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Dynamics of dark-soliton formation in a polariton quantum fluid
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Polariton fluids have revealed huge potentialities in order to investigate the properties of bosonic fluids at
the quantum scale. Among those properties, the opportunity to create dark as well as bright solitons has been
demonstrated recently. In the present experiments, we image the formation dynamics of oblique dark solitons.
They nucleate in the wake of an engineered attractive potential that perturbs the polariton quantum fluid. Thanks
to time and phase measurements, we assess quantitatively the formation process. The formation velocity is
observed to increase with increasing distance between the flow injection point and the obstacle which modulates
the density distribution of the polariton fluid. We propose an explanation in terms of the increased resistance to
the flow and of the conditions for the convective instability of dark solitons. By using an iterative solution of the
generalized Gross-Pitaevskii equation, we are able to reproduce qualitatively our experimental results.
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In the recent past much effort has been devoted to
characterizing the properties of quantum fluids, with particular
attention given to phase transitions such as the Bose-Einstein
condensate (BEC) and superfluidity. As in everyday fluids,
waves and turbulence are also expected at the quantum scale.
Quantized vortices1,2 and spin texture,3 for example, have been
topics of major discussion. Presently, there is growing interest
around solitons, especially in condensed matter systems.4,5

Solitons are solitary waves which propagate in the medium
while maintaining their shape. The stability of their shape
is the result of the exact compensation of the dispersion by
the interparticle interactions. For attractive interactions, bright
solitons (BSs) are formed.5 For the opposite case of repulsion,
dark solitons (DSs) may appear, having the shape of density
depressions in the fluid.

Originally predicted in the 1970s,6 DSs have been ex-
perimentally observed only 20 years later in the field of
nonlinear optics7 and then in cold atom BECs by phase
and density imprinting.8,9 DSs are indeed characterized by
both a density minimum and an associated phase shift.10

However, imprinting is not the only possible way to create
a DS. More recently, the growing attention to quantum
hydrodynamics has triggered a clear interest towards the
nucleation of DSs in the wake of an obstacle. Similar to
a boat sailing across calm waters, an obstacle flowing in a
quantum fluid can leave turbulence in its wake1 and generate
waves. Under particular conditions, solitons can form in
the condensate.2 Such conditions are basically set out by
the density and the velocity of the fluid, together with the
nature of the obstacle. Recently, condensed matter systems,
and in particular exciton-polaritons, have turned out to be
a very accessible means to study quantum hydrodynamics.
Polaritons are half-matter half-light particles arising from the
strong coupling between excitons and cavity photons in a
semiconductor microcavity. They have evidenced BEC11 as
well as superfluidity.12 Additionally, polaritons can be easily
optically manipulated and controlled, and this promotes them
to the frontline in order to study quantum hydrodynamics.
Recently it has been proven that under certain conditions
quantized vortex pairs13,14 and dark solitons4 can be nucleated
when a polariton quantum fluid scatters against a defect.

Although quite exhaustive information is available regarding
vortices, only little information is available on the dynamics
and the formation of DSs. The cause of this absence may
be found in the difficulty of finding a proper theoretical
approach to the transient between the time at which the flow
is switched on and the time needed to reach a stationary
state. Experimentally also the study of the transient is arduous
because phase and time resolved imaging of the fluid is
required, which is not so immediate. The formation process of
DSs is of crucial importance for all those fields in which stable
hydrodynamic solitons and strict control of their propagation
are required.

In our experiments we create dark solitons by perturbing
the polariton fluid with an obstacle, and we aim at investigating
the formation dynamics of hydrodynamically nucleated dark
solitons. The phase and amplitude of polaritons are time
resolved through a homodyne detection system. This is
achieved by recording the spatial interference between the
polariton emission and the local oscillator, at the output of a
Mach-Zehnder interferometer.13,15,16 Polaritons are resonantly
injected in a GaAs microcavity by means of a 2 ps long pulse
with a given in-plane wave vector. The resulting polariton wave
packet is then free to evolve in time. The number of particles
composing the fluid is simply controlled by the pump power.
In-plane momentum and fluid density are the most relevant
parameters for hydrodynamic behavior since they directly set
the Mach number (M) of the fluid. M is the ratio between the
flow velocity vflow and the speed of sound cs in the fluid, the
latter being directly related to the fluid density. For M around
1, vortex-antivortex pairs are nucleated in the perimeter of
the obstacle,13 whereas for larger values of M , dark solitons
have been observed to decay into vortex streets.15 Moreover,
DSs are found to be more stable when decreasing the pump
power. Therefore, control of the polariton density distribution
is necessary in order to create and study DSs. Such fine tuning
within the window in which DSs are stable is challenging and is
achieved experimentally by moving the laser spot with respect
to the obstacle position. In the experiments the laser spot has
a Gaussian profile with a FWHM of 15 μm, and the power
is kept to 5 mW during the whole set of experiments. These
parameters give an intensity change of a few percents for a
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FIG. 1. (Color online) Dynamics of a 2D fluid passing an obstacle
in the fluid frame, showing the formation of dark solitons. The
obstacle moves with �vflow, leaving behind perturbations which expand
as circular waves and form dark solitons by tangential interference.
The latter move in the ys direction with respect to the fluid frame,
whereas they grow along the xs direction in the obstacle frame.

distance of 5 μm from the laser spot center. Intensity tuning
of the order of tenths of μW/μm2 is achieved by moving the
laser spot by half a micron. This is an extremely fine tuning
which is hardly achievable by simply changing the pump
power of the laser by means of a neutral density filter. The
dependence of the different hydrodynamic regimes induced
by specific excitation profiles with respect to the obstacle has
already been highlighted in Ref. 17. We will show further
that the density distribution strongly impacts also the DS
formation velocity. The polariton fluid is perturbed by using
an engineered negative potential provided by a mesa in the
microcavity plane. Mesas are realized by etching the spacer
before growing the top distributed Bragg reflection (DBR).18

This results in attractive potentials for polaritons, which are
able to confine polaritons, as well as to perturb the flow of the
two-dimensional (2D) polariton fluid in the cavity.

The dynamics of a 2D fluid passing an obstacle and the
soliton formation can be analyzed both in the laboratory and
in the fluid reference frame. In the latter, the obstacle moves
with a velocity �vobs = −�vflow, perturbing the flow, and leaving
behind circular waves which expand radially, in analogy to
one-dimensional (1D) solitons (red circles in Fig. 1). Positive
interference between such waves occurs tangentially with
respect to the circular wave fronts. The resulting oblique
soliton velocity in the fluid frame, vs , is the only surviving
component of the expansion of perturbation waves (gray
arrows in Fig. 1). The presence of circular waves at the end of
the soliton pattern has been revealed in a number of numerical
simulations for different systems.2,19 In the fluid reference
frame, 2D dark solitons move in the ys direction with a constant
velocity given by vs = vflow sin(α).4 Here, α is the aperture
angle between a soliton and the motion of the mesa in the
flow. In the laboratory frame (in which the obstacle is at rest)
the component for the flow velocity must be added to the
soliton velocity, annihilating the soliton orthogonal velocity.

Figure 2(a) shows the dynamics of dark-soliton formation.
A polariton wave packet is injected at t = 0 with an initial
momentum of 1.5 μm−1 in the vicinity of a 3 μm wide
mesa (circles). A few picoseconds after the injection, DSs
begin to nucleate and their length grows. This is notable from

the snapshots at different times in which the soliton length
(dashed arrows) is clearly increasing within the 6 ps soliton
time window. DSs are characterized by a density minimum
nmin at the core within a surrounding fluid density n0. The
depth of DSs is then given by ns = n0 − nmin and is related to
the soliton velocity in the fluid frame through the formula for
one-dimensional solitons, vs/cs = √

1 − ns/n0. Figure 2(b)
shows an example of the polariton phase at 7.5 ps after the
injection: The phase jump due to the presence of the DS
is clearly visible. The two dark solitons of Fig. 2(a) form
with a different velocity. This asymmetry is explained by the
different local conditions due to the position of the mesa with
respect to the excitation spot and the different landscape of
the photonic disorder. This aspect will be discuss later on.
Confined states close to the continuum are also excited inside
the mesa due to the broad energy spectrum of the pump.20

They appear as bright lobes in Fig. 2(a). In Fig. 2(c) we
analyze the time dependent polariton density along xs . Two
wave fronts are visible. The first one, further from the mesa,
is the front of the polariton wave packet expanding after
the injection. The slope of this wave front in the density
map represents v‖, the velocity of the flow projected on xs .
This must be compared with the velocity extracted from
the injecting momentum whose projection corresponds to a
v‖ = 0.95 μm/ps.15 In good agreement, the velocity measured
in this case is ∼1.05 μm/ps. The other wave front, the one
closest to the mesa, corresponds to the expansion of the dark
soliton and therefore its slope provides the formation velocity
vform of DSs. Differently from our previous works,15 DSs are
nucleated with a velocity appreciably smaller than the flow.
Density profiles along xs are plotted for different times in
Fig. 2(d).

A possible scenario allowing us to understand the origin of
the formation velocity can be depicted assuming the formation
velocity to be dependent on the particle density distribution
during the soliton expansion. Intuitively, the more particles
there are in the path of the DS, the harder it will be for
the soliton dip to expand by pushing through the fluid. To
check this hypothesis, we performed the same experiment for
different positions of the laser spot with respect to the mesa
and we measured the velocity of formation whenever possible.
Experimentally, DSs are observed to form almost as fast as the
flow velocity when the distance d between the center of the
mesa and the center of the excitation spot is larger than 7 μm.
In all other cases, vform and vflow can be measured. The latter
has an almost constant value ranging from 1.05 to 1.10 μm/ps
for the experimental conditions studied. Experiments show
that the formation velocity increases by increasing d. This
observation also suggests a relation between the soliton
formation dynamics and the local density distribution. In
order to assess these local conditions, let us introduce another
important parameter, the DS relative depth ns

n0
. Figure 3 shows

the changes of the ratio ns

n0
in time for different excitation

conditions. The soliton amplitude ns has been calculated by
averaging the density along the whole soliton length, whereas
the density of the fluid n0 is estimated from the maximum
intensity, as shown in Fig. 2(d). Error bars indicate the standard
deviation on the average. The solid lines of Fig. 3 correspond
to distinct distances d while the dashed line corresponds to the
short soliton for the case d = 4.5 μm. The inset of Fig. 3 shows
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(a)

(b)
(c) (d)

FIG. 2. (Color online) (a) Time evolution of the density of a polariton wave packet scattering on an engineered circular obstacle (green
circle) of 3 μm diameter. Polaritons are injected at t = 0 ps with a 1.5 μm−1 initial momentum in the vicinity of the mesa. The soliton dynamics
is highlighted by white arrows. (b) Phase map of the polariton fluid 7.5 ps after the polariton injection, showing phase jump typical of DSs.
(c) Density profile map along the direction of soliton growth xs vs time. (d) Density profiles at different times showing the growth of the DS
along xs .

the variation of the relative formation velocity with respect
to the mesa-laser distance. Relating the results of Fig. 3 with
the one of the inset, we can conclude that larger values of ns

n0
result in smaller formation velocities. A simple consideration
can be used to understand this relation. In fact, large values
of the ratio correspond to a strong polariton density gradient
at the end of the soliton. This gradient tends to fill the low
density region. At the same time, the DS tends to expand in
the opposite direction due to the kinetic term imprinted by
the flow. The growth rate of DS is the result of the interplay
between these two terms. Figure 3 also shows that ns

n0
is

overall larger when the laser spot is closer to the obstacle.
The different spot positions give different density distributions
and lead to different formation velocities, due to different local
conditions during the formation dynamics. This is confirmed
in the case of the short DS observed for d = 4.5 μm. As
discussed previously, two solitons are generated for each

FIG. 3. (Color online) Time evolution of the ratio ns

n0
for different

experimental conditions. The inset is the variation of the relative
soliton formation velocity vform

v‖ with the distance between the laser
spot and the mesa.

laser-mesa distance. For this specific case, the vform has been
measured to be smaller than for the long soliton (0.63 μm/ps),
and the relative depth ns

n0
is found to be larger (see Fig. 3).

This is consistent with our general observation that larger
velocities are found to be related to smaller values of ns

n0
.

All these observations are supported by numerical simulations
performed by solving iteratively the generalized dissipative
Gross-Pitaevskii equation for the lower polariton branch.21

Simulations allow to reproduce the polariton fluid dynamics
and DS nucleation for different positions of the polariton
injection.13,15 The extracted relation between the formation
velocities and the density ratio is consistent with the one
observed in the experiments as well as the dependency of
vform on the distance. This is shown with red dots in the inset
of Fig. 3. Another approach for understanding the dynamics of
DS formation may be provided by considering the convective
instability of DS.22 For values of M larger than a critical
one, DS instability passes from absolute to convective. After
a perturbation is applied to the DS, it propagates along the

FIG. 4. (Color online) Dependence of the formation velocity on
the soliton relative amplitude ns

n0
calculated according to the theory

of Ref. 23 (red line), measured experimentally (black dots) and
numerically simulated (triangles).
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soliton and can break it with the formation of vortices.15 In the
case of stationary and nondissipative flow past an obstacle, it
has been proven that this disturbance is convected away when
the projection of the flow velocity on the soliton v‖ is larger
than the propagation speed of the disturbance vcr.22 This is the
case of convective instability for DSs, and the length of an
oblique dark soliton is found to grow in the reference frame of
the obstacle with vform = v‖ − vcr. In polariton systems, which
are strongly dissipative, when a continuous flow is injected in
the vicinity of an obstacle, its density outside the pumping
region shows a gradient due to the finite lifetime of polaritons.
This property changes the conditions for vcr. In Ref. 23 a
formula for vcr has been extracted under the assumption that
the density distribution does not change too quickly as it goes
further from the pumping area, and it is found to be propor-
tional to the total fluid density n0 and the ratio vs

cs
. Figure 4

shows the theoretical tendency of the formation velocity on the
ratio n0

ns
for the case of a continuous injection of polaritons. This

allows for a comparison with our experimental results (black
dots) and the numerical simulations (triangles), which are
obtained from the inset of Fig. 3. The horizontal bars indicate
the range of values of ns

n0
covered during the soliton time

window. The same trend can be observed in the three cases:
a decreasing formation velocity for an increasing ration ns

n0
.

Quantitatively, our experimental and simulated values are
larger than the ones predicted by the theory of Ref. 23. This
difference is most likely due to the fact that the theory of Ref. 23

considers continuous wave (cw) pumping, leading to a steady
state, while our experiments and simulations are carried with a
pulsed excitation. Intuitively, further losses in the polariton
density make vcr smaller, resulting in a higher formation
velocity compared to the one predicted in the continuous
pumping scenario.

In conclusion, we have reported on the formation dynamics
of oblique dark solitons nucleated in the wake of an engineered
potential in a polariton quantum fluid. The dynamics of DS
formation can be controlled by tuning the fluid density distribu-
tion. In our case this has been achieved by positioning the laser
spot at different distances from the obstacle. We have measured
the velocity of formation of DS and have observed that the
closer the polaritons are injected to the obstacle, the slower
the DSs are formed, in agreement with numerical simulations
based on the Gross-Pitaevskii equation. We have related the
formation velocities to local quantitative measurements of the
ratio ns/n0, which allow to interpret the formation velocity in
the framework of convective instabilities.22,23
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