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Abstract. Multistage carcinogenesis models describe the evolution of the cells in an indi-
vidual’s organ from a normal stage to a pre-neoplastic stage to a neoplastic stage. The triggers
for the passage from one stage to the next one are presumed to be genetic alterations, which
are not only governed by purely random events but also by individual environmental and
genetic factors. We generalize existing models of carcinogenesis to populations composed
of heterogeneous individuals, thus taking the environmental and genetic variability into
account.

1. Introduction

Carcinogenesis can be modeled by an evolutionary process in which the cells in
an organ divide and die (cell turnover) and genetic changes occur seemingly ran-
domly. Specific genetic changes can produce increased cellular growth that might
ultimately lead to neoplasia in the affected cells. If, for example, the inactivation
of a gene is necessary for reaching a pre-neoplastic state, two mutations would be
required to initiate the carcinogenesis in individuals who are homozygous in that
gene. After reaching the pre-neoplastic stage, further genetic alterations in the cell
may be necessary. To specify such a model we must make assumptions about the
number of steps necessary for reaching the neoplastic state, rates of genetic change
per cell division and information about the number of cells and their rates of divi-
sion. Pioneering work in the area of carcinogenesis includes Nordling (1953) and
Armitage and Doll (1954) and led to the development of the models described in
Moolgavkar and Venzon (1979) and Moolgavkar and Knudson (1981), which have
found wide acceptance. Further references and a collection of papers related to the
topic discussed in this manuscript can be found in Moolgavkar (1990). A two-stage
carcinogenesis model can be described by a series of linked stochastic processes,
one for the normal cells, a second one for the initiated pre-neoplastic cells and a
third one for the promoted neoplastic cells. Tan (1991) gives a detailed account of
the mathematical aspects of these models.
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We are interested in applying these models to gather insights into the process
of cancer development in humans. Data on cancers, collected by cancer registries
all over the world, are most often in the form of mortality rates due to specific
cancers within geographic regions and well-defined populations. Carcinogenesis
on the other hand describes the evolution of the disease in the organ of some indi-
vidual. To link the available cancer data to a carcinogenesis model, we use the
age-dependent incidence rate. To estimate this quantity in a population, we take a
ratio

obs(t) = number of incidences among persons of age t

number of persons of age t
,

that is the fraction of incidences among the persons alive at age t . In order to get sta-
ble estimates, ages must be binned and we will usually work with the ages grouped
into 5 year intervals, classes 0-5, 5-10, 10-15, 15-20, and so on. When working with
the model on the other hand, it is more natural to start by computing the survival
function S(t), which is defined as the probability that the random process evolving
in a randomly chosen individual has not yet produced a neoplastic cell at age t . The
age-specific incidence rate is then equal to the hazard rate and satisfies

pobs(t) = −S′(t)
S(t)

, (1)

and inversely

S(t) = exp

(
−
∫ t

0
pobs(u) du

)
.

To use a model, we also need to make assumptions about the statistical variation
of the model parameters from one individual in the population to another. Further
complications in comparing data with a model could result from the difference
between incidence and mortality, mistakes in death certificates, competing risks
and similar uncertainties, but these problems will not be discussed further in this
paper.

In this paper, we formulate a two-stage model for cancer incidence using the
minimal requirements that our current understanding of carcinogenesis demand. In
Section 2 we present this model and the relevant formulae for the implied incidence
rates. In Section 3, we incorporate the fraction at risk into our model and illustrate
how this parameter acts on the incidence rates.

2. Two-stage carcinogenesis

In a two-stage model, the normal cells of a tissue undergo an initiation that produces
an irreversible change and leads to a growth advantage. Once an initiated cell is
created, it gives rise to a cluster of such cells, which by random fluctuation may die
or, again by chance, may undergo a promotion process which induces the further
changes necessary for transforming them into neoplastic cells. The reader who is
interested in obtaining more information about the mathematical modeling tools is
referred to Todorovic (1992) and Kimmel and Axelrod (2002).
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2.1. Initiation

For modeling purposes, it is not essential to know at which loci the mutations hap-
pen. Only the rate per cell division of each mutation and, of course, the number of
necessary mutations are needed. The mutation rate per cell division is defined as
the probability that after division one of the daughter cells carries the mutation. We
work with the quantities N(t), the number of normal cells at age t and I (t), the
number of initiated cells at age t . At birth, N(0) = N0 and, unless a genetic defect
(germ-line mutation) is present, I (0) = 0. If the number of necessary mutations
is equal to one and on average each cell divides τ times per year and the mutation
rate per cell division is r1, the expected value of I (t) is equal to

E(I (t)) =
∫ t

0
τr1 N(u) du ,

where we treat the number of cells N(t) as a deterministic non-random function
as in Coldman and Goldie (1983). The number of initiated cells I (t) on the other
hand is small and follows approximately a Poisson distribution with expectation
E(I (t)). In considering the random trajectory of I (t) as a function of t , we obtain
a step function, that steps upward whenever a newly mutated cell appears. We can
model this process as an inhomogeneous Poisson process with intensity

λI (t) = d

dt
E(I (t)) = τr1 N(t) .

If two mutations are required, the second one following the first one and ocur-
ring at rate r2, we have

E(I (t)) =
∫ t

0
τr2

(∫ u

0
τr1 N(v) dv

)
du .

If the order in which the mutations occur does not matter, this value must be doubled
and the corresponding rate of the Poisson process is

λI (t) = 2τ 2 r1 r2

∫ t

0
N(v) dv .

Each additional mutation adds a further integration. Under the assumption that
N(t) = N0 is constant over time, we find for n initiating mutations that can occur
in any order

λI (t) = n τn (r1 r2 · · · rn) N0 tn−1 (2)

An mathematically more elegant model, based on a time-continuous branching pro-
cess N(t) is discussed in Section 4.2 of Kimmel and Axelrod (2002). The effects
of this change on the final results are, however, negligable.

Once a cell is initiated, it remains so. This is an important implicit assumption
we used in the above development. In organs, this would only hold for stem cells.
To be realistic, one thus has to assume that the first n − 1 mutations happen in a
stem cell, where they can be preserved. The last mutation may happen in any of
the descendants of the stem cell in question. This has no fundamental importance
in our formula.
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2.2. Promotion

We first study what happens to an initiated cell created at some arbitrary age i.
Such a cell has increased growth and thus will give rise to a clonal expansion. In its
simplest form this can be modeled by a birth-and-death process having birth rate
β greater than death rate δ. Let C(t − i) be the (random) number of cells in the
clone at time t ≥ i. To keep things simple, we assume that each cell in the clone
divides with the same birth rate β and disappears with the same death rate δ and
acts independently of the other cells. In the birth case, an additional cell appears,
that is a transition from C(t − i) to C(t − i) + 1 occurs, whereas in the death case
C(t − i) changes to C(t − i) − 1. The probability for the first type of transition is

P {C(t − i + h) = C(t − i) + 1| C(t − i) = k} = k β h + o(h) .

The analogous equation for the other transition is

P {C(t − i + h) = C(t − i) − 1|C(t − i) = k} = k δ h + o(h) .

If δ < β the expected number of cells in the clone grows exponentially,

E(C(t − i)) = exp ((β − δ) (t − i)) ,

for t ≥ i. When β = δ, the colony will disappear after a finite time t − i, whereas
for β > δ the colony survives to age t = ∞ with probability (β−δ)/β. A surviving
colony satisfies E(C(t − i)| C(t − i) > 0) = (β/(β − δ)) exp ((β − δ) (t − i)).
This process has been analyzed in detail, for example, in Kendall (1948).

2.2.1. Promotion within a clonal expansion
In this section we consider a model for the development of initiated cells based
on a time-continuous branching process as in Section 4.2 of Kimmel and Axelrod
(2002). In our context, the division rate for initiated cells is higher than for normal
cells and their model has to be adapted accordingly. During each division of an ini-
tial cell, there is a small chance rA that a promoted cell is created. Physiologically,
promotion turns a pre-neoplastic initiated cell into a neoplastic cell. As before,
consider an initiated cell created at time i. During the time interval [i, i + h] the
following four possibilities exist



1. a promoted cell and
an initiated cell are created , with probability rAβh + o(h) ;
2. two initiated cells are created , with probability (1 − rA)βh + o(h) ;
3. the initiated cell dies and
the expansion stops , with probability δh + o(h) ;
4. no division occurs , with probability 1 − (β + δ)h + o(h) .

(3)

Let SP (t − i) be the probability that no neoplastic cell has been created by this
process up to time t ≥ i. Deriving the survival function SP rather than the more
commonly used probability generating function is sufficient for our purposes and
simplifies the mathematicas.
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Theorem 1. Suppose the cells created in a homogeneous birth-and-death process
with birth rate β and death rate δ < β can acquire a genetic change, A, with
probability rA. Starting from a single cell at time x = 0, the probability that none
of the descendant cells up to age x ≥ 0 has changed then satisfies

SP (x) =
ρ2

(1−rA)β
[ρ1 − (1 − rA)β]

(
1 − e−�x

)+ [ρ1 − ρ2] e−�x

[ρ1 − (1 − rA)β]
(
1 − e−�x

)+ [ρ1 − ρ2] e−�x
, (4)

where � =
√

(β − δ)2 + 4rAβδ, ρ1 = (β + δ + �)/2 and ρ2 = (β + δ − �)/2.

Proof. Partitioning the interval [0, x] into the subintervals [0, h) and [h, x], it fol-
lows from (3) that

SP (x) = rAβh × 0 + (1 − rA)βh × S2
P (x − h)

+δh × 1 + (1 − (β + δ)h) × SP (x − h) + o(h)

= (1 − rA)βhS2
P (x − h) + δh + (1 − (β + δ)h)SP (x − h) + o(h) .

This in turn implies that

S′
P (x) = (1 − rA)βS2

P (x) − (β + δ)SP (x) + δ .

This Riccati equation can be solved by putting SP (x) = −w′(x)/(w(x)(1 − rA)β)

or S′
P (x) = −w′′(x)/(w(x)(1 − rA)β) + (w′(x))2/(w(x)2(1 − rA)β). Our differ-

ential equation, after simplification, then becomes

−w′′(x)/(w(x)(1 − rA)β) = δ + (β + δ)w′(x)/(w(x)(1 − rA)β) ,

or
w′′ + (β + δ)w′ + (1 − rA)βδw = 0 .

The solution w(x) of the above second order linear differential equation with con-
stant coefficients is a linear combination B1 exp(−ρ1x)+B2 exp(−ρ2x), where ρ1
and ρ2 are the roots of the characteristic polynomial ρ2 + (β + δ)ρ + (1 − rA)βδ.
From SP (x) = −w′(x)/(w(x) (1 − rA)β) we now find the general solution (4) to
our original differential equation, valid for x ≥ 0. Using the boundary condition
SP (0) = 1 then leads to the result. ��

The function SP behaves like an ordinary survival function in that it starts at
SP (0) = 1 and decreases monotonically. However, SP (x) does not converge to
0 as x → ∞, but rather to ρ2/((1 − rA)β) = δ/β + o(rA). This is due to the
fact that a clone may never gives rise to a neoplastic cell because it dies out. If
rA is small, as is the case in our applications, ρ1 = β + rAβδ/(β − δ) + o(rA),
ρ2 = δ − rAβδ/(β − δ) + o(rA), so that ρ1 − (1 − rA)β = O(rA) is small.
This shows that the multipliers of (1 − e−�x) in (4) are small numbers. As long
as e−�x is moderately large, the function SP (x) remains thus close to 1. A crude
approximation of SP is

SP (t) ≈ δrA(1 − e−(β−δ)t ) + (β − δ)e−(β−δ)t

βrA(1 − e−(β−δ)t ) + (β − δ)e−(β−δ)t
,

which around age log [1 + (β − δ)/(rAβ)] /(β − δ) reaches the halfway point be-
tween its maximal value of 1 and its minimal value.
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2.2.2. Promotion if two genetic changes are required
Suppose two genetic changes, B occurring with probability rB at each cell division
and A with probability rA, are necessary during the promotion stage and suppose the
B-change must precede the A-change. As above, we introduce the survival function
for the occurrence of a cell carrying the A-change within the clone of an initiated
cell,

SP (t − i) = P (no A-cell up to time t ≥ i|an I-cell has been created at time i) .

As an auxiliary function we also need

V (t − b) = P (no A-cell up to time t ≥ b|a B-cell has been created at time b) .

By an argument analogous to the one given above, we then find

SP (x) = [(1 − rB)βh + o(h)] S2
P (x − h) + [rBβh + o(h)] V (x − h)SP (x − h)

+ [δh + o(h)] + [1 − (β + δ)h + o(h)] SP (x − h)

V (x) = [(1 − rA)βh + o(h)] V 2(x − h) + [δh + o(h)]

+ [1 − (β + δ)h + o(h)] V (x − h) .

The two functions SP and V thus satisfy a coupled system of differential equations,
namely

S′
P (x) = [(1 − rB)β] S2

P (x) + rBβV (x)SP (x) − [β + δ] SP (x) + δ

V ′(x) = [(1 − rA)β] V 2(x) − [β + δ] V (x) + δ .

In Theorem 1 we have found the solution to the equation in V (x), which we can
thus eliminate from the equation for SP (x) by substitution. The resulting Riccati
equation in SP (x) can, however, not be solved in closed form and we would need to
use numerical methods. This model can be generalized by incorporating different
birth rates for A-cells and B-cells and/or different death rates.

2.3. Survival and age-dependent risk in two-stage carcinogenesis

The two functions λI (i) and SP (t −i) describe the rate of creation of pre-neoplastic
cells and the probability that no neoplastic cell has been created in a growing clone
associated with a pre-neoplastic cell created at age i. We now have to put these two
elements together to find the survival function

S(t) = P(up to age t no neoplastic cell has come into existence) .

Theorem 2. Let a cell population be subject to a process creating initiated cells by
a non-homogeneous Poisson process with rate function λI (t). Furthermore, assume
that each initiated cell gives rise to a clonal expansion (see Theorem 1) within which
SP (x) gives the survival probability and such that different clonal expansions act
independently of each other. The age-dependent risk of acquiring neoplastic cells
then satisfies

pobs(t) =
∫ t

0
λI (i) (−S′

P (t − i)) di . (5)
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Proof. We consider small intervals of time between (k − 1)t/K and kt/K for
1 ≤ k ≤ K . The chance that a new initiated cell is created during this interval
is λI (kt/K) t/K + o(1/K). The probability that this new cell does not give rise
to a neoplastic cell up to age t is SP [(K − k) t/K]. Creation of initiated cells in
disjoint intervals is independent and each initiated cell gives rise to a clone that acts
independently of other clones. The probability S(t) is thus equal to the product

K∏
k=1

((
λI

(
kt

K

)
t

K
+ o

(
1

K

))
SP

[
(K − k)t

K

]
+
(

1 − λI

(
kt

K

)
t

K
+ o

(
1

K

)))
,

where we take in each interval the possibilities that a new pre-neoplastic cell is
born or that no new pre-neoplastic cell is born into account. Rewriting this as

S(t) = exp

(
K∑

k=1

log

(
1 −

(
λI

(
kt

K

)
t

K
+ o

(
1

K

))(
1 − SP

[
(K − k)t

K

])))

shows that as K → ∞

S(t) = exp

(
−
∫ t

0
λI (i) (1 − SP (t − i)) di

)
.

To derive this result, note that log(1 − h) = −h + o(h) and interpret the sum as a
Riemann integral. The corresponding hazard rate is the one given in (5). ��

2.4. Discussion

The physiological parameters needed to determine the incidence rate (5) are the
number of cells N(t), mutation probabilities per cell division ri, rj , . . . , the num-
ber τ of cell divisions per year of normal cells, the probability of the promotion
events per cell division rA, . . . and the growth characteristics of pre-neoplastic cells,
namely δ/β, which is equal to the probability that the clonal expansion resulting
from an pre-neoplastic cell dies out and β − δ, which describes the exponential
growth rate of the clone.

We illustrate (5) under the simplified assumption that the number of cells in the
organ is constant and equal to N0. In that case, the initiation rate is given by (2).
With n = 1 one then finds

pobs(t) = τ r1 N0 (1 − SP (t)) ,

that is pobs(t) is close to zero for moderate ages t , then rises to a maximal risk
equal to τ r1 N0 (1 − δ/β) and subsequently stays constant. This function pobs(t)
describes carcinogenesis as a process that has very small incidence rates at young
ages. At some point and relatively suddenly it switches to a steady-state with con-
stant incidence rate.
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With two mutations required for initiation (n = 2), we have

pobs(t) =
∫ t

0
λI (i) (−S′

P (t − i)) di

=
∫ t

0
2 τ 2 (r1 r2) N0 i (−S′

P (t − i)) di

= 2 τ 2 (r1 r2) N0 i SP (t − i)

∣∣∣∣
t

0

−
∫ t

0
2 τ 2 (r1 r2) N0 SP (t − i) di

= 2 τ 2 (r1 r2) N0 t − 2 τ 2 (r1 r2) N0

∫ t

0
SP (i) di

= 2 τ 2 (r1 r2) N0

(1 − rA)β

(
t ((1 − rA)β − ρ2)

+ log

(
ρ1 − (1 − rA)β

�
+ (1 − rA)β − ρ2

�
e−�t

))
,

where the constants used are the ones derived in Theorem 1. We remind the reader
that ρ1 − (1 − rA)β = O(rA) is a small probability in actual applications. The
first term inside the logarithm has thus a negligible influence as long as e−�t is
relatively big. Expanding the logarithm shows that in this case its value is roughly
equal to −((1−rA)β−ρ2) t+ ρ1−(1−rA)β

(1−rA)β−ρ2
e�t .At high ages, the term e−�t becomes

negligible and the value of the logarithmic part will be almost constant. Thus, with
two initiating mutations the resulting incidence rate is close to zero for young ages,
then rises exponentially, proportional to e�t , and finally reaches a steady-state with
a rate that increases linearly with age.

In more complex cases, (5) can easily be approximated by numerical methods,
for example, using the trapezoidal rule

pobs(t) ≈ t

K

(
f (0)

2
+ f

(
1

K

)
+ · · · + f

(
1 − 1

K

)
+ f (1)

2

)
,

where f (u) = λI (tu) (−S′
P (t (1 − u))).

3. The fraction at risk

Models are useful in formulating and refining hypotheses about the process of
carcinogenesis, but only if the underlying parameters have either a physiological
meaning or describe variation between individuals. Furthermore, the values such
parameters can take must be in agreement with current knowledge. Making use of
models that take into account such physiological parameters can give hints about
features lacking in current models. An example is given by the observation that the
mortality due to most forms of cancer shows a peak, typically between the ages
of eighty and ninety, and then starts to decline steeply (see for example Herrero-
Jimenez et al., 1998). This phenomenon has also been observed in mice that are
allowed to live to their full natural lifetime, as reported by Pompei et al. (2001).
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The cancer incidence models we discussed above, based on an initiating and a pro-
moting event, have to be adapted in order to provide a model for the turning over of
incidence rates at high ages. To achieve this, we present in this section the notion
of “a fraction of the population at risk.” We propose that a part of the population
is genetically, by behavior or simply by a random selection process protected from
developing a particular type of cancer. A small proportion of protected individuals
at birth can at high age become the majority of the surviving population, thus result-
ing in almost zero mortality due to that cancer at very high age. In other words, the
drop-off occurring at high ages is due to the shrinking of the risk set with aging.
About the biological basis of this risk protection one can merely speculate. The
fraction at risk model is a binary (at risk/protected) approximation to the statistical
distribution of the genetic and environmental fitness of individuals.

The age-specific risk of an incidence would be modified from pobs(t) (see 5)
to

pobs(t) × Survivors among susceptibles up to age t

Survivors in the whole population up to age t
.

The “fraction at risk” hypothesis is vague, but plausible. There are several pos-
sible mechanisms creating such an effect. There may, for example, exist parts of
the populations with genetic and environmental characteristics that protect these
individuals, either by preventing initiation or promotion. In the case of promotion,
it would for example suffice if in the protected population the pre-neoplastic cells
have a low or zero growth rate. More generally, genetic variation in the population
may lead to a variation in the parameters of the two-stage carcinogenesis between
different individuals. In this view, the fraction at risk is a simple approximation
obtained by using a binary distribution.

In order to apply this concept, we need an expression for the modifier of pobs,
that is the relative size of the surviving susceptibles.A reasonable approach consists
in partitioning the causes of death into three sets, namely (i) the type of cancer of
immediate interest, (ii) causes related via shared risk factors, and (iii) independent
causes. The corresponding cause-specific incidence functions describe competing
risks and are combined by summation to obtain an incidence rate for all diseases

inc(t) = pobs(t) + increl(t) + incind(t) .

If we assume that independent causes act equally on the whole population, whereas
related causes only act on the group of susceptibles, the relative size of the suscep-
tibles is equal to

F exp
(
− ∫ t

0 {pobs(u) + increl(u) + incind(u)} du
)

F exp
(
− ∫ t

0 {pobs(u) + increl(u) + incind(u)} du
)

+ (1 − F) exp
(
− ∫ t

0 incind(u) du
) ,

where F denotes the fraction at risk of the population at birth. The cause-specific
hazard incind(t) cancels, because of our assumption that it acts in a homogeneous
manner in the whole population. The risk due to the cancer and due to related
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causes, however, is seen to lead to a decline of the relative size of the susceptibles.
We can rewrite this equation as

F

F + (1 − F) exp
(∫ t

0 {pobs(u) + increl(u)} du
) . (6)

This is still not sufficiently simple to be useful in practice. A further simplifying
hypothesis consists in posing

pobs(u) + increl(u) = pobs(u)/f ,

that is in postulating that the related causes have a cause-specific hazard proportional
to the cause-specific hazard of the cancer. The parameter f making its appearance
in this equation is the (constant) fraction of deaths due to the cancer among all
deaths due to either cancer or related causes and thus describes the behavior of
competing risks. Substitution in Equation (6) then leads to the final expression for
the observable incidence rate

pobs(t) × F

F + (1 − F) exp
(
(1/f )

∫ t

0 pobs(u) du
) . (7)

3.1. Example

For any given model we can adjust the underlying parameters in such a way that the
model incidence rate (7) resembles the observed incidence rate obs(t) as closely
as possible. Many of the finer distinctions between model parameters and between
different models can, however, not be settled by fitting alone, because different,
moderately complex, models are often able to fit observed mortalities. Also, sev-
eral combinations of the parameters of a complicated model may lead to almost
equivalent fits. Nevertheless, a convincing argument in favor of multistage models
is based on their ability to fit observed incidence rates of many cancers up to about
age 80.

The fitting of the two-stage stochastic incidence model and the modification
using the parameter couple (F, f ) has been explored in Herrero-Jimenez et al.
(1998), which is a paper on colon cancer and emphasizes the biological aspects of
the model. The use of the model appears to give coherent results. More detailed
analysis shows, however, that with a single data set obs(t), the model (7) is too flex-
ible in the sense that many different parameter values are able to explain the data.
In order to restrain this flexibility, more quantitative information on the carcinogen-
esis pathway is required. This includes, for example, more precise measurements
on mutation rates, or the number of cells at risk. Another use of the model is in
comparing different data sets. If we deal with separate data sets involving the same
cancer type obsI (t), obsII (t) and so on, then the flexibility in the model can be
restrained by putting conditions on the parameters, for example, by requesting that
the physiological parameters in the model be the same for all data sets. In the
following example, we will study such a case, namely the mortalities due to lung
cancer in the population of European American males born in the 1880’s, in the
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age
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Fig. 1. The three curves are plots of log(obs(t)) as a function of the age t in the range of
40 to 60 years, which corresponds to the period of initial increase of mortality. The lowest
curve is for 1880, the middle one for 1890 and the upper one for 1920. The curves are similar
to each other and roughly linear with a slope of 0.15. This indicates that in our model the
exponential growth parameter β − δ is equal to 0.15.

1890’s and in the 1920’s. The data were converted to incidence rates by applying a
correction as described in Herrero-Jimenez et al. (1998) for the case of colon can-
cer. The corresponding observations are summarized in the functions obs1880(t),
obs1890(t) and obs1920(t). These data are shown in Figure 2. The large increase in
peak-incidence from about 220 per 100000 in the 1880 cohort to about 380 per
100000 in the 1890 cohort to even higher values in the 1920 cohort is self-evident.
How can this be explained in terms of our model? If we fit (7) individually to the
three observed functions, � ≈ β − δ can be found by inspecting the initial rise of
the incidences. Figure 1 shows the logarithms of the incidences as a function of
age and it indicates a value of about β − δ = 0.15. For the purpose of this paper
we restrict our modeling efforts to the case of two mutations required for initiation
(Eq. 2 with n = 2) and one additional genetic change required for promotion (4).
Figure 2 shows the results. Good models for the three birth cohorts are obtained
when 2 τ 2 (r1 r2) N0 ≈ 0.003 and rA ≈ 2.5 × 10−6. Keeping all these physio-
logical constants the same between the three cohorts we first look for fits with
the competing risk parameter f also constant across time. A compromise value is
f = 20%. Taking this approach, all parameters except the fraction at risk F are
known. Adjusting this last unknown in order to obtain a good agreement between
theory and observations, we find F1880 = 37%, F1890 = 54% and F1920 ≈ 95.6%.
With time, the fraction at risk increases. Such a marked change over a short period
can only be due to environmental factors, most probably smoking habits. The max-
imal incidence for the cohort born in the 1920’s is in this case reached at an age of
about 100 years and numbers more than 1350 cases per 100000.
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Fig. 2. The incidence rates of lung cancer per 100000 among European American males
born in the 1880’s (lowest incidence rates), the 1890’s (intermediate incidence rates) and
the 1920’s (highest incidence rates) are shown by the connected points. The model-based
incidence rates (7) with n = 2 and m = 1 are indicated by the superposed curves. When
the physiological parameters and the competing risk parameter f are the same in all three
cases and only the fraction at risk F varies between cohorts, the cohort born in the 1920’s is
fitted by the curve with the highest incidence rates. When f , the competing risk parameter
is also allowed to change, the 1920’s cohort is fitted by the alternative curve with lower
incidence rates. In the two other cohorts, the distinction between these two cases is of lesser
importance with both resulting in similar curves.

The available data suggests, however, that the competing risk parameter f

decreases over time. The incidence curves with f1880 = 26%, f1890 = 17% and
f1920 ≈ 8% and F1880 = 32%, F1890 = 58% and F1920 ≈ 96.2% given an even
closer agreement between theory and observation. In the case of the latter cohort,
this combination of population parameters predicts a maximal incidence at age 86
of about 850 cases per 100000. The cohort of those born in the 1920’s is particularly
difficult to treat since it involves an extrapolation to high ages. The second solution
seems preferable also because the overall shape of the incidence curve is similar to
the two other curves, whereas in the first instance with fixed f , the age at maximal
incidence shifts towards higher ages. The decrease in the competing risk parameter
would indicate that even with increased incidences of lung cancer (most probably
due to smoking) related diseases also influenced by smoking have grown even more.

4. Conclusions

We have studied a simple modification of a general two-stage carcinogenesis model,
which allows one to incorporate variability between individuals into the model. For
this purpose, two population parameters, namely the fraction at risk F and the pro-
portion f , had to be introduced. The modified model typically leads to a incidence
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rate that turns over at high ages, because the cancer is removing individuals from
the risk set. This is an attractive feature, because cancer registries do indeed show
this turn over. Further work is needed in the refinement of this model. Other ideas
for modeling genetic variation are also very natural and could be tried.
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