
Creating Shared Secrets out of Thin Air

Iris Safaka
∗

, Christina Fragouli, Katerina Argyraki, Suhas Diggavi
†

Computer and Communication Sciences, EPFL, Switzerland Electrical Engineering, UCLA, CA, USA

{iris.safaka, christina.fragouli, katerina.argyraki}@epfl.ch suhasdiggavi@ucla.edu

ABSTRACT

Current security systems typically rely on the adversary’s

computational limitations (e.g., the fact that it cannot in-

vert a hash function or perform large-integer factorization).

Wireless networks offer the opportunity for a different, com-

plementary kind of security, which relies not on the adver-

sary’s computational limitations, but on its limited network

presence (i.e., that the adversary cannot be located at many

different points in the network at the same time). We take

a first step toward designing and building a wireless secu-

rity system that leverages this opportunity: We consider the

problem where a group of n nodes, connected to the same

broadcast wireless network, want to agree on a shared secret

(e.g., an encryption key), in the presence of an adversary

Eve who tries to listen in and steal the secret. We propose a

secret-agreement protocol, where the n nodes of the group

keep exchanging bits until they have all agreed on a bit se-

quence that Eve cannot reconstruct (with very high proba-

bility). We provide experimental evidence—to the best of

our knowledge, the first one—that a group of wireless nodes

can generate thousands of new shared secret bits per sec-

ond, with their secrecy being independent of the adversary’s

computational capabilities.

Categories and Subject Descriptors

C.2.1 [Computer Communication Networks]: Network Ar-

chitecture and Design—Wireless communication

General Terms

Security

Keywords

Information-theoretic security, group secrets

∗Supported by ERC Starting Grant ERC-2009-StG-240317
†Partly supported by AFOSR MURI, prime award FA9550-09-064

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’12, October 29–30, 2012, Seattle, WA, USA.
Copyright 2012 ACM 978-1-4503-1776-4/10/12 ...$10.00.

1. INTRODUCTION

One of the most fundamental problems in system secu-

rity is creating shared secrets (without using an out-of-band

channel), and the only way we know to solve this problem

today relies on the adversary’s computational limitations.

Consider two communicating principals, Alice and Bob, and

an adversary Eve, who is eavesdropping on their channel;

how can Alice and Bob create a shared secret such that Eve

obtains very little information on the secret? One typically

assumes that Alice and Bob share some initial piece of in-

formation (e.g., each other’s public key) and use asymmet-

ric secret-agreement algorithms, like RSA [1], which funda-

mentally assume that Eve is technologically limited in her

ability to perform certain computations, like large-integer

factorization, in useful time.

Wireless networks offer the opportunity for a different,

complementary kind of security, which relies not on the ad-

versary’s computational limitations, but on her limited net-

work presence. If Alice is a wireless node, when she trans-

mits, she may be overheard by many receivers, however, as

long as there is sufficient noise, it is unlikely that any two re-

ceivers overhear exactly the same information. To illustrate,

consider a person speaking in a low voice in a noisy room:

people standing nearby will hear parts of the speech, but if

the room is sufficiently noisy, it is unlikely that any two of

these people (standing at different locations) will hear the

exact same parts of what the speaker says. It has been long

known in the information theory community that, if Bob and

Eve do not overhear exactly the same information from Al-

ice’s transmission, it is theoretically possible for Alice and

Bob to create a shared secret Eve knows nothing about, even

if Eve has arbitrary computational capabilities [2, 3].

Turning this feasibility result into a practical secret-agree-

ment protocol can have significant implications for wireless

security. It would enable Alice and Bob to generate shared

secrets “out of thin air” (and use them, e.g., to continuously

refresh the key used to encrypt their communication [4]).

These continuously generated shared secrets would not rely

on any information permanently stored in Alice’s or Bob’s

machines. For instance, there would be no public/private

RSA key pair or master key (as in WPA) that, if stolen or

accidentally revealed, would enable an adversary to recon-

struct Alice’s and Bob’s shared secrets (and decrypt their

communication).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147991686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We do not advocate replacing existing crypto-systems that

rely on the adversary’s computational limitations. However,

we believe that exploring complementary approaches (which

rely on different kinds of adversary limitations) will become

of increasing interest in the near future, as governments and

corporations acquire massive computational capabilities. In-

terest in alternatives is already present in industry, where

several companies are developing quantum key distribution

(QKD) systems; such systems enable a pair of nodes to ex-

change a secret such that an eavesdropper obtains very little

information on the secret, independently from her compu-

tational capabilities. A typical application envisioned for

QKD systems is the periodic generation of one-time pads

at a high enough rate to enable information-theoretically se-

cure transmission of real-time video, e.g., for military oper-

ations [5]. Unfortunately, QKD systems are expensive (due

to the need for sophisticated equipment such as photon de-

tectors), hence accessible only to the wealthiest governments

and corporations. This motivated us to explore the feasibility

of a secret-agreement protocol that neither relies on compu-

tational limitations nor requires expensive equipment.

We consider a set of n wireless nodes (we will call them

“terminals”), connected to the same broadcast network, and

an eavesdropper Eve connected to the same network. We

design a protocol that allows the terminals to create a shared

secret such that Eve learns very little about the secret. If

Eve is a passive adversary (she never makes any transmis-

sions), the terminals do not need to share any information

before they run our protocol. If Eve is an active adversary

(hence may try to impersonate a terminal), then the termi-

nals need to share a (small) initial piece of information when

they first communicate (until they generate their first shared

secret). The need for this bootstrap information is funda-

mentally unavoidable: without it, there is no way for Alice

to know that she is talking to Bob until they have established

their first shared secret. However, any shared secrets subse-

quently generated through the protocol do not depend in any

way on the bootstrap information.

Relative to actual security systems, we shift the challenge

from computation to network presence: for current crypto-

systems, a dangerous adversary is one with high computa-

tional power (e.g., one with access to quantum computers);

for our protocol, a dangerous adversary is one who is phys-

ically present in many locations in the network at the same

time. Which of these hurdles is more challenging for an ad-

versary depends on the system and setup, and this guides

the system designer in making the choice. Or, if defense in

depth is desired, both forms of protection could be employed

simultaneously.

We build on ideas from the information theory commu-

nity and develop an actual protocol of polynomial complex-

ity that is implementable in simple wireless devices. We also

advance the theory state of the art by focusing on the cre-

ation of group secrets (as opposed to secrets between pairs

of nodes). This choice is motivated by the increasing ten-

dency of wireless users to consume content in groups [6],

enabled by the accessibility of social applications on mobile

phones.

An important difference from theoretical work is that we

do not assume that the terminals know the exact quality of

the channel between each terminal and Eve. This assump-

tion is necessary for formally proving “information theoretic

security,” i.e., that Eve will obtain zero information about the

secret, but we found that this does not always hold in wire-

less networks. We therefore use artificially generated inter-

ference [7, 8] to ensure that Eve, wherever she is located,

will miss some minimum fraction of the information trans-

mitted by any terminal with very high probability.

As a proof of concept, we deployed our protocol on a

small wireless testbed that covers an area of 14 m2 and con-

sists of n = 8 terminals, 6 interferers, and an adversary. Our

experiments so far show that, in our testbed, if the adversary

uses a standard wireless physical layer and is located within

no less than 1.75 m from any terminal, the n = 8 terminals

achieve a secret generation rate of 38 kilobits per second. To

the best of our knowledge, this is the first experimental evi-

dence that a group of wireless nodes can generate thousands

of new shared secret bits per second without relying on the

adversary’s computational limitations.

After introducing our setup (§2), we describe our proto-

col (§3), our deployment and early experimental results (§4),

and related work (§5). We close with the hardest challenge

that remains to be solved before our protocol is ready for use

in practice (§6).

2. SETUP

We consider n wireless nodes, T0, . . . , Tn−1, connected

to the same broadcast network; we will refer to these nodes

as terminals; sometimes we will refer to terminals T0, T1,

and T2 respectively as Alice, Bob, and Calvin.

We consider an adversary, Eve, connected to the same

broadcast network as the terminals. Our design assumes that

Eve may possess multiple receiving antennas. But we should

state upfront that the experimental results presented in Sec-

tion 4 assume that Eve is a standard 802.11 wireless router

with one omnidirectional antenna.

The terminals communicate with each other in two ways:

(1) When we say that terminal Ti transmits a packet, we

mean that it broadcasts the packet once. (2) When we say

that terminal Ti reliably broadcasts a packet, we mean that

it ensures that all other terminals Ti receive it, e.g., through

acknowledgments and retransmissions; to be conservative,

we assume that Eve receives all reliably broadcast packets.

Our goal is to design a protocol that enables the n ter-

minals to create a shared secret S , in a way that Eve obtains

very little information on S . We assume that Eve is a passive

adversary, i.e., she does not perform any transmissions, she

only tries to eavesdrop on the communications. We describe

how to defend against active attacks (through authentication)

in our technical report [9].

2

3. PROTOCOL

3.1 Phase 1: Pair-wise Secrets

Basic idea. Suppose Alice and Bob exchange (and thus

know the contents of) 3 packets, x1, x2 and x3. Suppose

Eve misses (knows nothing about the contents of) two of the

packets shared by Alice and Bob, x1 and x2. If an oracle told

Alice and Bob that Eve misses x1 and x2, they could simply

use 〈x1, x2〉 as their shared secret. If an oracle told Alice and

Bob that Eve misses at least two of their shared packets (but

not which two), they could still create a perfect shared se-

cret (one that Eve knows nothing about), by using two linear

combinations of their shared packets, e.g., 〈x1⊕x2, x2⊕x3〉
(where ⊕ denotes the bit-wise XOR operation over the pay-

loads of the corresponding packets).

Algorithm.

1. Alice (T0) transmits N packets (we will call them x-

packets).

2. Each terminal Ti6=0 reliably broadcasts the identities of

the x-packets it received correctly.

3. Alice constructs M linear combinations of the x-packets

(we will call them y-packets), using a well-defined construc-

tion (specified in [9], due to space restrictions). She reliably

broadcasts the identities of the x-packets she used to create

each y-packet.

4. Each terminal Ti6=0 reconstructs the contents of as

many (say Mi) of the y-packets as it can based on the x-

packets it received.

At this point, Alice and terminal Ti share Mi y-packets.

Their shared pair-wise secret is the concatenation of these

packets.

Example. Suppose we have n = 2 terminals, Alice and

Bob. First, Alice and Bob create some shared information

between them: Alice transmits N = 10 x-packets, x1, x2,

. . . , x10 (step 1). Bob correctly receives 5 of them, x1, x3,

x5, x7, x9, and tells Alice which ones (step 2). Suppose

Eve correctly receives 6 of the transmitted packets, x1, x3,

x5, x6, x8, x10, and completely misses the rest. At this point,

Alice and Bob share the contents of x1, x3, x5, x7, x9; of

these, Eve misses x7, x9.

Next, Alice and Bob perform privacy amplification, i.e.,

they condense their 5 shared x-packets into M1 = 2 shared

y-packets: Alice constructs two y-packets that are linear

combinations of the x-packets she shares with Bob: y1 =

x1 ⊕x5 ⊕x9 and y2 = x3 ⊕x7. Then, Alice reliably broad-

casts the identities of the x-packets she used to construct the

y-packets, but not their contents (step 3). Bob uses this in-

formation to reconstruct the contents of the y-packets (step

4). Eve overhears Alice’s reliable broadcast, but she cannot

reconstruct the contents of either y1 or y2, because she does

not know the contents of x7 or x9. At this point, Alice and

Bob share y1, y2, whereas Eve knows nothing about them.

It is important that Alice construct the y-packets using a

particular construction, because not any linear combinations

of x-packets will do. The y-packets that we use above hap-

pen to work for the particular example, but our protocol does

not really construct so simple linear combinations, as they

may leak information to Eve. For instance, suppose Alice

constructed the y-packets as follows: y′
1
= x1⊕x3⊕x5 and

y′
2
= x7 ⊕ x9. In this case, Eve would be able to reconstruct

y′
1
, hence recover half of the shared secret.

Key point. In this example, Eve knows nothing about the

shared secret 〈y1, y2〉, because it consists of 2 linear combi-

nations of the x-packets, which is the number of x-packets

shared by Alice and Bob but not Eve at the end of step 2. So,

to create a perfect shared secret with terminal Ti, Alice needs

to know a lower bound for the number of x-packets shared

with Ti that Eve has missed, and she must set Mi (the size of

the pair-wise secret shared with Ti) to this value. The closer

this lower bound is to the actual number of x-packets that

Eve has missed, the longer the shared pair-wise secret. A

key question is: how can Alice estimate a good lower bound

in practice?

3.2 Phase 2: Group Secret

Basic idea. Once Alice has created a perfect pair-wise se-

cret with each terminal Ti, she could use this secret to uni-

cast a group secret to Ti. This “unicast” algorithm, however,

has poor scalability: It requires Alice to make n − 1 sepa-

rate transmissions. As a result, its efficiency (the size of the

group secret divided by the minimum amount of data that

Alice needs to transmit to create the group secret) goes to 0

as the number of terminals n increases. This means that the

terminals cannot create any group secret at all.

Instead, we use the following algorithm: Alice transmits

a second round of packets, which does not increase the num-

ber of secret bits shared by Alice and each other terminal, but

“redistributes” them, such that all terminals share the same

secret bits. The size of the resulting shared group secret is

equal to the size of the shortest pair-wise secret.

Figure 1 shows the efficiency of the unicast algorithm

(dashed lines) as well as our algorithm (continuous lines) for

different values of n, under simplifying assumptions (Alice

guesses exactly the number of x-packets shared with termi-

nal Ti that are missed by Eve; the packet erasure probability

between Alice and each terminal, as well as Alice an Eve,

is the same). Even under these (favorable) assumptions, the

efficiency of the unicast algorithm goes to 0 as n increases.

Algorithm.

1. Alice (T0) constructs M − min{M1,M2, . . .Mn−1}
linear combinations of the y-packets (we will call them z-

packets), using a well-defined construction [9]. She reliably

broadcasts both the contents of each z-packet and the iden-

tities of the y-packets used to construct each z-packet.

2. Each terminal Ti6=0 reconstructs the M −Mi y-packets

it is missing by combining any of the M −Mi z-packets

with the Mi y-packets it reconstructed in step 4 of phase 1.

3. Alice constructs L = min{M1,M2, . . .Mn−1} linear

3

0 0.5 1
0

0.05

0.1

0.15

0.2

0.25
E

ff
ic

ie
n
c
y

Erasure Probability

n=2 n=3

n=3

n=6

n=10

n=∞

n=6
n=10

n=∞

Figure 1: Maximum efficiency of our algorithm (contin-

uous lines) and the unicast algorithm (dashed lines).

combinations of the y-packets (we will call them s-packets),

using a well-defined construction [9]. She reliably broad-

casts the identities of the y-packets that she used to create

each s-packet.

4. Each terminal is now able to reconstruct all the s-

packets, because it has all the y-packets.

At this point, all terminals have the same set of L s-packets.

The shared group secret is the concatenation of these L shared

s-packets.

Example. Suppose we have three terminals, Alice, Bob,

and Calvin. At the end of phase 1, Alice has constructed

M = 3 y-packets. Of these, she shares M1 = 2 with Bob

(y1 and y2) and M2 = 2 with Calvin (y1 and y3). Suppose

Eve knows nothing about any of the y-packets.

First, we reach a point where all terminals share all the

y-packets: Alice constructs M −min{M1,M2} = 1 linear

combination of the y-packets, y2 ⊕ y3, and reliably broad-

casts its contents (step 1). Thanks to this information, each

of Bob and Calvin reconstructs the y-packet that he is miss-

ing (step 2). At this point, all terminals share y1, y2, y3,

while Eve knows the value of y2 ⊕ y3.

Next, the terminals perform privacy amplification, i.e.,

they condense their 3 shared y-packets into L = min{M1,

M2}= 2 shared s-packets: Alice constructs 2 s-packets that

are linear combinations of the y-packets: s1 = y1 ⊕ y2 ⊕ y3
and s2 = y1 ⊕ y2. Then, Alice reliably broadcasts the iden-

tities of the y-packets she used to create the s-packets, but

not their contents (step 3). Bob and Calvin use this infor-

mation to reconstruct the contents of the s-packets (step 4).

Eve overhears Alice’s reliable broadcast, but she cannot re-

construct the contents of s1 or s2, because she does not know

the contents of y1, y2. At this point, Alice, Bob, and Calvin

share s1, s2, whereas Eve knows nothing about them.

As with the y-packets, it is important that Alice construct

the z-packets and s-packets using particular constructions,

otherwise they may leak information to Eve.

Key point. Phase 2 does not increase the amount of se-

cret information shared by Alice with each terminal (Mi),

but it “redistributes” this information, such that all termi-

nals share the same secret information. Said differently, if

Eve knows nothing about the pair-wise secrets created at the

end of phase 1, she will necessarily know nothing about the

group secret created at the end of phase 2. However, as

stated earlier, to create a perfect pair-wise secret with ter-

minal Ti, Alice needs to know a lower bound for the number

of x-packets shared with Ti Eve has missed, and she must

set Mi (the size of the shared pair-wise secret) accordingly.

The question remains: how can Alice estimate, in practice, a

good lower bound for the number of x-packets shared with

Ti that Eve has missed?

Avoiding the worst-case scenario. Our worst-case sce-

nario is that Eve overhears all the x-packets received by a ter-

minal Ti. In that case, Alice must create a shared pair-wise

secret of size Mi = 0 with this terminal, which means that

the shared group secret will also have size L = min{M1,M2,

. . .Mn−1} = 0.

To decrease the probability of this scenario, we make the

terminals take turns in playing Alice’s role (transmitting x-

packets and constructing linear combinations). The idea is to

make each terminal Ti receive information through multiple

different channels (as opposed to receiving information only

from Alice), making it unlikely that Eve is able to collect

the same information as Ti. In a wireless network, Eve can

collect the same information as terminal Ti only when, for

every single terminal Tj 6=i, the channel between Tj and Ti

happens to be the same with the channel between Tj and Eve

throughout the protocol. This never happened in any of the

experiments that we ran.

Linear combinations. The constructions we use to derive

the y-packets, z-packets, and s-packets are based on Maxi-

mum Distance Separable (MDS) codes [10]. Due to space

restrictions, we describe them in a separate report [9].

3.3 Lower-bounding What Eve Is Missing

The amount of information missed by Eve depends on

channel conditions as well as Eve’s network presence (the

number and quality of antennas that she has at her disposal).

The terminals may be able to influence and/or estimate chan-

nel conditions, but they have no way of knowing Eve’s net-

work presence. However, they can be more or less conserva-

tive when creating their secrets, depending on the strength of

the adversary against whom they want to secure their com-

munications.

One idea we are exploring is to artificially create channel

conditions that are favorable to our protocol: In our setup,

Bob and Eve are connected to the same broadcast network,

so, when Alice transmits, it is possible that Eve misses none

of the x-packets received by Bob (which means that Alice

and Bob cannot create any shared secret at all). To pre-

vent this scenario, we can use especially crafted interference

that causes Eve to miss some minimum fraction of the pack-

ets shared by Alice and Bob, independently from the natu-

rally occurring channel conditions. As a proof of concept,

we are first trying out dedicated “interferer” nodes, but, ul-

timately, the terminals themselves could generate artificial

4

interference. iJam [8] uses a similar approach (but performs

sophisticated OFDM-specific jamming, whereas we would

only require the terminals to create enough noise to erase a

minimum fraction of the packets from Eve’s receiver).

Another idea we are exploring is to empirically estimate

the amount of information missed by Eve based on the amount

of information missed by the terminals. For instance, sup-

pose the terminals want to be secure against an adversary

that has the same kind of equipment as any terminal. We

can pretend that each terminal Tj is Eve and that all the

other n − 2 terminals want to create pair-wise secrets with

Alice that are unknown to Tj . Since we know which bits

were received by each terminal (including Tj), we can com-

pute exactly what the size of these supposed pair-wise se-

crets should be. Suppose we compute that, if terminal Tj

was Eve, Alice and Bob should create a shared pair-wise se-

cret of size M j between them. We conservatively set the

size of the shared pair-wise secret between Alice and Bob

to min{M2, . . .Mn−1}. Similarly, to secure against an ad-

versary that has as many antennas as k terminals, we can

pretend that each set of k terminals together are Eve, and

that all the other n − k terminals want to create pair-wise

secrets with Alice that are unknown to the k Eve-terminals.

4. DEPLOYMENT

We set up a small indoor wireless testbed that covers a

square area of 14 m2. We deployed n = 8 terminals and one

adversary. All nodes are Asus WL-500gP wireless routers

running 802.11g (at 2.472 GHz, transmit power 3 dBm) in

ad-hoc mode, positioned within line of sight of each other.

During our experiments, when a terminal transmits, it sends

100-byte packets at 1 Mbps.

We divide the testbed area in 9 logical cells, place Eve in

one of them, and the terminals in various positions around

her, but not in the same cell. Our rationale is the following:

if a group of wireless nodes want to exchange a secret, it

is reasonable to require from each of them to stand at least

some minimum distance away from any other wireless node.

In our testbed, this minimum distance is 1.75 m (the diago-

nal of a logical cell), and it was determined by the shape of

the interferers’ beams (a narrower beam would have led to a

smaller minimum distance).

To generate interference, we use 6 WARP (Wireless Open-

Access Research Platform) nodes, each with two directional

antennas, each with a narrow 3-dB 22-degree beam. We

place the interfering antennas along the perimeter of the cov-

ered area; we turn them on and off, such that, at any point in

time, one pair of antennas creates noise along a row, while

another pair creates noise along a column. The point of the

artificial interference is to ensure that Eve misses some min-

imum fraction of the packets shared by Alice and Bob, inde-

pendently from the naturally occurring channel conditions.

When we refer to an “experiment,” we mean that we place

n terminals and Eve on our testbed area, such that each cell

is occupied by at most one node, and we run one round of

Figure 2: Reliability achieved by our protocol. Minimum

(diamonds), 95th percentile (triangles), average (circles),

and 50th percentile (squares).

our protocol. We run one such experiment for each possible

positioning of n terminals and Eve, and we run one such set

of experiments for n = 3 to 8 terminals. Each experiment

is divided in time slots; at the beginning of each time slot,

we turn on different interferers, such that, by the end of the

experiment, we have rotated through all 9 noise patterns.

We use two metrics to evaluate our protocol: The effi-

ciency achieved by the protocol during an experiment is the

number of shared secret bits generated by the terminals di-

vided by the total number of bits that the terminals transmit-

ted during the experiment. The reliability achieved by the

protocol during an experiment represents the quality of the

created shared secret; reliability r means that Eve can cor-

rectly guess each bit of the shared group secret with proba-

bility 2
−r.

Preliminary Results. For n = 8 terminals, we achieve

minimum efficiency 0.038; given that the terminals transmit

at rate 1 Mbps, this efficiency yields 38 secret Kbps.

Figure 2 shows the reliability achieved by our protocol as

a function of the number of terminals n. For each value of n,

we show the minimum (diamonds) and average (circles) re-

liability achieved across all experiments with n terminals, as

well as the minimum reliability achieved during 95% (trian-

gles) and 50% (squares) of the experiments with n terminals.

For n = 8 terminals, we achieve minimum reliability

rmin = 1, i.e., Eve never learns anything about the se-

cret. For n = 6 terminals, rmin = 0.2, i.e., Eve can cor-

rectly guess the value of a secret bit at most with probability

2
−0.2

= 0.87, but the value of an entire s-packet with prob-

ability 2
−0.2·800 ≈ 0 (each packet consists of 800 bits). Re-

liability decreases as the number of terminals decreases for

the following reason: we estimate the length of the secret to

create based on information provided by the terminals; the

fewer the terminals, the less accurate the estimate, hence the

more likely we are to create a longer secret than we should.

However, for any number of terminals, in at least half of the

node placements we achieve minimum reliability 1 (the 50th

percentile is always 1).

These results tell us that, by using artificial interference, it

is feasible to generate thousands of secret bits per second

among a group of wireless nodes, such that an adversary

5

with a simple commodity receiver learns nothing about these

secret bits. Of course, we would not do as well in the pres-

ence of a stronger adversary with multiple antennas. How-

ever, this result is good enough to give us hope that, even in

the presence of a stronger adversary, we can achieve a non-

zero secret bitrate.

5. RELATED WORK

Wyner introduced the wire-tap channel, where Alice trans-

mits information to Bob, and a “wiretapper” Eve receives a

noisy version of what Bob receives; he showed that Alice

and Bob can achieve non-zero secrecy rate when the Al-

ice/Bob channel is better than the Alice/Eve channel [2].

Maurer extended the wire-tap channel with public discus-

sion; he provided lower and upper bounds for the secrecy

rate from Alice to Bob and showed that it can be non-zero

even when the Alice/Bob channel is worse than the Alice/Eve

channel [3]. This work proved the theoretical feasibility of

perfect pair-wise secrets (assuming Alice is connected to

Eve through an idealized channel).

More recently, researchers have started to propose con-

crete, implementable protocols for creating pair-wise shared

secrets in wireless networks. Some of them rely on the time-

varying nature of wireless channels and the fact that Alice

and Bob can measure the (time-varying) channel between

them whereas Eve cannot [11, 12, 13]. They achieve secret

generation rates up to a few tens of bps (in modified 802.11

or 802.15 environments). However, they rely on channel

changes to extract secret bits, hence they are better-suited

for mobile environments (in static environments, they can

be vulnerable to eavesdropping) [14]. In another proposal,

Alice and Bob create pair-wise shared secrets by combining

and heuristically condensing the frames that are transmitted

between them only once (the assumption being that these

frames are less likely to have been heard by an eavesdropper

than the rest) [4]. This protocol has been implemented in

an 802.11 environment, but there has not been any evalua-

tion or discussion of its efficiency or reliability yet. In iJam

(developed in parallel with our work), when Alice transmits,

Bob jams a part of her transmission in a special way (specific

to OFDM) that prevents Eve from guessing which part was

jammed. Hence, Alice and Bob share common knowledge

that is secret from Eve, and they use it to create a pair-wise

secret [8]. iJam achieves a secret-generation rate up to 18

Kbps (in a modified 802.11 environment).

Our protocol requires neither a mobile environment with

quick channel changes nor custom physical-layer operations

that are specific to OFDM (or any other transmission scheme).

The key idea behind it—to the best of our knowledge not

leveraged by any existing protocol—is that a conservative

estimate of the number of bits missed by Eve is sufficient for

creating shared secrets at Kbps rates. And, unlike any of the

existing protocols (which are fundamentally tied to pair-wise

secrets), it can gracefully handle multi-party secret genera-

tion.

6. CHALLENGES

We expect that our biggest challenge will be to charac-

terize the robustness of our protocol against an adversary

that possesses multiple antennas. Such an adversary not only

overhears more information, but may also be able to cancel

out from her received signal some of the artificial interfer-

ence, provided the multipath channels between Alice–Eve

and interferers–Eve satisfy certain “separability” conditions.

We are currently studying the probability of these conditions

occurring as a function of the number of Eve’s antennas.

Even though we are using ideas from information theory,

we are not aiming for information-theoretic security (perfect

shared secrets). That would require perfect knowledge of

the amount of information known to Eve, and, not surpris-

ingly, we have found this to be practically infeasible. On the

other hand, we do not believe that this is reason enough to

discard the idea of leveraging noisy communication to cre-

ate secrecy. Rather, we should view it as a starting point, an

opportunity to depart from the assumption that an adversary

has to have computational limitations.

7. REFERENCES
[1] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining

Digital Signatures and Public-key Cryptosystems,” Communications

of the ACM, vol. 21(2), pp. 120-126, 1978.
[2] A. D. Wyner, “The Wire-tap Channel,” Bell System Tech. J., vol. 54,

pp. 1355-1387, 1975.
[3] U. M. Maurer, “Secret Key Agreement by Public Discussion from

Common Information,” IEEE Trans. Info. Theory, vol. 39, 1993.
[4] S. Xiao, W. Gong, and D. Towsley, “Secure Wireless Communication

with Dynamic Secrets,” in Proceedings of the IEEE INFOCOM

Conference, 2010.
[5] A. Mink, X. Tang, L. Ma, T. Nakassis, B. Hershman, J.C. Bienfang,

D. Su, R. Boisvert, C. W. Clark, and C. J. Williams, “High Speed
Quantum Key Distribution System Supports One-time Pad Encryption
of Real-time Video,” in Proceedings of SPIE, vol. 6244, 2006.

[6] “The On-demand Video Consumer”, Survey, 2012, http:
//www.youtube.com/yt/advertise/research.html.

[7] L. Lai, H. El Gamal, and H. V. Poor, “The Wiretap Channel with
Feedback: Encryption over the Channel,” IEEE Trans. Info. Theory,
vol. 54(11), pp. 5059-5067, 2008.

[8] S. Gollakota and D. Katabi, “Physical Layer Wireless Security Made
Fast and Channel Independent,” in Proceedings of the IEEE

INFOCOM Conference, 2011.
[9] M. J. Siavoshani, U. Pulleti, E. Atsan, I. Safaka, C. Fragouli,

K. Argyraki, and S. Diggavi. “Exchanging Secrets Without Using
Cryptography,” Technical Report, 2011,
http://arxiv.org/abs/1105.4991.

[10] F. J. Macwilliams and N. J. A. Sloane, “The Theory of Error
Correcting Codes,” North-Holland, 2006.

[11] B. Azimi-Sadjadi, A. Kiayias, A. Mercado, and B. Yener, “Robust
Key Generation from Signal Envelopes in Wireless Networks,” in
Proceedings of the ACM Conference on Computer and

Communications Security (CCS), 2007.
[12] C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, and N. Mandayam,

“Information-theoretically Secret Key Generation for Fading Wireless
Channels,” IEEE Trans. Information Forensics and Security, vol. 5(2),
pp. 240-254, 2010.

[13] J. Croft, N. Patwari, and S. Kasera, “Robust Uncorrelated Bit
Extraction Methodologies for Wireless Sensors,” in Proceedings of

the IPSN Conference, 2010.
[14] S. Jana, S. N. Premnath, M. Clark, S. Kasera, N. Patwari, and

S. Krishnamurthy, “On the Effectiveness of Secret Key Extraction
from Wireless Signal Strength in Real Environments,” in Proceedings

of the ACM MOBICOM Conference, 2009.

6

