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Fast and Robust Parametric Estimation of Jointly
Sparse Channels

Yann BarbotinStudent Memberand Martin Vetterli,Fellow, IEEE

Abstract—We consider the joint estimation of multipath chan-
nels obtained with a set of receiving antennas and uniformly
probed in the frequency domain. This scenario fits most of the
modern outdoor communication protocols for mobile access [1]
or digital broadcasting [2] among others.

Such channels verify a Sparse Common Support property
(SCS) which was used in[[3] to propose a Finite Rate of
Innovation (FRI) based sampling and estimation algorithm. In
this contribution we improve the robustness and computational
complexity aspects of this algorithm. The method is based on
projection in Krylov subspaces to improve complexity and a new
criterion called the Partial Effective Rank (PER) to estimate the
level of sparsity to gain robustness.

If P antennas measure aK-multipath channel with N
uniformly sampled measurements per channel, the algorithm
possesses a (K PN log N) complexity and an O(K PN) mem-
ory footprint instead of O(PN?) and O(PN?) for the direct
implementation, making it suitable for K « N. The sparsity is
estimated online based on the PER, and the algorithm therefore
has a sense ointrospection being able to relinquish sparsity if it
is lacking.

The estimation performances are tested on field measurements
with synthetic AWGN, and the proposed algorithm outperforms
non-sparse reconstruction in the medium to low SNR range
(< 0dB), increasing the rate of successful symbol decodings by
1/10™™ in average, and1/3™ in the best case. The experiments
also show that the algorithm does not perform worse than a non-
sparse estimation algorithm in non-sparse operating conditions,
since it may fall-back to it if the PER criterion does not detect
a sufficient level of sparsity.

The algorithm is also tested against a method assuming a
“discrete” sparsity model as in Compressed Sensing (CS). The
conducted test indicates a trade-off between speed and accusa

Index Terms—Channel Estimation, Sparse, Finite Rate of
innovation, Effective Rank, Krylov Subspace.

I. INTRODUCTION
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Fig. 1. In pilot assisted OFDM communications, time-frequeskts are
reserved (black) for pilots, thus providing a sampling of @I in time and
frequency.
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Fig. 2. The ideal SCS channel model is a sefothannels of bandwidtii
each havingk’ components aligned in time. Assuming complex valued signal
components, the total number of unknowng 2 + 1)K instead of3PK

for a sparse model with independent time of arrivals (ToA)26rtimes the
Nyquist Rate for a bandlimited model.

— and the decoding error rate due to bad channel estimation,
both affecting the communication bitrate.

The two interdependent aspects of channel estimation are
therefore the selection of pilots and the design of an esitima
algorithm. We focus on the later and use uniform DFT
pilot layouts shown in Fig[dl, which are found in modern

OMMUNICATIONS between two parties are subject t.communication standards using OFDM. The pilots provide
unknowns: noise and filtering by the Channel Impulsgformation about the CIR, and so does an priori knowledge
Response (CIR). With respect to decoding, the noise iselleabhout its structure.
as nuisance parameters, and the CIR coefficients as unknowng, the noiseless case, the CIR can be perfectly recovered
to be estimated as precisely as possible to maximize tjh a finite set of samples if it perfectly obeys the a priori
decoding rate. For this purpose, the channel can be useckﬁ@wn structure, thus pro\/iding samp“ng theorem— e.g.

transmit a signal known at both ends — thiéots — to gain

uniform pilots in time at the Nyquist rate characterize wialy

knowledge about the CIR. It dictates a trade-off between th@ndlimited signals.

portion of the channel reserved to the pilots — thus lostata
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In this paper we studySparse Common Suppo(SCS)
channels, i.e. channels sharing a common structure of very
low-dimension. Fig[R shows an example of SCS channels.

A. Problem definition

Imposing a structure may not lead to a trivial linear system
of equations as it is the case for Shannon/Nyquist (prajacti
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in a linear subspace). The SCS structure is a unionkof 2 @ Evolution of CIR over time
unidimensional subspaces [4]] [3] sharedbghannels which ~ = : : : —11;/Iag-
leads to an estimation problem exactly and efficiently dullva ? ' e
in the framework ofFinite Rate of Innovatiosampling [5]. In 150

[3] an estimation algorithm SCS-FRI is proposed and studiedg
This leads to two questions. First, as seen in Fig. 3.a), thes
SCS-FRI algorithm selects thE subspaces from an infinite
and uncountable $ktwhich could be sampled. This is the
approach taken byCompressed sensin@CS) or thesparse
representationliterature. The limiting case is to reduce the
set to form a basis as shown in Fig. 3.b). The CIR can
be perfectly and uniquely represented with elements of this
set, but it probably won't have & -sparse representation. A
possible trade-off is to enlarge the set to fornframe as in

100F =

CIR [s

0 10 20 30 40 50
Time [s]

b) From “sparse” to “not so sparse” 20s

Fig.[3.c). Reconstruction becomes more complex, but tHe shi 8 Jf
invariance provided by the framgl [6] gives a betférsparse I
representation. -
Second, models are an approximation of reality — e.g. g
Fig.[4 — and it is not immediately clear which amount 7

of modelization error can be tolerated in practice. This is

espemally |mport_ant as .We rely on a very SpeCIfIC 5'9'@' . 4. Field measurements collected [in [9]. The receiver imsekstation
structure, and this question can only be answered by tri P = 8 antennas, and the transmitter is mobile. The image a) shows
on field measurements. the magnitude of the first antenna’'s CIR. The channel is quisfifly sparse
except when the transmitter goes through a tunnel. The reabpshe CIR

for three different antennas is shown in b) confirming the comspport
property and the transient nature of sparsity.

B. Contributions

With these considerations in mind, we adress the estimation
of Sparse Common SuppdBCS) channels from DFT-domain Second, we quickly review the application of FRI and
measurements (pilots). SCS channels estimation with FRI wgiscrete sparse representations to the SCS estimatioteprob
studied in a previous papeér! [3], and we hereby focus on cofetails are left out since they are already present in the
putational issues and robustness. A fast algorithm is eeriviiterature [10], [3], [11].
based on Krylov subspace projections. Its main advantage isThe third part is devoted to the design of a fast and robust
to have a computation and memory cost proportional to tladgorithm for the SCS estimation problem, based on Krylov
sparsity levelK. It relies on FFT evaluations for the heavy loagubspace projections wit(K PN log(N)) operations, re-
computations, which is particularly appealing for embetdequiring O(K PN) memory, wherek is the number of sparse
DSP applications. components,P is the number of channels, anl is the

The sparsity level is unknown in practice, and we deriveumber of collected samples per channel. For robustness, we
a heuristic estimate of it using a new measure called th@roduce thePartial Effective RanKPER) derived from the
Partial Effective Rank (PER). The PER tracks the “effectiveork of Roy [12], which only adds a margin&(k?) cost
dimension” of the Krylov subspace as its size is increasdd, be evaluatednline The PER is used to derive a heuristic
and can therefore be estimated online unlike other infdonat estimate of’ requiring little overhead. The heuristic may fail
criteria such as Akaike, MDLL]7] or the EDCI[8]. if the channel is not sparse enough, giving a beneficial sense

To assess the performances of the proposed algorithm, sih-adequacy to the algorithm. In such non-sparse cases, the
ulations are performed on measured CIRs to which synthe@igorithm can yield to a non-sparse estimation method.
AWGN is added. We compare the obtained results with anThe resulting algorithm — combining FRI sampling, the
algorithm exploiting discrete sparsity to see if the inphifts PER criterion and Krylov subspace projection — named FRI-
sensitivity described in Fid] 3 is a practical issue. PERK was implemented in MATLAB and compares favorably

to FRI for N > 200.
) We conclude with the application of FRI-PERK and a CS

C. Outline algorithm (RA-ORMP) to field measurements collected in

First, we will explicit the SCS channel model for aeria[9] with synthetic AWGN, and compare them with a simple
electromagnetic transmissions, and see under which ¢onslit non-parametric method (spectrum lowpass interpolatidhg:
this model is relevant. Our conclusion is that the SCS pitgperesults show the SCS property can be exploited in the medium
may not always be verified, which is confirmed by the dat@ low SNR bracket (belowdB) to significantly lower the
shown in Fig[#. It establishes the requirements for a robusymbol Error Rate (SER).

SCS estimation algorithm aware of the operating conditions Compared with the non-parametric method, FRI-PERK in-
creases the proportion of correctly decoded symbolg ty

Inotwithstanding the limitations of machine precision. in average, and/3 at best.
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Fig. 3. Consider a single pulse (- —, dashed curve) critically sampled as shown on the left coltfnom the sampless(, stems), 1-sparse representations
of the original signal are computed. In a), the problem iste@as a parametric estimation f@f andco as in the FRI framework. Conceptually, the signal
component is chosen from the infinite and uncountable seteoptitse shape and its shifts i, 1[. The original signal has a perfect 1-sparse representation
in this setup. In b), the signal component is chosen in a firdteos functions forming a basis of the signal space. The aaigsignal can be represented by
these functions, but it does not have a 1-sparse representatgeneral. In c), three times more synthesis functionsadded to the set, to form a frame. The
signal has a much closer 1-sparse representation in this fitzané&s to the shift invariance introduced by the redunddmetyeen the synthesis functions, but
the estimation becomes combinatorially more complex. The estimétameworks b) and c) are referred discrete sparsitywhich is used inCompressed
Sensing(CS), and the estimation is subject to a trade-off betweenracg and complexity.

[I. THE PHYSICS OF SPARSE COMMON SUPPORT CHANNELSholds at all considered frequencies| —, «|. If in addition

the amplitudes are distributed identically and indepetigen
enough, one of the many avatars of the central-limit theorem
Algorithms for the estimation of a sparse signal fronnay be used to obtain a simplified model known as the

noisy measurements are quite maturel [13].] [14], [3]. Theultipath Rayleigh channel model”:
principal hurdle for their application to physical sign&she

K
inadequacy between the simple theoretical model and yealit hit) — Coolt —t Cr ~ N (0. 21 2
For example, indoor electromagnetic channels are in gkenera ®) Z kel k) F c ( » Gk ) - @
not sparse, as described in the Saleh and Valenzuela modellhe channel is callegiparseif and only if the expected

[15]. In this model, reflections are bundled in clusters hgvi . o
an exponentially decaying energy. This dynamic holds Ig]elay-spread- upper-bounding c — t, verifies

general[[16],[[1F7], and after demodulation, an electronetign K/t « Qg/2m,

channel impulse respong€t) can be described as the super- ) L .
position of clustered reflections, i.e. if the rate of innovation is substantially lower thare th

. Nyquist rate.
The requirements for sparsity are thus two-folds:
hit) = 1;1 " ;)ec ap(t —te — &), . The “girth” of each cluster must be a fraction of the
;{ D inverse bandwidth of the channel.
7, 2 o Z A,e‘J“Al@(eﬂ“), 1) . ggﬁd(\j,\(laigts;]ty of clusters must be a fraction of the channel
k=1 (Ar,A)eCy . . . :
The first property hints at channels with a low or medium
such thaty is the channel mask in the time domain (after dg;andwidth, while the second one requires long-distanaes-pr
modulation), and’;, are clusters of reflections with a delay.  agation where both the transmitter and receivers are in a
Within each cluster we observe reflections shiftedyfrom  re|atively clear environment, such as outdoor commurocati
t; with randomly distributed complex-valgdmplitudesA;.  The high velocity of electromagnetic (EM) waves ensures
The number of clusterd is usually small, but the total scatterers of large dimensions, such as trees, generatersiu
number of reflexions is not. However, if the bandwml;) of of modest time spread allowing the use of the simplified
¢ and the maximal intra-cluster delays, are small enough, model [2) instead of[{1) for channels with a bandwidth up
the 0™ order approximation to 1000 H =z approximately. FigJ5 summarizes the conditions
efijl@(ejw) ~ 3(e®) necessary for the channel to be sparse. The channel shown in
' Fig.[4 has a bandwidth of20MHz, and an EM wave travels
2After demodulation, the equivalent baseband channel becooreplex- 2.5m in a time-lapse equal to the inverse-bandwidth. There-
valued. fore, in typical noisy operating conditions, reflections/ing

A. Sparsity beyond simulations

k=1
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Short delay-spread/8 Long delay-spread the difference in amplitudes

() (b) bt R tgo~ - =t p, (3
Cra #Cro # - # Ck.p. (4)

Indeed, if d,hax IS the maximal distance between tlie
receiving antennas, the ToA difference between antennas is
upper-bounded bfd,,../c.The criterion for common support

C

@ is
Amax € T—-.

© (@) 2

In Fig.[4, diax = 60cm and w5~ = 1.25m.

To assert[(4), we need to quaﬁtify the spatial correlation of
paths amplitudes between the receiving antennas. Using [3]
(Proposition 6), and assuming narrow scatterers, the leerre
tion between antennas separated by a distalhgg can be
approximated as

High bandwidthB

Low bandwidthB/8

Fig. 5. This figure shows how sparsity relates to the chanaebWidth E [Ck c* ]

and its delay-spread. All four panels (a)—(d) have the samebeu of signal MR m

components —80 of them grouped i clusters with exponentially fast energy 5 5
VE[Cunl?] E[1G0nl]

= (Skfk’ JO (dm,nwcarrier/c) .

decay. Signals (a) and (c) cannot be considered sparse @&ehaf innovation
is close to/greater than the Nyquist rate on the time-lapseesponding to

the delay-spread, and outside it. Signal (b) is weakly sparse, the rate of | _. . .
innovation is for this reason also high. In this setup thecrdie sparsity Usmg the numbers of Fld:l 5, correlation between antennas

approach may be suitable. The signal (d) can be consideresesaaonly the does not exceed.5. In most communication scenaridl (4) is

8 clusters will be resolvable in the presence of noise. Theestinnovation of  verified by design as it provides spatial divers(ty|[19].

this approximation is much lower than the Nyquist rate. Evaug (b) and lusi h h .

(d) have the same rate of innovation in a strict sense, (d) eapproximated In conclusion, we see that the common support property is

with a signal havingl /10" the rate of innovation of (b) thanks to its low relatively easy to establish as it only depends on the aatenn

bandwidth. This approximation motivates the use of a model witbw rate topology. This is not the case for sparsity, in Fm 4 when

of innovation in the low-SNR regime where the model approxioragrror the t . | d . f refleci

has less power than the noise. e transmitter enters a tunnel, a dense train of reflect®ns
observed. Hence, it is reasonable to say outdoor communica-

tions with medium bandwidth have typically —as opposed to

a path difference of a fraction & 5m will be unresolvable. Surély’— sparse channel impulse responses.
On the other hand the ratid{/r will be quite large
necessitating long range outdoor transmissions for thareia
to be considered sparse.
Fig.[3 shows the magnitude impulse responses of an outdoor

channel with a medium bandwidth from the FEVW”MO Assume each frame of periog is uniformly sampled in
dataset[[9], and confirms this analysis. time

Note that we do not rule-out the occurrence of sparsity

Ill. ESTIMATION OF SPARSE COMMONSUPPORT
CHANNELS FROMDFT PILOTS

in ultrawide-band communications as the channel dynamics wpln] = wp(n7y/Ny), n =0, ..., Ny—1.
become quite different at very short range/[18]. The pilot layouts in Fig[1l lead to estimate a set of sparse
common support channels from a uniform subset of its DFT

coefficients.
To make notation less cumbersome, we assume without loss
We now consider the case where a receiver (Rx) poss@égenerality thatVy = 2M D + 1, and use negative indices
several antennas, as in SIMO and MIMO Communication\g.hiCh shall be understood “modulo the index limit” in gedera
Therefore, if we consider a-to-P communication verifying Also the pilot index is centered on the DC carrier

B. Common support

the multipath model[{2), the receiver obsern/eéshannels P — {—MD,..., 2D, —D, 0, D,..., MD}
K
hy(t) = Z Crpolt —trp), p=1,...,P, and is supposed to take the value 1. The total number of pilots
= ’ is N = 2M + 1.

for a total of 3K P unknown coefficients parametrizing the Each frame is periodically padded to ensure the convolution
channels. with the CIR is circular, thus

As for sparsity, the high velocity of EM waves is again a z, = diag(1p) Bp,
crucial factor to establish the common support propertg an o 2, = Wdiag (1p) WHhI”

3Forschungszentrum Telekommunikation Wigtip: 77 weasur ements. v at such thatW is the DFT matrix,1p is the indicator ofP,
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and is an(M +1) x K Vandermonde matrix and is the exchange
Z CrsW ntk/'rg ) matrix. This decomposition has the merit to clearly sHby
P ' has a column-space of dimensiéh which depends only on
the support, and is thus the same for each channel. Moreover

is the sampled SCS channel I';”Qdel in the DFT domain. 4y hasis for this column-space verifiesagation invariance
The operatoW diag (1) W is the orthogonal projection property Indeed, let

in the subspace spanned by the basis vectors of the DFT
corresponding to the pilot indices. pt V1. and V* Wy
With a good synchronization, the ToAs are contained in : o
1—7/2, 7/2], and if Then
. Dty /7s Dty /75
Dg[EJ, DeN, ©) V= Vi, qf:dlag(w VT WDt/ )
’ Any basisV having the same span a5 can be written as

the original spectrunh can be recovered by ideal Iowpas%, def VA, where A is a fullrank K x K matrix, therefore
interpolation ’

v =ptA,

WH = Cpdiag (1p) wH z, , ©) VA,

such thatC, is circulant with entries = VA A7'wA.
—_— —
(Cp] _ sin(w(m —n)/D) v X
Dlmn = sin(m(m —n)/Ny) which means the support is recovered from any b&sief

This principle is at the core of OFDM communications whicfi€ column-space df’, as the phase of the eigenvalues of the
interleave data and pilots in the DFT domain. solution to Vi vix

If the measurements:,, are corrupted by AWGN, this
technique projects orthogonally the measurements in §mabi which is the ESPRIT algorithm[[20]. In the presence of
subspace and therefore minimizes the estimation MSE AfyGN, the basisV may be obtained in a robust manner
common-support property or sparsity are ignored. from the SVD of the stacked matrix

A. FRI approach T

The channels in[{5) do not lie in linear subspaces, but in T=1| : |, (8)
a common union of subspace. Therefore the channels can be
estimated in two-steps

1) Identify jointly the K subspaces (the common supporthut other subspace identification techniques may be used

2) Compute the orthogonal projection of the measuremenfgpending on the measurements model.

in the union of subspaces separately for each channel. To compare with the canonical estimation technidie (7),
Algorithms and analysis for this problem are found[ih [3]danthis method not only uses the limited-length of the delay-
are a simple extension of well-known linear array-proaggsi spread but also sparsity and common-support. The solution
techniques such as ESPRI(T [20] or the annihilating filte] [2Dbf the estimation problem is to be found in a smaller set of

to common-support channels. candidates.
The union of subspaces is identified by studying the column-We expect that with good algorithms the estimation will

space of the following data matrices be more resilient to noise. On the other hand more resteictiv
-~ ~ ~ models yield higher modelization error.
h,|0 h,|—D]| h,|—2D . .
Ap[ ] ﬁ[ ] N p[=2D] Note that sparsity is not used to reduce the number of pilots
hplD]  hp[0]  Rp[-D] - but to make the estimation more robust to noise. See [3] for

T, = }Azp[2D] ﬁp[D] }AL [0] R pilot reduction.

B. CS approach
of dimensions(M + 1) x (M + 1)

The measured DFT samplés corresponding to the set of
These data matrices have a Vandermonde decomposmoB”O Pes P g

t subcarriersP are linked to the channel impulse response

T, = JVdiag (Cp 1, ..., Cpx)VH, coefficients by
1 1 X = [W],.H, 9)
WDtl/Ts N WDtK/Ts X déf [[:%1]7)7 e [C%P]’p] , def [hl’ o hP] ’
such thaty = 9Dt /7 2Dt/ | _ _ _ _
w R ° where C is the index set on which the channel impulse

responses are supported a pri@rcontains contiguous indices
covering a time-lapse less than or equal to the delay-spread



6 SUBMITTED TOIEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEM

The matrix of channel coefficient] is assumed to bpintly Since we are interested in the column-spacd& ofve will

row-sparsei.e. only a few rows ofH are not null. work on the hermitian symmetricorrelation matrix
This is known as the MMV (Multiple Measurement Vectors) p
problem which is not a trivial extension of the SMV (Single THT — = Z TiT,
P )

Measurement Vector) problem. It has received a lot of datiant
in the past few years and good, efficient algorithms exishsuc . . . B
as RA-ORMP[18], Lee & Bresslef [14],... VAVh'CT ?as ?genpaws?m, Ulm’tr:n T O’d "M.' s is t
First notice that the channel model described[ih (5) is not’. s?tl;]mn 0 Icc;mpu etqny Helea mt? elgenpa|r_l.f,r,1.|s 0
jointly row-sparse nor sparse, unless the ToAs coincidé wiproject the correfation matrix in rylov su spacq23]. This
the sampling points. Is an iterative method in which computations are performed o

Second, since16) holds, the systdth (9) is invertible, whi He original matrix, meaning t_he original structure is med_.
is typically not the case in compressed sensing. In thisystu enc«lal thte ’_“e”_‘ofly fofotprlnt |hs _It<eptt_low and the computational
sparsity is used as a regularization technique to gain tobss compiexity IS simiar for ach iteration.

to noise as in Sectidn IlIFA. One could select a random subselj<ryl9v approximants have received a lot of attentiom]n in the
of pilots to effectively compress the channel measureme mgncal anaIyS|{[23]EL24]E_[25][[26] or CO”“TO' the '
leaving additional space for data literature, therefore we will only quickly skim throbghe

The compressed sensing literature on sparse channel eséfpje‘?t' L . .
mation has followed two tracks Projection into aKrylov subspaceds done with Lanczos

1) The ToA coincide with the sampling grid. algorithm A cor_nprehenswe _analy3|s was do_ne _by Kul[29]
for the estimation of covariance matrices in linear array

2) The ToA do not coincide with a regular grid resultingb . 9 . .
o . i rocessing. He proposed & N~=) algonthnlﬂ together with
:Etr(?glﬁlcrg)sflr:\a:r?(lj):jeslp?r:i;emi:tt(:ﬁnvr:lﬁli%[]-gg%[]l;e:DmiztiZ];’gltléa approximate)(N?) estimation of the subspace dimension
9 . Implementation of the Lanczos algorithm is quite involved

using frames (increased estimation complexity). in practice and may require costly corrections at eachtitera

The first assumption is remote from reality and the reportm [23], [24], this is why asymptotically more expensive
performances shall be taken with a grain of salt, never$sele, 3 are generally preferred unless the system is very large.
it is useful to benchmark algorithms. The second one is morey o aqditional structure on the original data maffiallows
relevant and its limitations due to model mismatch may faq% to lower the complexity from®(N?) to O(N log N)

away when applied to real-world data where it is unavoidablgying it appealing even for matrices of modest size, and we

anyway. will derive a novel criterion to estimate the signal subspac
dimensionK which requiresO(K?2) computations to be run
IV. APPLICATION OF THEFRI APPROACH PERK along the subspace estimation process.

In this section, we consider the number of signal compo- A -dimensional Krylov subspack of a M -dimensional
nentsK and the number of antenn@sto be small compared hermitian matrixA has is

to the number of pilotsV. .
The FRI based channel estimation technique outlined in Kk,y(A) = span,_; A" f,

Section[II-A has two shortcomings if implemented in §here £ is an initial vector which can be randomly chosen.
straightforward manner Note that all the properties of Krylov subspaces only hold in
1) Its computational complexity and memory footprint argropability, an “unlucky” initial draw may compromise them
respectivelyO(N?) and O(N?). Both are contributed  The it basis vectord” f is a monomial ofA of degreek,

by the SVD decomposition used to estimate the columgherefore using a three terms linear recursion on this segue
space ofT". of monomials one can derive a sequence of orthogonal polyno-
2) The sparsity leveK is unknown. mials [33]. This is equivalent to say that an orthonormaidas
The complexityll) is especially important for channel est@ ;. of Kk f(A) is computed by orthogonalization of each of
mation as it is a core signal processing block at the recsiver” f only against the two previous ones and normalization.
physical layer. It is called on several times per second, ag@é, the main cost of the procedure is the computation of
must operate in real-time with limited power and hardwange non-orthogonal basis vectors, which is done by recairsiv
resources. matrix-vector multiplications.
The three terms recursion used to orthogonalize the Krylov
A. AnO (K PN log N) FRI estimation basis implies thafC, £(A) has a tridiagonal decomposition

Naive computation of an SVD dI’ defined in(8 to obtain "
a K-dimensional subspace of the column-space is wasteful PrrA=QkrIkQ.

for two reasons. First, only” out of M + 1 principal singular \,nere Qy is unitary andT' is symmetric and tridiagonal

pairs(o,,, v, are of interest. Second; is well structured — (thanks to the 3-terms recursion). The eigenpairPgfi A

made of Toeplitz blocks — and matrix factorization tech®§U 5,6 derived from this factorization at little coBt [23]J24nd
such as QR will destroy this structure during the factornrat they are called theitz pairs

process, rendering it unexploitable and requiring an ekpli
storage of the data matrix. 4K is considered small and constant comparedVtand P = 1.

p=1
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TABLE |
APPROXIMATIVE “O” COMPLEXITY FOR SUBSPACE IDENTIFICATION

Algorithm Main computation Storage Latency Processing unis (pu)
Krylov + PER KPNlogN K(N+1) KN [30] P x FFT engines iV + 1 points)
Full SVD (serial) PN3 PN?Z PN3 1 multipurpose pu.
Full SVD (systolic array)[[31],[[32] PN3 PN? N(logN + P) N2x 2-by-2 SVD pu.

The full SVD is done with Jacobi rotations and can be massipahallelized using the systolic array method of Brent,
Luk & Van Loan [31]. Parallelism greatly reduces the latenéythe system, but since it does not reduces the number
of computations it comes at the cost of using multiple procesaimits.

A remarkable property is that the Ritz pairs quickly conworking online with the Lanczos algorithm. Its main advayga
verge to the principal eigenpairs & as K grows. This quick compared to other methods is to require little information
convergence does not follow exactly the result of Xul [29] —about the noise space. A formal study of the PER is deferred
since in our case the Toeplitz blocks are of approximatetg an upcoming report.

square size — but it can be explained with a theorem of Saadyy ghortcomings of traditional information criterions:
[23] (Theorem 12.4.1) which links the rate of convergence gftormation theoretic criteria such as Rissanen’s MDL [7],

the Ritz pairs to the growth rate of Chebyshev polynomialgyaike criterion or the EDCIT34] are powerful mathematical

The theorem shows that Ritz pairs converge faster to t&) s which may be used to evaluate the sparsity l&eThey

corresponding eigenpairs if the eigenvalues are farthartap 5 tollow a similar pattern, which is to minimize
Because of the Toeplitz structure of the data matrix, matrix

vector multiplications withI'*’T', which is the central step of 1TC(0, K) = L(o,K) + K - (2(M + 1) = K) - P(M),

a Lanczos iteration has a cost O(PN log(XV)). Indeed, where/. is the log-likelihood function based an the singular

. P . values of T', and K an estimate of the sparsity level. The
T'Tf = Y T)'T,f term P is a penalty growing at rate betweéh1) and o(N)
p=1 depending on which one of the criteria is used.

is the sum of P matrix-vector multiplications, each of them Their performances are well understobd [35], but the evalua

realized as two consecutive Toeplitz maxtrix-vector nplite-  tion of the likelihood function requires to compute the prod
tions. Square Toeplitz matrices of dimensith+1 can be em-

bedded in circulant matrices of dimensip/ +1) = N +1

M K-1
_ H 02 = det(THT) H op,
def lTp TP] m=K k=0
C, = ,

T, T, which has an algorithmic cost superior to the Lanczos
T, =toeplitz(ty —ar ...y tp.0y--stprr), algorithm itself.
T, =toeplitz(tp1,...,tp.as0,tp —nry-vytp—1). Also, the argument used i [86] to show consistency of a

] . ) ] _partial evaluation of TC(o, K) cannot be used in our setup
Circulant matrices are diagonalized by the DFT matrdpecause the asymptotic distribution of the noise matrixcspe
hence the cost of a circulant matrix-vector multiplicatisn tynfi is extremely different. As the number of pilots increases,

dominated by the cost of FFT. the probability measure of the noise spectrum concentrates
Since [37], but its support is unbounded. This is a major diffeeenc
gl o] [ f " with the setup considered in [36], [29] where the noise power
[]IM ©M] C, C, =T"Tf, spectrum concentrates around the noise variance . Formally
Om Om 0 we can say

each Lanczos iteration has a cost dominatedtbyFFTH Proposition 1: Let T be an(M + 1)P x (M + 1) matrix
of length V + 1. Since only the first half of the input and thecomposed of fixed and finite nhumbét of stacked Toeplitz
first half of the output of each FFT are non 0 or not needellocks T', of square dimensionéM + 1) x (M + 1) as in
each FFT could be replaced by two FFT of half the size. (8). Assuming the generators of each block are sequences of
The resulting algorithm fulfill all the requisites for a faswhite Gaussian noise
embedded implementation since most of the computational
load is put on the FFT block, ubiquitous in communication Omax(THT /(M + 1)) = O(log M),

systems. Tablf | . . o
i.e. even with proper normalization, the spectral norm of an

all-noise matrix diverges.

B. On-line sparsity assessment Proof: The matrix norm induced by the euclidian vector

In this section we introduce th@artial Effective Rank
(PER) a criterion to estimate the signal subspace dimension

6 spectrum” shall be understood as the SVD spectrum of the matrd
5The DFT of the circulant generators can be precomputed. not the noise Fourier power spectrum when matrices are coeder
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norm onCM+1P js submultiplicative, therefore 1 2)
———] ————gp_—11dB
Iner O R\ — ~1d8~
T4 < l |7 o|| <17l o) . RN
9 — ——
& o | \ \
We then use a result of Meckes [38] on the spectral norm ;U ' L~
of square Toeplitz matrices with independently distrilute 06 SNR: 9dB
subgaussian generating coefficients o ] T~
T, ~ 0O ( M log M) - (11) 9y i true sparsity level
1 10 20 30 40 50 60 64
Using the triangle inequality and Meckes” result K
b
ITT| < 3T T, | ~ PO(M log M), ) aB.
p 14F ——— A posteriori optimal K EQgain
which together with[{Z0) and{11) proves the proposition. ol - - - Heuristic based on PER (median) 10
[ |
It indicates that for pure AWGN measurements the spectrum 10§ true value,K = 7 5
of the matrix is unbounded, and one cannot expect the signal 7 |
and the noise spectrum to separate nicely. Without a proper =< underestimate -
approximation, the computation %:KH o2, would have 0
a cost ofO(PN?1og(N)) in general, driving the complexity
of the algorithm. 5
2) The Partial Effective RankThe effective rank, is a
matrix functional introduced by Roy [12] which may be seen _15 -10 5 0 5
as a “convexification” of the rank. SNR [dB]
Definition 1: Let A be a matrix with singular values =
[01, ..., ou]T in decreasing order, and singular values . ©)
distribution ——— FRI + PER (L=5)
= == FRI + K=7 (a priori knowledge) N}'
Pm = on/loli, m =1, ..., M % FRI + Oracle (upper-bound) ‘y'
The Effective Ranlof A is 8 |~ Noequalization (equi-SNR) | |
ID_:‘15 y/
erank(A) = eMtPiopar) & /”
. . o P Rd
where# is the entropy of the singular values distribution = v
» S ,‘/ //
H(pla"'apM) = - melogep7n~ ° / =
m=1 / /
‘I
For elementary properties of the effective rank, we defer to % s % 4 =2 o 2 4 6 8 10

[12].
We can now introduce the partial effective rank
Definition 2: For A andH as in Definitior[1 and

PKk = Uk/HUI:KHl .k
the Partial Effective RanKPER) is
PERg(A) = eMprrprr),

1 K<M

g ey 5

The PER verifies
Proposition 2:

0 < PERg.1(A) — PERg(A) < 1.

The lower bound) is reached if and only ibx,; = 0 and
the upper bound if and only if

0'1:0'2:~..:O'K+1.

7Using a block-Levinson recursion to estimate the determifigrit maybe
brought down taO((PN)?), but it was not verified.

input SNR [dB]

Fig. 6. Simulation on a signal witi@ components. The PER curves in (a)
show a clear inflection & = 7. As the SNR diminishes, the inflection occurs
at lower values ofK and completely disappears at SNRs —10dB. The
graph b) empirically shows that the PER indicates the numbeowiponents
significantly above noise level which can be reliably estedathe value o<

it predicts follows (in median) the one minimizing the chanrstireation error
(energy of the residual). Finally, in ¢) the estimation parfances obtained
with the PER closely follow the one obtained with an oracleading a
posteriori the optimal number of components. We see also thaivbe5dB
the underestimation of< by the PER is beneficial compared to the true
value7. At high SNR, the PER sometimes overestimate the number of paths,
mitigating the performances.

The increase of the partial effective rank witti reflects
how “significant” is the K*" principal component ofA
compared to the previous ones.

Fig.[d@ provides empirical evidences that the evolution ef th
PER during the Lanczos process provides a suitable criterio
to estimatek'.
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We settle on a very simple heuristic to estimdtebased  If this is not the case, we implemented a fast version of

on the PER. We choose the smalléStsuch that it and reported results in Figl 9.(a-b). Note that such apsetu
1 does not apply to most standards [1], [2].
PERK<T) - = (PERK+1(T) + -+ PERK+L(T)) <0,

L Definitive conclusions for hardware implementations canno
which is a very simple “positive slope” detector. It intrags be drawn from these experiments, however we can see that the

a small overheadK + L dimensions are required to decided®W asymptotic complexity of FRI-PERK is not misleading
if the signal space is of dimensioa K since it provides improvements for a number of pilots which

Despite its simplicity and its heuristic motivations, thi?Fre enccilunter%d in p;agltidE [IE] [(21] (high erlbandwith rm)deb
criterion proved to be robust in practice as shown in Eig. 6 or small numbers of pilots, the direct implementation neay

Too many components and/or large modelization error i'F]a_lster, though we did not used the tracking capacity of Laacz
dicate the channels are not sparse algorithm used by choosing an initial vector lying in thergdy

space obtained at the previous stepl [36].

V. NUMERICAL RESULTS VI. CONCLUSION

A. accuracy: FRI vs CS vs lowpass In this study, we addressed computational and robustness is

1) Setup: We use the “FTW rural” dataset to compareues of FRI techniques applied to channel estimation. Tdie te

aforementioned algorithms on the SCS channel estimatignducted on field measurements show the SCS assumption is
problem. The transmitter is a mobile single antenna dBvicgelevant at medium to low SNR where the noise power exceeds

The receiver is a “base-station” wif = 8 receiving antennas. the one of model mismatch, and can be used to substantially

A total of 251 frames are transmitted on B0M H=> wide lower the SER.
channel with &2GH = carrier frequency. The transmission has The PER criterion used to estimate the sparsity level gives
a high SNR, so we consider the samples to be the ground tr§ffisfactory results, but an upcoming thorough analystady
(infinite SNR). Various SNR conditions are simulated witk thiS required.
addition of AWGN to the samples. Comparison with discrete techniques from compressed sens-
The DFT pilots are uniformly laid-out everfp = 3 DFT ing indicate a trade-off between speed and accuracy comhpare
bin. The estimated channel is used to demodulate 4-P&KFRI-PERK. Using a finer discretizatiofrgmeg allows one
coded data symbols occupying the left over DFT bins, at@ vary this trade-off, and shall be tested in the future. We
the obtainedSymbol Error Ratds the quality metric used to believe that with a proper discretization similar speeciiaacy
benchmark the estimation. results shall be met.
2) Interpretation of the results:From Fig.[T we may
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a) Average over time (all snapshots)

b) Average over SNR-(15dB to 0dB)
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