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Diffusion on rough surfaces is a basic problem for many applications in engineering and the sciences. Solving these problems
with a standard finite element method is often difficult or even impossible, due to the computational work and the amount
of memory needed to triangulate the whole surface with a mesh which resolves its oscillations. We discuss in this paper a
hierarchical Finite Element Method of “heterogeneous multiscale” type, which only needs to resolve the surface’s fine scale on
small sampling domains within a macro triangulation of the underlying smooth surface. This method converges, for periodic
surface roughness and sufficiently small amplitude, at a robust (i.e. scale independent) rate, to the homogenized solution.

1 Introduction

Our aim is to develop a Finite Element Method (FEM) for elliptic problems on oscillatory surfaces with a macro triangulation
which can be much larger than the typical oscillation lenght of the surface and which is at the same time, able to capture the
right macro-scale behavior of the solution. To present the idea we restrict ourselves to the model problem

−∆Γε ũε = f in Γε, ũε = 0 on ∂Γε, (1)

where ∆Γε = ∇Γε · ∇Γε is the Laplace-Beltrami operator, ∇Γε is the tangential gradient and Γε is an oscillatory surface (the
general case, i.e. with a diffusion tensor, can be treated similarly). Throughout, we add a superscript on the solution u to
emphasize its dependence on ε.

2 Transformation to a homogenization problem

Let Ω be a bounded subset of R
2. We consider a family of surfaces Γε ⊂ R

3 parameterized by F ε(ξ) = F 0(ξ)+εaε(ξ)n0(ξ),
where ξ ∈ Ω, aε : Ω → R, n0(ξ) is a unit vector orthogonal to a smooth surface denoted by F 0(ξ). We assume that (A1):
F 0 ∈ (C2(Ω̄))3, F 0|Ω is injective and its differential dF 0

ξ is injective ∀ξ ∈ Ω̄ and (A2): ‖aε‖L∞(Ω) ≤ α1, ‖∇aε‖L∞(Ω) ≤
α2/ε, where α1, α2 are independent of ε.

We first transform the weak formulation of problem (1) as an elliptic homogenization problem in the parameter domain Ω.
Let uε(ξ) = ũε(F ε(ξ)) then

∫

Ω

∇ξu
ε(gε)−1(gε)−T (∇ξv)T

√

det gεdξ =

∫

Ω

fv
√

det gεdξ ∀v ∈ H1
0 (Ω), (2)

where gε is the metric tensor of the first fundamental form of the surface Γε and H1
0 (Ω) consists of those functions in H1(Ω)

(the standard L2-based Sobolev space of order 1) which vanish on ∂Ω.

Theorem 2.1 [2] Suppose that the assumptions (A1) and (A2) hold, then Aε is uniformly elliptic and bounded in ε and ξ,
i.e., there exist γ1, γ2, ε0 > 0 such that ∀ξ ∈ Ω̄, ∀η ∈ R

2 and ∀ε 0 < ε ≤ ε0

γ1|η|2 ≤ ηT Aεη ≤ γ2|η|2, (3)

where Aε = (gε)−1(gε)−T
√

det gε. If aε(ξ) = a(ξ, ξ/ε) = a(ξ, y) is 1−periodic w.r.t. y1, y2 then Aε(ξ) = A(ξ, ξ/ε) =
A(ξ, y) is 1−periodic w.r.t. y1, y2.

Observe that the right hand side of problem (2) is oscillating due to the term
√

det gε. We replace it by its weak limit
f̄(ξ) = f(ξ)

∫

Y

√

det g(ξ, y)dy. The difference between the solution uε of problem (2) and the solution ūε of problem (2)
with the averaged right hand side f̄(ξ) can be caracterised [2]. We have now a standard elliptic homogenization problem, and
it is known (see e.g. [3, Chap.1],[6, Chap.1.4] and the references therein) that ūε converges (usually in a weak sense) to ū0,
solution of a “homogenized” elliptic problem

∫

Ω

∇ξū
0A0(ξ)vT dξ =

∫

Ω

f̄vdξ ∀v ∈ H1
0 (Ω), (4)

with an elliptic tensor A0(ξ) where the small scales have been averaged out (formulas for A0(ξ) are available [3],[6]).
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3 Numerical methods

Based on the heterogeneous multiscale methods (HMM) [4], we define the following FEM for the numerical solution of
problem (2) with the weak limit f̄(ξ) for right hand side: find uH ∈ S1

0(Ω, TH) such that [2],[4]

B(uH , vH) :=
∑

K∈TH

|K|
|Kε|

∫

Kε

∇u A(ξk , ξ/ε)(∇v)T dξ =

∫

Ω

f̄vHdξ ∀vH ∈ S1
0(Ω, TH), (5)

where S1
0(Ω, TH) = {wH ∈ H1

0 (Ω); wH |K linear polynomials , ∀K ∈ TH}, TH is a triangulation of Ω, |K|, |Kε| denote the
measure of K and Kε, respectively, and where u is the solution of the following micro problem: find u such that u − uH ∈
W 1

per(Kε) and
∫

Kε

∇u A(ξk, ξ/ε)(∇v)T dξ = 0 ∀v ∈ W 1
per(Kε), (6)

where ξk ∈ Kε denotes the barycenter of K and W 1
per(Y ) = {v ∈ H1

per(Y );
∫

Y vdx = 0} (H1
per(Y ) is defined as the closure

of C∞
per(Y ), Y = (0, 1)2 is the unite cube). We obtain v by a similar problem, replacing uH by vH . Observe that f̄(ξ) is

not available in closed form and we have thus to sample it on the micro domain Kε during the integration process. This can
be done without decreasing the order of convergence of the FEM [2]. To avoid having to impose periodic essential boundary
conditions on the micro FE space, we enforce weakly the periodicity through Lagrange multipliers. This allows for general
non periodic meshes in the micro FE space [2].
Polyhedral mean surfaces. The above heterogeneous FEM is also applicable when the mean surface is given just by data
points which define a polyhedral mean surface. Since the macro bilinear form is estimated from scale resolved computations
on the sampling domains, we only need, for the application of the algorithm, the mean surface to be smooth in these sub-
domains (however, the theory of homogenization ceases to be valid near edges and vertices of the polyhedral midsurface).
Micro-scale reconstruction. We next discuss how the micro-scale information (the small scale solution) can be recovered.
Following the procedure described in [1],[5] and also in [7], we extend periodically the known micro-scale solution u given
by (6) and define uH

rec as uH
rec|K = uH + (u − uH)|]K . Here, for a function v ∈ H1(Kε), v] denotes its periodic extension

over K defined by v](ξ + ε(l1, l2)) = v(ξ) ∀ll, l2 ∈ Z, ∀ξ ∈ Kε s.t. ξ + ε(l1, l2) ∈ K. Since uH
rec can be discontinuous

across the macro element K, we define a broken H1 norm ‖u‖H̄1(Ω) := (
∑

K∈TH
‖∇u‖2

L2(K))
1/2 for the error estimates of

the reconstructed solution.

4 Error estimates

We present finally some convergence results (we refer to [2] for further estimates and proofs). In the following theorem, we
assume that Ω is a convex polygon, that the solution ū0 of problem (4) is H2-regular, that A(ξ, ·) ∈ W 1,p(Y ), (p > 2) and
that ξ → A(ξ, ·) is smooth.

Theorem 4.1 Let uH be the solution of problem (5). Let uε, ū0 be the solutions of Problem (2) and (4), respectively. Then

‖ū0 − uH‖H1(Ω) ≤ CH‖f̄‖L2(Ω), (7)

‖uε − uH‖L2(Ω) ≤ C(ε + H2)‖f̄‖L2(Ω) + δ(ε), (8)

‖uε − uH
rec‖H̄1(Ω) ≤ C(

√
ε + H)‖f̄‖L2(Ω) + δ(ε), (9)

(10)

where δ(ε) := (supv∈L2(Ω) |
∫

Ω
(f
√

det gε − F )vdξ|)1/2 → 0 for ε → 0.

A pullback lemma [2] shows that the above theorem with obvious changes is also valid on the surface Γε.
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