
Explicit methods for stiff stochastic
differential equations

Assyr Abdulle

Abstract Multiscale differential equations arise in the modeling of many
important problems in the science and engineering. Numerical solvers for
such problems have been extensively studied in the deterministic case. Here,
we discuss numerical methods for (mean-square stable) stiff stochastic dif-
ferential equations. Standard explicit methods, as for example the Euler-
Maruyama method, face severe stepsize restriction when applied to stiff prob-
lems. Fully implicit methods are usually not appropriate for stochastic prob-
lems and semi-implicit methods (implicit in the deterministic part) involve
the solution of possibly large linear systems at each time-step. In this paper,
we present a recent generalization of explicit stabilized methods, known as
Chebyshev methods, to stochastic problems. These methods have much bet-
ter (mean-square) stability properties than standard explicit methods. We
discuss the construction of this new class of methods and illustrate their
performance on various problems involving stochastic ordinary and partial
differential equations.

1 Introduction

The growing need to include uncertainty in many problems in engineering
and the science has triggered in recent year the development of computa-
tional methods for stochastic systems. In this paper we discuss numerical
methods for stiff stochastic differential equations (SDEs). Such equations are
used to model many important applications from biological and medical sci-
ences to chemistry or financial engineering [41],[17],[34]. A main issue for
practical application is the problem of stiffness. Various definitions of stiff
systems for ordinary differential equations (ODEs) are proposed in the lit-
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erature [20] (see also [28, Chap. 9.8] for a discussion in the stochastic case).
Central to the characterization of stiff systems is the presence of multiple
time scales the fastest of which being stable. The usual remedy to the is-
sue of stiffness (in the deterministic case) is to use implicit methods. This
comes at the cost of solving (possibly large and badly conditioned) linear sys-
tems. For classes of problems (dissipative problems), explicit methods with
extended stability domains, called Chebyshev or stabilized methods, can be
efficient [25],[29],[2],[3] and have proved successful in applications (see for ex-
ample [15],[22],[19],[4] to mention but a few). In this paper we review the
recent extensions [7],[6],[8],[9] of Chebyshev methods to mean-square stable
stochastic problems with multiple scales.

We close this introduction by mentioning that the stability concept con-
sidered in this paper, namely the mean-square stability, does not cover some
classes of interesting multiscale stochastic systems. Indeed, adding noise to a
deterministic stiff system (where Chebyshev or implicit methods are efficient)
may lead to stochastic problems for which the aforementioned methods are

not accurate. Adding for example a suitably scaled noise (
√

1
εdW (t)) to the

fast system of the following singular perturbed problem

dx = f(x, y)dt, x(t0) = x0, (1)

dy =
1

ε
g(x, y)dt, y(t0) = y0, (2)

where ε > 0 is a small parameter, can lead to a fast system with a non-trivial
invariant measure. To capture numerically the effective slow variable, requires
to correctly compute the invariant measure of the fast system. This might not
be possible for implicit1 or Chebyshev methods, if one uses large stepsize for
the fast process. Even though such problems are not mean-square stable, the
stability properties of implicit or Chebyshev methods still allow to compute
trajectories which remain bounded. But the damping of these methods may
prevent the capture of the right variance of the invariant distribution (see
[30],[8] for examples and details). In such a situation one should use methods
relying on averaging theorems as proposed in [39] and [16].

The paper is organized as follows. In Section 2 we discuss stiff stochastic
systems and review the mean-square stability concept for the exact and the
numerical solution of an SDE. Next, in Section 3 we introduce the Cheby-
shev methods for stiff ODEs. The extension of such methods to SDEs (called
the S-ROCK methods) are presented in Section 4. In Section 5, we study the
stability properties of the S-ROCK methods. Numerical comparison illustrat-
ing the performance of the S-ROCK methods and comparison with several
standard explicit methods for SDEs are given in Section 6.

1 There is one exception, namely the implicit midpoint rule, which works well for (1)-(2)

when the fast process is linear in y. This is due to the lack of damping at infinity [30].
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2 Stiff stochastic systems and stability

As an illustrative example, consider the following stochastic partial differen-
tial equation (SPDE), the heat equation with noise (see [7]):

∂u

∂t
(t, x) = D

∂2u

∂x2
(t, x) + µu(t, x)Ẇ (t), t ∈ [0, T ], x ∈ [0, 1], (3)

where we choose the initial conditions u(0, x) = 1, and mixed boundary

conditions u(t, 0) = 5, ∂u(t,x)∂x |x=1 = 0 and D = 1. Here Ẇ (t) denotes a white
noise in time2. To solve numerically the above system, we follow the method
of lines (MOL) and discretize first the space variable

dY it =
Y i+1
t − 2Y it + Y i−1t

h2
+ µY it dWt, i = 1, . . . , N, (4)

to obtain (a large) system of N SDEs, where N = O(1/h).

Remark 1. Notice that we used finite differences (FDs) to perform the spatial
discretization. We emphasize that finite element methods (FEMs) could have
been used as well. In a first step one would obtain a system MY ′ = ...,
where M is the mass matrix. For low order FEs a cheap procedure, called
mass lumping, allows to transform M into a diagonal matrix without loss of
accuracy for the numerical method [38].
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Fig. 1 One realisation of the system (4) with the Euler-Maruyama method (left figure);
average over 100 realizations (right figure). Parameters values: D = k = 1, N = 50,∆t =

2−14, t ∈ [0, 3].

We first write the system (4) in the form dY = (AY + B(Y ))dt + GY dWt,
where A is a tridiagonal matrix (approximation of the second order partial

2 We will not discuss the precise meaning of (3), whose rigorous definition involves an

integral equation [40],[14].
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differential operator), B(Y ) is a vector accounting for the boundary condi-
tions, and G is a (diagonal) matrix accounting for the multiplicative noise.
When then obtain after (simultaneous) diagonalization, the system of SDEs
(with appropriate boundary conditions omitted here) reads

dY it = λiY
i
t dt+ µY it dWt, i = 1, . . . , N, (5)

where λi ∈ [−O(N2), 0] (see [7] for details). As for (3), the rigorous inter-
pretation of (5) is an integral form involving a stochastic integral for which
various “calculus” can be used, most often the Itô or the Stratonovich cal-
culus [10]. The numerical methods described in this paper have been derived
for both calculus. For the time being, we will consider Itô form. The simplest
numerical scheme to solve (5) (assuming Itô form) is the Euler-Maruyama
method, a generalization of the Euler scheme for ordinary differential equa-
tions (ODEs) introduced in [32]

Yn+1 = Yn +∆tλYn + InµYn, (6)

where In = W (tn+1) − W (tn) are independent normal N (0, ∆t) random
variables.

As for ODEs, two important issues arise when deriving numerical meth-
ods for SDEs, namely the accuracy and the stability of the approximation
procedure.
Accuracy. Consider

dY = f(t, Y ) dt+

M∑
l=1

gl(t, Y )dWl(t), Y (0) = Y0, (7)

where Y (t) is a random variable with values in Rd, f : [0, T ] × Rd → Rd
is the drift term, g : [0, T ] × Rd → Rd is the diffusion term and Wl(t) are
independent Wiener processes. Assuming that f and g are continuous, have
a linear growth and are uniform Lipschitz continuous with respect to the
variable Y , that Y0 has finite second order moment and is independent of the
Wiener processes, one can show the existence and uniqueness of a (mean-
square bounded) strong solution of (7) (see for example [33, Chapter 5.2]
for details). Consider for the numerical approximation of (7) the one-step
method of the form

Yn+1 = Φ(Yn, ∆t, In1
, . . . , InM ), (8)

where Inl = Wl(tn+1) −Wl(tn) are independent Wiener increments drawn
from the normal distributions with zero mean and variance ∆t = tn+1 − tn.
The numerical method (8) is said to have a strong order ρ, respectively weak
order of ρ, if there exists a constant C such that
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E (|Yn − Y (τ)|) ≤ C(∆t)ρ, respectively
∣∣E(G(Yn))−E(G(Y (τ)))

∣∣ ≤ C(∆t)ρ,
(9)

for any fixed τ = n∆t ∈ [0, T ] (∆t sufficiently small) and for all functions
G : Rd → R 2(ρ+1) times continuously differentiable with partial derivatives
having polynomial growth.

Remark 2. In general, for numerical methods depending only on the first
Wiener increment Wl(tn+1)−Wl(tn) the highest strong and weak order that
can be obtained are 1/2 and 1, respectively. Strong order one can be ob-
tained for 1-dimensional problems or if commutativity conditions hold for
the diffusion functions gl [36],[28],[13].

Stability. We have to investigate for what ∆t does a numerical method
Yn+1 = Φ(Yn, ∆t, In1

, . . . , InM ) applied to (7) share the stability properties of
the exact solution Yt. Widely used measures of stability for SDEs are mean-
square stability, which measures the stability of moments, and asymptotic
stability (in the large), which measures the overall behavior of sample func-
tions [21]. We will focus here on mean-square stability. For linear autonomous
system of SDEs, this concept of stability is stronger than asymptotic stability
(see [10, Chap. 11]) or [21]). Consider the SDE (7) with f(t, 0) = gl(t, 0) = 0
and with a nonrandom initial value Y0. The steady solution Y = 0 of (7) is
said to be mean-square stable if there exists δ0 such that

lim
t→∞

E
(
|Y (t)|2

)
= 0, for all |Y0| < δ0. (10)

In order to analyze the stability of numerical methods one has to restrict
the class of problems considered. Inspired by (5) and following [37],[23] we
consider the scalar linear test equation

dY = λY dt+ µY dW (t), Y (0) = Y0, (11)

where λ, µ ∈ C. For µ = 0 one recovers the Dahlquist test equation, which is
instrumental in developing the linear A-stability theory for ODEs [20, Chap.
4.2,4.3].

Remark 3. We note that for SDEs, it is at first not clear to which extend the
study of a scalar linear test problem is relevant to systems of linear equations
or fully nonlinear equations. Recent work, however, suggest that stability
analysis for the scalar test equation is relevant for more general systems [11].

The test equation (11) can be solved analytically and the solution reads

Y (t) = Y0 e
((λ−µ

2

2 )t+µW (t)) (Itô), Y (t) = Y0 e
(λt+µW (t)) (Stratonovich),

(12)
and we have for the mean-square stability
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lim
t→∞

E
(
|Y (t)|2

)
= 0⇐⇒

{
{(λ, µ) ∈ C2;<λ+ 1

2 |µ|
2 < 0} (Itô),

{(λ, µ) ∈ C2;<λ+ (<µ)2 < 0} (Stratonovich).
(13)

If we apply the Euler-Maruyama method (6) to (11) we obtain

E(|Yn+1|2) = (|1 + p|2 + q2)E(|Yn|2), (14)

where p = ∆tλ, q =
√
∆tµ and thus, the method is mean-square stable if and

only if |1 + p|2 + q2 < 1. More generally, if we apply the numerical scheme
(8) to the test problem (11), square the result and take the expectation, we
obtain

E(|Yn+1|2) = R(p, q)E(|Yn|2), (15)

where p = ∆tλ, q =
√
∆tµ and where R(p, q) is a function in <(p), =(p),

<(q), =(q) (a polynomial in these variables if the method is explicit). We say
that a numerical method is mean-square stable for the test problem (11) if
and only if

lim
n→∞

E
(
|Yn|2

)
= 0 ⇐⇒ (∆tλ,

√
∆tµ) ∈ S := {p, q ∈ C;R(p, q) < 1}. (16)

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

p

q

Fig. 2 Stability domain of the Euler-Maruyama method (black disk) for λ, µ ∈ R. The
dashed curve represent the boundary of the exact stability domain (the left part of the

curve lies in the stability domain).

In order to be able to visualize the stability region, we restrict ourself
to the case λ, µ ∈ R. We see in Figure 2 that the stability domain of the
Euler-Maruyama method is a disk of radius 1 centered at p = −1, while the
stability domain of the exact test problem is the unbounded region on the
left of the dashed curve. The Euler-Maruyama has thus a restricted stability
region. For the problem (3) (see also (5)) this explicit method will thus face a
severe time step restriction due to stability constraint (see Figure 7 in Section
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6). One could use semi-implicit methods (implicit method in the drift term)
to obtain method with much better stability properties. This comes however
with the cost of solving nonlinear equations at each stepsize. This can be
numerically expensive for large systems (see e.g. (4)), specially if one needs
to simulate many realizations. We will explain in the next section how mean-
square stability can be improved without giving up the explicitness of the
numerical method.

3 Chebyshev methods

Chebyshev methods are a class of explicit one-step methods with extended
stability domains along the negative real axis. The basic idea for such meth-
ods goes back to the 1960s with Saul’ev, Franklin and Guillou and Lago (see
[20, Sect. IV.2] and the references therein). It can be summarized as follows:
consider a sequence of forward Euler methods Ψh1 , . . . , Ψhm with a corre-
sponding sequence of timesteps h1, . . . , hm and define a one-step method as
the composition Ψ∆t = (Ψhm ◦ . . .◦Ψh1

)(y0) with stepsize ∆t = h1 + . . .+hm.
Next, given m, optimize the sequence {hi}mi=1, so that

|Rm(x)| = |
m∏
i=1

(1 +
hix

∆t
)| ≤ 1 for x ∈ [−lm, 0],

with lm > 0 as large as possible. The resulting numerical method will thus be
a m-stage method. The solution of the above optimization problem is given
by shifted Chebyshev polynomials

Rm(x) = Tm(1 + x/m2) = 1 + x+ a2x
2 + . . .+ amx

m,

where {Tj(x)}j≥0 are the Chebyshev polynomials given recursively by

T0(x) = 1, T1(x) = x, Tj(x) = 2xTj−1(x)− Tj−2(x), j ≥ 2.

We see that the optimal sequence of {hi}mi=1 is given by hi = (−1/xi)∆t,
where xi are the zeros of Rm(x) and the maximal stability domain on the
negative real axis increases quadratically with the number of stages m and is
given by lm = 2m2. The property Rm(z) = 1 + x + O(x2) ensure the first
order convergence of the numerical method. Besides the stability of the “super
stepsize” ∆t, one has also to care about the internal stability (accumulation of
errors within one step) of the method as m can be large. This can be achieved
either by a proper ordering of the Euler steps hi [29] or by exploiting the
three-term recurrence relation of the orthogonal polynomials [25]. Following
the second strategy we consider a m-stage numerical method given by
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k0 := y0
k1 := y0 + ∆t

m2 f(k0)
kj := 2∆t

m2 f(kj−1) + 2kj−1 − kj−2, 2 ≤ j ≤ m
y1 := km.

(17)

Applied to the test problem y′ = λy, this method gives for the internal stages

kj = Tj(1 +∆tλ/m2)y0, j = 0, . . . ,m, (18)

and produces after one step y1 = Rm(∆tλ)y0, where Rm(x) = Tm(1+x/m2),
is the shifted Chebyshev polynomial of degree m (x = ∆tλ).

These methods have been originally developed for deterministic problems
with eigenvalues along the negative real axis. A typical (deterministic) sta-
bility domain Sm of a Chebyshev method is sketched in Figure 3 (left figure),
where

Sm := {z ∈ C; |Rm(z)| < 1}.

Recall that for the linear stability of deterministic ODE solvers, one considers
(11) with µ = 0 [20, Chap. 4.2,4.3]. It can be seen in Figure 3 that the
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Fig. 3 Stability domain of first order Chebyshev method (degree m = 10) with variable

damping η = 0 (left figure), η = 0.1 (right figure).

boundary of the stability domain along the negative real axis is 200, for m =
10. However, there are regions in [0, 200], precisely when T (1 + x/m2) = 1,
with no stability in the direction of the imaginary axis.

To overcome the aforementioned issue, it has been suggested by Guil-
lou and Lago [18] to replace the requirement |Rm(x)| ≤ 1 in [−lm, 0] by
|Rm(x)| ≤ η < 1 in [−lηm,−ε], where ε is a small positive number. The
number η is called the damping parameter or sometimes just the “damp-
ing”. This can done for the polynomials Tm(1 + x/m2) by a division with
Tm(ω0) > 1, where ω0 = 1 + η/m2. To obtain the right order of accuracy
with this modified stability function, one does a change of variables and ob-

tains Rm,η(x) = Tm(ω0+ω1x)
Tm(ω0)

, where ω1 = Tm(ω0)
T ′m(ω0)

(see [20, Section IV.2]). By

increasing the parameter η the strip around the negative real axis included



Explicit methods for stiff stochastic differential equations 9

in the stability domain can be enlarged as can be seen in Figure 3 (notice
that this reduces the value of lm as lηm < lm for η > 0). The formula (18) can
be modified appropriately to incorporate damping.

Higher order quasi-optimal Chebyshev methods: the ROCK meth-
ods. Higher order methods, called ROCK, for orthogonal Runge-Kutta
Chebyshev methods, based on orthogonal polynomials have been devel-
oped in [2],[3]. The stability functions are given by polynomials Rm(x) =
1 + x + . . . + xp/p! + O(xp+1) of order p (i.e., Rm(x) − ex = O(xp+1)) and
degree m with quasi optimal stability domains along the negative real axis.
These polynomials can be decomposed as [1]

Rm(x) = wp(x)Pm−p(x),

where Pm−p(x) is a member of a family of polynomials {Pj(x)}j≥0 orthogonal

with respect to the weight function
wp(x)

2

√
1−x2

(wp(x) is a polynomial of degree p

with only complex zeros when p is even and with only one real zero when p is
odd).3 The idea for the construction of a numerical method is then as follows:
the 3-term recurrence relation of the orthogonal polynomials {Pj(x)}j≥0

Pj(x) = (αjx− βj)Pj−1(x)− γjPj−2(x),

is used to define the internal stages of the method

Kj = ∆tαjf(Kj−1)− βjKj−1 − γjKj−2, j = 2, . . . ,m− p.

This ensures the good stability properties of the method. A p-stage finishing
procedure with the polynomial wp(z) as underlying stability function ensures
the right order of accuracy of the method.
Gain in efficiency. Assume that ∆t is the stepsize corresponding to the
desired accuracy to solve an initial value problem y′ = f(t, y) in the interval
[0, T ]. Let ρ be the spectral radius of the Jacobian ∂yf . A standard explicit
method, as the Euler method, must satisfy δt = C/ρ (for stability) and
thus needs ∆tρ/C function evaluations in each interval ∆t. For a Chebyshev
method, we can select a stage number m =

√
∆tρ/C. As the number of

function evaluations is equal to the stage number of the Chebyshev method4

only the square root of the function evaluations needed for standard explicit
method are required for each stepsize (notice that the constant C can be
different for the two methods but is in both cases of moderate size).

3 The ROCK methods have been developed for p even (p = 2, 4). They could be obtained
for p odd provided a proper treatment of the real zero of wp(x).
4 Strictly speaking this is true for first order Chebyshev methods. For higher order methods,
as the ROCK methods, the number of function evaluations is not equal but still close to
the stage number m (see [2],[3]).
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4 The S-ROCK methods

We now present the Stratonovich and the Itô stochastic ROCK (S-ROCK)
methods derived in [7],[6],[8]. When modeling physical systems with SDEs,
the question of the choice of the stochastic integral arises. SDEs with
Stratonovich integrals are stable with respect to changes in random terms
and are often used for systems where the noise is “added” as fluctuation of a
deterministic system. SDEs with Itô integrals are preferred for systems with
internal noise where the fluctuation is due to the systems itself as for example
in chemical reactions due to the property of “not looking into the future” of
the Itô integral (i.e., the martingale property) [28],[33]. Of course, there are
conversion rules from one calculus to the other. However, these rules involve
the differentiation of the diffusion term which can be cumbersome and costly.
It is thus preferable to derive genuine formulas for both calculus. Further-
more, it is sometimes desirable to have stabilized explicit methods for discrete
noise. This has been considered in [9], where the τ -ROCK methods have been
developed and we briefly comment on these methods as well in what follows.

4.1 Construction of the S-ROCK methods

Inspired by the ROCK methods, we consider methods based on
• deterministic Chebyshev-like internal stages to ensure good stability prop-

erties (stages 1, 2, . . . ,m− 1),
• a finishing stochastic procedure to incorporate the random process and

obtain the desired stochastic convergence properties.
As for deterministic methods, the use of damping plays a crucial role and

allows to enlarge the width of the stability domains in the direction of the
“stochastic axis” (e.g, the q axis in Figure 2). This is discussed in Section 5.
Deterministic Chebyshev stages. Define the m−1 stages of the S-ROCK
method by

K0 = Yn,

K1 = Yn +∆t
ω1

ω0
f(K0),

Kj = 2∆tω1
Tj−1(ω0)

Tj(ω0)
f(Kj−1) + 2ω0

Tj−1(ω0)

Tj(ω0)
Kj−1 −

Tj−2(ω0)

Tj(ω0)
Kj−2,

for j = 2, . . . ,m − 1, where ω0 = 1 + η
m2 , ω1 = Tm(ω0)

T ′m(ω0)
. Recall that η is the

damping parameter which will be optimized (see Section 5).

Stochastic stages. We have now to incorporate the noise in an appropriate
way. While the deterministic stages are the same for the various S-ROCK
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methods, the finishing procedure will be different to take into account the
various stochastic calculus of the underlying SDE and the desired accuracy
of the methods.
Itô S-ROCK methods (multi-dimensional SDEs). We define the fin-
ishing procedure as

Km = 2∆tω1
Tm−1(ω0)

Tm(ω0)
f(Km−1) + 2ω0

Tm−1(ω0)

Tm(ω0)
Km−1 −

Tm−2(ω0)

Tm(ω0)
Km−2

+

M∑
l=1

Inlgl(Km−1),

Yn+1 = Km. (19)

Itô S-ROCK methods (commutative noise5 or one dimensional
Wiener process). In that special case, one can improve the strong con-
vergence of the method by considering the finishing procedure

K∗m−1 = Km−1 +

M∑
r=1

gr(Km−1)Inr ,

K∗∗,lm−1 = Km−1 +
√
∆tgl(Km−1), l = 1, 2, . . . ,M,

Km = 2∆tω1
Tm−1(ω0)

Tm(ω0)
f(Km−1) + 2ω0

Tm−1(ω0)

Tm(ω0)
Km−1 −

Tm−2(ω0)

Tm(ω0)
Km−2

+

M∑
l=1

Inlgl(Km−1) +
1

2

M∑
l=1

Inl

(
gl(K

∗
m−1)− gl(Km−1)

)
− 1

2

M∑
l=1

√
∆t
(
gl(K

∗∗,l
m−1)− gl(Km−1)

)
,

Yn+1 = Km. (20)

Remark 4. For M = 1 the above formula can be further simplified and written
as

K∗m−1 = Km−1 +
√
∆tg(Km−1),

Km = 2∆tω1
Tm−1(ω0)

Tm(ω0)
f(Km−1) + 2ω0

Tm−1(ω0)

Tm(ω0)
Km−1 −

Tm−2(ω0)

Tm(ω0)
Km−2

+ Ing(Km−1) +
I2n −∆t
2
√
∆t

(g(K∗m−1)− g(Km−1)),

Yn+1 = Km. (21)

5 Consider Ll =
∑d
k=1 g

k
l

∂
∂yk

, l = 1, 2, . . . ,M. Commutative noise means that the condi-

tion Llgkr = Lrgkl ∀l, r = 1, . . . ,M ; k = 1, . . . , d holds for the diffusion functions [28].
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Stratonovich S-ROCK methods (multi-dimensional SDEs). We de-
fine the finishing procedure as

K∗m−1 = Km−1 +
Tm(ω0)

2ω0Tm−1(ω0)

M∑
l=1

Inlgl(Km−2),

Km = 2∆tω1
Tm−1(ω0)

Tm(ω0)
f(Km−1) + 2ω0

Tm−1(ω0)

Tm(ω0)
Km−1 −

Tm−2(ω0)

Tm(ω0)
Km−2

+
ω0Tm−1(ω0)

Tm(ω0)

M∑
l=1

Inl(gl(Km−1)− gl(Km−2)),

Yn+1 = Km. (22)

Notice that this method has order one when solving SDEs with commutative
noise or with only one Wiener process [6].

S-ROCK methods for discrete noise. The procedure explained above
can be generalized to stochastic problems with other types of noise. In [9],
the approximation of SDE for chemical kinetic systems has been considered.
The SDE is of the form6

dYt =

M∑
j=1

νjP(aj(Yt−)dt),

where Yt is a N−dimensional state vector (corresponding to the N species of
the reaction) with components in N, νj is a state-change vector, aj is a propen-
sity function (the number of possible combination of reactant molecules in-
volved in the j-th reaction, times a stochastic reaction rate constant) and
P(aj(Yt−)dt) is a state-dependent Poisson noise. We now make the decom-
position

dYt =

M∑
j=1

νjaj(Yt−)dt+

M∑
j=1

νj

(
P(aj(Yt−)dt)− aj(Yt−)dt

)
= f(Yt−)dt+ dQt, (23)

where f and Q are called the drift part and jump part, respectively (see [31]).
This form is similar with SDEs driven by Wiener processes, except for the
different noise. Similarly as for the Itô or the Stratonovich S-ROCK methods,
the m− 1 deterministic Chebyshev stages can be applied to the drift part of
(23), and the noise term can be incorporated in the finishing procedure in an
appropriate way to solve (23) (we refer to [9] for details).

6 See [31] for a rigorous description of the problem.
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4.2 Accuracy of the S-ROCK methods.

Before considering the stability properties of our methods (the main moti-
vation to consider the formulas introduced in Section 4.1) we briefly discuss
their accuracy. As mentioned in Section 1, by considering numerical methods
depending only on the first Wiener increment, strong accuracy higher than
ρ = 1/2 or weak accuracy higher than ρ = 1 cannot be obtained. Only in the
special case of commutative, diagonal or one dimensional noise, strong order
ρ = 1 is possible. The theorems below show that the S-ROCK methods enjoy
the highest possible accuracy for numerical methods involving only the first
Wiener increment.

Theorem 1 ([6],[7],[8]). For m ≥ 2, the methods (19) (Itô) and (22)
(Stratonovich) applied to (7) (with f and gl sufficiently smooth) satisfy

E (|YN − Y (τ)|) ≤ C(∆t)1/2, |E(G(YN ))− E(G(Y (τ))| ≤ C∆t (24)

for any fixed τ = N∆t ∈ [0, T ] and ∆t sufficiently small and for all functions
G : Rd → R, 4 times continuously differentiable and for which all partial
derivatives have polynomial growth.

Theorem 2 ([6],[7],[8]). Assume that (7) (with f and gl sufficiently smooth)
has commutative noise or that M = 1. Then, for m ≥ 2, the methods
(20),(21) (Itô) and (22) (Stratonovich) applied to (7) (with f and gl suf-
ficiently smooth) satisfy

E (|YN − Y (τ)|) ≤ C∆t (25)

for any fixed τ = N∆t ∈ [0, T ] and ∆t sufficiently small.

For the proofs of these theorems we refer to [6],[7] (Stratonovich S-ROCK
methods) and [8] (Itô S-ROCK methods).

5 Extended mean-square stability and damping

We study here the mean-square stability property of the S-ROCK methods.
By applying any of the methods (19),(20),(21) or (22) to the scalar test
problem (11), squaring the results and taking the expectation we obtain the
mean-square stability function (see (15))

Rm(p, q) =
T 2
m(ω0 + ω1p)

T 2
m(ω0)

+Qm−1,r(p, q), (26)

where Qm−1,r(p, q) is a polynomial of degree 2(m − 1) in p and of degree
2r in q. The precise form of Qm−1,r(p, q) depends on the specific numerical
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method considered. Define Θj =
Tj(ω0+ω1p)
Tj(ω0)

. For the method (19) we have

r = 1 and
Qm−1,1(p, q) = q2Θm−1.

For the method (21) r = 2 and

Qm−1,2(p, q) = q2Θm−1 +
q4

2
Θm−1.

Finally, r = 2 for the method (22) and

Qm−1,2(p, q) = q2

(
ΘmΘm−2 +

(
Θm−2

(ω1

ω0
p+ 1

)
+ ω0

Tm−1(ω0)

Tm(ω0)
(Θm−1 −Θm−2)

)2)
+

3

4
q4Θ2

m−2.

In Figure 4, we plot the mean-square stability domains for the method (19)

50 40 30 20 10 0
10

8

6

4

2

0

2

4

6

8

10

p

q

20 15 10 5 0
10

8

6

4

2

0

2

4

6

8

10

p

q

20 15 10 5 0
10

8

6

4

2

0

2

4

6

8

10

p

q

Fig. 4 Mean-square stability regions for the method (19) with various values of damping

(m = 5). Left figure (no damping, η = 0), middle figure (optimal damping, η = 4.7), right

figure (infinite damping).

with various values of damping for m = 5. We observe that without damping,
the stability along the p axis (the “deterministic axis”) is optimal (i.e., 2 ·52).
But there are points (close to the p axis) with no stability in the direction of
the q axis (see Figure 4, (left)). As Qm−1,r(p, 0) = these points are exactly
the points where T 2

m(1 + p/m2) = 1. For infinite (or very large) damping the
mean-square stability domain covers a portion of the stability domain of the
test equation (11), but the stability domain along the p axis becomes linear
in m (i.e., 2 · 5, see Figure 4 (right)). The mean-square stability domain for
what will be called the optimal damping value covers a “large” portion of
the stability domain of the test equation (see Figure 4, (middle)). In order
to quantify these observations we define a “portion” of the stability domain
(13) by
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SSDE,s = {(p, q) ∈ [−s, 0]× R; |q| ≤
√
−p} (Stratonovich), (27)

or
SSDE,s = {(p, q) ∈ [−s, 0]× R; |q| ≤

√
−2p} (Itô), (28)

where s > 0. We then consider two parameters l and d related to a numerical
stability domain S by

l = max{|p|; p < 0, [p, 0] ⊂ S}, d = max{r > 0;SSDE,s ⊂ S}. (29)

Clearly, d ≤ l, and for mean-square stability, it is the parameter d which has
to be optimized. For the S-ROCK methods, as can be seen in Figure 4, l and
d depend on the stage number m and the value of the damping parameter η.
We thus denote these parameters by lm(η) and dm(η). The following lemmas
give important information on the value of lm(η) and a bound of the possible
values for dm(η), the parameter which characterizes the stability domains of
our methods.

Lemma 1 ([7],[8]). Let η ≥ 0. For all m ≥ 2, the m-stage numerical method
(22) has a mean-square stability region Sηm with lm(η) ≥ c(η)m2, where c(η)
depends only on η.

Lemma 2 ([7],[8]). For all m ≥ 2

lm(η)→ 2m for η →∞. (30)

In view of the above two lemmas we make the following important ob-
servation: for any fixed η, the stability domain along the p axis increases
quadratically (Lemma 1), but for a given method, i.e., a fixed m, increasing
the damping η to infinity reduces the quadratic growth along the p axis into
a linear growth (Lemma 2). Since dm(η) ≤ lm(η) there is no computational
saving compared to classical explicit methods for this limit case.

Optimized methods. Our goal is now for a given method to find the value
of η, denoted η∗ which maximize dm(η), i.e.,

η∗ = argmax{dm(η); η ∈ [0,∞)}. (31)

The corresponding optimal values dm(η∗) for m ≤ 200 have been computed
numerically and are reported in Figure 5 for the Itô S-ROCK methods (19)
and in Figure 6 for the Stratonovich S-ROCK methods (22). We also report
in the same Figures the values of lm(η∗) and η∗. We see that for η = η∗,
dm(η∗) ' lm(η∗). The dashed and the dash-dotted lines in the plots report-
ing the values of dm(η∗), represent a quadratic and a linear slope, respec-
tively. We clearly see that the portion of the true stability domain included
in the stability domain of our numerical methods grows super-linearly (close
to quadratically) for both the Itô and the Stratonovich S-ROCK methods.
Finally we study the efficiency of the methods by reporting the quantity
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as a function of m and the ratio dη
∗
m /m (stability versus

work) for the Itô S-ROCK methods (19) . The dashed and the dash-dotted lines in the

upper-right figure represent a quadratic and a linear slope, respectively.

dm(η∗)/m (stability versus work). For standard methods this value is small
(close to zero for the Euler-Maruyama methods as can be seen in Figure 2 and
about 1/2 for the Platen method (see (33) in Section 5)). Another method
will be considered in the numerical experiments, namely the RS method [12,
p. 187] developed with the aim of improving the mean-square stability of the
Platen method. This method has a larger l value than the Platen method
but a smaller d value and the efficiency of this method (as measured here)
is about 0.3. We see that S-ROCK methods are orders of magnitude more
efficient (for the aforementioned criterion of efficiency related to stability)
than standard explicit methods for SDEs.

6 Numerical illustrations

In this section we illustrate the efficiency of the S-ROCK methods. As men-
tioned in the beginning of Section 4, different applications require different
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stochastic integrals and we will consider both Itô and Stratonovich SDEs
in the following examples. The first example is the heat equation with noise
mentioned in the introduction. For this problem we consider the Stratonovich
S-ROCK methods. The second example is a chemical reaction modeled by
the chemical Langevin equation. The Itô S-ROCK methods will be used for
this latter problem. For both examples, we compare the S-ROCK methods
with standard explicit methods.

Example 1: heat equation with noise. We consider the SPDE (3), where
we choose this time the Stratonovich modeling for the noise. We follow the
procedure explained in Section 2 and transform the SPDE in a large system
of SDEs
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dY it =
Y i+1
t − 2Y it + Y i−1t

h2
+ µY it ◦ dWt, i = 1, . . . , N, (32)

where the symbol ◦ denotes the Stratonovich form for the stochastic inte-
gral. In our numerical experiments, we compare the Stratonovich S-ROCK
methods (22) with two other methods, the method introduced by Platen [35]
(denoted PL) given by the two-stage scheme

Kn = Yn +∆tf(Yn) + Ing(Yn),

Yn+1 = Yn +∆tf(Yn) + In
1

2
(g(Yn) + g(Kn)), (33)

and the RS method, introduced by P.M. Burrage [12, p. 187]. This is a 2-stage
method constructed with the aim of improving the mean-square stability
properties of the Platen method and is given by

Kn = Yn +
4

9
∆tf(Yn) +

2

3
Jng(Yn),

Yn+1 = Yn +
∆t

2
(f(Yn) + f(Kn) +

1

4
(g(Yn) + g(Kn))Jn. (34)

Both methods have strong order 1 for one-dimensional systems or systems
with commutative noise as (4). This is also the case for the Stratonovich
S-ROCK methods (22). We have seen, at the end of Section 5, that the
stability domains of both methods, PL and RS, cover only a small portion of
the stability domain corresponding to the stochastic test equation and this is
in contrast with the S-ROCK methods. In Figure 7 we monitor the number
of function evaluations (cost)7 needed by the various methods to produce
stable integrations when increasing the value of N , i.e., the stiffness of the
problem. For the S-ROCK methods we vary the number of stages to meet
the stability requirement (this value is indicated in Figure 7).

We see that the S-ROCK method reduces the computational cost by sev-
eral orders of magnitude as the stiffness increases. In the same Figure we see
the value of the stepsize needed for the different methods, again as a function
of N . As expected, the standard explicit methods, as PL or RS face se-
vere stepsize restriction as the stiffness increases. This example demonstrates
that for classes of SPDEs there is a real advantage in using explicit stabilized
methods such as S-ROCK methods. We notice that the stepsize is reduced
for the highest value of N for the S-ROCK methods (see Figure 7 (right)).
We could have kept the same stepsize but the stage number would then have
become quite large. It is well-known for Chebyshev methods that in order
to control the internal stability of the method one should avoid computation
with a very high stage number [3]. Here we fixed the highest stage number
at m = 320.

7 By number of function evaluations we mean here the total number of drift and diffusion
evaluations.
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the largest stepsize to have a stable integration of (32) (strong error < 10−1). For the

S-ROCK methods, we can vary the stage number m to meet the stability requirement (we

fixed the highest stage number at m = 320).

Example 2: a chemical reaction. We know illustrate the use of the Itô S-
ROCK methods. Following [8] we consider a stiff system of chemical reactions
given by the Chemical Langevin Equation (CLE). We study the Michaelis-
Menten system, describing the kinetics of many enzymes. This system has
been studied in [24] with various stochastic simulation techniques. The reac-
tions involve four species: S1 (a substrate), S2 (an enzyme), S3 (an enzyme
substrate complex), and S4 (a product) and can be described as follows: the
enzyme binds to the substrate to form an enzyme-substrate complex which
is then transformed into the product, i.e.,

S1 + S2
c1−→ S3 (35)

S3
c2−→ S1 + S2 (36)

S3
c3−→ S2 + S4. (37)

The mathematical description of this kinetic process can be found in [26].
For the simulation of this set of reactions we use the CLE model

dY (t) =

3∑
j=1

νjaj(Y (t))dt+

3∑
j=1

νj

√
aj(Y (t))dWj(t), (38)

where Y (t) is a 4 dimensional vector describing the state of each species
S1, . . . , S4. The Itô form used in (38). The functions aj(Y (t)), called the
propensity functions, give the number of possible combinations of molecules
involved in each reaction j. For the above system they are given by

a1(Y (t)) = c1Y1Y2, a2(Y (t)) = c2Y3, a3(Y (t)) = c3Y3.
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The vectors νj , called the state-change vectors, describe the change in the
number of molecules in the system when a reaction fires. They are given
for the three reactions of the above system by ν1 = (−1,−1, 1, 0)T , ν2 =
(1, 1,−1, 0)T , ν3 = (0, 1,−1, 1)T . We set the initial amount of species as (the
parameters are borrowed from [41, Section 7.3])

Y1(0) = [5× 10−7nAvol], Y2(0) = [5× 10−7nAvol], Y3(0) = 0, Y4(0) = 0,

where [·] denotes the rounding to the next integer and nA = 6.023 × 1023

is the Avagadro’s constant (number of molecules per mole) and vol is the
volume of the system.

In the following numerical experiments, we solve numerically the SDE (38)
with the Itô S-ROCK methods and the Euler-Maruyama method (6). This
latter method is often used for solving the CLE. As the CLE has multidimen-
sional Wiener processes, we use the S-ROCK methods (19). We first compare
the solutions along time for the two methods (t ∈ [0, 50]), with parameters
leading to a non-stiff system for (38). As expected, we observe in Figure 8 a
very similar behavior of the two methods.
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Fig. 8 One trajectory of the Michaelis-Menten system solved with the Euler-Maruyama
method (left figure) and the S-ROCK method (right figure) for c1 = 1.66 × 10−3, c2 =

10−4, c3 = 0.10 (the stepsize is ∆t = 0.25 and the same Brownian path is used for both
methods; m = 3 for the S-ROCK method).

We next increase the rate of the third reaction in (35)-(37), c3 = 102, 103, 104

corresponding to an increasingly fast production. The resulting CLE becomes
stiff and the Euler-Maruyama method is inefficient. In Figure 9 we report
the stepsizes and the number of function evaluations needed for the Euler-
Maruyama and the S-ROCK methods. The stepsize is chosen as ∆t = 0.25
for the S-ROCK methods. For the Euler-Maruyama method we select for
each value of c3 the largest stepsize which leads to a stable integration. Thus,
for the Euler-Maruyama method, stability is achieved by reducing the step-
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size while for the S-ROCK method, it is achieved by increasing the stage
number (m = 3, 7, 28, 81). Notice that for both methods, one evaluation of
“g(Y )dW (t)” is needed per stepsize. Thus, by keeping a fixed stepsize, the
number of generated random variables remains constant as the stiffness in-
creases for the S-ROCK methods, while this number increases linearly (pro-
portional to the stepsize reduction) for the Euler-Maruyama method. Taking
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Fig. 9 Numerical solution of (38) with the Euler-Maruyama and the S-ROCK methods.

Number of function evaluations as a function of c3 for both methods (left figure). Size of
the timestep ∆t as a function of c3 (Euler-Maruyama); ∆t = 0.25 for the S-ROCK method

and the stage number m is adapted to the stiffness (right figure).

advantage of the quadratic growth of the stability domains, we see that the
number of function evaluations is reduced by several orders of magnitude
when using the S-ROCK methods instead of the Euler-Maruyama method.
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