesh refinement leads to superlinear growth (in the macro degrees of
freedom) of the computational work. This becomes an issue (as for most of the numerical
homogenization methods) for high dimensional problems or high order macro FEMs.

To address the computational issue of simultaneous macro and micro mesh refinement
the reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) has been
introduced in [9]. Departing from the approach used in the FE-HMM, the RB-FE-HMM
allows one to design an efficient numerical method relying only on a small number of micro
problems selected by a rigorous a posteriori error estimator computed accurately in an so-
called offline stage. In a so-called online stage, the effective solution is obtained from the
macro solver of the FE-HMM with effective coefficients recovered from micro problems solved
in the precomputed RB space. This method, that follows the offline-online strategy of
reduced basis (RB) method [10, 11, 12, 13, 14], does no longer require the simultaneous
refinement of macro and micro meshes. As illustrated in [9], the RB-FE-HMM is specially
attractive for high order macro methods or three dimensional multiscale computations.

In this paper we discuss a posteriori error control and mesh refinement strategy for the
RB-FE-HMM. In practice, being able to refine the computational mesh adaptively, based on
a given actual numerical solution is of prime importance. Adaptive methods not only provide
a criterion that indicates whether a certain prescribed accuracy is met, but also estimate
local errors that allow to drive a mesh refinement that equi-distributes the approximation
error (e.g., refining in the region where singularity in the solution or in the domain occur).
The general adaptive strategy for the adaptive FEM is based on the following cycle

Solve→ Estimate→ Mark→ Refine.

The procedure can be understood as follows. One first solves the partial differential equation
numerically on the current mesh and compute an a posteriori error by defining suitable error
estimators that give an estimation of the actual error between the computed and the true
solution (in a certain norm). Then, according to the distribution of the error estimator in each
element, one marks the elements which have the largest contribution to the estimated error,
refines the marked elements and goes back to the step ’Solve’. The essential step for adaptive
method is the construction of reliable error estimator. While there is a large literature for
single scale adaptive methods (see for example [15, 16, 17, 18] and the references therein),
adaptive multiscale methods are still at an early stage of development. One difficulty is that
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the error estimator (that first need to be suitably modeled) depends on multiple scales and
the reliability of such error estimator depends on the accuracy of the resolution of the fine
scale.

A posteriori error analysis for the FE-HMM has first been given in [19] based on a two-
scale analysis [20]. A posteriori error analysis for the FE-HMM in the physical energy-norm
has been derived in [21] and the extension of the FE-HMM to goal oriented adaptivity (in
quantities of interest) has been discussed in [22]. For this latter adaptive method, the solution
of dual problems (in a higher macro FE space) are required. Both adaptive methods [21, 22]
have proved to be useful and more efficient than the FE-HMM with uniform refinement when
the macroscopic domain or the macroscopic solution exhibit singularities. But as mentioned
above, the simultaneous mesh refinement still represents a significant computational overhead
that prevents to solve efficiently three-dimensional problems adaptively, or to use adaptive
higher order macro FEM. In this paper we discuss a new adaptive method that combines
RB techniques with the FE-HMM. This method, that allows to drive a macroscopic mesh
refinement using the same precomputed set of RB micro functions to estimate the effective
data, improves significantly the adaptive FE-HMM and provides a highly efficient adaptive
multiscale computational strategy.

The paper is organized as follows. In Section 2, we briefly review the FE-HMM and the
RB-FE-HMM. The residual based adaptive RB-FE-HMM is discussed in Section 3 and the
corresponding a posteriori estimates for the upper and lower bound are derived in the energy
norm. The goal-oriented adaptive RB-FE-HMM is presented in Section 4, where an exact
representation of the error in a quantity of interest is derived. Numerical examples for the
proposed method in two and three dimensions and comparison with the adaptive FE-HMM
are presented in section 5.
Notations Let Ω ⊂ Rd be an open set, and Y = (−1

2
, 1

2
)d. Denote the standard Sobolev

Space by W `,p(Ω). For p = 2, we sometimes use the notation W `,p(Ω) = H`(Ω). H1
0 (Ω)

denotes the closure of C∞0 (Ω) in H1(Ω). We define H1
per(Y ) := {g ∈ H1(Y )| g periodic in Y }.

We also have the property that H1
per(Y ) = C∞per(Y ), where C∞per(Y ) is a subspace of C∞(Rd)

of periodic functions in the cube Y .

2. Model problem, FE-HMM and RB-FE-HMM.

In this section, we briefly discuss the type of problems that we consider and review the
classical homogenization. We also recall the reduced basis heterogeneous multiscale method
(RB-FE-HMM) recently introduced in [9] that we will use throughout the paper to develop
an adaptive multiscale method.

Model problem. Let Ω be a bounded polyhedron in Rd with d ≤ 3. We consider a
second-order elliptic problems of the form

−∇ · (aε(x)∇uε(x)) = f in Ω,

uε(x) = 0 on ∂Ω, (2.1)
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where the tensor aε oscillates on a small spatial scale ε and f ∈ H−1(Ω). Here, a zero
Dirichlet boundary condition is taken for simplicity. We emphasize that the numerical
method presented below can be readily generalized to other boundary conditions such as
non-zero Dirichlet or Neumann boundnary conditions. The d × d matrix aε(x) is assumed
to be uniformly elliptic and bounded, i.e.,

λ|ξ|2 ≤ aε(x)ξ · ξ, |aε(x)ξ| ≤ Λ|ξ|, ∀ξ ∈ Rd,∀ε > 0, (2.2)

for a.e x ∈ Ω.
Using homogenization theory, one can prove that there exists u0 ∈ H1

0 (Ω) such that
uε ⇀ u0 weakly in H1

0 (Ω), aε∇uε ⇀ a0∇u0 weakly in (L2(Ω))d, where u0 is the solution of
the homogenized equation (for example, see [23, 24] for detail),

−∇ · (a0∇u0(x)) = f(x) in Ω,

u0(x) = 0 on ∂Ω, (2.3)

where a0 is the homogenized tensor. As a0 is usually unknown, we need to introduce numer-
ical methods for its approximation. One well-known method is the FE-HMM which is based
on a macroscopic FEM with quadrature formula (QF) defined on a macro partition of the
domain Ω, supplemented by microscopic FEMs applied on sampling domains centered at the
macroscopic quadrature points of the QF to estimate the unknown data in the macro system.

2.1. The FE-HMM

We first defined a macro finite element (FE) space

S`0(Ω, TH) = {vH ∈ H1
0 (Ω); vH |K ∈ R`(K), ∀K ∈ TH},

where TH is a family of (macro) partitions of Ω in simplicial or quadrilateral elements K of
diameter HK , and R`(K) is the space P`(K) of polynomials on K of total degree at most
` if K is a simplicial FE, or the space Q`(K) of polynomials on K of degree at most ` in
each variable if K is a quadrilateral FE. For a given macro partition, we define as usual
H := maxK∈TH HK . We note that H in our discretization is allowed to be much larger than

ε. Defining a QF {x̂j, ω̂j}Jj=1 on a reference element K̂, we equip each element K with a
corresponding QF {xKj , ωKj}Jj=1 by using a C1-diffeomorphism. We assume positive weights
ω̂j > 0, j = 1, . . . , J and make the following assumptions on the quadrature formula (similar
to the requirement for standard FEM with numerical quadrature [25])

(Q1)
∑J

j=1 ω̂j|∇p̂(x̂j)|2 ≥ λ̂‖∇p̂‖2
L2(K̂)

, ∀p̂(x̂) ∈ R`(K̂), with λ̂ > 0;

(Q2)
∫
K̂
p̂(x̂)dx̂ =

∑
j∈J ω̂j p̂(x̂j), ∀p̂(x̂) ∈ Rσ(K̂), where σ = max(2` − 2, `) if K̂ is a

simplicial FE, or σ = max(2`− 1, `+ 1) if K̂ is a rectangular FE.

For each macro element K ∈ TH and each integration point xKj ∈ K, j = 1, . . . , J, we define
the sampling domains Kδj = xKj + (−δ/2, δ/2)d, (δ ≥ ε). For a sampling domain Kδj , we
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then define a micro FE space Sq(Kδj , Th) ⊂ W (Kδj) with simplicial or quadrilateral FEs
and piecewise polynomial of degree q, where Th is a conformal and shape regular family of
triangulations. The space W (Kδj) is either the Sobolev space

W (Kδj) = W 1
per(Kδj) = {z ∈ H1

per(Kδj);

∫
Kδj

zdx = 0} (2.4)

for a periodic coupling or

W (Kδj) = H1
0 (Kδj) (2.5)

for a coupling with Dirichlet boundary conditions.
At the macroscopic level, the numerical methods is defined as follows: find uH ∈ S`0(Ω, TH)

such that

BH(uH , vH) =

∫
Ω

fvHdx, ∀vH ∈ S`0(Ω, TH), (2.6)

where

BH(vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj
|Kδj |

∫
Kδj

aε(x)∇vhKj(x) · ∇whKj(x)dx. (2.7)

In (2.7) vhKj (respectively whKj) denotes the solution of the following micro problem: find vhKj
such that vhKj − v

H
lin,j(x) ∈ Sq(Kδj , Th) and∫
Kδj

aε(x)∇vhKj(x) · ∇zh(x)dx = 0 ∀zh ∈ Sq(Kδj , Th), (2.8)

where we used the notation vHlin,j(x) := vH(xKj) + (x− xKj) · ∇vH(xKj).
It is proved in [7, Lemma 5][8] that BH(·, ·) is bounded and coercive. Hence, by Lax-

Milgram Theorem, there exists unique solution uH of (2.6).
A priori estimates. The following estimates hold provided suitable regularity assumptions
on a0(x) (see [7, 8, 26]): ∥∥u0 − uH

∥∥
H1(Ω)

≤ C
(
H` + rMIC + rMOD

)
,∥∥u0 − uH

∥∥
L2(Ω)

≤ C
(
H`+1 + rMIC + rMOD

)
. (2.9)

To estimate the micro error, it is convenient to make the following assumption on ψiKj , the

exact solution of Problem (2.8), i.e., the solution of
∫
Kδj

aε(x)∇(ψiKj(x) + xi) · ∇z(x)dx =

0 ∀z ∈ W (Kδj), i = 1, . . . , d [27, 28]

(H1) Given q ∈ N, the cell functions ψiKj satisfy

|ψiKj |Hq+1(Kδj ) ≤ Cε−q
√
|Kδj |,
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with C independent of i = 1 . . . d, ε, the quadrature point xKj and the domain Kδj .

Then, the microscopic error rMIC can be bounded by [8, 27, 28]

rMIC ≤ C

(
h

ε

)2q

. (2.10)

Finally, assuming

aε(x) = a(x,
x

ε
) = a(x, y) Y-periodic in y, (2.11)

the modeling error rMOD can be bounded as follows [26, 29]

rMOD = 0 if W (Kδj) = W 1
per(Kδj) and δ/ε ∈ N, 1 (2.12)

rMOD ≤ C(δ +
ε

δ
) if W (Kδj) = H1

0 (Kδj) (δ > ε). (2.13)

Complexity of the FE-HMM. We write ĥ = h
ε

and denote by Mmic = O(ĥ−d) the number
of degrees of freedom (DOF) for the micro FEM, and by Mmac the number of DOF of the
macro FEM. We emphasize here that Mmic is actually independent of ε for sampling domain
Kδj where Kδj = δd = ( δ

ε
)dεd = Cεd with C a moderate constant (assuming that δ scales as

δ = Ĉε). For quasi-uniform macro meshes, the macro meshsize H and the micro meshsize ĥ
are related to Mmac and Mmic as

H = O(M−1/d
mac ), ĥ = O(M

−1/d
mic ).

In view of (2.9) and (2.10), optimal macroscopic convergence rates (up to a modeling error
rMOD independent of H, h) are obtained for quasi-uniform microscopic meshsizes given by

ĥ ' H
`
2q for the H1 norm, ĥ ' H

`+1
2q for the L2 norm.

The corresponding complexity in term of macro DOF reads

H−d︸︷︷︸
Mmac

·H
−d`
2q︸ ︷︷ ︸

Mmic

·ns = (Mmac)
1+ `

2q · ns for the H1 norm,

H−d︸︷︷︸
Mmac

·H
−d(`+1)

2q︸ ︷︷ ︸
Mmic

·ns = (Mmac)
1+ `+1

2q · ns for the L2 norm,

where ns denotes the number of sampling domains per macro element K ∈ TH . As first
noticed in [8] the overall complexity of the method is a function of Mmac and Mmic and is in
general superlinear with respect to the macro DOF.

1For this estimate to hold, one needs to consider a suitable modification of the bilinear form (2.7) and
the micro problem (2.8), namely one has to collocate the term a(x, xε ) in the slow variable a(xKj

, xε ) in both
(2.7) and (2.8).
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2.2. The RB-FE-HMM

In this subsection, we will briefly recall the RB-FE-HMM introduced in [9] which is
used in later sections to develop efficient adaptive multiscale methods. The RB-FE-HMM is
based on an offline-online strategy. In the offline stage, the basis functions that span a low
dimensional approximation space of the infinite dimensional space formed by the solutions
of cell problems (parametrized with respect to the locations of the sampling domains) are
constructed. Thanks to the pre-computation of the offline stage, the computation of the cell
problems of the FE-HMM in the online stage can be done in a fixed dimensional space with
low degrees of freedom independent of the macro mesh. We briefly recall this construction.

Parametrized micro problems. We use Sq(Kδj ,N ) instead of Sq(Kδj , Th) for the micro

FE space to emphasize the DOF of the micro FEM denoted by N , where N = O(ĥ−d).
Likewise, we use vN ,Kj instead of vhKj to describe the solution of problem (2.8). We first
notice that

vN ,Kδj (x) = vHlin,j(x) +
d∑
i=1

χiN ,Kj(x)
∂vHlin,j
∂xi

, (2.14)

where χiN ,Kj(x), i = 1, . . . , d are solutions of∫
Kδj

aε(x)∇χiN ,Kj(x)·∇zN (x)dx = −
∫
Kδj

aε(x)ei ·∇zN (x)dx ∀zN ∈ Sq(Kδj ,N ). (2.15)

In the above formula, the vector ei, i = 1 . . . d denote the canonical basis of Rd. We now
map a sampling domain Kδj in the reference domain Y through x = GxKj

(y) = xKj + δy

and consider χ̂iN ,Kj the solution of

b(χ̂iN ,Kj , ẑN ) :=

∫
Y

axKj (y)∇χ̂iN ,Kj(y) · ∇ẑN (y)dy

= −
∫
Y

axKj (y)ei · ∇ẑN (y)dy =: li(ẑN ) ∀ẑN ∈ Sq(Y,N ). (2.16)

We note that aε(GxKj
(y)) can be parametrized by xKj ∈ Ω and we therefore use the notation

axKj (y) := aε(GxKj
(y)). The space Sq(Y,N ) is an FE space for the reference cell Y with the

triangulation Tĥ.
Let Tδ = xτ + (−δ/2, δ/2)d be a sampling domain centered at xτ ∈ Ω, chosen such that

Tδ ⊂ Ω and let eη be a vector of the canonical basis of Rd. For {(Tδ, eη);Tδ ⊂ Ω, η = 1, . . . , d},
we define the space formed by the solutions of the cell problems parametrized with respect
to the location of the sampling domains by

MN (Y ) := {ξ̂ηN ,Tδ ;Tδ ⊂ Ω, η = 1, . . . , d}, (2.17)

where ξ̂ηN ,Tδ(·) : Y → R are the solutions of (2.16) associated with the mapping Gxτ , i.e.,
with a tensor axτ (y) = aε(Gxτ (y)) and with right-hand side lη(·). The reduced basis (RB)
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functions ξ̂ηN ,Tδ are computed very accurately. The DOF N of the FE space Sq(Y,N ) is thus
assumed to be large.

As emphasized in the RB literature, the efficiency of the method relies on the affine
representation of the data used for the RB strategy, here, the oscillating tensor,

axτ (y) =

Q∑
q=1

Θq(xτ )aq(y), ∀y ∈ Y. (2.18)

However for general tensors aε(x), the representation (2.18) is not available directly and
we need to define an affine approximation of the tensor. One successful method is the so
called empirical interpolation method (EIM) which is also an offline-online strategy. Details
of the EIM can be found in [30, 31]. For simplicity, we assume in what follows that (2.18)
is available (notice that we will use tensors that are not in the form (2.18) in our numerical
examples and the EIM strategy will therefore be used).
A posteriori error estimator. We assume that Sl(Y ) is an l-dimensional linear subspace
of Sq(Y,N ) and consider ξil,Tδ the solution of (2.16) in Sl(Y ) with right-hand side li(·). Let
ξiN ,Tδ ∈ S

q(Y,N ), and define

êil,Tδ = ξ̂il,Tδ − ξ̂
i
N ,Tδ . (2.19)

Using (2.16) we see that

b(êil,Tδ , ẑN ) = b(ξ̂il,Tδ , ẑN )− li(ẑN ), ∀ẑN ∈ Sq(Y,N ). (2.20)

The right-hand side defines a linear form on Sq(Y,N ). Hence by the Riesz theorem, there
exists a unique ēil,Tδ ∈ S

q(Y,N ) such that

b(êil,Tδ , ẑN ) = (ēil,Tδ , ẑN )W , (2.21)

where (·, ·)W , defined as (v, w)W =
∫
Y
∇v · ∇wdy, denotes the scalar product in the space

W (Y ) given in (2.4) or (2.5). In view of λ‖∇êil,Tδ‖
2
L2(Y ) ≤ (ēil,Tδ , ê

i
l,Tδ

)W , we therefore define
the residual of the a posteriori error estimator as

∆i
l,Tδ

:=
‖ēil,Tδ‖W√

λLB
. (2.22)

Here λLB is an approximation of the coercivity constant λ defined in (2.2). For the detail
of the procedure, we refer to [10, 13]. In the context of the RB-FE-HMM [9], the output of
interest is the effective tensor at a given xτ ∈ Ω. The error of this quantity can be shown to
be bounded by (∆i

l,Tδ
)2, i.e.,

|(a0
N ,Tδ(xτ ))ii − (a0

l,Tδ
(xτ ))ii| ≤ (∆i

l,Tδ
)2, (2.23)

where a0
N ,Tδ is the numerical homogenized tensor constructed by solving accurately the cell

problems (2.16) and a0
l,Tδ

is the numerical homogenized tensor (3.36) obtained from the RB
solutions of the cell problem (2.16).

We summarize the algorithm for the offline procedure.
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Algorithm 2.1. Denote by ‖ · ‖W the norm associated to the space W (Y ) (defined by (2.5)
or (2.4)). Given two parameters, NRB the maximum basis number, and tolRB a stopping
tolerance.

1. Choose randomly Ntrain sampling domains Tδn (Ntrain large enough and Tδn ⊂ Ω).
Define the ”training set” ΞRB = {(Tδn , ηn); 1 ≤ ηn ≤ d, 1 ≤ n ≤ Ntrain}.

2. Compute ξ̂η1N ,Tδ1
, corresponding to (Tδ1 , η1) ∈ ΞRB. Let ξ̂1,N (y) =

ξ̂
η1
N ,Tδ1

(y)

‖ξ̂η1N ,Tδ1
‖W

, and the

corresponding RB space S1(Y ) = span{ξ̂1,N}.

3. For l = 2, . . . , NRB

a. select (Tδl , ηl) = argmax(Tδ,η)∈ΞRB ∆η
l−1,Tδ

, provided that max(Tδ,η)∈ΞRB(∆η
l−1,Tδ

)2 >
tolRB, otherwise the algorithm ends;

b. compute ξ̂ηlN ,Tδl
corresponding to the selected parameters (Tδl , ηl). Set ξ̂l,N (y) =

Rl(y)
‖Rl(y)‖W

the l−th RB basis function, where

Rl(y) = ξ̂ηlN ,Tδl
(y)−

l−1∑
m=1

(ξ̂ηlN ,Tδl
, ξ̂m,N )ξ̂m,N .

Define the RB space Sl(Y ) = span{ξ̂1,N , . . . , ξ̂l,N}.

4. End For.

We emphasize that thanks to the affine representation of the tensor, the computation of
the a posteriori error estimator (2.22) does not involve the solution of large linear systems
for each iteration. Instead, only a linear combination of a few parameter independent FE
solutions needs to be computed for each element of the training set ΞRB, see [11, 12].
Output of the offline procedure. The output of the above procedure is the RB space

SN(Y ) = span{ξ̂n,N (y), n = 1, .., N}. (2.24)

Rather than storing the reduced basis, using the affine representation (2.18) described above,
the output consists of the following matrices and vectors

(Aq)nm :=

∫
Y

aq(y)∇ξ̂n,N (y) · ∇ξ̂m,Ndy, (F i
q)m :=

∫
Y

aq(y)ei · ∇ξ̂m,N (y)dy. (2.25)

Online procedure of the RB-FE-HMM. We define a macro method similar to the FE-
HMM, with micro functions computed in the RB space. The method reads: find uH,RB ∈
S`0(Ω, TH) such that

BH,RB(uH,RB, vH) =

∫
Ω

fvHdx, ∀vH ∈ S`0(Ω, TH), (2.26)
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with a bilinear form given by

BH,RB(vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj
|Kδj |

∫
Kδj

aε(x)∇vN,Kj(x) · ∇wN,Kj(x)dx, (2.27)

where vN,Kj(x) (respectively wN,Kj(x)) is such that vN,Kj − vHlin,j(x) ∈ SN(Kδj) and∫
Kδj

aε(x)∇vN,Kj(x) · ∇zN(x)dx = 0, ∀zN ∈ SN(Kδj). (2.28)

The space SN(Kδj) is defined through the mapping GxKj
: Y → Kδj as

SN(Kδj) = span{δξ̂n,N (G−1
xKj

(x)) =: ξn,Kj(x), n = 1, .., N}. (2.29)

Owing to the affine form (2.18) of the tensor aε, the problem (2.28) amounts to solve an
N×N linear system (recall N is small). Indeed, we observe that by writing vN,Kj−vHlin,j(x) =∑N

n=1 αnξn,Kj(x) (2.28) reads

N∑
n=1

αn

∫
Kδj

aε(x)∇ξn,Kj(x)·∇ξm,Kj(x)dx = −
d∑
i=1

∫
Kδj

aε(x)ei·∇ξm,Kj(x)dx
∂vHlin,j
∂xi

, (2.30)

for all m = 1, . . . N. Next, thanks to the affine representation of the tensor (see (2.18)), (2.30)
can be written as(

Q∑
q=1

Θq(xKj)Aq

)
α = −

d∑
i=1

(
Q∑
q=1

Θq(xKj)F
i
q

)
∂vHlin,j
∂xi

, (2.31)

where the N × N matrices Aq, q = 1, . . . , Q and the vectors F i
q ∈ RN , q = 1, . . . , Q, i =

1, . . . , d are defined by (2.25).

Remark 2.2. It is proved in [9] that problem (2.26) has unqiue solution.

A priori error analysis. We recall the results obtained in [9] that will be useful in the
sequel. Assume that u0 ∈ H`+1(Ω), that (Q1), (Q2) and (2.2) hold and that the homogenized
tensor a0(x) is sufficiently regular, then we have

‖u0 − uH,RB‖H1(Ω) ≤ C(H` + rHMM), ‖u0 − uH,RB‖L2(Ω) ≤ C(H`+1 + rHMM),

where

rHMM = sup
K∈TH

sup
xKj∈K

‖a0(xKj)− a0
N(xKj)‖F , (2.32)

and where a0
N(xKj) is defined in (3.36) and a0(xKj) is the tensor of the homogenized problem

(2.3) evaluated at the quadrature point xKj .
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It can be seen in the above convergence rates, that the error in the macro FE space is
optimal in the L2 or H1 norm. The term rHMM can be further decomposed as rHMM =
rMOD + rMIC + rRB, where rMOD stands for the HMM modelling error, rMIC stands for the
micro error and rRB stands for the reduced basis error. The error bounds for rMOD and rMIC

can be obtained following the analysis for (2.12) (2.13) and (2.10) presented in [7, 8, 26, 9].
In the RB-FE-HMM, rMIC is introduced by using numerical methods to compute the RB
functions. Since we require the RB functions to be accurately computed, rMIC is small.
The last error term rRB arises from using the RB space SN(Y ) to approximate the infinite
dimensional space MN (Y ) defined in (2.17). Under appropriate smoothness assumption on
the macro variation of the tensor aε(x), one can expect fast decay of rRB (e.g., exponential
decay [32, 33]). For completeness, we recall the a priori error analysis derived in [9].

Theorem 2.3. In addition to the assumptions stated above, we assume that the parametrized
cell solution space MN has an exponentially small Komogorov N-width dN(MN ,W ) ≤
ce−rN , where r satisfies r > log(1 + (Λ/λLB)

√
Λ/λ). Then,

‖u0 − uH,RB‖H1(Ω) ≤ C(H` + e−2sN +
(h
ε

)2q

+ rMOD), (2.33)

‖u0 − uH,RB‖L2(Ω) ≤ C(H`+1 + e−2sN +
(h
ε

)2q

+ rMOD), (2.34)

where Komogorov N-width dN(MN ,W ) is defined as

dN(MN ,W ) = inf{ sup
x∈MN

inf
y∈WN

‖x− y‖W : WN(Y ) a N−dimensional subspace of W (Y )}.

Remark 2.4. The term rMOD in (2.33) and (2.34) can be estimated by (2.12) and (2.13)
under suitable assumptions, see [9].

3. The energy norm based adaptive RB-FE-HMM

In this section, we introduce the adaptive RB-FE-HMM. For simplicity, we only consider
simplicial macro FEs in what follows (notice that for such elements (Q2) implies (Q1),
see Section 2.1). We start by discussing a posteriori error estimates in the energy norm.
Such results have first been obtained for the FE-HMM in [21]. To obtain a more efficient
algorithm, we apply the RB strategy for the adaptive FE-HMM and in turn avoid having to
refine the micro mesh simultaneously to the adaptive macro mesh refinement.

Reduced basis multiscale jump and flux. It is shown in [9] that the RB-FE-HMM
bilinear form can be reformulated as,

BH,RB(vH , wH) :=
∑
K∈TH

J∑
j=1

ωKja
0
N(xKj)∇vHlin,j(xKj) · ∇wHlin,j(xKj), (3.35)

where

(a0
N(xKj))ik =

∫
Y

axKj (y)
(
∇χ̂iN,Kj(y) + ei

)
·
(
∇χ̂kN,Kj(y) + ek

)
dy, (3.36)
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and χ̂iN,Kj(y) is the solution of (2.16) in the RB space (2.24). In view of (2.14) and the
mapping Gxτ , defined in Section 2.2, vN,Kj(x) the solution of (2.28) can be expressed as

vN,Kj(x) = vHlin,j(x) + δ
d∑
i=1

χ̂iN,Kj(G
−1
xKj

(x))
∂vHlin,j
∂xi

. (3.37)

Furthermore (3.36) can be written in the following form (see [27]),

a0
N(xKj) =

∫
Y

axKj (y)

(
I + JTχ̂iN,Kj

(y)

)
dy, (3.38)

where Jχ̂iN,Kj
is a d× d tensor, defined as (Jχ̂iN,Kj

(y))ik = (∂χ̂iN,Kj)/(∂yk). Therefore one can

show that for ∀vH ∈ S`0(Ω, TH) the relation below holds (see [28])

1

|Kδj |

∫
Kδj

axKj (G
−1
xKj

(x))∇vN,Kj(x)dx = a0
N(xKj)∇vH(xKj). (3.39)

We introduce in each macro element K the interpolation polynomial ΠK
a∇vN (x) ∈ P l−1(K)

following [28, 21] which satisfies

ΠK
a∇vN (xKj) =

1

|Kδj |

∫
Kδj

axKj (G
−1
xKj

(x))∇vN,Kj(x)dx, j = 1, · · · ,L, (3.40)

where L is the number of quadrature points in one element. The polynomial ΠK
a∇vN is called

“multiscale flux”. Combing (3.39) with (3.40), we have

ΠK
a∇vN (xKj) = a0

N(xKj)∇vH(xKj). (3.41)

Remark 3.1. The interpolation polynomial is uniquely determined by condition (3.40), pro-
vided (Q2) holds and

L =
1

2
`(`+ 1) d = 2,

L =
1

6
`(`+ 1)(`+ 1) d = 3. (3.42)

With such a choice for L, one can deduce that ΠK
a∇vN (x) ∈ P`−1(K) (see [21, 22]).

We denote by K+ and K− two macro elements with a non empty interface given by
e = K+ ∩K−. Now we define the RB multiscale jump on the interior interface e as

[[ΠK
a∇vN ]]e(s) :=

{
(ΠK+

a∇vN (s)− ΠK−
a∇vN (s)) · ne for e 6⊂ ∂Ω,

0 for e ⊂ ∂Ω,
(3.43)

where ne is the outward normal vector of e on ∂K+.
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Remark 3.2. When the macro FE space is S1
0(Ω, TH) with simplicial element, L = 1 and

we have only one quadrature point per macro element. Then (3.43) can be simply written as

[[aε∇vN,K ]]e :=


(

1
|K+
δ |

∫
K+
δ
axK+ (G−1

xK+
(x))∇vN,K+(x)dx−

1
|K−δ |

∫
K−δ

axK− (G−1
xK−

(x))∇vN,K−(x)dx
)
· ne for e 6⊂ ∂Ω,

0 for e ⊂ ∂Ω.

(3.44)

The energy norm based a posteriori error estimates. Following [22], we introduce
the local refinement indicator and the data approximation error.

Definition 3.3. The local refinement indicator ηH(K) is defined by

ηH(K)2 := H2
K‖fH +∇ · ΠK

a∇uN (x)‖2
L2(K) +

1

2

∑
e⊂∂K

He‖[[ΠK
a∇uN ]]e(s)‖2

L2(e), (3.45)

and the local data approximation error is defined by

ξH(K)2 := H2
K‖fH − f‖2

L2(K) + ‖ΠK
a∇uN (x)− a0(x)∇uH,RB‖2

L2(Ω), (3.46)

where a0 is the tensor of the homogenized problem (2.3) and fH is an approximation of f in
the space {g ∈ L2(Ω), g|K ∈ Pm(K),∀K ∈ TH}.

Remark 3.4. If the macro FE space is S1
0(Ω, TH), the local refinement indicator and local

data approximation can be written respectively, in the following way,

ηH(K)2 := H2
K‖fH‖2

L2(K) +
1

2

∑
e⊂∂K

He‖[[aε∇uN,K ]]e(s)‖2
L2(e), (3.47)

ξH(K)2 := H2
K‖fH − f‖2

L2(K) + ‖(a0
N(x)− a0(x))∇uH,RB‖2

L2(Ω). (3.48)

We now explain how we obtain the expressions of the local indicator (3.45) and data
approximation (3.46).

Lemma 3.5. Define eH = u0−uH,RB. For ∀v ∈ H1
0 (Ω), the following representation formula

holds

B0(eH , v) =

∫
Ω

fHvdx−
∑
K∈TH

( ∑
e⊂∂K

∫
e

[[ΠK
a∇uN ]]e(s)vds+

∫
K

∇ · ΠK
a∇uN (x)vdx

+

∫
K

(ΠK
a∇uN (x)− a0(x)∇uH,RB) · ∇vdx+

∫
K

(f − fH)vdx
)
, (3.49)

where B0(·, ·) is the bilinear form of the homogenized equation (2.3).

Expression (3.49) is instrumental to derive upper and lower a posteriori error bounds.
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Proof. The proof follows [21, Lemma 9] and we sketch the idea. First we write

B0(eH , v) =

∫
Ω

fvdx−
∑
K∈TH

∫
K

a0(x)∇uH,RB∇vdx.

We then add and subtract the term
∑

K∈TH

∫
K

ΠK
a∇uN (x)·∇v+fHvdx in the above expression,

use integration by part for the expression
∑

K∈TH

∫
K
a0(x)∇uH,RB∇vdx, to finally obtain

(3.49).

The following two theorems give upper and lower bounds of the error ‖u0 − uH,RB‖H1(Ω)

in terms of the local refinement indicator ηH(K) and local data approximation error ξH(K).
As the proofs of the theorems are very similar to those in [21], we only sketch them here for
completeness.

Theorem 3.6. (A posteriori upper bound) Let ηH(Ω)2 =
∑

K∈TH ηH(K)2, ξH(Ω)2 =
∑

K∈TH ξH(K)2.
There exists a constant C > 0, such that

‖u0 − uH,RB‖2
H1(Ω) ≤ C(ηH(Ω)2 + ξ2

H(Ω)).

Sketch of the proof: Due to the low regularity of the exact solution (only assumed to be
in H1(Ω)), one considers the Clément interpolation operator IHeH of eH = u0−uH,RB, where
IHeH ∈ S1

0(Ω, TH) (see [34]). By adding the equationBH,RB(uH,RB, IHeH)−
∑

K∈TH

∫
K
fIHeHdx =

0 to (3.49) and writing ψH = eH − IHeH , we obtain

B0(eH , eH) =

∫
Ω

fHψHdx+
∑
K∈TH

(

∫
K

∇ · ΠK
a∇uN (x)ψHdx+

∑
e∈∂K

∫
e

[[ΠK
a∇uN ]]e(s)ψ

Hds)

+

∫
Ω

(f − fH)ψHdx+
∑
K∈TH

∫
K

(ΠK
a∇uN (x)− a0(x)∇uH,RB) · ∇eHdx.

The upper bound can then be obtained by using the Cauchy-Schwarz inequality and the
property ‖ψH‖L2(K) ≤ CH‖∇eH‖L2(K) of the Clement interpolation operator to the above
expression.

Theorem 3.7. (A posteriori lower bound) There exists a constant C such that

ηH(K)2 ≤ C(‖u0 − uH,RB‖2
H1(ωK) + ξH(ωK)2),

where ωK is the union of all the elements sharing an interface with K.

Sketch of the proof: The first step is to estimate the term H2
K‖fH +∇ · ΠK

a∇uN (x)‖2
L2(K) in

(3.45) which is the so called interior residual. For that, one needs to consider an interior
bubble function ψK in an FE space defined over a refinement T̃H of TH so that every K ∈ TH
has an interior node x̃K in T̃H (likewise every edge e of T̃H not on the boundary ∂Ω mush
have an interior node in T̃H ). For any K ∈ TH , ψK has the properties that 0 ≤ ψK ≤ 1,
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ψK(x̃K) = 1 and ψK = 0 ∈ Ω \K. We choose the test function v = ψK(fH +∇ · ΠK
a∇uN ),

insert it into (3.49). By applying the Cauchy-Schwardz inequality and the inverse inequality
we obtain

H2‖fH +∇ · ΠK
a∇uN‖

2
L2(K) ≤ C(‖∇eH‖2

L2(K) + ξH(K)2).

The second step of the proof is to estimate the jump residual which corresponds to the
second term in (3.45). Now we need to introduce the edge bubble function ψe. Assume we is
the common edge shared by two elements K1 and K2. We introduce ψe ∈ S`0(Ω, TH) which
satisfies ψe(xwe) = 1, ψe|∂we = 0 and choose the test function v(x) such that

v(x) =

{
[[ΠK

a∇uN ]]e(s)ψe x ∈ K1 ∪K2,
0 x ∈ Ω \ (K1 ∪K2).

Inserting this test function into (3.49) and then using the Cauchy-Schwarz inequlity and the

estimate ‖∇v‖L2(K) ≤ CH−1/2‖[[ΠK
a∇uN ]]e(s)ψe‖L2(we), we can show that

H‖[[ΠK
a∇uN ]]e(s)‖2

L2(e) ≤ C(‖∇eH‖2
L2(ωK) + ξH(ωK)2).

Combining the estimates for the interior and the jump residual leads to the claimed lower
bound.

Remark 3.8. Let us have a closer look at the data approximation error. The contri-
bution to the data approximation error given by the term H2

K‖f − fH‖L2(K) depends on
the accuracy of the approximation fH of f . This term also arises in single-scale energy
norm adaptive FEM. For the second term ‖ΠK

a∇uN (x) − a0(x)∇uH,RB‖2
L2(Ω), if one assumes

that aε(x) = a(x, x/ε) = a(x, y) is Y-periodic in y, aij(·, y)|K is constant and aij(x, ·) ∈
W 1,∞
per (Y ), for all i, j = 1, · · · , d, one can prove that ‖ΠK

a∇uN (x) − a0(x)∇uH,RB‖L2(Ω) ≤
CrHMM , where rHMM = rMIC + rRB + rMOD (see Section 4 for details). We note that rMIC

and rRB can be estimated similarly as for the RB-FE-HMM. In particular, rMIC will usually
be small due to the requirement of having a very accurate FE computation in the offline stage.
Likewise rRB will be small (even exponentially decaying with respect to the RB number N) if
appropriate smoothness in the macroscopic variation of the macro tensor holds. For locally
periodic problems, when the slow variable of the tensor is collocated with quadrature points
in the bilinear form (2.27), rMOD = 0.

Algorithm. For the adaptive RB-FE-HMM, one needs to have the offline outputs (see
(2.25)) which can be repeatedly used for the online adaptive procedure. The adaptive online
strategy is quite similar to the adaptive FE-HMM. The algorithm is however much faster
due to the precomputed RB functions. We state here the complete algorithm.

Algorithm 3.9. The adaptive RB-FE-HMM

• Offline stage: Construct the RB space SN(Y ) following Algorithm 2.1 and store the
output (2.25).
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• Online stage:

1.Solve Compute the macro solution uH,RB on the current macro mesh by (2.26)-(2.28)
and the quantity 1

|Kδj |

∫
Kδj

axKj (G
−1
xKj

(x))∇uN,Kj(x)dx at the sampling domains

centered at each quadrature point. Store the data for the following step.

2.Estimate Construct the RB multiscale flux ΠK
a∇uN and compute the RB mutliscale jump

[[ΠK
a∇uN ]]. Further, compute the error indicator ηH(K) for all K ∈ TH . If∑
K∈TH ηH(K)2 < tol, the process ends otherwise moves to the next step, where

tol is given as a stopping criterion.

3.Mark Identify the macro elements marked for refinement following a suitable marking
strategy, based on the refinement indicator ηH .

4.Refine Refine the marked the elements by applying the newest vertex refinement strategy
[35] which keeps the conformity of the refined mesh. Go back to Step 1 with the
refined macro mesh.

Several marking strategies have been proposed in the literature, for example, [36, 37, 16].
Here we follow the marking strategy E in [16].
Complexity comparison with the adaptive FE-HMM. Recall that for the adaptive FE-
HMM we need to refine the micro mesh simultaneously to the refinement of the macromesh.
As a result, the micro problems of the adaptive FE-HMM

• have to be recomputed in each refined macro element;

• have increasing number of DOF at each iteration of the macro refinement procedure.

In contrast with the RB-FE-HMM, the micro problems are solved in the RB space whose
dimension is fixed, usually small and computed once for all in the offline stage The effi-
ciency improvement of the adaptive RB-FE-HMM compared with the adaptive FE-HMM is
illustrated numerically in Section 5.

4. The Goal Oriented Reduced Basis Adaptive FE-HMM

In this section, we apply the RB technique to another multiscale adaptive method, the
DWR FE-HMM [22], which is based on the framework of the dual-weighted residual method.
Here we want to know the error in a certain quantity of interest, e.g., the value of the
macro solution at a certain point, directional point-wise derivative of the macro solution or
the average of the solution on a subdomain etc. Thus, the error estimators are designed
to quantify the accuracy in the quantities of interest. In turn, the mesh refinement is
constructed in order to improve the accuracy of the computed quantity of interest. Generally,
we define a linear bounded functional J : H1

0 (Ω) → R to represent the quantity of interest.
The main concern is the macroscopic error eH := u0 − uH,RB in the form of quantity of
interest, i.e.

J(eH) = J(u0)− J(uH,RB).
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The construction of the error estimators relies on a primal problem and a dual problem that
are described below. In both primal and dual problems, the use of RB to compute suitable
micro problems can significantly improve the efficiency of the DWR FE-HMM.

Primal and dual problems. The primal problem is the homogenized problem (2.3) that
reads in weak form

B0(u0, v) =

∫
Ω

fvdx, ∀v ∈ H1
0 (Ω). (4.50)

We use uH,RB to approximate u0 and consider

BH,RB(uH,RB, vH) =

∫
Ω

fvHdx, ∀vH ∈ S`0(Ω, TH). (4.51)

The dual problem of (4.50) consists in finding z0 ∈ H1
0 (Ω) which satisfies

B0(φ, z0) = J(φ), ∀φ ∈ H1
0 (Ω). (4.52)

Thus we can deduce that

J(u0 − uH,RB) = B0(u0 − uH,RB, z0). (4.53)

We emphasize that when we say in the sequel that we compute a RB-FE-HMM approx-
imation of (4.50) or (4.52), it should be understood that we compute an effective solution
based on the fine scale model for (4.50) or (4.52). Of course we do not assume (4.50) and
(4.52) to be available.

We next consider a numerical approximation of (4.52) that will allow to estimate the
right-hand side of (4.53). We observe that for uH (the FE solution without numerical
quadrature of the primal problem (4.50)), we have J(u0−uH) = 0 if taking an approximation
zH of z0 from the same FE space as uH because of the Galerkin orthogonality. It has thus
been suggested in [38, 39] to use an FE approximation of the dual problem (4.52) in a higher
order polynomial space. The same strategy is used for the RB-FE-HMM. We thus consider
the RB-FE-HMM solution zH ,RB of (4.52) in the FE space S

ˆ̀
(Ω, TH), ˆ̀> `, i.e. find zH ,RB

s.t.

BH ,RB(φH , zH ,RB) = J(φH ), ∀φH ∈ S ˆ̀
(Ω, TH), (4.54)

where BH ,RB is the RB-FE-HMM bilinear form (2.27) with an appropriate quadrature scheme
(i.e. satisfying (Q2) for the higher order polynomial space).

Remark 4.1. We emphasize that zH ,RB is computed using the same RB space as uH,RB (for
the micro functions). Thus the error rHMM is the same for both zH ,RB and uH,RB and fixed
after the offline stage. This also means that the cost to solve the micro problems in the online
stage does not increase when using higher order macro FE space, since the DOF of the RB
space remain unchanged in the online stage.
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The error indicators. Before we define the error indicators, we need to mention the
definition of the interior residual RI,H and jump residual RJ,H . These quantities are given
by,

RI,H(x)|K = fH +∇ · (ΠK
a∇uN (x)),

RJ,H(s)|e = −1

2
[[ΠK

a∇uN ]]e(s),

where ΠK
a∇uN and [[ΠK

a∇uN ]]e(s) are defined in (3.40) and (3.43), respectively, and fH is defined
in Definition 3.3.

Next, we give the definition of the local error indicator ηH(K) and data approximation
ξH(K).

Definition 4.2. The local error indicator is defined as

ηH(K) :=

∫
K

RI,H(x)zH ,RBdx+

∫
∂K

RJ,H(x)zH ,RBds. (4.55)

To guide the mesh refinement, we actually use the unsigned local refinement indicator defined
as η̄H(K) = |ηH(K)| (see [22]).

Remark 4.3. The unsigned local refinement indicator η̄H(K) leads to a good mesh refine-
ment but not optimal since it is always positive while the global (signed) error indicator (the
summation of the element contribution of (4.55)) allows cancellation between elements. This
cancellation cannot be expressed by η̄H(K) (we notice that finding the optimal mesh is already
an issue for single scale DWR). The mesh refinement based on η̄H(K) does nevertheless lead
to good convergence rates. One issue is that the decay of the error can have oscillation (see
the numerical experiments in Section 5.3).

In order to analyse the variational crimes introduced for example by using numerical
quadrature and computing zH ,RB in the higher order FE space S

ˆ̀
(Ω, TH) etc, we need to

introduce a suitable data approximation error.

Definition 4.4. The data approximation error ξH(K) is given by

ξH(K) =

∫
K

(ΠK
a∇uN (x)− a0(x)∇uH,RB) · ∇zH ,RBdx

+ B0,K(u0 − uH,RB, z0 − zH ,RB)

−
∫
K

(fH − f)zH ,RBdx, (4.56)

where B0,K is the bilinear form B0 restricted to the element K.

The definition of data approximation error is motivated by the following exact DWR
RB-FE-HMM error representation.
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Theorem 4.5. The exact representation of the error eH = u0 − uH,RB in the quantity of
interest is given by

J(eH) =
∑
K∈TH

ηH(K) + ξH(K). (4.57)

The proof follows [22, Theorem 4]. We sketch the main steps. Considering (4.52) and taking
v = u0 − uH,RB, we can deduce

J(u0 − uH,RB) = B0(u0 − uH,RB, zH ,RB) +B0(u0 − uH,RB, z0 − zH ,RB), (4.58)

where u0 is the solution of (4.50), z0 is the solution of (4.52), uH,RB is the solution of (4.51),
and zH ,RB is the solution of (4.54). The last two terms on the right-hand side of (4.58) are
part of the data approximation error. The first term can be further written as

B0(u0 − uH,RB, zH ,RB) =

∫
Ω

fHzH ,RBdx−
∫

Ω

(fH − f)zH ,RBdx+B0(uH,RB, zH ,RB). (4.59)

By the definition of the multiscale flux and integration by parts, one can deduce that

B0(uH,RB, zH ,RB) = −
∑
K∈TH

∫
K

∇ · (ΠK
a∇uN (x))zH ,RBdx

+
1

2

∑
K∈TH

∑
e⊂∂K

∫
e

[[ΠK
a∇uN ]]e(s)zH ,RBds

−
∑
K∈TH

∫
K

(ΠK
a∇uN (x)− a0(x)∇uH,RB) · ∇zH ,RBdx. (4.60)

Combining (4.58) (4.59) and (4.60) proves the theorem.
The following result follows immediately from Theorem.4.5.

Corollary 4.6. The posteriori upper bound is given by

J(u0 − uH,RB) ≤
∑
K∈TH

η̄H(K) + |ξH(K)|.

According to the expression (4.57), whether
∑

K∈TH ηH(K) can provide a good approx-

imation to the exact error in the quantity of interest J(eH) depends on the quality of the
data approximation error. The following theorem gives an upper bound for the data approx-
imation error.

Theorem 4.7. Assume that the triangulation is regular, that the homogenization tensor
a0(x) is smooth enough and that assumption (H1) and (2.11) hold. Assume the condition
(Q2) holds with σ = 2` − 2 (for primal solution) and σ = 2ˆ̀− 2 (for dual solution). In
addition, assume that (3.42) holds for the QF for the primal solution and that the multiscale
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tensor aij(·, y) is locally constant for each K ∈ TH . Then we have for ξH(Ω) =
∑

K∈TH ξH(K)
the following upper bound

|ξH(Ω)| ≤ C
(
H`+ˆ̀

+ C‖f − fH‖L2(Ω) + (
h

ε
)2q + rMOD + rRB

)
. (4.61)

Proof. We sketch of the proof for this theorem that follows the steps of the proof of [22,
Theorem 6]. For the first term of (4.56), we apply the decomposition,∫

K

(ΠK
a∇uN (x)− a0(x)∇uH,RB) · ∇zH ,RBdx (4.62)

=

∫
K

(ΠK
a∇uN (x)− ΠK

a0∇uH,RB(x)) · ∇zH ,RBdx︸ ︷︷ ︸
I

+

∫
K

(ΠK
a0∇uH,RB(x)− a0(x)∇uH,RB) · ∇zH ,RBdx︸ ︷︷ ︸

II

,

where ΠK
a0∇uH,RB(x) is the interpolation polynomial of a0∇uH,RB on the element K using the

same interpolation points as for ΠK
a∇uN . By [22, Lemma 11], we have

|I| ≤ C(
h

ε
)2q + rMOD + rRB. (4.63)

Next, II vanishes by our assumption on the multiscale tensor.
The second term of the data approximation error defined in (4.56) can be estimated as

follows, ∑
K∈TH

|B0,K(u0 − uH,RB, z0 − zH ,RB)|

≤ C(H` + (
h

ε
)2q + rMOD + rRB)(H

ˆ̀
+ (

h

ε
)2q + rMOD + rRB). (4.64)

As noticed in Remark 4.1, the dual problem has the same micro and modeling error (h
ε
)2q +

rMOD + rRB as the primal problem.
The third terms of the data approximation can be bounded as∑

K∈TH

|
∫
K

(fH − f)zH ,RBdx| ≤ C‖fH − f‖L2(Ω). (4.65)

Combining (4.63),(4.64) and (4.65) gives the theorem.

Remark 4.8. If the FE space for the primal problem is S1
0(Ω, TH), the assumption on the

multiscale tensor in Theorem 4.7 that aij(·, y)|K is constant can be removed. In turn, the
term II is no longer zero but can be bounded by CH1 (see [22]).

Observe from Theorem 4.7 that if rRB is small (e.g., a fast decaying Kolmogorov N-width
holds), then the data approximation error for the DWR RB-FE-HMM is smaller than the
corresponding data approximation error for the FE-HMM. Indeed, the bound for the micro
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error rMIC ≤ C(h
ε
)2q = O(N− 2q

d ) for the RB-FE-HMM, depends on the fine mesh used in
the offline stage that is usually smaller than the micro mesh used for the FE-HMM (where
a mesh proportional to the macro-mesh is used for efficiency, see the complexity discussion
in Section 2.1).

We next summarize our algorithm.

Algorithm 4.9. (DWR RB-FE-HMM)

• Offline stage: Construct the RB space SN(Y ) following Algorithm 2.1 and store the
output (2.25).

• Online stage:

1.Solve On the current macro mesh, first compute the macro solution uH,RB and
1
|Kδj |

∫
Kδj

axKj (G
−1
xKj

(x))∇uN,Kj(x)dx at the sampling domains Kδj of each quadra-

ture point. Then compute the dual solution zH ,RB ∈ S ˆ̀
(Ω, TH) also on the current

macro mesh. Store the data for the next step.

2.Estimate Construct the RB multiscale flux ΠK
a∇uN and compute the RB mutliscale jump

[[ΠK
a∇uN ]]. Further compute the error indicator ηH(K) for all K ∈ TH as an

approximation to J(eH). If
∑

K∈TH |ηH(K)| < tol, the process ends otherwise
moves to next step, where tol is given as a stopping criterion.

3.Mark Mark the macro elements based on η̄H(K) by a given marking strategy (e.g. max-
imum marking strategy in [36, 37]).

4.Refine Refine the marked the elements e.g., by applying the newest vertex refinement
strategy which keeps the conformity of the refined mesh. Go back to Step 1 (solve).

Remark 4.10. For the DWR FE-HMM, the introduction of the dual problem in each element
and its solution using higher order FEM leads to high computational cost (the number of
micro problems increases due to the need of using a higher order QF likewise the DOF
increase in order to match the accuracy of the increasingly refined macro FE mesh). With
the proposed RB strategy, the computation of the micro problems is decoupled from the macro
adaptive procedure. Accurate RB functions for the micro problems are computed once and
can be used for the primal and dual FE-HMM problems while macro meshes are refined. This
brings huge computational saving as can be seen in the numerical experiments.

5. Numerical Experiments

In this section, we present numerical experiments for the energy norm based adaptive
RB-FE-HMM for a 2-D problem on a crack domain in Section 5.1 and a 3-D problem on an
L-shape domain in Section 5.2. We also present numerical experiments for the DWR RB-FE-
HMM for two types of quantities of interest in Section 5.3. All the numerical simulations are
implemented in Matlab R2010b. The core code for the FE-HMM follows [40]. The refinement
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strategy and FEM are partly based on AFEM@[35]. In the whole section, we consider the
model problem defined in (2.1), with possibly non-homogeneous boundary conditions,

−∇ · (aε(x)∇uε(x)) = f in Ω,

uε(x) = gd on ∂Ω, (5.66)

where ε = 4 × 10−5. We choose for Section 5.1 and Section 5.3 tensors aε = a(x, y) Y-
periodic with respect to y for which explicit expressions of the homogenized tensors are
available in order to be able to accurately quantify the errors. We emphasize that the
algorithms proposed in this paper are valid for problems with general tensors.

Numerical evaluation of the errors. Let uH be the numerical solution and uref be a
reference solution (for the effective problem (2.3)) computed on a fine triangulation Th. The
error uref − uH in the H1 and L2 norms are estimated by

eL2 := ‖uh‖−1
L2(Ω)(

∑
K∈Th

J∑
j=1

ρKj |uH − uref |(zKj))−1/2,

eH1 := ‖uh‖−1
H1(Ω)(

∑
K∈Th

J∑
j=1

ρKj |∇uH −∇uref |(zKj))−1/2,

where we will use ‖u‖H1(Ω) ∼ (
∑

K∈TH ‖∇u‖
2
L2(K))

1/2. Here {zKj , ρKj} is the quadrature
formula on the fine triangulation Th chosen to be exact for the degree of the piecewise
polynomials used to compute uref .

5.1. Energy norm based adaptive RB-FE-HMM applied to crack problem

Let Ω ⊂ R2 be a square domain with a crack (see Fig. 1) and let f = 1, gd = 0. The
diagonal entries of the multiscale tensor are

a(x,
x

ε
)11 = x2

1 + 0.2 + (x2 + 1.2)(sin(2π
x1

ε
) + 2),

a(x,
x

ε
)22 = x2

2 + 0.05 + (x1x2 + 1.5)(sin(2π
x2

ε
) + 2). (5.67)

The corresponding homogenized tensor is also diagonal and can be computed as (see [23, 24])

a0(x)11 = (

∫ 1

0

1

x2
1 + 0.2 + (x2 + 1.2)(sin(2πy1 + 2)

dy1)−1,

a0(x)22 = (

∫ 1

0

1

x2
2 + 0.5 + (x1x2 + 1.5)(sin(2πy2 + 2)

dy2)−1. (5.68)

Offline stage. We use FEM with piecewise linear basis functions (called P1-FEM) as the of-
fline solver to compute the reduced basis functions and set the offline meshsize to 1600×1600
so that the a priori error bound given in Theorem 2.3 reads rMIC = O(10−7). As discussed in
[11], the error for the output of interest for the RB method, i.e., the numerical homogeniza-
tion tensor (2.23), can be bounded by the a posteriori error estimator max(Tδ,η)∈ΞRB (∆η

N,Tδ
)2.
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Fig. 1: The domain Ω for the crack problem is in yellow. The red line describes the crack.

In our experiment, this error reads O(10−11) for the particular tolerance chosen (see Table 1)
since max(Tδ,η)∈ΞRB (∆η

N,Tδ
)2 ≤ tolRB = O(10−11). Furthermore we choose sampling domain

sizes of the same length as ε and periodic boundary condition on the cell problems so that
rMOD = 0 (see (2.12)). As a result of the offline stage, we obtain 10 RB functions (see Table
1 for the parameters related to the offline stage).

Table 1: Parameters for the RB-FE-HMM offline stage.

Solver P1-FEM
Mesh 1600× 1600

Basis number 10
tolRB 5e-11

CPU time(s) 5100

Adaptive P1 RB-FE-HMM online stage. Now we start the adaptive online procedure.
Here we present two tests with different online solvers. In the first test we use P1-FEM as
the online solver. The corresponding a posteriori error estimator is defined in (3.47). In
Fig. 2, we display the macro solution uH,RB after 17 macroscopic iterations of the adaptive
RB-FE-HMM.

We recall that the a priori error estimates for RB-FE-HMM derived in Section 2.2 read
‖uH,RB − u0‖H1(Ω) ≤ C(H1 + rHMM) and ‖uH,RB − u0‖L2(Ω) ≤ C(H2 + rHMM), where
uH,RB ∈ S1

0(Ω, TH). We denote by Mmac the macro DOF Mmac = O(H−1/2) and replace H
with 1√

Mmac
in those estimates and obtain

‖uH,RB − u0‖H1(Ω) ≤ C(
1√
Mmac

+ rHMM), ‖uH,RB − u0‖L2(Ω) ≤ C(
1

Mmac

+ rHMM).

We see in Fig. 3 that when the macro mesh is refined, the H1 and L2 error decay
with the optimal rates O(M

−1/2
mac ) and O(M−1

mac), respectively. The reference solution uref is
computed with an adaptive FEM with piecewise quadratic polynomials called P2-FEM up
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Fig. 2: The adaptive RB-FE-HMM solution computed by P1-FEM on the crack domain.

to 25 iterations with the initial mesh obtained by uniformly refining 2 times the final online
mesh (final mesh for uH,RB). The number of DOF of uref is given by 1 757 821. We can
also observe in Fig. 3 that the profile of the error indicator is parallel to the H1 error, which
corroborates the estimates of Theorem 3.7.
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Fig. 3: The refinement indicator ηH(Ω) the H1 and L2 errors of the macro solution of the adaptive P1
RB-FE-HMM for 20 iterations.

Adaptive P2 RB-FE-HMM online stage. In this test, we apply the adaptive P2-FEM
in the online stage. As we explained in Section 3, an interpolation polynomial ΠK

a∇uN (see
(3.40)) is introduced to define the high order a posteriori error estimator. In this test,
ΠK
a∇uN ∈ P

1(K) is interpolated on three quadrature points of the simplicial element. For
the P2 RB-FE-HMM, the a priori error estimate yields ‖uref − uH,RB‖H1(Ω) proportional to

O(M−1
mac) and ‖uref − uH,RB‖L2(Ω) proportional to O(M

−3/2
mac ). We can observe in Fig. 4 that

the errors for the adaptive P2 RB-FE-HMM indeed decay as O(M−1
mac) and O(M

−3/2
mac ) in the

H1 and L2 norms, respectively. We can also observe for the adaptive P2 RB-FE-HMM, that
the decay of the error indicator has the optimal H1 error decay. The reference solution uref

is also computed by an adaptive P2-FEM similarly as described in the first test (but with
20 iterations). The number of DOF is 9 721 276.
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Fig. 4: The refinement indicator ηH(Ω), the H1 and L2 errors of the macro solution of the adaptive P2
RB-FE-HMM for 50 iterations.

Comparisons. Here we first compare the efficiency and accuracy of the adaptive RB-FE-
HMM with P1-FEM and P2-FEM as macro solvers. We then compare the performance of
the adaptive RB-FE-HMM with the adaptive FE-HMM.

• Adaptive P1 RB-FE-HMM and adaptive P2 RB-FE-HMM. We first present
the online mesh refinements in Fig. 5. The refinements of both P1 and P2 RB-FE-

(a) 5 iteration P1-FEM (b) 10 iteration P1-FEM

(c) 10 iteration P2-FEM (d) 20 iteration P2-FEM

Fig. 5: Online refinement. (a) Mmac = 365. (b) Mmac = 1456. (c) Mmac = 180. (d) Mmac = 516.

HMM can detect the crack and the P2 refinement is more concentrated at the vicinity
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of the singularities than the P1 refinement. This higher order macro FEM provides
better convergence rates away from the singularities and can therefore use coarser
meshes.

Table 2: Comparison of the adaptive P1 RB-HMM-FEM and P2 RB-HMM-FEM.

P1 RB-FE-HMM P2 RB-FE-HMM
# iter 20 19
eH1 0.0020 0.0011
eL2 8.5412e-06 8.1887e-06
Mmac 27725 1750

Total CPU time (s) 25.18 3.92

Now we compare the performance of the two online solvers in Table 2. We can see
that for similar errors, the number of the macro DOF Mmac for the P2 RB-HMM-FEM
is only 6.3% of the Mmac for the P1 RB-HMM-FEM and the time cost for the P2
RB-HMM-FEM is 15.6% of the CPU time for the P1 RB-HMM-FEM. This shows the
potential advantage of using higher order macro solver for adaptivity.

• Adaptive P1 RB-FE-HMM and adaptive P1 FE-HMM. In this numerical ex-
periment, we compare the accuracy and time cost of the adaptive RB-FE-HMM and
the adaptive FE-HMM. In Table 3 we presents the total CPU time for 20 iterations,
the H1 error of both methods for each iteration and the corresponding effectivity index
which is defined as Eff := ηH

eH1
. For this test, the macro error dominates so that in Table

3 the RB-FE-HMM and FE-HMM give almost the same error eH1 and the same effec-
tivity index Eff as the standard adaptive FEM. However, the CPU time comparison
immediately shows the advantage of using the adaptive RB-FE-HMM which yields the
same accuracy as the adaptive FE-HMM with only 0.14% of its computing time. Even
if taking account the offline overhead, the adaptive RB-FE-HMM takes only about
2.8% of the time used for the adaptive FE-HMM.

5.2. The energy norm based adaptive RB-FE-HMM applied to a 3-D problem on an L-shape
domain

In this example we investigate the performance of the adaptive RB-FE-HMM on a three
dimensional problem. We consider an exponential stationary model for the infiltration of
a fluid in unsaturated porous media. We choose here an L-shape computational domain
(similar test problems have been considered in [41, 3] for regular domains). The multiscale
tensor is defined as

aε(x)ii = 10αε(x)eβ
ε(x) + x2

1 + (x2 − x3)2 + 0.5 i = 1, 2, 3, (5.69)
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Table 3: Effectivity index and H1 error for the adaptive RB-FE-HMM, FE-HMM and FEM for the crack
problem.

RB-FE-HMM FE-HMM FEM
Iter no. Mmac eH1 Eff eH1 Eff Eff

1 153 0.0309 10.2577 0.0309 10.2588 10.2577
2 182 0.0278 10.5756 0.0278 10.5766 10.5756
3 222 0.0247 10.8022 0.0247 10.8031 10.8022
4 287 0.0214 11.0437 0.0214 11.0444 11.0437
5 365 0.0184 11.2158 0.0184 11.2162 11.2158
6 489 0.0159 11.4192 0.0159 11.4196 11.4192
7 643 0.0139 11.5564 0.0139 11.5567 11.5564
8 831 0.0123 11.5224 0.0123 11.5526 11.5224
9 1097 0.0107 11.5932 0.0107 11.5934 11.5932
10 1456 0.0090 11.7484 0.0090 11.7485 11.7484
11 1981 0.0078 11.8570 0.0078 11.8571 11.8570
12 2626 0.0068 11.9613 0.0068 11.9614 11.9613
13 3438 0.0059 11.8667 0.0059 11.8668 11.8667
14 4648 0.0052 11.8540 0.0052 11.8540 11.8540
15 6237 0.0043 11.9844 0.0043 11.9844 11.9844
16 8566 0.0037 12.1085 0.0037 12.1085 12.1085
17 11320 0.0032 12.1627 0.0032 12.1628 12.1627
18 14960 0.0028 11.9973 0.0028 11.9973 11.9973
19 20503 0.0024 11.9997 0.0024 11.9997 11.9997
20 27725 0.0020 12.1779 0.0020 12.1779 12.1779

CPU time for 20 iterations 26.13 s 186110 s

where

βε(x) = −αε(x)
(
(x1 − c1µ1(x))2 + (x2 − c1µ2(x))2 + (x3 − c1µ3(x))2

)
·(

(x1 − 0.8− c2µ1(x))2 + (x2 − 0.5− c2µ2(x))2 + (x3 − 0.7− c2µ3(x))2
)
,

αε(x) =
1

10(2 + 1.8 sin(6π x3
ε
− π(3x1

ε
+ x2

ε
))
,

and where µ(x) = (µ1(x), µ2(x), µ3(x)) is a uniform random mapping from Ω to [0, 1]3 and
c1, c2 are constant parameters chosen to be c1 = 0.2, c2 = 0.1. We set f = 10 and gd = 0.5. In
general infiltration models, aε represents the microscopic permeability of the porous media.
As shown in Fig. 6 (a), we can observe that the media has lowest permeability around points
(0, 0, 0) and (0.8, 0.5, 0.7). When we fix the macro variable to be x∗ and map aε(x) to the
reference sampling domain Y = [0, 1]3 by the mapping Gx∗ defined in Section 2.2, we obtain
the parametrized tensor ax∗(y) with respect to parameter x∗ which displays locally periodic
pattern shown in Fig. 6 (b). Since the tensor aε(x) in (5.69) is not in an affine form, we need
to apply the empirical interpolation method (see [9]) to obtain the affine approximation of
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(a) Permeability aε(x) on Ω (b) ax∗(y) on the reference sampling domain

Fig. 6: (a) Permeability aε(x) on the L-shape domain Ω. (b) ax∗(y) on the reference sample domain
Y = [0, 1]3 with fixed macro variable x∗ = (0.750, 0.625, 0.125) and µ(x∗) = (0.799, 0.499, 0.643).

Table 4: Parameters for the RB-FE-HMM offline stage.

Reference sampling domain Y [0, 1]3

Mesh 2003

tolEIM 1e-5
tolRB 3e-7

affine terms 11
Basis number 21

the tensor in the offline stage. The offline parameters and output information are presented
in Table 4. After the offline stage 21 basis functions are obtained. Constrained by the
computation environment, the finest offline mesh generated is 2003. Considering the macro
meshes we test in the online stage (the macroscopic DOF Mmac varies in the range of 325 to
63749 ≈ 403), the offline mesh is sufficiently fine according to the estimates of Theorem 2.3.

In the online stage, we set the initial macro mesh to be uniform tetrahedron with Mmac =
325. We perform 24 iterations of the adaptive RB-FE-HMM. The solution uH,RB of the 20th
iteration and corresponding macro meshes on the surface of the segment obtained by a cut
through the plan z = 0.5 are displayed in Fig. 7. As shown in Fig. 8, the mesh refinement
mostly takes place in the vicinity of the singularities (the corners of the domain) which also
illustrates that the refinement indicators provide effective information for the macro mesh
refinement. The error indicator ηH(Ω) for 24 iterations of the adaptive RB-FE-HMM is
shown in Fig.9. We observe that the error indicator decays with an optimal convergence
rate O(M

−1/3
mac ). This again corroborates the estimates of Theorem 3.6 and Theorem 3.7.

Let us compare the cost to obtain the last iteration with both the RB-FE-HMM and
the FE-HMM. The total online CPU time of the RB-FE-HMM for 24 iterations is around
241s. Now we apply the adaptive FE-HMM to this example. The initial macro mesh for the
last iteration of the adaptive FE-HMM is the same as for the adaptive RB-FE-HMM which
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Fig. 7: The macro mesh and uH,RB after 20 iterations.

(a) Iter = 6 (b) Iter = 12

(c) Iter = 18 (d) Iter = 24

Fig. 8: The macro mesh refinements.

has 237808 tetrahedra (Mmac ≈ 373). The CPU time to compute one cell problem with the
average micro meshsize Mmic = 63 and Mmic = 373 is 0.045s and 11s (to obtain the optimal
convergence rate in H1 norm and L2 norm respectively, one needs to set Mmic =

√
Mmac for

H1 norm and Mmic = Mmac for L2 norm). Therefore the total CUP time to compute the last
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Fig. 9: The a posteriori error decay for adaptivity on the 3-D L-shape domain for 24 iterations.

iteration is about 10701s for H1 norm refinement and 2615888s for L2 norm refinement. The
advantage of applying the adaptive RB-FE-HMM method to high dimensional problems can
thus be seen to be significant.

5.3. DWR RB-FE-HMM.

In this subsection, we present numerical experiment for goal oriented adaptive computa-
tions with the DWR RB-FE-HMM. We consider the model equation (5.66) with f = 1000,
a domain Ω = [0, 1]2 and the diagonal multiscale tensor given by

a(x,
x

ε
)11 = (x2

1 + 0.2)E + (x2 + 1.2)(sin(2π
x1

ε
) + 2),

a(x,
x

ε
)22 = (x2

2 + 0.05)E + (x1x2 + 1.5)(sin(2π
x2

ε
) + 2), (5.70)

where
E = 1 + 20e−1000((x1−0.5)2+(x2−0.5)2).

The corresponding homogenized tensor is

a0(x)11 = (

∫ 1

0

1

(x2
1 + 0.2)E + (x2 + 1.2)(sin(2πy1 + 2)

dy1)−1,

a0(x)22 = (

∫ 1

0

1

(x2
2 + 0.5)E + (x1x2 + 1.5)(sin(2πy2 + 2)

dy2)−1, (5.71)

which is shown in Fig. 10.
The offline parameters for this example are presented in Table 5. For the online stage,

we propose two different types of quantities of interest respectively.
Quantity of interest 1. We use a local average of the macro solution as the quantity of
interest defined as

J(u0) =
1

|Ωs|

∫
Ωs

u0dx, (5.72)
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(a) a0(x)11 (b) a0(x)22

Fig. 10: The homogenized tensor (5.71).

Table 5: Parameters for the DWR RB-FE-HMM offline stage

Solver P1-FEM
Mesh 1600× 1600

Basis number 10
tolRB 5e-11

CPU time(s) 6772

Fig. 11: uH,RB after 11 iterations.

where Ωs ⊂ Ω is the domain of interest. We choose Ωs = [0.25, 0.5]2 in this test. We show
in Fig. 11 the solution uH,RB after 10 iterations with 3279 DOF. In Fig.12 (a), we observe

that the Eff := |ηH(Ω)|
J(uH,RB−uref )

≈ 1 where ηH(Ω) =
∑

K ηH(K), which illustrates that the
refinement indicator can accurately estimate the error in the quantity of interest and that
the data approximation error ξH is much smaller than the refinement indicator. In Fig. 12
(b) we observe that the error in quantity of interest converges with a rate of O(M−1

mac).
Now we compare the performance of the DWR RB-FE-HMM and DWR FE-HMM. The

comparison starts with an initial non-uniform mesh with 289 DOF. For the FE-HMM, we
apply the optimal H1 refinement to the micro problems that is, hK =

√
HK for the P1 micro

FEM as the solver for primal problem (4.51) and hK = H
2/3
K for the P2 micro FEM for the
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Fig. 12: The effectivity index and error of the DWR RB-FE-HMM for the quantity of interest (5.72)

dual problem (4.54). According to Fig. 12 (a), |ηH(Ω)| gives a good estimate of the error
in the quantity of interest. We can observe in Table. 6 that the two methods yield similar
refinements and accuracy while the total online time cost for the DWR RB-FE-HMM is only
0.06% of the time for the DWR FE-HMM (taking into account the offline overhead, the
DWR RB-FE-HMM costs only 29% of the computational time for the DWR FE-HMM).

Table 6: The CPU time and refinement indicators of the DWR RB-FE-HMM and the DWR FE-HMM.
DWR RB-FE-HMM DWR FE-HMM

Iter no. Mmac |ηH(Ω)| Mmac |ηH(Ω)|
1 289 0.1698 289 0.1698
2 326 0.1460 326 0.1460
3 402 0.1150 402 0.1150
4 454 0.0991 454 0.0991
5 609 0.0898 609 0.0898
6 886 0.0785 887 0.0786
7 1212 0.0614 1213 0.0615
8 1630 0.0448 1629 0.0448

CPU time for 8 iterations 14.2 23272

Quantity of interest 2. In this test we consider a quantity of interest given by

J(u0) = ∇u0(x∗) · s̄, (5.73)

which represents the pointwise directional derivative (in the direction of the unit vector s̄)
at x∗ ∈ Ω. We choose x∗ = (0.75, 0.75) and s̄ = (

√
2/2,
√

2/2). Due to the singularity of the
right-hand side of the dual problem, one has to approximate this quantity of interest (see
[38]). We observe in Fig.13 (a) that the effectivity index varies between 0.15 and 5.8 and when
Mmac > 1200 the effectivity index only varies in a small range from 1 to 1.7 which is close
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to the optimal value 1. In Fig. 13 (b), we sketch the rate of the error J(uH,RB − u0) which
approximately decays with an order O(M−1

mac) but with large oscillations when Mmac ≤ 1200.
The factor which causes the initial oscillations in Fig. 13 might be the strong cancellation
effect of the local error indicator ηH(K) for coarse macro meshes.
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Fig. 13: The effectivity index and the error in the quantity of interest for the DWR RB-FE-HMM for 20
iterations (quantity of interest of type 2).

In Fig. 14, we plot the mesh refinement for the two different quantities of interest. We
use an initial non-uniform mesh for the tests of the two quantities of interest with meshsize
17 × 17. After several iterations, the two online meshes show different patterns according
to the specific quantity of interest. We can see that in Fig. 14 (a), that the mesh is mostly
refined in the target domain Ωs where the quantity of interest is defined while in Fig. 14 (b),
the mesh is more refined around the target point (0.75, 0.75) along the direction (

√
2/2,
√

2/2)
where the directional derivative is defined. For both quantities of interest, the macro mesh
refinements also take place in the vicinity of the singularity where the homogenized tensor
has a big jump (i.e., in the center of the domain Ω see Fig. 10).

6. Conclusion

We have presented an efficient adaptive FEM, the RB-FE-HMM, for elliptic homogeniza-
tion problems based on micro-macro solvers combined with a RB strategy. We have shown
that repeated FEM computations of micro problems are avoided during the macro mesh
refinement, in contrast to the adaptive FE-HMM, as the micro solutions are computed in
a finite dimensional space spanned by a small number of accurately computed representa-
tive micro solutions (the reduced basis) obtained by a greedy algorithm in an offline stage.
This methodology allows to bypass the derivation of micro a posterior error estimates to
calibrate the micro mesh during the macro mesh adaptive cycles. We have presented an a
posteriori error analysis for a residual based adaptive RB-FE-HMM. Error estimation for
the RB-FE-HMM in quantities of interest has also been presented. The efficiency and the
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(a) Mesh refinement of quantity of inter-
est 1 (5.72) after 10 iterations, Mmac =
3279

(b) Mesh refinement of quantity of in-
terest 2 (5.73) after 12 iterations, Mmac

= 4274

Fig. 14: The macro meshes for the two quantities of interest.

sharpness of the derived error bounds have been illustrated by several numerical examples
in two and three dimensions. These examples show the significant advantage of the adaptive
RB-FE-HMM over the adaptive FE-HMM.
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