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An Evaluation of Model-Based Approaches to
Sensor Data Compression

Nguyen Quoc Viet Hung, Hoyoung Jeung, Karl Aberer

Abstract—As the volumes of sensor data being accumulated are likely to soar, data compression has become essential in a wide
range of sensor-data applications. This has led to a plethora of data compression techniques for sensor data, in particular model-
based approaches have been spotlighted due to their significant compression performance. These methods, however, have
never been compared and analyzed under the same setting, rendering a ‘right’ choice of compression technique for a particular
application very difficult. Addressing this problem, this paper presents a benchmark that offers a comprehensive empirical study
on the performance comparison of the model-based compression techniques. Specifically, we re-implemented several state-of-
the-art methods in a comparable manner, and measured various performance factors with our benchmark, including compression
ratio, computation time, model maintenance cost, approximation quality, and robustness to noisy data. We then provide in-depth
analysis of the benchmark results, obtained by using 11 different real datasets consisting of 346 heterogeneous sensor data
signals. We believe that the findings from the benchmark will be able to serve as a practical guideline for applications that need
to compress sensor data.

Index Terms—lossy compression, sensor data, benchmark
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1 INTRODUCTION

Today, sensors are ubiquitous. They yield data from almost
every field of human activity, often generating high-rate
readings continuously. As a result, data compression has
become essential in a wide spectrum of applications that
store and manage continuously streaming sensor data.

The benefits of archiving sensor data are in fact not
exclusively limited to reducing storage at local databases.
For example, battery lifetime of sensors, which is a critical
issue in wireless sensor networks, can be substantially
extended by reducing the amount of transmitted data [10,
13, 26], while also maximizing the utilization of limited
communication bandwidth [8, 39, 41]. Moreover, compres-
sion enables fast data processing by evaluating queries
directly over compressed data [12, 24, 30, 33, 42], incurring
much less I/O, since compressed data are generally stored
using lower numbers of disk pages [40].

To fully harvest these benefits, a rich body of research
work has proposed data compression techniques for sensor
data [3, 9, 10, 13, 18, 24]. In particular, model-based com-
pression approaches—which represent sensor data using
well-established approximation models whose parameters
are then stored as compressed data—have gained significant
popularity. These model-based techniques exploit the cor-
relation structure of sensor data for compression, meaning
that a stronger correlation leads to a higher compression.
For example, if temperature remains nearly constant for a
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while, the temperature readings can yield a very low volume
of compressed data. As a result, model-based compres-
sion techniques generally outperform standard compres-
sion techniques [2, 34], including BWT [4], LZ77 [44],
LZ78 [45], and PPM [22], by exploiting domain-specific
knowledge on which errors can be tolerated [11].

Moreover, the models used to approximate raw sensor
data offer various benefits to data processing. For instance,
they are often used not only for compression, but also
for inferring precise values of uncertain raw sensor read-
ing [38], as well as for outlier detection [43] and sensor data
cleaning [14, 15, 21], which are important issues in sensor
data management. Furthermore, the model approximations
can be directly used for indexing [5, 28], data analysis [27,
36], similarity search [24], and so on. These approaches
are broadly classified into four categories according to the
model type:
• Constant models approximate sensor signals using

simple constant functions, serving as the basis in
PAA1 [23], PCA [28], APCA [24], Cache filter [31],
and PCH [3].

• Linear models find the best fitting linear functions to
represent a sensor signal, used in PLA [7], PWLH [3],
SWAB [25], LTC [35], Slide/Swing Filters (SF) [13].

• Nonlinear models, such as Polynomial or Chebyshev
approximations (CHEB) [1, 5, 16], capture raw sensor-
data signals using complex functions.

• Correlation models collectively approximate multiple
sensor signals while reducing redundant information,
as in SBR [10], RIDA [9], and GAMPS [18].

1. Table 1 offers full names for all abbreviations.



2

Each of these techniques has distinct performance char-
acteristics. One, for example, may achieve very high com-
pression over certain types of sensor data, while another
incurs low CPU usage for model maintenance. In con-
trast, some techniques are designed to facilitate efficient
query processing without taking into account CPU usage.
Moreover, these methods have never been compared all
together, and each work often reported its superior per-
formance generally using a limited variety of data sets or
evaluation methodologies. As a result, understanding the
performance implications of these techniques, for a given
type of application, is a challenging problem.

The primary goal of this study is to compare all these
methods within a common framework. To this end, we
present a benchmark that offers an overview of compre-
hensive performance comparison among the compression
techniques, describes in-depth analysis on the performance
behavior of each method, and provides guidance on the
selection of appropriate compression schemes. Specifically,
the salient features of the benchmark are highlighted as
follows:

• We fairly re-implemented one or two most represen-
tative state-of-the-art method(s) in each category of
the model-based approaches, including PCA, APCA,
PWLH, SF, CHEB, and GAMPS. We then compared
them with regard to compression ratio, computation
time, packet ratio, power ratio, approximation error
(RMSE), and robustness to noise. As a result, the
benchmark revealed the performance characteristics of
a particular class of model-based approach, as well as
of individual methods.

• We established a generic, extensible benchmarking
framework to assist in the evaluation of different
model-based compression techniques, so that subse-
quent studies are able to easily compare their proposals
with the state-of-the-art techniques. It is straightfor-
ward to plug in a new compression method as well as
a new dataset into our framework. The source code of
the framework is publicly available on our website2

for further research, comparison or repeatability.
• We integrated the TOSSIM [29] simulator into our

benchmarking framework for simulating data trans-
mission over two well-known network topologies:
broadcast and multi-hop. In addition, our benchmark
also allows users to customize the network topology
by modifying included scripts. On top of the commu-
nication simulator, we furthermore support estimating
energy consumption using PowerTOSSIM-Z [32].

• We used various real sensor datasets in the
benchmark—11 large-scale datasets obtained from 346
heterogeneous sensors used in an environmental moni-
toring project, the Swiss Experiment3. In particular, we
carefully selected sensor data signals that exhibit very
different data distributions and dynamicity (Figure 5).

2. http://lsirwww.epfl.ch/benchmark
3. http://www.swiss-experiment.ch/

This diversity of data helped clearly to demonstrate
the characteristics of each method under various data
distributions found in practice.

• We offer extensive as well as intensive performance
analyses. Whenever we had an unclear outcome, we
ran the same test using different settings and datasets,
and finally drew meaningful and reliable conclusions.
We believe that the analyses can serve as a practical
guideline for how to select a well-suited compression
method on particular application scenarios.

The remainder of the paper is organized as follows.
Section 2 reviews state-of-the-art model-based compression
techniques. We then describe the methodology used in
the benchmark in Section 3. Section 4 offers in-depth
discussions on the benchmark results. Section 5 finally
summarizes and concludes this study, where we provide
important suggestions for the applications that consider
employing a model-based compression method.

PAA Piecewise Aggregate Approximation [23]
PCA Piecewise Constant Approximation [28]
APCA Adaptive Piecewise Constant Approximation [24]
PCH Piecewise Constant Histogram [3]
PLA Piecewise Linear Approximation [7]
PWLH PieceWise Linear Histogram [3]
LTC Lightweight Temporal Compression [35]
SWAB Sliding Window and Bottom-up [25]
SF Slide Filters [13]
CHEB Chebyshev Approximation (CHEB) [1, 5, 16]
SBR Self-Based Regression [10]
RIDA Robust Information-Driven Data Compression

Architecture [9]
GAMPS Grouping and AMPlitude Scaling [18]

TABLE 1: List of abbreviations.

2 MODEL-BASED COMPRESSION TECH-
NIQUES

As sensor data are the results of physical processes, it
is generally possible to observe the following properties:
continuity of the sampling processes and correlations of dif-
ferent sampling processes. In principle, model-based com-
pression methods exploit either or both of the properties.
Specifically, they first compute the dependency from one
variable (e.g., time) to another (e.g., sensor reading), and
then reduce the redundant or repeated information. Various
models are used to discover such dependency in sensor
signals, resulting in different compression performance.

Model-based approaches can outperform standard com-
pression techniques, as they exploit the dependency in-
formation of data on which errors are being tolerated
within a maximum error threshold ε. In other words, the
compression techniques are built upon approximations of
one- or multi-dimensional sensor data signals under the L∞
norm.

In the following, we offer the details of model-based
compression techniques commonly used for sensor data
processing. We summarize them according to the model
classification described in the previous section.
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Fig. 1: A comparison of sensor data representations using different compression algorithms.

2.1 Constant-Model Compression

Constant-model compression methods approximate sensor
signals using simple constant functions, which require small
numbers of model parameters. They also facilitate intuitive
indexing. The literature suggests various algorithms that fall
into this category, including Piecewise Aggregate Approx-
imation (PAA) [23], Piecewise Constant Approximation
(PCA) [28], Adaptive Piecewise Constant Approximation
(APCA) [24], Piecewise Constant Histogram (PCH) [3]
[17], and Cache filter [31]. This section presents the details
for two of these models, PCA and APCA, which cover the
characteristics of the others.

2.1.1 Piecewise Constant Approximation (PCA)

PCA is a straightforward method that divides an entire
sensor data signal into piecewise fixed-length segments, and
then represents the data values in each segment using model
parameter values in turn. More precisely, given a sensor
signal S = 〈v1, v2, · · · , vn〉, a window w with size of
|w|, and a maximum error threshold ε, PCA first takes |w|
consecutive data points of S (i.e., w = 〈v1, v2, · · · , v|w|〉),
and then calculates the maximum value vmax ∈ w and
the minimum value vmin ∈ w. If vmax − vmin < 2ε, all
the data points vi ∈ w are represented by a constant v̂ =
(vmax − vmin)/2. Otherwise, the original data values are
not approximated, and preserved in the compression output.
This process is sequentially repeated for the remaining
segments in the signal. Piecewise Aggregate Approximation
(PAA) works the same; the terms PCA and PAA are
used interchangeably. PCA (PAA) in Figure 1 illustrates
this process, where constant line segments represent the
approximated signal corresponding to the raw data points
shown as dark dots.

Model parameters: Applying the above approximation
process, the original signal is represented by a sequence
of model parameters ci. ci is set by either the constant
value v̂ (when vmax − vmin < 2ε) or the original data
values (when the maximum error constraint is violated).
Therefore, in addition to ci, PCA needs a boolean value fi
(1 bit) to indicate whether ci is a constant or a raw data
point. As the window size is identical for all segments,
the time information of each compressed data point can
be inferred by segment indexes, when decompression of
the compressed data is required. Equation 1 is the formal
definition of PCA’s model parameters.

PCA(S) = 〈(c1, f1), (c2, f2), ...(ck, fk)〉 (1)

2.1.2 Adaptive PCA (APCA)

In principle, APCA also operates as PCA, yet the win-
dow size |w| varies accordingly. Given a signal S and
an error tolerance ε, APCA greedily scans S in order,
inserting data values into w until vmax − vmin > 2ε
(excluding the last point that causes the invalidation). The
data points in w are then represented by the median value
v̂ = (vmax − vmin)/2. APCA repeats the same process
from the next value using a new empty window, i.e.,
|w| = 0, until all the values in S are approximated. The
same process of data approximation applies to Piecewise
Constant Histogram (PCH) [3]. APCA (PCH) in Figure 1
depicts an example of this approximation mechanism.

Model parameters: The approximation process of APCA
results in a sequence of disjoint data segments, each of
which contains a different number of data points. Each
segment is then represented by a pair (v̂i, ti), where v̂i is
the median value of the data points, and ti is the timestamp
of the last data point in each segment. Formally, APCA’s
model parameters are defined as:

APCA(S) = 〈(v̂1, t1), (v̂2, t2), ...(v̂k, tk)〉 (2)

2.2 Linear-Model Compression

Typically, the compression methods built upon linear mod-
els extend the constant-model compression techniques, by
using linear functions for approximating a raw sensor data
signal. Here, we review two most representative linear-
model compression techniques, PWLH [3] and SF [13]:

2.2.1 PieceWise Linear Histogram (PWLH)

PWLH is an extension of the APCA algorithm. In this tech-
nique, a sensor data signal is first divided into a sequence
of variable-length data segments, as the process in APCA.
All data points in each segment are then modeled by a line
which minimizes the maximum distance from these points
to this line. A key difference between APCA and PWLH
is the shape of data segment. In APCA, data segments are
horizontal, whilst those in PWLH can rotate while centering
to the approximation lines, shown as PWLH in Figure 1.
Note that the maximum error guarantee also holds for the
approximated data in each segment.

Model parameters: As the begin-value v̂bi and the end-
value v̂ei of the bisecting line of each data segment are
different, both values must be kept when compressing a
sensor data signal using PWLH. Concerning time infor-
mation, PWLH also stores the last timestamp ti of each
segment, as APCA does. Formally, the model parameters
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of PWLH are:

PWLH(S) = 〈(v̂b1, v̂e1, t1), ..., (v̂bk, v̂
e
k, tk)〉 (3)

2.2.2 Slide Filter (SF)
SF approximates a sensor signal in a similar manner as
PWLH; however, it finds a linear approximation that can
cover the largest number of data points. This filter is
mainly designed for online processing; at any point in
time, the filter maintains a set of possible approximation
lines, all obeying the maximum error constraint. As each
new data point is added to the data segment, the filter
prunes the lines in the set that do not tolerate the maximum
error, until the last one remains. SF in Figure 1 illustrates
this process. SF accepts the mixture of connected and
disconnected line segments. The major difference between
connected and disconnected line segments is the number
of data points to be stored in the compressed file. For
representing two disconnected line segments, SF needs four
points; whilst only three points are required to capture two
connected segments. Thus, whenever possible, connected
line segments are used to increase the compression ratio.
Model parameters: Due to the mixture of connected and
disconnected line segments, SF takes a one-bit boolean
operator fi to indicate whether the end point of an approx-
imation line segment is connected to the beginning point
of the next approximation line segment. Equation (4) is the
formal definition of SF’s model parameters.

SF (S) = 〈({v̂b1}, v̂e1, t1, f1), ..., ({v̂bk}, v̂ek, tk, fk)〉 (4)

Note that {v̂bi } = ø when either v̂bi = v0 (the first data
point in S) or v̂bi = v̂ei−1 (connected line segments). This
is indicated by fi.

2.3 Nonlinear-Model Compression
Nonlinear models capture sensor signals using more com-
plex functions, resulting in theoretically more accurate ap-
proximation of data. However, compression techniques built
on nonlinear models generally require more coefficients to
approximate a given sensor data signal, rendering the size
of compressed data relatively larger. Both polynomial and
Chebyshev Approximations (CHEB)[1, 5, 16] are widely
used techniques from this compression category. In partic-
ular, CHEB is often preferred for data processing, as it can
quickly compute a near-optimal approximation for a given
signal.

2.3.1 Chebyshev Approximation (CHEB)
Chebyshev compression (CHEB) operates like PCA in
terms of how to divide a given signal—a fixed-length
window is used. For a segment (window) w =
〈v1, v2, · · · , v|w|〉 and a degree d, following Chebyshev
transformation [16], we can represent w as a linear combi-
nation of Chebyshev polynomials:

v̂t =

d∑
k=0

βk · Tk(t′)

where
• t′ = (t − |w|+1

2 ) · 2
|w|−1 is the normalized value of t

within the range [−1, 1].
• Tk(x) = cos(k · cos−1(x)), x ∈ [−1, 1] is the

Chebyshev polynomial of degree k.
• βk is the Chebyshev polynomial coefficient at degree
k.

CHEB in Figure 1 shows an example of the Chebyshev
approximation.

Model parameters: When the above approximation pro-
cess is completed, we have a set of Chebyshev coefficient
sets {βi} = β0, β1, ..., βd for each data segment in a raw
signal. In the same way as PCA stores its parameters to
the compressed file, CHEB also stores {βi} only when
the maximum error constraint is satisfied. Otherwise, the
original data points are preserved in the compressed data.
Given a degree d, the model parameters of CHEB stored
in compressed data are formally defined as:

CHEB(S) = 〈({βi}1, f1), ..., ({βi}k, fk)〉 (5)

where fi is a d-bit bitmap mask that represents which
order of the coefficients in {βi} are used in the compressed
data. More details regarding this mechanism are described
in [16].

2.4 Correlation-Model Compression
Correlation models collectively approximate multiple sen-
sor signals while reducing redundant information in cor-
related signals. Robust Information-Driven Data Com-
pression Architecture (RIDA) [9], Self-Based Regres-
sion (SBR) [10], and Grouping and AMPlitude Scaling
(GAMPS) [18] are well-known methods among those es-
tablished on such correlation models. While GAMPS is
based on L∞, RIDA and SBR compress data streams under
L2. L2 is not of interest in our benchmark since it does
not support query-processing directly on compressed data.
Moreover, the modification of RIDA and SBR to support
L∞ requires probabilistic guarantee and expensive com-
putation [18]. For these reasons, we implement GAMPS
only.

2.4.1 Grouping and AMPlitude Scaling (GAMPS)
GAMPS is an offline method that compresses multiple
sensor data signals simultaneously. It first approximates
each signal using APCA, then groups similar ones among
the approximated signals. One signal in each group is
then chosen as a base signal. For each remaining signal,

base signal

time

va
lu

e

ratio signals

(a) orignal sensor data signals (b) transformed signals

1

*

1
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3
S

2
S

1
S

*

3
S

*

2
S

Fig. 2: Signal transformation in GAMPS.
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GAMPS computes the ratio signal with respect to the base
signal. Since signals in the same group tend to share similar
trends in data values, collaboratively approximating the
transformed (APCA-applied) signals generally requires less
segments to store in the compressed file.

For example in Figure 2, S1 is chosen as base signal,
thus S∗1 = S1. Meanwhile, S2 and S3 in Figure 2(a) are
transformed respectively as S∗2 and S∗3 in Figure 2(b), by
considering the ratio to the base signal S1. As a base signal,
S∗1 is compressed by APCA with εb; while as ratio signals,
S∗2 and S∗3 are compressed by APCA with εr. Regarding
the decompression, the original signals are re-constructed
from base signal and ratio signals. Therefore, to guarantee
the maximum error threshold ε, we must have εb + εr = ε.

Intuitively, compression on the transformed signals in
Figure 2(b) would be more effective. However, this ap-
proach can become ineffective when given signals are
uncorrelated since the maximum error threshold ε is divided
among base signals and ratio signals.

Model parameters: GAMPS needs to store two types of
information in compressed data: (1) a mapping table that
contains the information of base signals, and (2) a set of
model parameters of APCA for all the ratio as well as base
signals. The mapping table for n signals consists of a set
of n tuples (i,mi), where 1 ≤ i,mi ≤ n, forming M =
〈(1,m1), (2,m2)...(n,mn)〉. If i = mi, signal i indicates
the base signal. Otherwise, it is compressed with respect to
signal mi.

In GAMPS, each signal Si is transformed into S∗i that
is either a ratio signal or base signal. Let APCAε̂(S∗i ) be
the set of model parameters of APCA for signal S∗i under
maximum error threshold ε̂. Equation 6 defines the model
parameters for GAMPS:

GAMPS(S1, ..., Sn) = M ∪

[
n⋃
i=1

APCAε̂(S
∗
i )

]
(6)

where

APCAε̂(S
∗
i ) =

{
APCAεb(S∗i ) if S∗i is base signal
APCAεr (S∗i ) if S∗i is ratio signal

To sum up this section, we already implemented six com-
pression techniques—PCA, APCA, PWLH, SF, CHEB and
GAMPS—which compress data under L∞ error tolerance
and support query-processing directly on compressed data.
In addition, these techniques use online computing model
except GAMPS. Table 2 features each implemented tech-
nique with following key characteristics:
• compression model : the function type to capture the

behavior of data stream such as constant, linear, non-
linear, etc.

• computing model : the ability to perform (online or
offline) in response to the new arrival of data points.

• segment length : the adaptivity to various lengths
(fixed vs. arbitrary) of data segment.

• #input stream: the ability to process a single stream
or multiple streams.

technique compression computing segment #input
model model length stream

PCA (PAA) constant online fixed * single
APCA (PCH) constant online variant single

PWLH linear online variant single
SF linear online variant single

CHEB non-linear online fixed * single
GAMPS correlation offline variant multiple

* user must predefine segment length

TABLE 2: Characteristics of compression techniques.

One interesting point to note is that all of the above
techniques support queries on compressed data with two
window operators [6]: sliding window [37] and tumbling
window (disjoint window) [19]. This is because when
decompression of the compressed data is required, the
approximated (decompressed) value and error of one data
point are independent of the approximated value and error
of other data points since these techniques do not require
historical data and the error tolerance is L∞ norm. There-
fore, given a timestamp and compression model parameters,
we can estimate the value and the range of original data
without decompressing the entire data stream. GAMPS is
specific among the chosen methods as in order to support
queries on compressed data, it requires additional index
structures [18].

3 BENCHMARK SETUP

This section describes the setup used in our benchmark. We
first present the details for our benchmarking framework as
well as the implementation of each compression algorithm.
We then offer an overview of the datasets used in the
experiments, followed by descriptions of the measures used
to assess the compression performance of each method.

3.1 Framework
A primary goal of this study is to provide a flexible and
powerful tool to support the comparison and modification
of the model-based compression methods. To this end, we
have developed a framework that facilitates the performance
study of various (model-based) compression methods. The
framework is very flexible and extensible, since a new
compression method as well as a new dataset can be easily
plugged in. The framework is available for download from
our website4.

Figure 3 illustrates the architecture of the framework. It
is built upon a component-based architecture having three
layers: data access layer, computing layer and application
layer. The data access layer abstracts the underlying sensor
data sources, and loads the data to the upper layer. The
computing layer then runs the compression algorithms im-
plemented and plugged into the framework, while reading
the input data provided by the data access layer. The
computing layer consists of four components: algorithm
component, output component, simulator component and
evaluation component. The algorithm component takes a
configuration file provided by the user, specifying the

4. http://lsirwww.epfl.ch/benchmark
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Fig. 3: Benchmarking framework.

parameters for each compression algorithm. The output
component provides pre-defined abstractions that feed in-
puts to the visualization component in the application layer.
This component helps understand results from each test
of the compression algorithms. The simulator component
models the process of transmitting data on sensor networks
in order to provide information about transmission cost and
energy consumption. The evaluation component accepts
inputs from the output component as well as the simulator
component, and delivers summarized information to the
application layer, facilitating test analysis.

As presented, it is straightforward to plug in a new
compression method into the framework. We believe that
subsequent studies are able to easily compare their pro-
posals with the state-of-the-art techniques by using our
framework.

3.2 Implementation
In this section, we discuss the key issues to develop this
framework. Firstly, we describe the details of the simulator
component. After that, we explain the implementation as-
sumptions and methodologies for comparing compression
algorithms in a fair manner.

3.2.1 Transmission Simulator
In order to implement the simulator component, we use
TOSSIM [29] to simulate transmitting packets and use
PowerTOSSIM-Z [32] (an extension to TOSSIM) to es-
timate energy consumption of TinyOS applications. The
energy model for PowerTOSSIM-Z is micaZ that can
be modified by potential users. Note that the TOSSIM
simulator limits the packet size up to 28 bytes. Thus if
the size exceeds 28 bytes, the packet is split into smaller
packets.

The simulator requires a predefined topology of the
sensor-network where each node is a sensor mote. So far,
we already implemented two well-known network topolo-
gies: broadcast and multi-hop data gathering tree.
• Broadcast: The network can be visualized as a com-

plete graph Kn with n sensor motes as the vertices. In

(a) K9 (b) T(2,2)

Fig. 4: Broadcast and Multi-hop sensor networks

terms of direction of data transmission, each mote in
the broadcast topology is both a data producer (send
AM messages to all other motes) and a data consumer
(receive AM messages from them). Figure 4(a) illus-
trates a broadcast network with 9 sensor motes.

• Multi-hop: A k-ary tree T (h, k) of height h and
internal degree k is used to graphically present the
network. Motes being the leaves of the k-ary tree
transmit AM messages to their corresponding parents.
Upon receiving the messages, those parents imme-
diately transfer them to the next higher level. This
process is continued until the message arrives at the
root node. Thus, the leaves and the root act solely as
the producers and the consumer respectively, while the
internal nodes play both. Figure 4(b) depicts a 2-hop
network.

Moreover, our benchmark also provides a script for users
to define their own topology.

3.2.2 Compression Algorithms
In order to compare the performance of state-of-the-art
model-based compression methods, we have made the best
effort to fairly re-implement the most representative algo-
rithms in each category of the model-based compressions.
We used C++ language for the implementation without
using any programming libraries, so that we could fairly
control the performance of each method. Here, we offer
the implementation details for each compression method
used in the benchmark:
• PCA: In addition to the error tolerance ε, which

is a common system parameter for all the model-
based compression methods, PCA requires an extra
parameter, window size |w| (Section 2.1.1 offers the
details). We set window size |w| = 16 and kept this
setting for all tests related to PCA.

• APCA: The implementation of APCA is relatively
simple. As the window w works adaptively, APCA
does not need to specify an appropriate value for |w|.
Both data approximation and storing the model param-
eters (Equation 2) to compressed data are processed
on-the-fly while reading input data.

• PWLH: It requires computing a linear rectangle (win-
dow) for representing a segment of raw data points,
illustrated as PWLH in Figure 1. We computed the
rectangle using the convex hull of the data points,
by applying the Graham algorithm [20]. Fortunately,
sensor data are already ordered in time, thus the
sorting step in the Graham algorithm was eliminated.
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Therefore, the time complexity to build and update
such a convex hull is O(n), instead of O(n·logn).

• SF: Our implementation for SF did not use a convex
hull optimization, since the results shown in [13]
indicate that the optimization works out only when the
error bound ε is greater than 10% of data range. In real
applications, ε is set by a small value, typically much
lower than ε = 10%. In addition, the cost of computing
convex hull is expensive; thus it is reasonable to avoid
the convex hull optimization process of SF.

• CHEB: Similar to PCA, CHEB also requires an extra
parameter, window size |w|. We set |w| = 16 as we
did for PCA. In addition, the degree of Chebycheb
polynomials is another system parameter in CHEB
(see Section 2.3.1). We set d = 15 following the
recommendation in [16]. These settings were applied
for all the tests regarding CHEB in the benchmark.

• GAMPS: Following the authors’ suggestion in [18],
the splitting fraction in terms of a given ε was set
to 0.4 × ε for base signals as well as ratio signals.
In addition, we implemented a static group, in which
the ratio signals were computed for the whole signal,
instead of dividing that into sub-signals.

Note that searching for parameter settings is a critical is-
sue to evaluate the above methods. In addition to streaming
data and maximum error threshold, some of these methods
need other tunable parameters (e.g. window size) which
might significantly affect the performance of compression.
However, finding the best parameters for each method
would be difficult; and even if we could find them, it would
be unfair to the methods with fewer parameters. Therefore,
for fair comparison, all the parameter settings are decided
based on the original authors’ recommendation and fixed
for all runs. In case of no precise recommendation, we use
a test-set consisting of 10 streams for each data category.
For each parameter setting, we define all possible values
and then use brute-force search to find the best value with
respect to compression ratio. The compression ratio is used
since it is considered as the most important metric.

In addition, by the design of our framework, potential
users are still able to change these parameter settings by
simply altering the configuration file in the benchmark. This
is actually another motivation of our benchmark, which
aims to offer a reference for potential users to find not only
best-suited method but also appropriate parameters for their
specific application.

3.3 Datasets
In order to evaluate the model-based compression methods
under realistic settings, we carefully chose sensor datasets
while considering heterogeneity of sensors, volatility of
data values, diversity of sampling rates, and regions where
the data were collected. The datasets were obtained from a
wide variety of sensors deployed for an environmental mon-
itoring project5. These sensors measured 11 physical vari-
ables: moisture, pressure, humidity, voltage, lysimeter,

5. http://www.swiss-experiment.ch

snow-height, temperature, CO2, radiation, wind-speed
and wind-direction. Each dataset contains a different num-
ber of sensor data signals from another. Table 3 offers
key statistics of each dataset, and Figure 5 demonstrates
a subsequence of each dataset. As mentioned above, the
sensor signals show very diverse trends and volatilities
of data, which can effectively impact the performance
characteristics of each model-based compression approach.
Note that the mean and min values of snow-height have
negative values, which are inaccurate, due to the sensors’
mechanical problems for some periods.

3.4 Evaluation Measures
We characterize the compression methods compared in
the benchmark using five measures: compression ratio,
computation time, transmission cost, approximation error,
and sensitivity to outliers. Regarding transmission cost, we
consider two important metrics: packet ratio and power
ratio. We describe the details for each of the measures in
the sequel.

3.4.1 Compression Ratio
Obviously, the most important aspect of a compression
method is its compression power. It is straightforward
how to measure that—compression ratio is defined as the
fraction of storage cost between compressed data and the
corresponding original data:

compression ratio =
size of compressed data

size of original data
(7)

The lower compression ratio, the higher power of com-
pression. We set increasing values for the error tolerance ε,
while measuring the compression ratios of each method in
the experiments.

3.4.2 Transmission Cost
In a wide range of sensor network applications, espe-
cially multi-hop sensor networks, data transmission is a
costly operation for sensor nodes. In particular, the energy
consumption for data propagation on networks is much
higher than the energy consumption for compression [9].
Therefore, transmission cost —i.e., the cost of a data
transmission from one node to another—is an important
metric for evaluating compression methods.

Specifically, this measure concerns a sensor-network
scenario where one of the compression techniques is shared
by two nodes: data producer and consumer. The producer
node keeps approximating an incoming sensor data signal,
and then subsequently updates the model parameters of
the compression method to the consumer node, only when
the maximum error guarantee is violated. This scenario is
commonly used in wireless sensor network applications [1,
13, 31].

To reflect transmission cost, we consider two important
metrics: (1) packet ratio and (2) power ratio:

Packet Ratio: Packet ratio is measured as the fraction of
the number of packets between using original data and
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dataset (abbreviation) number of total number sampling min max mean standard short-term
signals of readings rate (avg.) deviation fluctuation

moisture (mois) 20 442,313 300 sec. 16.18 30.50 18.20 1.09 medium
pressure (pres) 14 161,004 2 sec. 18.20 796.90 268.43 222.96 low
humidity (humi) 34 2,031,732 60 sec. 19.88 93.02 72.89 14.27 meium

voltage (volt) 16 523,877 600 sec. 3.29 3.49 3.41 0.05 medium
lysimeter (lysi) 24 232,746 300 sec. 0 3.81 0.11 0.35 medium

snow-height (snow) 29 349,557 600 sec. -662.10 370.00 -18.17 155.00 low
temperature (temp) 78 4,846,162 60 sec. -29.76 49.05 -4.57 9.78 medium

CO2 (CO2) 16 3,088,233 16 sec. 0 2000 558.00 219.4 high
radiation (radi) 34 3,955,268 600 sec. 137.5 798.40 261.02 46.86 medium

wind-speed (wspd) 46 2,376,156 60 sec. 0 14.37 2.84 2.31 high
wind-direction (wdir) 35 2,084,943 60 sec. 1.79 357.47 232.65 84.40 high

TABLE 3: Real datasets used in the benchmark.
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Fig. 5: Visualizations of 10,000 data points in each sensor dataset.

using the corresponding compressed data. Specifically, we
measure as follows:

packet ratio =
#packet of original data

#packet of compressed data
(8)

Power Ratio: Power ratio is defined as the fraction of
energy consumption between sending compressed data and
sending raw data. Formally, it is calculated as:

power ratio =
power of compressed data

power of original data
(9)

In addition to these normalized metrics, our benchmark also
provides absolute values such as number of transmitted
packets and amount of power consumption (in joule J).
Obviously, compression techniques with fewer transmitted
packets incur a low communication overhead, leading to
energy-efficient sensor network applications.

3.4.3 Computation Time
Another metric for evaluating compression techniques is
running time for compression. Various sensor-network ap-
plications often have constraints on computing speed, or
limitations in using CPU for energy saving. As a result,
the running time for compression becomes an important
aspect, when we characterize a sensor data compression
method.

In our benchmark, all algorithms are implemented and
tested on the same standard. Specifically, we randomly
chose 100 sensor signals of length 1,000, 10,000, and
100,000 values. We then measured the average processing
time per data point, while varying the value for the error
tolerance ε.

3.4.4 Approximation Error
Although the benchmark concerns the compression meth-
ods under the L∞ norm, applications often need to know
the quality of data compression, i.e., (overall) difference
between actual data values and the corresponding decom-
pressed (approximated) data values. In particular, when
multiple compression methods show similar performance,
approximation error can become a subordinate metric to
consider. To reflect this aspect, we represent the approx-
imation errors of data compression using the root mean
square error (RMSE), which is widely used to evaluate the
quality of approximation. Formally,

RMSE =

√√√√ 1

n

n∑
i=1

(vi − v̂i)2 (10)

where vi is a raw data value in a given sensor data
signal, and v̂i is the corresponding approximated value
in the compressed signal. The lower RMSE, the better
approximation (compression).
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As each sensor data signal has a particular range where
data values are bounded, we normalized the RMSE values
(from 0 to a given error tolerance ε) at each experiment set,
in order to have a common view to analyze the experimental
results.

3.4.5 Sensitivity to Outliers
One typical characteristic of sensor data is their uncertain
and erroneous nature, originating from various sources,
such as discharged batteries, network failures, accumulation
of dirt on sensors, and imprecise readings from low-cost
sensors. As a result, it is important to know how each
compression method performs over noisy data, which is
generally characterized by the portion of significant out-
liers.

In the benchmark, we studied the sensitivity to outliers by
recording the compression ratios, while varying the degree
of outliers. To this end, we artificially included outliers
to the tested datasets, while applying different appearance
probabilities of outliers p = 0%, 1%, 2%, 3%, 4%.

4 EXPERIMENTAL EVALUATION
We proceed to report on the results of applying the bench-
mark to the six model-based data compression algorithms.
The main goal of the experiments is not only to compare the
compression performances, but also to analyze the effects
of data characteristics on the performance behavior. All the
experiments ran on an Intel Core i7 processor 2.8 GHz
system with 4 GB of main memory.

Throughout the benchmark, we computed the evalua-
tion measures with different applications of compression
methods and error threshold ε. Note that the absolute error
varies over a widely different range since each dataset has
different domain values. Thus it is impossible to compare
all compression methods in a same manner. For the purpose
of giving the general picture, we used relative error (in
percentage) in the experiments.

To set the relative error ε in the experiments, we first
computed the difference between the maximum and min-
imum values in a sensor data signal. We then used a
certain proportion to the difference for the value of the
error tolerance. For instance, suppose that a sensor signal
has 1000 and 0 as the maximum and minimum values
among its all readings, respectively. Error tolerance = 1%
then indicates that ε equals to (1000− 0)× 0.01 = 10. In
real scenarios, the benchmark also allows users to define
absolute error tolerance since we do not know the max/min
values in advance if the data are compressed on the fly.

Instead of using the exact max/min values of a sensor
data signal for deriving an error tolerance, we first com-
puted the range of a 95% confidence interval (for the mean)
of the values in the signal. The values fall far outside
the range of standard deviation are considered statistically
significant in a wide range of sciences, implying outliers.
We then selected the border values of the range as the
max/min values to derive the error tolerance. In this way,
normal random error or variation in the measurements is
distinguished from potential errors.

4.1 Compression Ratio
In the first set of experiments, we compare the compression
power of the methods. Moreover, we also discuss the results
from three difference perspectives: overall performance,
effect of data, and effect of error tolerance.

4.1.1 Overall Performance
Table 4 presents the ranking of the compression meth-
ods with regard to compression ratio. Table 3 shows the
full names of the abbreviations used for dataset names
in the table. Although there is no absolute winner who
outperforms all the others across all the datasets and all
different parameter settings, APCA and SF show better
performance in many tests. Specifically, APCA shows the
highest compression power on 10 datasets, and SF reports
the second best performance on 8 datasets. In principle, SF
uses linear regression models that are more expressive to
capture dynamic data trends than constant models; however,
the compression power of APCA is higher in most test
cases. The key reason is the representation of data approxi-
mation. APCA requires only two values in the compressed
data to represent a constant segment (Equation 2); while SF
requires three or four values to capture a linear segment in
the compressed data (Equation 4).

Compression methods using fixed-size widow, i.e., PCA
and CHEB, show low performances in Table 4. Their
unsatisfactory results are due to the sensitivity to the
maximum error constraint, which is often violated using
a fixed-size window. Whenever such a violation occurs,
those methods store the raw data as they stand into the
compression file. We described this process in Section 2.1.1
and Section 2.3.1. This is the main reason why PCA and
CHEB reported low compression performances.

GAMPS also shows low compression power; it is ranked
as the worst on three datasets. The key reason is that
GAMPS is not designed for compressing uncorrelated
data, e.g., the datasets used in this benchmark. Therefore,
GAMPS may perform better using some different datasets
with strong correlations.

4.1.2 Effect of Data Heterogeneity
Figure 6 demonstrates the results of compression ratios
using the settings of ε= 1%, 5% for each dataset. The
longest bar in each test (data) shows the lowest compression
power, and the number on top of the bars indicates the exact

dataset PCA APCA PWLH SF CHEB GAMPS
mois 5 1 3 2 4 6
pres 5 3 2 1 6 4
humi 5 1 3 2 4 6
volt 6 1 3 2 4 5
lysi 5 1 3 2 4 6

snow 6 1 2 3 5 4
temp 6 1 2 3 4 5
CO2 6 1 3 2 4 5
radi 6 1 3 2 4 5

wspd 6 1 3 2 5 4
wdir 6 1 3 2 4 5

TABLE 4: Ranking of the compression methods w.r.t. compression
ratio for each dataset.
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Fig. 6: Comparison of compression ratios (the lower, the better).

compression ratio. The others’ results (bars) in each dataset
are normalized according to the longest bar. For example,
PCA shows the worst compression ratio 0.74 in mois when
ε = 1%, and the APCA’s compression ratio in this data is
about the half of PCA’s compression ratio.

In the results, we find many interesting facts. First, the
compression power of the methods becomes prominent
over the datasets showing relatively smooth changes of
value (indicated by ‘short-term fluctuation’ in Table 3).
For example, the worst compression ratios specified by
the numbers on top of the longest bars in pres and snow
are 0.1 and 0.37 respectively while the numbers in other
datasets vary from 0.74 to 1.42. In particular, all the meth-
ods achieve very high compressions over pres, even the
worst result from CHEB still reaches a 10% compression
(i.e., 0.10 compression ratio) at ε = 1%. This is indeed
a remarkable result, showing the potential of model-based
data compression. The main reason for this outstanding
result is that pres shows a high-rate sampling rate, i.e.,
2 seconds (see Table 3), but the changes of data values
over time are very slight.

In contrast, the datasets containing sharp fluctuation
trends, such as wspd, CO2, and wdir, seem to pose
difficulties to the compression algorithms to achieve high
compression. This is natural, since all the compression
methods are built upon approximation models that cannot
precisely capture “randomly” varying data.

Another important finding in Figure 6 is that the methods
using variable-length window, in particular APCA, SF, and
PWLH, perform between 1/1.59 to 1/14.3 better com-
pared to the others over low-volatility datasets. In addition,
this observation becomes clearer for medium-fluctuation
datasets, when a high value for ε is used. In the results of
humi and lysi when ε = 5%, for instance, the differences
between the adaptive-window and fixed-window compres-
sions are larger than (between 2.13 to 2.52 times) those
when ε = 1% on the same datasets. These results reflect
that the adaptability effect of window becomes stronger
when the error tolerance grows.

In pres, both PWLH and SF outperform the others, in-
cluding APCA. Recalling Figure 5, the data values in pres
gradually grow with a few sharp drops. Obviously, linear
lines are more effective than constant lines to approximate
larger numbers of data points in such constantly increasing
data. This leads to the higher compression power of the
methods built on linear models.

4.1.3 Effect of Error Tolerance ε

Obviously, the compression power of model-based com-
pression techniques increases, as the value for ε increases;
however, the degree of this correlation does not follow any
particular rule in our results. This was actually another
motivation of our benchmark study, which aims to offer
a reference for potential users to find an appropriate value
for ε in their applications.

Table 5 shows the changes of compression ratios of each
method, while varying values for ε. As the error tolerance
gets bigger, from ε = 1% to 10%, the performance differ-
ences among the methods become smaller. For example, in
the results from the tests using ε = 1%, the compression
ratios of each method are very distinct from one another,
yet the differences become smaller in the results obtained
from using ε = 10%.

The improvement of compression power with increasing
ε is clearer when small values are set for ε. For instance,
the difference in compression ratio of GAMPS between
ε = 1% and ε = 5% is (0.76 − 0.45) = 0.31, while that
between ε = 5% and ε = 10% is only (0.45−0.29) = 0.16.
Therefore, using a small value for ε is more effective in the
tradeoff between compression power and error tolerance.

model ε=1% ε=5% ε=10%
PCA 0.76 ± 0.18 0.45 ± 0.17 0.29 ± 0.12

APCA 0.55 ± 0.22 0.17 ± 0.09 0.08 ± 0.04
PWLH 0.66 ± 0.26 0.24 ± 0.12 0.12 ± 0.06

SF 0.59 ± 0.23 0.22 ± 0.11 0.11 ± 0.06
CHEB 0.54 ± 0.15 0.29 ± 0.10 0.20 ± 0.06

GAMPS 0.87 ± 0.27 0.41 ± 0.16 0.24 ± 0.10

TABLE 5: Average compression ratios with 95% confidence
interval (all data).
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This fact should be taken into consideration when an
application searches an appropriate value for ε.

4.2 Transmission Cost
As described in Section 3.4.2, the benchmark simulates
data transmission as well as measures transmission cost
under two metrics—packet ratio and power ratio. Through
a wide range of experiments, we found that the packet
ratio is equivalent to the power ratio. Therefore, instead of
comparing compression methods in both metrics, we focus
on packet ratio only. But note that both metrics are already
supported in our benchmark.

In this section, we firstly present experimental results to
validate the equivalence between packet ratio and power
ratio. After that, we evaluate compression methods in
respect of packet ratio.

4.2.1 Equivalence between packet ratio and power
ratio
In order to validate the equivalence between packet ratio
and power ratio, we design a variety of experiments with
broadcast and multi-hop network topology mentioned in
Section 3.2.1. In case of broadcast topology, we carried out
simulations using different complete graphs K3,K6,K9.
For multi-hop topology, simulations were carried out using
perfect k-ary tree T (h, k) while varying height h from 2
to 4 and internal degree k from 1 to 3. For each topology
setting, we select randomly 300 data streams and apply
every compression method.

Figure 8 shows the distribution of all the points whose x
and y values are packet ratio and power ratio, respectively.
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Fig. 8: Equivalence between power ratio and packet ratio

Each point represents a run that is a combination of
data stream, compression method and topology setting. We
categorize them into four plots: broadcast, 2-hop, 3-hop and
4-hop.

It is clearly seen that all values lie on the angle bisector
of the upper right quadrant of the coordinate plane. In
all plots, the average value of α—fraction of power ratio
over packet ratio—is approximately 1.05 and the 95%
confidence interval is lower than 0.005. As a result, we
confidently conclude that the packet ratio is equivalent to
power ratio (using the PowerTOSSIM-Z simulator with
micaZ energy model).

4.2.2 Comparison between compression methods
Figure 7 shows the packet ratio from each compression
method across different datasets using error threshold ε =
1% (we omit the results using ε = 5% due to the similarity)
The results do not contain GAMPS, since GAMPS is
an offline compression method, which cannot be applied
for the wireless-communication scenario considered in this
benchmark.

Clearly, linear-model compressions are winners on this
experiment set, indicating that SF and PWLH require fewer
data transmissions to update the model parameters from a
producer node to a consumer node. Interestingly, PWLH
and SF appear to perform between 1

1.36 to 1
33.3 times better

compared to the other techniques, when a sensor signal
exhibits not only smooth fluctuations (e.g., snow and pres),
but also high fluctuations (e.g., wspd, CO2, and wdir).
In fact, the performance superiority of PWLH and SF—
especially over APCA that was the winner in compression
ratio—becomes more prominent, when data values in a
signal show high-degree fluctuations. This result implies
that the linear approximation models used in SF and PWLH
are effective to capture varying sensor signals.

Between PWLH and SF, SF demonstrates slightly better
results than those obtained from PWLH, across all tests.
Their performance differences are, however, not remarkable
(≤ 0.02).

To sum up, our results draw an important suggestion—
SF could be a more suitable choice than APCA (the overall
winner in the compression ratio experiments) for wireless
sensor-network applications.

4.3 Computation Time
Sensor data are often delivered at a high rate; for example,
an accelerometer in a smart phone generally produces more
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dataset mois vol wspd snow pres co2 wdir radi humi lysi temp
compression ratio

PCA 0.74 ± 0.19 0.70 ± 0.20 1.06 ± 0.08 0.37 ± 0.09 0.09 ± 0.00 1.14 ± 0.07 1.05 ± 0.08 0.70 ± 0.11 0.94 ± 0.07 0.87 ± 0.20 0.75 ± 0.07
APCA 0.35 ± 0.12 0.25 ± 0.08 1.04 ± 0.11 0.17 ± 0.08 0.04 ± 0.00 1.25 ± 0.11 0.94 ± 0.12 0.47 ± 0.14 0.54 ± 0.07 0.64 ± 0.20 0.31 ± 0.05
PWLH 0.53 ± 0.19 0.26 ± 0.08 1.23 ± 0.12 0.24 ± 0.10 0.01 ± 0.00 1.47 ± 0.13 1.15 ± 0.13 0.52 ± 0.15 0.67 ± 0.09 0.81 ± 0.24 0.37 ± 0.07

SF 0.49 ± 0.18 0.23 ± 0.07 1.09 ± 0.11 0.22 ± 0.09 0.01 ± 0.00 1.28 ± 0.12 1.05 ± 0.12 0.46 ± 0.14 0.60 ± 0.08 0.76 ± 0.22 0.33 ± 0.06
CHEB 0.56 ± 0.15 0.36 ± 0.09 0.84 ± 0.07 0.29 ± 0.07 0.10 ± 0.00 0.93 ± 0.06 0.82 ± 0.07 0.44 ± 0.09 0.59 ± 0.06 0.66 ± 0.16 0.37 ± 0.05

GAMPS 0.68 ± 0.08 0.48 ± 0.11 1.38 ± 0.08 0.30 ± 0.07 0.09 ± 0.00 1.55 ± 0.07 1.16 ± 0.08 0.68 ± 0.07 1.11 ± 0.18 1.42 ± 0.06 0.68 ± 0.08
compution time (milisec.)

PCA 0.09 ± 0.02 0.08 ± 0.02 0.09 ± 0.01 0.05 ± 0.01 0.02 ± 0.00 0.09 ± 0.01 0.09 ± 0.00 0.08 ± 0.01 0.09 ± 0.01 0.08 ± 0.01 0.08 ± 0.01
APCA 0.04 ± 0.01 0.03 ± 0.01 0.07 ± 0.01 0.03 ± 0.00 0.02 ± 0.00 0.08 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 0.05 ± 0.00 0.05 ± 0.01 0.04 ± 0.00
PWLH 48.58 ± 24.28 38.81 ± 29.96 29.44 ± 20.75 33.82 ± 11.02 58.10 ± 5.02 47.00 ± 2.27 39.33 ± 6.28 42.52 ± 16.54 25.89 ± 1.86 38.34 ± 7.62 16.86 ± 3.26

SF 10.52 ± 8.26 15.85 ± 15.44 10.22 ± 7.13 2.01 ± 0.74 15.48 ± 1.28 0.86 ± 0.49 1.03 ± 0.49 12.80 ± 12.94 1.16 ± 0.54 0.50 ± 0.13 1.32 ± 0.53
CHEB 11.76 ± 1.41 9.33 ± 1.44 14.37 ± 0.46 10.32 ± 0.79 10.44 ± 0.15 12.23 ± 0.27 11.93 ± 0.44 13.29 ± 0.47 11.41 ± 0.48 10.10 ± 1.05 11.79 ± 0.20

GAMPS 0.27 ± 0.05 0.05 ± 0.09 1.05 ± 0.16 0.43 ± 0.11 0.40 ± 0.09 0.52 ± 0.10 0.59 ± 0.28 0.98 ± 0.17 0.30 ± 0.22 0.46 ± 0.07 1.50 ± 0.37
packet ratio

PCA 0.59 ± 0.15 0.56 ± 0.16 0.85 ± 0.07 0.30 ± 0.07 0.07 ± 0.00 0.91 ± 0.06 0.84 ± 0.06 0.56 ± 0.09 0.76 ± 0.06 0.70 ± 0.16 0.60 ± 0.06
APCA 0.17 ± 0.06 0.12 ± 0.04 0.52 ± 0.05 0.09 ± 0.04 0.02 ± 0.00 0.63 ± 0.06 0.47 ± 0.06 0.23 ± 0.07 0.27 ± 0.04 0.32 ± 0.10 0.16 ± 0.03
PWLH 0.13 ± 0.05 0.07 ± 0.02 0.31 ± 0.03 0.06 ± 0.03 0.00 ± 0.00 0.37 ± 0.03 0.29 ± 0.03 0.13 ± 0.04 0.17 ± 0.02 0.20 ± 0.06 0.09 ± 0.02

SF 0.12 ± 0.05 0.06 ± 0.02 0.29 ± 0.03 0.06 ± 0.02 0.00 ± 0.00 0.35 ± 0.03 0.27 ± 0.03 0.12 ± 0.04 0.15 ± 0.02 0.19 ± 0.06 0.08 ± 0.02
CHEB 0.53 ± 0.15 0.33 ± 0.09 0.81 ± 0.07 0.25 ± 0.07 0.07 ± 0.00 0.90 ± 0.06 0.79 ± 0.07 0.41 ± 0.09 0.56 ± 0.06 0.63 ± 0.16 0.34 ± 0.05

RMSE ×1000
PCA 1.58 ± 0.75 1.61 ± 0.70 0.50 ± 0.14 1.89 ± 0.26 2.10 ± 0.11 0.44 ± 0.20 0.76 ± 0.17 1.22 ± 0.22 1.42 ± 0.19 1.13 ± 0.43 1.99 ± 0.21

APCA 3.58 ± 1.29 4.27 ± 1.24 4.35 ± 0.27 4.30 ± 0.34 5.81 ± 0.01 4.24 ± 0.20 4.21 ± 0.26 5.77 ± 0.57 5.44 ± 0.08 4.65 ± 0.65 5.13 ± 0.31
PWLH 3.53 ± 1.21 3.98 ± 1.09 3.84 ± 0.26 4.06 ± 0.31 6.35 ± 0.09 3.66 ± 0.24 3.60 ± 0.24 4.57 ± 0.41 5.18 ± 0.08 4.63 ± 0.33 5.05 ± 0.21

SF 3.72 ± 1.20 4.11 ± 1.07 4.63 ± 0.28 4.19 ± 0.28 6.45 ± 0.08 4.59 ± 0.23 4.30 ± 0.24 4.94 ± 0.42 5.68 ± 0.08 5.15 ± 0.39 5.31 ± 0.18
CHEB 1.91 ± 0.59 2.18 ± 0.56 1.11 ± 0.19 1.90 ± 0.28 2.08 ± 0.11 0.68 ± 0.21 1.28 ± 0.22 1.93 ± 0.28 2.71 ± 0.15 1.96 ± 0.35 2.99 ± 0.19

GAMPS 0.65 ± 0.22 0.24 ± 1.81 1.26 ± 0.04 2.25 ± 0.62 2.36 ± 0.00 1.31 ± 0.05 1.40 ± 0.06 2.07 ± 0.18 1.68 ± 0.17 1.41 ± 0.21 1.89 ± 0.17

TABLE 6: Average value and 95% confidence interval of all evaluation measures of each method over all datasets (ε = 1%).

than 1,000 readings within a minute. As a result, quickly
compressing a given sensor signal is a key factor.

APCA and PCA are clear winners on this concern. In
Table 6, APCA and PCA’s computation time is less than 0.1
ms across all data sets. GAMPS and SF are slower as their
values varies within the range [0.27, 1.5] and [0.5, 15.85]
respectively. Finally, the remaining techniques—CHEB and
PWLH—exhibit expensive computation as their running
time is over 9 ms in their best case. This is because CHEB
transformation takes relatively sophisticated computation,
and PWLH needs to compute convex hulls to maintain the
linear window every time when a new data point is added
to the window.

Overall, we conclude that PCA, APCA, GAMPS, SF
are affordable to use at low-speed devices, whereas CHEB
and PWLH may be inappropriate for many sensor network
applications, in particular those who deal with a large
number of sensor data streams.

4.4 Approximation Quality
In order to reflect the quality of compression, in which
the intuition behind this measure was explained in Sec-
tion 3.4.4, the benchmark computed the RMSEs of data
compression when each test ran. The results are presented
in Figure 9 and Table 6.

A noticeable observation in the results is that the RMSEs
obtained from PCA and CHEB are significantly lower
than (2.78 times in average) those from the others. This
observation may be interpreted as “the higher compression
power, the lower quality of data compression”. This is,
however, not what we believe. Turning to the processes of
how PCA and CHEB produce compressed data (described
in Sections 2.1.1 and 2.3.1), those two methods store raw
data points as they stand into the compressed file, when the
data approximation in a window (segment) violates a given
maximum error guarantee ε. Clearly, an RMSE for those
data points in the compressed file is 0. As both methods
generally do not achieve high compression ratios, such raw
data points preserved in the compressed data are likely to
present a lot. This fact results in the low RMSE values from
PCA and CHEB.

Among the results reported from the adaptive-window
methods, which are APCA, SF, and PWLH, the differences
of RMSE are negligible.

4.5 Sensitivity to Outliers
A variety of reasons cause noises or outliers in sensor data,
such as discharged batteries, network failures, accumulation
of dirt, and errors from low-cost sensors. As a result, it
is important for sensor-network applications to know how
each method performs when data are not clean.

In this experiment set, we compared the robustness to
noisy data of the compression methods. As we discussed in
Section 3.4, we put artificial outliers to the datasets, having
different appearance probabilities, from p = 0% to p =
4%. More precisely, given a data stream, we first compute
the relative error rate (in percentage) and then add outliers
randomly into this stream. The reason for this setting is
to avoid the side-effects of adding outliers on the relative
error rate as the max/min values could be changed by these
outliers. Figure 10 demonstrates the compression ratios of
each technique along with varying p.

Interestingly, GAMPS shows low sensitivity to noisy
data; the compression ratios of GAMPS do not vary sub-
stantially as the value for p increases. This trend looks
similar to the results from APCA. This is reasonable.
As we described in Section 2.4.1, GAMPS uses APCA
to approximate individual signals, and then groups the
APCA-applied signals if they are similar. Therefore, the
performance behaviors in terms of the sensitivity to outliers
between GAMPS and APCA are essentially similar to each
other.

Another key finding in Figure 10 is that fixed-window
methods (i.e., PCA and CHEB) demonstrate high sensitivity
to outliers. The main reason can be found by understanding
how outliers affect the process of data approximation. Out-
liers generally produce more segments during data approxi-
mation in the compression methods, since they are likely to
incur more frequent violations for the error tolerance. Once
such a violation occurs, PCA and CHEB store the orig-
inal data in the compressed data; while adaptive-window
methods still store approximated data as compression, and
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Fig. 9: Comparison of compression qualities (RMSE) when ε = 1% (the lower, the better).

simply start a new approximation. Therefore, even the same
amount of outliers can decrease the compression power of
the fixed-window methods more.

Between PWLH and SF, SF shows slightly better results
than PWLH; their differences are less than 0.02. This is
because SF uses multiple lines to select the best one while
approximating data, rendering the approximation process of
SF more flexible to noisy data, compared to PWLH.

5 SUMMARY AND CONCLUSIONS

This paper presented a thorough evaluation and comparison
of model-based compression techniques widely used in
sensor data processing. We offered an overview of four
major classes of model-based approaches, while discussing
about the characteristics of the underlying models. We then
introduced the flexible and extensible benchmark frame-
work, in which a new compression method as well as a
new dataset can be easily plugged. During the framework
development, we made the best effort to re-implement the
most representative model-based compression techniques,
and evaluated them in a fair manner. We also analyzed
various performance factors for each compression method,
including compression ratio, computation time, packet ra-
tio, power ratio, approximation error, and robustness to
noise, using real data signals collected from 346 different
sensors.

We here summarize our principal findings as a set of rec-
ommendations for how to select a well-suited compression
method on particular application scenarios:
• Overall, APCA and SF performed best. In particular,

they by far outperformed the others, when data values
in a sensor signal exhibit low fluctuations.

• The adaptability of window (i.e., varying-size data seg-
ment) substantially increases the compression power.
This effect becomes even more prominent when the
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Fig. 10: Sensitivities to noise, outlier= 0%, 1%, 2%, 3%, 4% of
original data.

volatility of data is high. Therefore, subsequent studies
should take into account this fact when they design a
new compression method for sensor data.

• Compression quality in terms of RMSE is also greatly
affected by the adaptability of window, but in an
opposite way; adaptive-window methods, i.e., APCA,
SF, and PWLH, show high RMSEs, compared with
fixed-window methods—PCA and CHEB.

• The idea of GAMPS is interesting, but it turns out to
be ineffective when sensor signals show a diversity in
sampling rate as well as less correlations.

• For efficient data communication, linear-model com-
pression techniques are promising. Especially, SF can
be a good choice to facilitate infrequent data com-
munication in wireless or in-network sensing environ-
ments.

• If sensor data are noisy (i.e., containing many outliers),
consider using GAMPS, especially when a high degree
of data correlation is expected. APCA can also work
robustly against noisy data, particularly useful when
data do not show correlations.

category winner 2nd best worst
compression ratio APCA SF PCA
computation time APCA PCA PWLH

packet ratio SF PWLH PCA
power ratio SF PWLH PCA

RMSE of compression PCA CHEB APCA
robustness to noise GAMPS APCA PCA

As a concluding remark, we recommend a potential
application to use our benchmarking framework as a tool to
find out the best-suited compression technique accordingly,
since there is no absolute winner that outperforms the
others in every case. As the benchmark source code as
well as the datasets used in the benchmark are publicly
available, we expect that the experimental results presented
in this paper will be refined and improved by the research
community, in particular when more data become available,
more experiments are performed, and more techniques are
integrated into the framework in the future.
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