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Abstract The set of solutions of a parameter-dependent linear partial differential equation with smooth
coefficients typically forms a compact manifold in a Hilbert space. In this paper we review the generalized
reduced basis method as a fast computational tool for the uniform approximation of the solution manifold.
We focus on operators showing an affine parametric dependence, expressed as a linear combination of
parameter-independent operators through some smooth, parameter-dependent scalar functions. In the
case that the parameter-dependent operator has a dominant term in its affine expansion, one can prove
the existence of exponentially convergent uniform approximation spaces for the entire solution manifold.
These spaces can be constructed without any assumptions on the parametric regularity of the manifold –
only spatial regularity of the solutions is required. The exponential convergence rate is then inherited by
the generalized reduced basis method. We provide a numerical example related to parametrized elliptic
equations confirming the predicted convergence rates.

1 Introduction

Reduced order models (ROMs) are a crucial ingredient of many applications of increasing complexity
in scientific computing related e.g. to parameter estimation, sensitivity analysis, optimal control, and
design or shape optimization. In this paper we consider the reduced basis method for the numerical
approximation of parameter-dependent partial differential equations (µ-PDEs). The set of solutions of
such an equation depends on a finite-dimensional vector of parameters related e.g. to physical coefficients,
geometrical configuration, source terms, and boundary conditions. Solving the µ-PDE for many different
values of the parameters entails the exploration of the manifold of solutions, and is not affordable if each µ-
PDE requires an expensive numerical approximation, such as the one built over the finite element method.
Suitable structural assumptions about the parametrization enable one to decouple the computational
effort into two stages. A (very expensive) pre-processing step that is performed once (“offline”) – consisting
in the construction of a reduced basis for the representation of the manifold of solutions, followed by very
inexpensive calculations performed “online” for each new input-output evaluation required.

In the reduced basis method, numerical solutions for certain parameters values are computed offline
by a classical discretization technique. These solutions give a basis for approximating online the PDE
solution (for a large number of new parameter values) as a linear combination of the basis elements.
The rational of this approach stands on the very fast (often exponential) convergence – with respect

Toni Lassila · Alfio Quarteroni · Gianluigi Rozza
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to the number of basis – is exhibited by approximation spaces. We point out that in the real-time or
many-query contexts, where the goal is to achieve a very low marginal cost per input-output evaluation,
we can accept an increased “offline” cost – not tolerable for a single or few evaluations – in exchange for
greatly decreased “online” cost for each new/additional input-output evaluation.

In previous works (see e.g. [18, 19, 20]) a priori exponential convergence with respect to the number of
basis functions is proved in the case of elliptic PDEs depending on one-dimensional parameters; several
computational tests shown e.g. in [28] provide a numerical assessment of this behavior, also for larger
parameter space dimensions. Several new results, such as the ones presented in [4], address an a priori
convergence analysis in the more general case where a greedy algorithm is employed to build the reduced
space in an automatic, adaptive way. A further improvement has been proposed in [3], where an error
estimate for the greedy algorithm has been developed in terms of the Kolmogorov n-width. After recalling
the basic features of a generalized version of the reduced basis method, and the main convergence results
in this field, the goal of this paper is to provide both a convergence analysis for the greedy algorithm
and a numerical proof of this behavior, in order to extend the a priori convergence results presented in
[19, 20]. To do this, we rely on the introduction of a fundamental basis, a suitable error representation
formula and an upper bound estimate for the n-width of the solution set of an elliptic parametric PDE
under suitable assumptions on its parametric form.

We proceed to describe the functional setting of our problems. Let Ω ⊂ Rd, d ∈ {1, 2, 3}, be a bounded
domain and X = X(Ω) a Hilbert space of functions defined on Ω with inner product (·, ·)X and induced
norm ‖ · ‖X =

√
(·, ·)X . We consider the following problem: given a vector of parameters µ ∈ D from a

compact parameter set D ⊂ RP , find u(µ) ∈ X s.t.

a(u(µ), v;µ) = f(v;µ) for all v ∈ X, (1)

where the parameters can enter in the bilinear form a(·, ·;µ) in several possible ways: as variable co-
efficients, as coefficient entering in the parametrization of the domain Ω ⊂ Rd of the problem, in the
definition of the right-hand side f that account for either forcing terms and/or boundary conditions. We
denote the P -manifold of solutions

K :=
{
u(µ) ∈ X : µ ∈ D ⊂ RP

}
in the space X. In many applications K is a differentiable manifold. We also allow the case of a
manifold that is not locally smooth at some isolated points, e.g. the parametric Helmholtz equation
∇· (a(·;µ)∇u) +u = 0, which has a smooth solution manifold except at the eigenvalues of the parametric
Laplacian, −∇ · (a(·;µ)∇u) = λ(µ)u. We considered this problem in [17].

A typical objective in applications is to provide a numerical approximation ũ(µ) for u(µ) ∈ K that is
uniform over the entire manifold K. The other option is to consider local or sequential approximations of
the manifold, such as tracking a path on the manifold starting from a certain point and proceeding via a
continuation method. In such cases we are usually not interested in the global behavior of the manifold.
To fulfill the request of uniform approximation, a necessary condition is that, for any ε > 0, we find a
linear subspace XN ⊂ X of dimension N s.t.

inf
ũ∈XN

‖u(µ)− ũ‖X < ε for all µ ∈ D,

where the dimension N is as small as possible. The question is: how small can we expect N to be?
To address this question, we introduce e.g. the finite element (FE) approximation of problem (1): given

a vector of parameters µ ∈ D ⊂ RP , find uh,p(µ) ∈ Xh,p = Xh,p(Ω) s.t.

a(uh,p, vh,p;µ) = f(vh,p;µ) for all vh,p ∈ Xh,p, (2)

where Xh,p ⊂ X is a conforming FE subspace spanned by piecewise polynomial shape functions of
degree p defined on a quasi-uniform mesh of maximum element size h. Due to classical a priori error
estimates such an approximation will eventually approximate well all the solutions on the manifold as the
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dimension N := dim(Xh,p) increases, but only for quite large N we can expect a uniformly small error
in the approximation. When X = H1(Ω) is the standard Sobolev space, the classical a priori estimates
for piecewise polynomial approximations are as follows [2]:

‖u(µ)− uh,p(µ)‖1 ≤

{
C(µ)N−min{s−1,p}/d with h-refinement

C(µ)N−(s−1−δ)/d with p-refinement
, (3)

where s > 1 denotes the number of weak derivatives of u(µ), and δ > 0 is arbitrarily small. If the solution
u is analytic (s =∞), one obtains exponential convergence as a result of p-refinement, i.e.

‖u(µ)− uh,spectral(µ)‖1 ≤ C(µ) exp (−γN) ,

and this leads to the study of spectral methods. It should be cautioned that even if a spectral approxi-
mation can obtain in theory exponential convergence across the entire parameter range, the constants in
front depend on both the dimension d and the number of parameters P of the problem. The assumption
of analyticity of solutions is also often violated.

An efficient method for the approximation of the parametric manifold K should (i) provide exponential
convergence in the dimension N of the approximation space; (ii) have the same convergence rate irre-
spective of the number of parameters P ; and (iii) entail a computational cost that scales only moderately
in N . Exploiting the structure of the manifold K is key to finding uniform approximations that satisfy
(i)–(iii). Our technique for proving exponentially convergent approximation estimates for the manifold of
solutions relies on a series expansion of the solution u(µ). Series expansion solutions, either by separation
of variables or by power series expansion for PDEs with analytical coefficients, are classical tools for
existence proofs. Analytical power series expansions, such as the decomposition method of Adomian [1],
are not competitive against good numerical approximation schemes in actually providing approximate so-
lutions to PDEs, but they do provide an interesting approach to constructing convergence estimates. The
novel contribution of this work is to consider the power series expansion method for parameter-dependent
PDEs by searching for solutions in a parametrically separable form

u(µ) =

∞∑
k=0

Θk(µ)Ψk, (4)

where the Ψk do not depend on µ and the scalar functions Θk(µ). The expansion (4) together with
standard estimates for convergent power series then provides a construction of approximation spaces that
are uniformly exponentially convergent over the entire parameter range.

In order to achieve separation w.r.t to the parameters, we must make suitable structural assumptions
on the PDE. A typical assumption is that of affine dependence on the parameter, i.e. problem (1) is
assumed to be of the form

Qa∑
q=1

Θaq (µ)aq(u, v) =

Qf∑
q=1

Θfq (µ)fq(v) for all v ∈ X, (5)

where every aq : X × X → R and fq : X → R are parameter-independent bilinear and linear forms
respectively, whereas Θaq : D → R and Θfq : D → R are scalar coefficient functions depending only on
the parameter (but not necessary in a smooth way). We shall next describe the generalized reduced basis
method (GRBM) that, given assumption (5), satisfies (i)–(iii). We then discuss some recent theoretical
approximation results linking the best possible approximation space for K with the convergence rate
obtained by the GRBM, and exhibit a model problem where, at least in the case we have Qa = 2 and
some additional special structure on bilinear forms aq, we indeed observe in practice the exponential
convergence predicted by theory.
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2 Generalized reduced basis method for uniform approximation of µ-PDEs

It is clear that the FE approximation uh,p(µ) of (1) can be made arbitrarily accurate for all possible
parameters µ ∈ D, but this usually require a considerable computational cost. In order to overcome this
(sometimes unaffordable) difficulty, a possible idea is to instead consider the manifold of discrete solutions
uh,p(µ) given by

Kh,p :=
{
uh,p(µ) ∈ Xh,p : µ ∈ D ⊂ RP

}
,

as a surrogate for K, and then to look for approximations of Kh,p that converge exponentially fast (see
Fig. 1 for a graphical sketch). Specifically, we consider subspaces Xn ⊂ Xh,p (for n � N) that are
constructed by using information coming from the snapshot solutions uh,p(µi) computed at well-chosen
points µi, i = 1, . . . , n. More precisely, Xn is the span of the snapshot solutions uh,p(µi), i = 1, . . . , n.
This leads to the Reduced Basis (RB) method [27, 28], which is, in brief, a Galerkin projection on an n-
dimensional approximation space relying on the parametrically induced manifold Kh,p. Assuming that the
solutions uh,p satisfy the a priori convergence estimate (3) and that the approximation un(µ) converges
exponentially to uh,p(µ), we can write the total error of the reduced solution as

‖u(µ)− un(µ)‖X ≤ ‖u(µ)− uh,p(µ)‖X + ‖uh,p(µ)− un(µ)‖X ≤ C(µ)
[
N−min{s−1,p}/d + exp(−γn)

]
,

and for N sufficiently large the exponential term in n dominates the error. The additional strength of this
method is that in the best case we only need to solve n times the FE problem for uh,p, and that the solution
for un(µ) can be done with complexity depending on n but not N after some initial preprocessing steps,
so that indeed N can be chosen fairly large in order to obtain highly accurate reduced order solutions.

(a) (b)

Fig. 1 (a) Low-dimensional manifold Kh,p on which the field variable resides and (b) approximation of a new solution at

µnew with the “snapshots” uh,p(µm), 1 ≤ m ≤ n.

For notational simplicity we present here the case P = 1 and formulate the RB method in a slightly
more general form than usually given. It can be expressed in three distinct steps:

i) Choice of the reduced subspace. The basic idea of every reduced basis method is to choose a
finite training sample Ξtrain ⊂ D, |Ξtrain| = M , in the parameter space and to use the information
contained in the corresponding solutions uh,p(µ) for each µ ∈ Ξtrain (called snapshots) to find a
representative subspace for the approximation of the manifold Kh,p. The reduced subspace Xn of
dimension n is found by solving [28]

Xn := arg inf
X∗⊂Xtrain,dim(X∗)=n

δ(X∗,Kh,p;X) (6)

where Xtrain := span{uh,p(µ) : µ ∈ Ξtrain} is the space containing all the snapshots, and the function
X∗ 7→ δ(X∗,Kh,p;X) ∈ R measures the distance between any subspace X∗ ⊂ X and the manifold
Kh,p and is defined by

δ(Xn,Kh,p;X) := sup
u∈Kh,p

inf
ũ∈Xn

‖u− ũ‖X .
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Since the exact distance of the subspace to the manifold is usually unknown, we must resort to
computable surrogates to solve (6). Nonetheless, we mention that the exact distance is used in the
so-called strong greedy algorithm introduced in [3] for the theoretical analysis of convergence rates
of reduced basis methods. Thus we replace (6) with

Xn := arg inf
X∗⊂Xtrain,dim(X∗)=n

MKh,p(X∗), (7)

where X∗ 7→ MK(X∗) ∈ R is an approximate distance between any subspace X∗ ⊂ X and the
manifold manifold Kh,p. The choice of the function MK to be used for the approximation of δ(·, ·; ·)
defines which algorithm we use to choose the subspace. This is by far the most common way of
constructing reduced subspaces, and we call these approaches Lagrange ROM s. In the GRBM we
consider also the parametric sensitivities up to a suitable order, say K − 1 (with K ≥ 1) as part of
the snapshot set

Xtrain := span

{
∂kuh,p
∂µk

(µ) : µ ∈ Ξtrain, k = 0, . . . ,K − 1

}
,

giving a total number of MK snapshots. They can be computed from the discrete sensitivity equa-

tion(s): find wk(µ) =
∂kuh,p
∂µk

(µ) ∈ Xh,p s.t.

a (wk(µ), vh,p;µ) =
∂kf

∂µk
(vh,p;µ)−

k∑
`=1

(
k

k − `

)
∂`a

∂µ`
(wk−l(µ), vh,p) for all vh,p ∈ Xh,p, (8)

for all k = 1, . . . ,K. Only the right-hand side of the system changes with k and thus any precondition-
ers or matrix decompositions used for the primal problem can be reused. The information contained
in these snapshots is then used to build the reduced space Xn with dimension dim Xn = n� MK
in what can also be understood as a data compression problem. If K = 2 and M > 1 we have a
Hermite ROM, and if K > 1 and M = 1 we have a Taylor ROM.
Two standard choices for MK are:

1. The proper orthogonal decomposition (POD), where

MK(Xn) =
1

M

M∑
i=1

‖uh,p(µi)−ΠXn(uh,p(µi))‖2X , (9)

and ΠXn : X → Xn is the orthogonal projection w.r.t. the inner product of X. In this case,
we choose the basis by minimizing the `2(Ξtrain) error in parameter space. It turns out that the
optimal bases are hierarchical and are spanned by the leading n eigenvectors of the correlation
matrix

Cij =
1

M
(uh,p(µj)− ū, uh,p(µi)− ū)X , 1 ≤ i, j ≤M,

where we have subtracted the mean of the snapshots

ū =
1

M

M∑
i=1

uh,p(µ̄).

The eigenpairs (λj ,ψj)
M
j=1 of C (with the eigenvalues ordered in the decreasing order) are the

solutions of
Cψj = λjψj , j = 1, . . . , |Ξtrain|.

Then, the optimal basis for the n-th dimensional space Xn generated by minimizing (9) is given
by

χ0 = ū, χj =

M∑
i=1

[ψj ]i(uh,p(µi)− ū), 1 ≤ j ≤ n,
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being [ψj ]i the i-th component of the j-th eigenvector. Extensions of the standard POD basis
to incorporate parametric sensitivities (8) were presented in [6, 12, 13] and are not discussed in
detail here.

2. The greedy algorithm, where

MK(Xn) = sup
µ∈Ξtrain

‖uh,p(µi)−ΠXn(uh,p(µi))‖X (10)

i.e. minimization of the `∞(Ξtrain) error in parameter space. In practice no efficient algorithm
exists to solve (6) for large-scale problems, so we approximate it by its relaxation

MK(Xn) = sup
µ∈Ξtrain

∆n(ũ(µ)) (11)

where ∆n(ũ(µ)) is a computationally inexpensive a posteriori error estimator for the quantity
‖uh,p(µ)− ũ(µ)‖X that should satisfy

C1∆n(ũ(µ)) ≤ ‖u(µ)− ũ(µ)‖X ≤ C2∆n(ũ(µ)), ∀µ ∈ D (12)

for some constants C1 > 0, C2 ≥ 1. This corresponds to the approximate minimization of the
`∞(Ξtrain) error in parameter space. In this case we have a weak greedy algorithm as defined in
[3].

Note that while conceptually the POD and the greedy algorithms can be cast in a similar frame-
work, their practical implementations are quite different. The training set Ξtrain ⊂ D needs to be
reasonably dense in the parameter space for MKh,p(X∗) to be a good approximation of the true
distance δ(X∗,Kh,p;X) for all subspaces X∗ ⊂ X. In the POD one needs to compute the FE ap-
proximations uh,p(µ) for all the points in Ξtrain, which amounts to a considerable computational
undertaking. In contrast, the weak greedy algorithm only needs to compute the exact solutions (and
their parametric derivatives) at the n snapshots comprising the RB and only the computationally
inexpensive a posteriori estimator ∆n(un(µ)) needs to be evaluated over the entire training set. The
difference in the norms used (`∞ for the greedy vs. `2 for the POD) also results in slightly differ-
ent approximation behavior of the resulting bases. Typically the POD basis needed to reach a given
tolerance is smaller in size but tends to be not as robust far away from the snapshots (see e.g. [28, 29]).

ii) (Petrov-)Galerkin projection of the equations. In the second step we perform projection of the
original problem onto the reduced trial subspace Xn using the reduced test subspace Yn to obtain
the reduced basis approximation: find un(µ) ∈ Xn s.t.

a(un(µ), vn;µ) = f(vn;µ) for all vn ∈ Yn, (13)

where Xn = span{ϕj}nj=1 and Yn = span{ψj}nj=1. If Yn = Xn this is a pure Galerkin method,
otherwise it is a Petrov-Galerkin method. The Petrov-Galerkin approach is adopted if the underlying
system is either nonsymmetric or noncoercive and can be interpreted as a form of stabilization of
the ROM. Applying the assumption (5) to (13) leads to the discrete system

Qa∑
q=1

Θaq (µ)AnqU
n =

Qf∑
q=1

Θfq (µ)Fnq (14)

where the matrices and vectors

[Anq
n×n

]i,j := aq(ϕj , ψi), [Fnq
n×1

]i := Fq(ψi), Un
n×1

the reduced solution, (15)

are dense but only of dimension n and more importantly can be assembled once and then stored. The
system (14) is then assembled by evaluating the coefficient functions Θaq ,Θfq and summing together
the weighted contributions from all the parts of the decomposition, and solving one small dense linear
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system. Assuming all the FE degrees of freedom are nodal, we can write the discrete projectors

[ Xn
N×n

]i,j := ϕj(xi), [ Yn
N×n

]i,j := ψj(xi) (16)

where xi are the nodal points in the full space XN . The discrete matrices and vectors (15) can then
be obtained as

Anq = YnAqXTn , Fnq = YnFq,

and the approximation of the solution uN (µ) is obtained as un(xi) = [XTnUn]i for i = 1, . . . , N . From
here on we use mainly the discrete forms of the equations.

iii) Certification of the ROM with error bounds. A posteriori error bounds are used to both (i)
certify the GRBM solution during the online stage, and (ii) construct the reduced space by means of
the weak greedy algorithm. For the sake of simplicity we treat the case of linear, elliptic and coercive
µ-PDEs – extensions to noncoercive and nonlinear problems can be found in [5, 8, 11, 21, 30].
Our error bounds rely on two basic ingredients: the dual norm of the residual and a lower bound
of the stability factor (in this case, of the parameter-dependent coercivity constant). The residual
r(v;µ) ∈ X ′h,p is defined as

r(v;µ) ≡ f(v;µ)− a(un(µ), v;µ), ∀v ∈ Xh,p (17)

so that exploiting (2) and the bilinearity of a(·, ·;µ) we have the error representation for e(µ) =
uh,p(µ)− un(µ) ∈ Xh,p given by

a(e(µ), v;µ) = r(v;µ), ∀v ∈ Xh,p. (18)

As a second ingredient, we need a positive lower bound αLBh (µ) for the (discrete) coercivity constant
αh(µ):

0 ≤ αLBh (µ) ≤ αh(µ) := inf
w∈Xh,p

a(w,w;µ)

‖w‖2Xh,p
∀µ ∈ D, (19)

whose efficient evaluation as a function of µ is made possible thanks to the so-called successive
constraint method (see e.g. [14, 15, 17] for a general description of this procedure). By combining
(18) with 19 and using the Cauchy-Schwarz inequality, the following a posteriori error estimate in
the energy norm holds (see [28] for a proof):(

γa(µ)

αLBh (µ)

)−1/2 ‖r(un(µ);µ)‖X′h,p√
αLBh (µ)

≤ ‖un(µ)− uh,p(µ)‖X ≤
‖r(un(µ);µ)‖X′h,p√

αLBh (µ)
, (20)

so that expression (12) is now made explicit, being

∆n(µ) :=
‖r(un(µ);µ)‖X′h,p√

αLBh (µ)
, C1 := inf

µ∈D

{(
γa(µ)

αLBh (µ)

)−1/2}
, C2 := 1.

We conclude this section by mentioning a few works where generalized RB/POD methods were applied.
In one of the the pioneering works on RBM, Noor [24] used instead a Taylor ROM to build a local reduced
space that was used to trace the post-buckling behavior of a nonlinear structure. The continuation idea
was used also by Peterson [25] to compute Navier-Stokes solutions with increasing Reynolds number
flow over a forward facing step. Again a Taylor ROM was constructed and used to extrapolate an initial
guess for the Newton method at a slightly higher Reynolds number. Ito and Ravindran [16] were perhaps
the first ones to suggest using a Hermite ROM in a uniform approximation context, rather than in a
pure continuation method. The Lagrange and Hermite ROMs were compared on a driven cavity problem,
where the Hermite approach was somewhat superior. No stability problems were reported and the Hermite
basis with only two basis functions was able to extrapolate solutions to much larger Reynolds numbers.
In the works of Hay et al. [12, 13] sensitivity information was introduced into the proper orthogonal
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decomposition framework. The parametric sensitivities of the POD modes were derived and computed.
The test problems were related with channel flow around a cylindrical obstacle, either by using a simple
parametrization as the Reynolds number, or a more involved geometric parametrization of the obstacle.
The use of a Hermite ROM considerably improved the validity of the reduced solutions away from the
parametric snapshots. However, in the more involved geometrical parametrization case the Hermite ROM
failed completely, as it did not converge to the exact solution even when the number of POD modes was
increased. Carlberg and Farhat [6] proposed an approach they call “compact POD”, based on goal-
oriented Petrov-Galerkin projection to minimize the approximation error subject to a chosen output
criteria, and including sensitivity information with proper weighting coming from the Taylor-expansion
and including “mollification” of basis functions far away from the snapshot parameter. The application
was the optimization of an aeroelastic wing configuration by building local ROMs along the path to the
optimal wing configuration.

3 Approximation theoretical basis for the generalized reduced basis method

We now turn to the convergence analysis of approximations in the reduced subspaces that are obtained
by (7) and the choice (11) for MKh,p . We recall some recent theoretical results and provide an extension
through an exponential convergence result. To do this, we rely on the introduction of a fundamental
basis and on an intuitive error representation formula, which will be exploited in the numerical example
discussed in the following section. We define the best approximation error of Kh,p obtained by the greedy
algorithm (6) as

σn(Kh,p;X) := sup
uh,p∈Kh,p

inf
ũ∈Xn

‖uh,p −ΠXn(uh,p)‖X .

A priori convergence estimates for reduced basis approximations have been demonstrated in simple cases,
such as in [19], where it was found that for a specific problem exponential convergence was achieved

σn(Kh,p;X) ≤ C exp(−nα), for some α > 0.

Recently much interest has been devoted to understanding why the weak greedy method (11) is able
to give an approximation space Xn that exhibits exponential convergence in n. To express how well we
are able to uniformly approximate a given manifold of solutions Kh,p with a finite-dimensional subspace,
we recall the notion of n-width [26, 22] that is used to measure the degree in which we can uniformly
approximate a subset of the space X using finite-dimensional subspaces Xn. The Kolmogorov n-width is
defined as

dn(Kh,p;X) := inf
Xn⊂X

sup
uh,p∈Kh,p

inf
ũ∈Xn

‖uh,p − ũ‖X (21)

where the first infimum is taken over all linear subspaces Xn ⊂ X of dimension n. We also define the
discrepancy between the subspace Xn and the manifold Kh,p as

δ(Xn,Kh,p;X) = sup
uh,p∈Kh,p

inf
ũ∈Xn

‖uh,p − ũ‖X .

The subspace Xn is said to be optimal if δ(Xn,Kh,p;X) = dn(Kh,p;X). In general, the optimal subspace
w.r.t the Kolmogorov n-width (21) is not spanned by elements of the set Kh,p being approximated, so
that possibly dn(Kh,p;X)� σn(Kh,p;X). In the recent work [3] it was shown that

σn(Kh,p;X) ≤ 2n+1

√
3
dn(Kh,p;X),

and that this estimate cannot in general be improved. However, it was also shown that if the n-width
converges at an exponential rate, say dn(Kh,p;X) ≤ C exp

(
−cnβ

)
for all n > 0 and some C̃, c > 0, then

σn(Kh,p;X) ≤ C̃ exp
(
−αnβ/(β+1)

)
. (22)
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A tighter estimate was proved for the case of algebraic convergence: if dn(Kh,p;X) ≤ CMn−α for all
n > 0 and some M,α > 0, then also

σn(Kh,p;X) ≤ CMn−α. (23)

The fast (exponential) convergence of numerical approximations is often linked to spectral approxima-
tions. In this way, the reduced basis method can be understood as a spectral method, where instead of
using generic global polynomial basis functions we use problem-dependent global smooth approximation
basis. The analyticity of the solutions of elliptic PDEs was exploited e.g. in a recent work [7] in the special
case where Kh,p is an analytic manifold. Using complex analysis techniques and a Taylor expansion ap-
proximation of the solution uh,p and its parametric derivatives wm,k for k = 1, 2, . . ., the authors obtained
a convergence rate for a reduced basis approximation as

‖uh,p(µ)− ũ(µ)‖X ≤ C(µ) n−(1/p−1),

where 0 < p < 1 is the `p-summability exponent of a sequence related only to the diffusion coefficients
of the problem. In particular, the convergence rate was independent of the spatial dimension d and the
number of parameters P . In general, the reduced basis approximation of solutions of elliptic equations
with regular coefficients has indeed been very successful. We would however like to convince the reader
that analytic regularity of the solution manifold Kh,p is not necessary in order to successfully apply the
reduced basis method.

Unfortunately, very little seems to be known about the n-width of manifolds of solutions of µ-PDEs.
Very specific results concern special subspaces [10, 23]. For instance, if Y ⊂ X is a dense, compactly
embedded, and bounded subspace with inner product (·, ·)Y then the n-width of a ball BY ⊂ Y ⊂ X of
finite radius is

dn(BY ;X) =
√
λn+1,

where λn are the eigenvalues of the problem{
λ ∈ R, u ∈ V, u 6= 0

(u, v)Y = λ(u, v)X

sorted in descending order (see [10], Theorem 4.5). We then obtain an algebraic decay rate for the n-width
of BY

dn(BY ;X) = Cn−s/d,

where s ≥ 1 similarly to (3). Provided that Kh,p ⊂ BY we obtain also an upper bound for the n-width
of Kh,p, since then dn(BY ;X) ≥ dn(Kh,p;X), consequently only algebraic convergence of the reduced
basis method is predicted by (23). Such results can be misleadingly pessimistic compared to practical
experiences with reduced basis methods because they do not take into account the structure of the
manifold Kh,p nor the fact that approximation (4) inherits in some sense the structure of the manifold.

4 An extended result of exponential convergence

Let us now give an example of a µ-PDE where the explicit dependence of the solution manifold on the
parameters can be exhibited. Let us consider the parameter-dependent problem after discretization:

(Θa1(µ)A1 +Θa2(µ)A2)u =

Qf∑
q=1

Θfq (µ)Fq. (24)

We assume that (i) the operator A1 is invertible; (iii) the problem satisfies a global condition for the
spectral radius ρ being
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ρ

(
Θa2(µ)

Θa1(µ)
A−11 A2

)
< 1 for all µ ∈ D, (25)

which we interpret as meaning that the term Θa1(µ)A1 dominates the original differential operator. Under
this assumption, for a parametrized PDE under the form (24), we can prove an exponential convergence
result, which extends the one reported in [19].

Let us remark that a problem such as (24) can arise for example from a discretized advection-diffusion
or reaction-diffusion problem, where A1 contains the (dominant) diffusion operator and A2 contains all
the other terms. We proceed to write explicitly the solution of this problem as

u =

(
I +

Θa2(µ)

Θa1(µ)
A−11 A2

)−1
(Θ1(µ)A1)

−1

Qf∑
q=1

Θfq (µ)Fq)

 ,

which by exploiting the global spectral condition (25) leads to the series expansion for the solution

u =

∞∑
k=0

Qf∑
q=1

(−1)kΘk2 (µ)Θfq (µ)

Θk+1
1 (µ)

[A−11 A2]kA−11 Fq.

By defining the fundamental basis vectors Ψk,q := [A−11 A2]kA−11 Fq, for k = 0, 1, . . . and q = 1, . . . , Qf ,
we can write the solution as a series

u =

∞∑
k=0

Qf∑
q=1

(−1)k[Θa2(µ)]kΘfq (µ)

[Θa1(µ)]k+1
Ψk,q. (26)

Several remarks can be made about formula (26):

1. In the special case A2 = 0 the parametric dependence enters only through the r.h.s and as a conse-
quence the series (26) truncates to a finite one

u =

Qf∑
q=1

Θfq (µ)

Θa1(µ)
Ψ0,q, (27)

and so the greedy algorithm will always terminate after Qf steps.

2. If the decay of the series coefficients in (26) is rapid, the solutions u can be well approximated by
only the first few fundamental basis functions Ψk,q, k = 0, 1, . . . ,K and q = 1, . . . , Qf . They can be
computed according to an iterative procedure

Ψ0,q = A−11 Fq, Ψk+1,q = A−11 A2Ψk,q for all q = 1, . . . , Qf .

requiring at each step one matrix multiplication and one backward substitution after obtaining once
and for all the LU-decomposition of A1.

3. In general the Ψk,q are not linear combinations of solutions of (24) so that they do not constitute
a reduced basis approximation. They are, however, useful for estimating the n-width of the solution
set. Provided that there exist positive sequences {γk,q}∞k=1 s.t. ‖Ψk,q‖X ≤ γk,q for each q = 1, . . . , Qf ,
we obtain an upper bound estimate for the n-width of the solution set U of (24)

dm(U ;X) ≤ sup
µ∈D

∞∑
k=n

Qf∑
q=1

∣∣∣∣∣ [Θa2(µ)]kΘfq (µ)

[Θa1(µ)]k+1

∣∣∣∣∣ γk,q (28)

by using the definition of the n-width, estimating upwards, and using formula (26) as
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dm(U ;X) = inf
Xm⊂X

sup
µ∈D

inf
ũ∈Xm

‖uh,p(µ)− ũ‖X ≤ sup
µ∈D

inf
ũ∈XΨm

‖uh,p(µ)− ũ‖X

≤ sup
µ∈D

∥∥∥∥∥∥uh,p(µ)−
n−1∑
k=0

Qf∑
q=1

(−1)k[Θa2(µ)]kΘfq (µ)

[Θa1(µ)]k+1
Ψk,q

∥∥∥∥∥∥
X

= sup
µ∈D

∥∥∥∥∥∥
∞∑
k=n

Qf∑
q=1

(−1)k[Θa2(µ)]kΘfq (µ)

[Θa1(µ)]k+1
Ψk,q

∥∥∥∥∥∥
X

≤ sup
µ∈D

∞∑
k=n

Qf∑
q=1

∣∣∣∣∣ [Θa2(µ)]kΘfq (µ)

[Θa1(µ)]k+1

∣∣∣∣∣ ‖Ψk,q‖X ,
where m := Qf · n and XΨ

m := span {Ψk,q : k = 0, . . . , n− 1, q = 1, . . . , Qf}, i.e. the first m funda-
mental basis vectors. We have in fact decomposed the description of the manifold of solutions U into
two parts: the parametric regularity is carried by the coefficients Θ1,Θ2,Θfq , which can be taken just
in L∞(D) without affecting the n-width, and the spatial regularity, which is contained in the norm
estimates γk,q for the fundamental basis functions.

4. If the solution of (24) is approximated by the projection-based ROM in (14), i.e.

Yn [Θa1(µ)A1 +Θa2(µ)A2]XTnUn =

Qf∑
q=1

Θfq (µ)YnFq,

where the projectors were defined in (16), we obtain a similar formula for the reduced solution

un(µ) =

∞∑
k=0

Qf∑
q=1

(−1)k[Θa2(µ)]kΘfq (µ)

[Θa1(µ)]k+1
Ψnk,q,

but now with the reduced fundamental basis functions Ψnk,q defined as

Ψn0,q =
(
YnA1XTn

)−1 YnFq, Ψnk+1,q =
(
YnA1XTn

)−1 YnA2XTn Ψnk,q.

As a result, we obtain immediately the error representation formula

εn(µ) :=
[
uh,p − XTnun

]
(µ) =

∞∑
k=0

Qf∑
q=1

(−1)k[Θa2(µ)]kΘfq (µ)

[Θa1(µ)]k+1

(
Ψk,q − XTnΨnk,q

)
.

Thus the quality of the ROM can directly be measured by observing how well it approximates the
fundamental basis vectors, i.e. by looking at ‖Ψk,q − XTnΨnk,q‖X for all k and q.

5. Even if the global spectral condition (25) does not hold, we can try to expand the solution locally
around different µ∗ and obtain local approximation bases. This leads one to consider the hp-reduced
basis method [9], where different reduced bases (analogous to p-refinement in the FEM) are con-
structed at different parts of the parameter domain (analogous to h-refinement in the FEM). Let
D1, . . . ,DM be a nonoverlapping subdivision of the original parameter domain D into M subdo-
mains. The local spectral condition requires that in each subdomain Dm

∃ i(m) : ρ

(
Θaj(m)(µ)

Θai(m)(µ)
A−1i(m)Aj(m)

)
< 1 for all µ ∈ Dm, for j(m) 6= i(m),

that is to say in each parameter subdomain Dm one of the terms Aq dominates, but the dominant
part of the operator can change from subdomain to subdomain. If such a local spectral condition
holds, our results extend straightforwardly to show the existence of local exponentially convergent
approximation spaces.
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With the n-width estimate (28) we can give an exponential convergence result for a problem under the
form (24), extending that of [19]:

Proposition 1. Assume that the series (26) converges, so that

∃ ε > 0 s.t.

∣∣∣∣Θ2(µ)

Θ1(µ)

∣∣∣∣ ≤ 1− ε
‖A−11 A2‖X

for all µ ∈ D. (29)

Then the n-width of the solution set U of (24) converges exponentially, i.e.

dn(U ;X) ≤ Ce−αn for some C,α > 0. (30)

Proof. The n-width upper bound (28) gives for m = n ·Qf

dm(U ;X) ≤ sup
µ∈D

∞∑
k=n

Qf∑
q=1

∣∣∣∣∣ [Θa2(µ)]kΘfq (µ)

[Θa1(µ)]k+1

∣∣∣∣∣ ‖(A−11 A2)kA−11 Fq‖X

≤ Qf · sup
µ,q

{∣∣∣∣∣Θfq (µ)

Θ1(µ)

∣∣∣∣∣ ‖A−11 Fq‖X

}
·
∞∑
k=n

∣∣∣∣ [Θa2(µ)]k

[Θa1(µ)]k

∣∣∣∣ ‖A−11 A2‖kX

= Qf · sup
µ,q

{∣∣∣∣∣Θfq (µ)

Θ1(µ)

∣∣∣∣∣ ‖A−11 Fq‖X

}
· (1− ε)n

∞∑
k=0

(1− ε)k

=
Qf
ε
· sup
µ,q

{∣∣∣∣∣Θfq (µ)

Θ1(µ)

∣∣∣∣∣ ‖A−11 Fq‖X

}
· exp

(
log(1− ε)

Qf
m

)
,

so that the result holds with α = − log(1− ε)/Qf and C =
Qf
ε · supµ,q

{∣∣∣∣Θfq (µ)Θ1(µ)

∣∣∣∣ ‖A−11 Fq‖X
}

. ut

Exponential convergence of the greedy reduced basis algorithm is then predicted by [3] as in (22). It
should be understood that tight n-width estimates for the rate of exponential convergence cannot be ob-
tained by such series expansions – indeed the coefficient α will tend to 0 if we let ε→ 0. The factor 1/Qf
in the exponential is also excessively pessimistic provided that not for all q the terms converge at the
same rate. In the next section we will demonstrate a problem where much faster exponential convergence
of the greedy algorithm is observed, even in the parametric region when the fundamental series no longer
converges rapidly.

To close this section let us briefly consider the more general case Qa > 2:(
Θa1(µ)A1 +

Qa∑
r=2

Θar (µ)A2

)
u =

Qf∑
q=1

Θfq (µ)Fq. (31)

If the global spectral condition

ρ

(
Qa∑
r=2

Θar (µ)

Θa1(µ)
A−11 Ar

)
< 1, (32)

is satisfied, we can write the solution as

u =

(
I +

Qa∑
r=2

Θar (µ)

Θa1(µ)
A−11 Ar

)−1
(Θa1(µ)A1)

−1

Qf∑
q=1

Θfq (µ)Fq

 ,

and applying (32) leads to
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u =

 ∞∑
k=0

(−1)k

[Θa1(µ)]k+1

[
Qa∑
r=2

Θar (µ)A−11 Ar

]k
A−11

Qf∑
q=1

Θfq (µ)Fq


and finally

u =

∞∑
k=0

Qf∑
q=1

(−1)kΘfq (µ)

[Θa1(µ)]k+1
Ψk,q(µ), (33)

but now the fundamental basis vectors

Ψ0,q = A−11 Fq, Ψk+1,q(µ) =

[
Qa∑
r=2

Θar (µ)A−11 Ar

]
Ψk,q(µ) for all q = 1, . . . , Qf . (34)

depend explicitly on the parameter(s) µ. Let ρ(k) = (ρ1, ρ2, . . . , ρk) be a multi-index of dimension k and
let ρ(0) = ∅. We define a set of parameter-free basis functions ϕk,q,ρ according to the recursion

ϕ0,q,ρ(0) = A−11 Fq, ϕk+1,q,ρ(k+1) = A−11 Aρk+1
ϕk,q,ρ(1:k) .

Using the parameter-free basis we can rewrite the recursion of the fundamental basis (34) as

Ψ0,q = ϕ0,q,r(0)

Ψ1,q(µ) =

Qa∑
r=2

Θar (µ)A−11 ArΨ0,q =

Qa∑
r=2

Θar (µ) ϕ1,q,(r)

Ψ2,q(µ) =

Qa∑
r′=2

Θar′(µ)A−11 Ar′Ψ1,q =

Qa∑
r′=2

Qa∑
r=2

Θar′(µ)Θar (µ)A−11 Ar′ ϕ1,q,(r)

=

Qa∑
r′=2

Qa∑
r=2

Θar′(µ)Θar (µ) ϕ2,q,(r′,r)

Ψk,q(µ) =

Qa∑
r1=2

. . .

Qa∑
rk=2

Θar1(µ) . . . Θark(µ) ϕk,q,(rk,rk−1,...,r1)

and so the k-th level expansion for Ψk,q will contain in general (Qa − 1)k terms, and the size of the
expansion blows up exponentially. Without some strong structural assumptions the series expansion
method is not suitable for deriving exponentially decaying n-width estimates in the case Qa � 1.

5 Numerical example of a parameter-dependent diffusion problem

In this section we shall give numerical evidence of exponential convergence of n-width upper bounds
(and consequently of the GRBM approximation) proved in the previous section. As a test problem we
consider a diffusion problem in a disk with four circular subregions Ω1, . . . , Ω4 as depicted in Fig. 2. The
parametric problem can be formulated as follows: given µ ∈ D ⊂ R8, find u = u(µ) s.t.

− (1 + µ1Iω)4u = µ4 IΩ\ω +

4∑
q=1

µq+4 IΩq , in Ω

u = 1 on Γ1 ∪ Γ4,
∂u

∂n
= µ2 on Γ2,

∂u

∂n
= µ3 on Γ3

where the Γk denote the four sides of the square, and ω := ∪4q=1Ωq is the union of the disks. The function
IΩ denotes the characteristic function of the subdomain Ω. Thus the first parameter µ1 controls the
difference between the isotropic diffusion coefficient inside the disks versus the background conductivity,
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while the rest of the parameters µ2, . . . , µ8 enter into the boundary conditions and the source terms. This
problem exhibits the same properties as the case discussed in the previous section, so that the solution
can be written as the combination of the fundamental basis vectors thanks to the formula (26). In this
case the affine expansion (5) of the problem is given by:

Θa1(µ) = 1, a1(u, v) =

∫
Ω

∇u · ∇v dΩ

Θa2(µ) = µ1, a2(u, v) =

∫
ω

∇u · ∇v dΩ

Θf1 (µ) = µ2, f1(v) =

∫
Γ2

v dΩ

Θf2 (µ) = µ3, f2(v) =

∫
Γ3

v dΩ

Θf3 (µ) = µ4, f3(v) =

∫
Ω\ω

v dΩ

Θf4 (µ) = µ5, f4(v) =

∫
Ω1

v dΩ

Θf5 (µ) = µ6, f5(v) =

∫
Ω2

v dΩ

Θf6 (µ) = µ7, f6(v) =

∫
Ω3

v dΩ

Θf7 (µ) = µ8, f7(v) =

∫
Ω4

v dΩ

,

so that Qa = 2, Qf = 7, and the problem satisfies the global spectral condition (25) provided that
µ1 ∈ [−(1− ε), 1− ε] for some ε > 0.
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1f = µ

5
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1f = µ
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1f = µ
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ν = 1 + µ
1f = µ
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ν = 1, f = µ
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∂ u/∂ n = µ
3

∂ u/∂ n = µ
2

u = 1u = 1
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Fig. 2 Schematic description of the domain and boundary conditions of the model problem.

In order to compare the n-width bounds with the observed convergence rates of the weak greedy
algorithm, we considered four different cases: ε = 0.1, ε = 0.5, ε = 0.9, and ε = 0.95. Note that if
ε = 1, the manifold of parametric solutions dimension is limited to a Qf -dimensional subspace of X as
indicated by (27), and so the greedy algorithm terminates after exactly 7 iterations. In Fig. 3 we have
plotted the convergence of the fundamental series terms supµ ‖

(
Θa2(µ)Θfq (µ)/Θa1(µ)

)
Ψk,q‖X that dictate

the convergence rate of the n-width upper bound (30). For the value ε = 0.1 very weak convergence of
the fundamental series is observed for some of the terms, namely q = 2, 3, 4, 5.

To obtain the GRBM approximation the weak greedy algorithm was driven by the residual-based a
posteriori error estimator (20). In both cases the greedy was run until an absolute H1-error below 10−3

was reached. This required n = 25 basis functions for the case ε = 0.1, n = 21 basis functions for the case
ε = 0.5, n = 15 basis functions for the case ε = 0.9, and n = 14 basis functions for the case ε = 0.95.
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(c) ε = 0.9
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(d) ε = 0.95

Fig. 3 Convergence of the fundamental series (26) coefficients for different values of ε in (29).

In Fig. 4 we have plotted the corresponding convergence rates of the greedy algorithm compared to the
n-width upper bound predictions given by (30). In each case exponential convergence of the GRBM
approximation is observed. The actual exponential decay rate depends on ε, where for ε = 0.1 the n-
width estimate is much too pessimistic when compared to the true rate of convergence. This is likely due
to the weak convergence of some of the fundamental series terms (see Fig. 3(a)), and the result could
be improved by considering more carefully the cutoff point for the different series terms for different q.
However, as ε→ 1 the n-width estimate (30) becomes more and more indicative of the convergence rate
observed during the greedy algorithm. According to Fig. 3(c–d)) at the limit all the fundamental series
coefficients converge at roughly the same rate, so that the bound (30) is expected to sharpen considerably.

6 Conclusions

We have reviewed the generalized reduced basis method for the uniform approximation of manifolds of
solutions of parametric partial differential equations. These methods are typically driven by a greedy
algorithm for selecting near-optimal reduced approximation subspaces. It has recently been shown that
the convergence rate of the generalized reduced basis approximations is linked to the Kolmogorov n-width
of the manifold of solutions.
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(b) ε = 0.5
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(c) ε = 0.9
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Fig. 4 Comparison of the n-width upper bound estimate (30) and the greedy algorithm convergence rate.

We have exhibited a model problem where the exact parameter-dependent solution can be expanded as a
Neumann series, leading to a constructive proof that the n-width of the solution set in this case converges
exponentially. Numerical experiments confirm that the reduced basis approximation also converges expo-
nentially, and with a rate that is comparable to the one predicted by our n-width upper bound estimate.
The predicted convergence rate is independent of the parametric regularity of the solution manifold and
the number of parameters, but it does depend on the size of the affine expansion of the parametric prob-
lem.
Future work involves finding more cases of parameter-dependent problems, where explicit solution for-
mulas could be used to prove more general n-width estimates.
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