
On the Generation of Precise Fixed-Point Expressions

Eva Darulova
EPFL

eva.darulova@epfl.ch

Viktor Kuncak
EPFL

viktor.kuncak@epfl.ch
Rupak Majumdar

MPI-SWS
rupak@mpi-sws.org

Indranil Saha
UCLA

indranil@cs.ucla.edu

ABSTRACT
Several problems in the implementations of control systems,
signal-processing systems, and scientific computing systems
reduce to compiling a polynomial expression over the re-
als into an imperative program using fixed-point arithmetic.
Fixed-point arithmetic only approximates real values, and
its operators do not have the fundamental properties of real
arithmetic, such as associativity. Consequently, a naive com-
pilation process can yield a program that significantly devi-
ates from the real polynomial, whereas a different order of
evaluation can result in a program that is close to the real
value on all inputs in its domain.

We present a compilation scheme for real-valued arith-
metic expressions to fixed-point arithmetic programs. Given
a real-valued polynomial expression t, we find an expression
t′ that is equivalent to t over the reals, but whose imple-
mentation as a series of fixed-point operations minimizes the
error between the fixed-point value and the value of t over
the space of all inputs. We show that the corresponding
decision problem, checking whether there is an implemen-
tation t′ of t whose error is less than a given constant, is
NP-hard. We then propose a solution technique based on
genetic programming. Our technique evaluates the fitness
of each candidate program using a static analysis based on
affine arithmetic. We show that our tool can significantly
reduce the error in the fixed-point implementation on a set
of linear control system benchmarks. For example, our tool
found implementations whose errors are only one half of the
errors in the original fixed-point expressions.

Categories and Subject Descriptors
D.2.10 [Software]: Software Engineering—Design-
Methodologies

Keywords
Fixed-point arithmetic, genetic programming, synthesis,
stochastic optimization, embedded control software

1. INTRODUCTION
Many algorithms in controls and signal processing are nat-

urally expressed using real arithmetic. A direct implemen-
tation of these algorithms using floating-point computation
requires either floating-point co-processors or software-based
emulation of floating-point capabilities. Unfortunately, in
many embedded domains where controls and signal process-
ing applications are commonly used, the cost and power
consumption of co-processors or the inefficiency of software
emulation are unacceptable. Thus, these algorithms are usu-
ally implemented using a fixed-point equivalent of the orig-
inal algorithm. A lot of research has gone into providing
semi-automated compilation support from floating-point to
fixed-point implementations [8, 22, 20, 5, 25]. The primary
concern in these works has been bitwidth allocation: finding
out the number of bits to allocate for the integral and the
fractional parts of each real variable, so that the resulting
implementation does not lose too much precision and the
fixed-point variables do not overflow.

Even with an optimal bitwidth allocation, the precision of
a fixed-point computation can depend on the order of evalu-
ation of arithmetic operations. Since fixed-point arithmetic
is not associative, and multiplication does not distribute over
addition, the order in which a real polynomial is evaluated
can cause differences in the error of the computation. These
differences can indeed be significant: we show for one of our
control system benchmarks that the error between two pos-
sible evaluation orders can be 2×: ranging from 0.00139 for
the more precise expression to 0.00311 for the least precise
one. Since the performance of controllers depends on the er-
ror introduced in the controller output, this difference can be
significant. However, optimizing the error in the evaluation
has received much less attention in fixed-point compilation,
and has been limited to peephole optimizations (such as re-
moving redundant shift operations locally) [1].

We present a technique to synthesize a fixed-point imple-
mentation for a given real-valued specification. Our synthe-
sis method chooses the evaluation order of arithmetic op-
erations to minimize the computation error. Given a real-
valued arithmetic expression t, we aim to find a fixed-point
implementation t′, such that (1) the expressions t and t′

are equivalent when interpreted over reals, and (2) the error
between the real value and the fixed-point value computed
by t′ is minimal over all other fixed-point implementations
equivalent to t. We show that the decision problem of finding
an evaluation order that minimizes the error bound between
the specification and the implementation is NP-hard, so a
tractable complete search algorithm is unlikely.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147991516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Our technique is therefore based on a heuristic search im-
plemented through genetic programming (GP) [26]. We use
the mutation and crossover operations of genetic program-
ming to generate new sub-expressions. To evaluate the fit-
ness of a proposed solution, we use a static analysis based on
affine arithmetic to compute an upper bound on the error.
The objective of the search is to minimize the upper bound
computed by the static analysis.

While our static analysis only computes an upper bound,
we show, through extensive simulations, that the statically-
computed upper bounds are proportional to the actual errors
observed by simulations. We can thus use the less expensive
upper bounds to compare two expressions with respect to
precision.

We have implemented our technique and we have eval-
uated it on a set of control application benchmarks. Our
experiments demonstrate that our technique is adequate
in finding good fixed-point implementations for linear con-
trollers. For non-linear computations we encounter limita-
tions in using static analysis based on affine-arithmetic, but
our search method works with any technique to estimate
variable ranges, so further improvements in this area can be
incorporated into our approach.

2. PRELIMINARIES
In this section we provide some background on the fixed-

point representation of real numbers and genetic program-
ming. As our benchmarks are mostly from the control en-
gineering domain, we also provide a brief introduction to
controller implementations.

In the rest of the paper, an expression denotes an arith-
metic expression generated by the following grammar:

t ::= v | x | t1 + t2 | t1 − t2 | t1 ∗ e2 | t1/t2
where v and x are rational constants or variables, respec-
tively.

2.1 Fixed-point Representation
In a fixed-point implementation of an expression, all the

variables and constants in the expression are assigned a
fixed-point representation. A fixed-point representation of
a real number is a triple 〈s, v, w〉 consisting of a sign bit in-
dicator s ∈ {1, 0} (for signed and unsigned), a length v ∈ N,
and a length of the fractional part w ∈ N. The length of
the integer part is v − w − 1. Intuitively, a real number is
represented using v bits, of which w bits are used to store
the fractional part. A given integer w and a positive inte-
ger v > 0 determine a finite set FX(v, w) of representable
rational numbers. A variable with a fixed-point type is rep-
resented in a program as a v-bit integer. The fixed-point
implementation of an expression then consists of assigning
fixed-point representations to all input variables and inter-
mediate results, i.e. to each node in the expression abstract
syntax tree (AST). An arithmetic operation on two fixed-
point variables involves integer arithmetic and shifting of
bits. For more details on the semantics of fixed-point arith-
metic, the readers are referred to [2].

Definition: Worst-case error. Assume a fixed-point im-
plementation of an expression t. Given the values of vari-
ables, we define the expression error as |tr − tf | where tr is
the value of t computed in real numbers, and tf the value
computed by the fixed-point implementation. Given the in-
tervals for input variables of t, the worst-case error for a

fixed-point implementation of t is the maximum over all ex-
pression errors where the values of variables range over the
fixed point representable values from the given intervals.

2.1.1 Best fixed-point implementation
An operation using real arithmetic may have different

fixed-point implementations depending on how many bits
are allocated to hold the integer part and the fraction part
of the variables and intermediate results. Allocating fewer
bits than required to hold the integer part may lead to over-
flow. On the other hand, if more than the required number
of bits are allocated to the integer part, the quantization
error increases due to assigning fewer bits to the fractional
part. When we compare the fixed-point implementations of
different expressions, we consider their best possible imple-
mentation, which we define next. Let us fix the number of
bits to be v for the representation of every variable in the
implementation of an expression. Then we define the best
fixed-point implementation as follows:

Definition: Best fixed-point implementation for
given intervals. For a given v and given intervals for the
variables and intermediate results, an implementation I is
called the best fixed-point implementation, if for every input
variable or intermediate result that takes values from an in-
terval [rmin, rmax], the fixed-point representation is given by
〈1, v, w〉, where w = v− 1− z and z, the number of integral
bits, is given by

z = dlog2(max(abs(rmin), abs(rmax)))e (1)

For example, if the interval for a variable is [-35.55, 48.72],
the representation for the variable in the best 16-bit fixed-
point representation has z = 6 bits for the integer part, so
it is given by 〈1, 16, 9〉. For a constant C = 0.0864 where
z = −3, the representation is given by 〈1, 16, 18〉.

Note that the best fixpoint implementation depends on
intervals assigned to intermediate nodes. We say that inter-
vals are tight if the intervals for internal nodes are as small as
possible, which we can define by doing interval computation
and fixed point allocation in parallel, as follows. Suppose
we have assigned tight intervals S1 and S2 for sub-trees and
that the operation is ∗. Let S = {x1 ∗x2 | x1 ∈ S1, x2 ∈ S2}
and let z and w be given by (1) taking rmin = inf(S) and
rmax = sup(S). We then require the interval assigned to the
node to be [roundF(rmin, v, w), roundF(rmax, v, w)] where
roundF denotes the rounding used in fixed-point computa-
tions when the representation is (1, v, w).

A property of the above definitions is that, in the special
case when the input intervals have lower bound equal to
upper bound and are representable as fixed point numbers,
then the tight intervals for intermediate nodes also have their
lower bounds equal to their upper bounds, and are equal to
the values of the sub-expression when evaluated in fixed-
point arithmetic.

2.2 Control Systems
Control systems are developed to control certain behaviors

of physical systems. Physical systems are typically modeled
by differential equations:

d

dt
x = f(x, u) (2)

in which the curve x : R → Rn describes how the physical
quantities of interest change over time. At each time instant

t ∈ R, x(t) is a vector in Rn containing the values of physical
quantities such as positions, velocities, temperatures, pres-
sures, etc. A controller of the form u = k(x) is designed to
control the evolution of the physical variables.

In this paper we mostly focus on linear control systems.
To develop a linear control system, the behavior of the
physical system is first approximated by linear differential
equations, and then the differential equations are discretized
based on a suitably chosen sampling time. A discrete-time
linear time-invariant system is given by:{

x[r + 1] = Aτx[r] +Bτu[r],
y[r] = Cx[r],

(3)

where x ∈ Rn, u ∈ Rm and y ∈ Rp represent the state,
control input and output of the control system.

The controller requires the full state x to compute the
control signal. However, the full state of the plant is not
generally available to the controller, only output y of the
system is available. Hence, the control input

u[r] = −Kx̃[r] (4)

is computed based on an estimation x̃ of the state x. The
matrix K is called the feedback gain of the controller. The
estimation x̃ can be constructed using the observer dy-
namic [10]:

x̃[r + 1] = (Aτ −BτK − LC)x̃[r] + Ly[r]. (5)

The matrix L is called the gain of the observer.
Equation (5) together with Equation (4) provides the re-

alization of the controller.

2.3 Genetic Programming
Genetic algorithms are heuristic search algorithms in-

spired by natural evolution. The algorithm evolves a popu-
lation of candidate solutions by repeating the following steps
for each new generation of solutions: from two candidates
selected from the current generation new solutions are cre-
ated by mutation and crossover whose quality is evaluated
by a user-defined fitness function.

The candidate solutions are usually represented by strings
so that these operations mimic closely natural evolution.
Candidates for mutation and crossover can be selected for
example by tournament selection where a fixed number of
candidates is chosen at random and the one with the highest
fitness is selected as the final candidate.

Note that the problem domain can be very complex and
that it does not need to have a gradient for guiding the
search. Genetic programming [26] is a variant of a genetic
algorithm that performs the search over computer programs
instead of strings. Mutation and crossover operators are
thus defined on abstract syntax trees (ASTs).

3. EXAMPLE
We motivate the problem using a controller for a batch

reactor processor [27]. The computation of a state of the
controller is given by the following expression:

(−0.0078) ∗ st1 + 0.9052 ∗ st2 + (−0.0181) ∗ st3 +

(−0.0392) ∗ st4 + (−0.0003) ∗ y1 + 0.0020 ∗ y2
(6)

where sti is an internal state of the controller and yi is an
input to the controller. There are additional similar expres-
sions to compute the other states and the outputs of the
controller.

tmp0 = ((-32716l * st1) >> 18)
tmp1 = ((29662l * st2) >> 15)
tmp2 = ((tmp0 + (tmp1 << 4)) >> 4)
tmp3 = ((-18979l * st3) >> 16)
tmp4 = (((tmp2 << 4) + tmp3) >> 4)
tmp5 = ((-20552l * st4) >> 15)
tmp6 = (((tmp4 << 4) + tmp5) >> 4)
tmp7 = ((-20133l * y1) >> 22)
tmp8 = (((tmp6 << 4) + tmp7) >> 4)
tmp9 = ((16777l * y2) >> 19)
tmp10 = (((tmp8 << 4) + tmp9) >> 4)
return tmp10

Figure 1: A possible fixed-point implementation for
the example expression.

Consider a fixed-point implementation of this controller.
If we assume an input range of [−10, 10] for all input vari-
ables and a uniform bit length of 16, each input variable gets
assigned the fixed-point format 〈1, 16, 11〉. This means that
of the 16 bits we use 1 bit to represent the sign of the number,
4 bits for the integer part (10 < 24 = 16), and the remaining
11 bits for the fractional part. The constant−0.0078 gets the
format 〈1, 16, 22〉 (0.0078 < 216−1−22 = 2−7 = 0.0078125).
If we multiply st1 now by −0.0078, the result will have 33
bits, which we fit into 16 bits by performing a right shift.
Following the order of arithmetic operations in (6) gives a
fixed-point arithmetic program shown in Figure 1.

The fixed-point arithmetic implementation of the con-
troller can have a large roundoff error. For example, be-
cause of the representation, the input values can already
have an error as large as 0.00049. These errors then propa-
gate throughout the computation. For a specific implemen-
tation, such as the one above, we can compute an upper
bound on the error using an affine arithmetic-based static
analysis. For our example, the maximum absolute error
bound is 3.9e-3. We can bound the error from below using
simulation, where we run the floating-point and the fixed-
point programs side-by-side on a large number of random
inputs and compare the results. Note that this technique
only gives us an under-approximation. Using this approach,
we get a lower bound on the error of 3.06e-3.

One way to reduce the error is to increase the bit length. If
we add one bit to each variable, we get a simulated maximum
error of 1.51e-3, which is an improvement by about 50%.
However, increasing bitwidths require implementing circuits
with larger areas, and may not be feasible.

A different possibility is to use a different order of eval-
uation for the expression. As fixed-point arithmetic oper-
ations are not associative, two different evaluation orders
for the same implementation can have significantly different
absolute errors. Consider the following reordering of Equa-
tion (6):

((0.9052 ∗ st2) + (((st3 ∗ −0.0181) + (−0.0078 ∗ st1)) +

(((−0.0392 ∗ st4) + (−0.0003 ∗ y1)) + (0.002 ∗ y2))))
(7)

When implemented using 16-bit fixed-point arithmetic, we
find, using our static analysis, that the maximum error
bound is 1.39e-03, which is an even larger improvement of
55%, without requiring any extra hardware.

Our approach is to search the space of possible imple-
mentations of an arithmetic expression to find one that
has the minimum fixed-point implementation error bound.
We search the space using genetic programming (GP). GP
finds this expression by evolving a population of expressions

expression simulated error
original 3.06e-3

worst rewrite 3.11e-3
additional bit 1.52e-3
best rewrite 1.39e-3

best found by GP 1.39e-3

Figure 2: Summary of absolute errors for different
implementations

through selection of the best expressions with respect to
the error, mutation and crossover. Figure 2 summarizes
the worst-case error bounds for the different formulations
of the expression. By exhaustively enumerating all possible
rewrites, we see that the maximum error bounds can vary
between approximately 1.39e-3 and 3.11e-3. That is, even
for a relatively short example, the worst error bound can be
over a factor of 2 larger than the best possible one. GP can
find the optimal expression without an exhaustive enumer-
ation and can do this at analysis time. This does not cost
any additional hardware, thus we get the additional preci-
sion “for free”.

4. GENERATING FIXED-POINT EXPRES-
SIONS

In this section we describe our algorithm to solve the
problem of synthesizing minimal-error fixed-point programs.
That is, given a real valued expression t we aim to find an ex-
pression t′ that is mathematically equivalent to t and whose
implementation in fixed-point arithmetic minimizes, among
all equivalent expressions, the worst-case absolute error over
all inputs in given ranges I:

min
equivalent t′

max
x∈I

∣∣∣tr(x)− t′f (x)
∣∣∣

Algorithm 1 gives an overview of our search procedure,
whose steps we explain in the following paragraphs.

Algorithm 4.1:

1:Input: expression, input ranges
2:initialize population of 30 expressions

3: repeat for 30 generations
4: generate 30 new expressions:
5: select 2 expressions with tournament selection
6: do equivalence-preserving crossover
7: do equivalence-preserving mutation
7: evaluate fitness (worst-case error bound)

8:Output: best expression found during entire run

The input to our algorithm is a real valued expression
and ranges for its variables. Our tool initializes the initial
population with 30 copies of this expression.

4.1 Why Genetic Programming?
It is in general not evident from an expression whether

it is in a good form with respect to precision and exhaus-
tively enumerating all possible formulations of expressions
becomes impossible very quickly. For only linear expressions
the number of possible orders of adding n terms modulo
commutativity, which does not affect precision, is (2n−3)!!1.

1The number of full binary trees with n leaves is Cn−1,

(1) (a + b) + c = a + (b + c) (8) 1/a * 1/b = 1/(ab)
(2) a + b = b + a (9) - (1/a) = 1/(-a)
(3) (-a) + (-b) = -(a + b) (10) (a * b) + (a * c) = a * (b + c)
(4) (a * b) * c = a * (b * c) (11) (a * c) + (b * c) = (a + b) * c
(5) a * b = b *a (12) (a * b) + (c * a) = a * (b + c)
(6) (-a) * b = - (a * b) (13) (b * a) + (a * c) = (b + c) * a
(7) a * (-b) = - (a * b)

Figure 3: Rewrite rules.

For our example from Section 3 with 6 terms there are al-
ready 945 expressions. For our largest benchmark with 15
terms there are too many possibilities to enumerate.

We thus need a suitable search strategy to find a good
formulation of an expression among all the possibilities. We
show in Section 7 that the problem of finding an expres-
sion whose worst-case error bound is minimal is NP-hard
and that it amounts to minimizing the ranges of intermedi-
ate variables. Since the inputs for the expressions can, in
general, be positive and negative, optimizing one subcom-
putation may lead to a very large intermediate sum in a
different part of the expression. An algorithm that tries to
find the optimal solution in a systematic way (e.g. dynamic
programming) is thus unlikely to succeed. Our problem also
does not have a notion of a gradient and it cannot be easily
formulated in terms of inputs and outputs or contraints.

Genetic programming does not rely on any of these fea-
tures, and its formulation as a search over program AST fits
our problem very nicely.

4.2 Instantiating Genetic Programming
We need to instantiate the general genetic programming

algorithm, since we start with an already (mathematically)
correct program and attempt to find a program that is nu-
merically as correct as possible (correctness is defined with
respect to an evaluation of the expression in mathematical
reals). Thus, our mutation and crossover operators need
to generate expressions that are mathematically equivalent
to the initial expression and the fitness function needs to
quantify the numerical precision.

Mutation.
The mutation operator selects a random node in the ex-

pression AST and applies one of the applicable rewrite rules
from Figure 3. The rules capture the usual commutativ-
ity, distributivity and associativity of real arithmetic. Some
of these rules do not have an effect on the numerical pre-
cision by themselves, but are necessary to generate other
rewrites of an expression. To keep the operations simple,
we rewrite subtractions (a − b → a + (−b)) and divisions
(a/b→ a ∗ (1/b)) before the GP run.

Crossover.
While maintaining mathematical equivalence is easy for

the mutation operation, in the case of crossover it is not
evident how to perform it efficiently in general. Given two
trees t1 and t2 as candidates for the crossover, the genetic
algorithm picks a random node in t1, which is the root of the
subtree s1. The problem is then the following: find a subtree
s2 in t2 that is mathematically equivalent to s1 in an efficient
way. Instead of implementing a general decision procedure,

where Cn are the Catalan numbers. We can label each of
the trees in n! ways. Taking into account commutativity

gives:
Cn−1·n!
2n−1 .

we chose to do the following. At initialization, each subtree
is annotated with a label that is the string representation of
the expression at that subtree. During mutation, labels are
preserved in the new generation as much as possible. For
example, suppose we have the node (a+b)+c, with label (a
+ b) + c. We can apply mutation rule 1 to obtain a+(b+c)
but the label will remain (a + b) + c. Note that some of
the mutation rules break equivalences (e.g. mutation rule
10), hence not all labels can be preserved. In that case we
add a new label. During crossover, we then only need to
check for identical labels. If labels match, it means that the
subtrees come from the same initial subtree and hence are
mathematically equivalent and we can exchange them in a
crossover operation.

Parameters.
Our genetic programming pipeline has several parameters

that can influence the results: the number of best individuals
passed on to the next generation unchanged (elitism) (0, 2 or
6), the number of individuals considered during tournament
selection (2, 4 or 6), and the probability of crossover (0.0,
0.5, 0.75 or 1.0). The most successful setting we found is
with a tournament selection among 4 and an elitism of 2
while performing crossover every time, i.e. with probability
of 1.0. Note, however, that even in the case of other settings,
the improvements are still significant (on the order of 50%).

4.3 Fitness Evaluation
We use a static analysis based approach to compute the

fitness of an expression. Our static analysis tool computes
sound over approximations of the ranges of all variables and
of the maximum absolute error of the corresponding fixed-
point implementation.

Our tool uses affine arithmetic to compute the ranges of
all intermediate values. From this we can determine the
best possible fixed-point format and the quantization error
at each computation step. Our approach is similar to [8],
but we treat constants like normal variables and we do not
discard higher order terms, which in the approach taken in
[6] for floating-point arithmetic. The latter difference means
that the error bounds we compute are sound with respect to
real arithmetic.

If we are interested in proving that the roundoff errors
stay within certain bounds, the computed bounds on the
absolute errors need to be as tight as possible. Note that the
main requirement on the analysis in our problem is slightly
different. While tight bounds on errors are an advantage,
what we need to know is the relative precision of our analysis
tool. That is, we need to know whether the analysis tool
is able to distinguish a better implementation from a less
precise one. To see why this is different from the usual case,
note that the analysis tool assumes worst-case errors at each
computation step. It general, however, the worst-case errors
will not be attained at all computation steps.

Thus, before using our analysis tool in a GP framework,
we evaluate this property experimentally. We generate a
number of random rewrites for an expression, for which we
then obtain the actual errors by simulation. We present
here the results for one linear and one nonlinear benchmark
(batch controller, state 2 and rigid body, out 1 respectively).
For 100 random different expression formulations, the ratio
between the analyzed upper bound on the error and the
simulated lower bound on the error has a mean of 1.29387

0	

0.0005	

0.001	

0.0015	

0.002	

0.0025	

0.003	

0.0035	

0.004	

0.0045	

Ab
so
lu
te
	
 e
rr
or
	

50	
 randomly	
 generated	
 equivalent	
 expressions,	
 sorted	
 by	
 analyzed	
 error	

Simulated	

Analyzed	

Figure 4: Comparison of analyzed upper bound and
simulated lower bound on maximum errors for the
linear benchmark batch processor (state 2).

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

0.16	

0.18	

Ab
so
lu
te
	
 e
rr
or
	

50	
 randomly	
 generated	
 equivalent	
 expressions,	
 sorted	
 by	
 analyzed	
 error	

Simulated	

Analyzed	

Figure 5: Comparison of analyzed upper bound and
simulated lower bound on maximum errors for the
nonlinear benchmark rigid body (out1).

and a variance of 0.00082 for the batch controller, state 2
benchmark and a mean of 1.66697 and a variance of 0.08315
for the rigid body, out 1 benchmark. Figures 4 and 5 show
a direct comparison between the analyzed and simulated
errors. In the linear case, the computed bounds on the errors
are proportional to the actual errors, thus indicating a good
relative precision. In the nonlinear case the correspondence
is not as precise, however we expect it to be still sufficient for
our purpose. The “more nonlinear” a computation becomes,
the less precise we expect affine arithmetic to be.

5. OPTIMAL CONTROLLER SYNTHESIS
The controller for a discrete-time linear control system is

given by Equation (5) and Equation (4). If we implement
the controller using fixed-point arithmetic, we introduce ad-
ditive error to the output of the controller. Thus the fixed-
point implementation of the controller is given by:{

x̂[r + 1] = (Aτ −BτK − LC)x̂[r] + Ly[r] + eq1,
û[r + 1] = −Kx̂[r + 1] + eq2,

(8)

where eq1 ∈ Rn and eq2 ∈ Rm. The vector e =

[
eq1
eq2

]
captures the implementation error of the controller.

One of the fundamental properties of a control system
is asymptotic stability. It is possible to design a controller
mathematically (finding the matrices K and L) such that
the system in (3) is asymptotically stable with respect to
origin [10], which intuitively means that the state of the
plant will asymptotically converges to the origin. However,
as shown in [2], in the presence of implementation error the
state of plant can only be shown to converge asymptotically
in a set around the origin. The set is called the region of

practical stability. The following proposition formalizes the
result. We use ‖x‖ to represent euclidian norm of x.

Proposition 1. [2] Assume that the mathematical con-
troller in (4) with the observer in (5) can render the plant
in (3) asymptotically stable. If there exists a constant b such
that ‖e‖ ≤ b(e), then the implementation (8) of the con-
troller is guaranteed to render the state of the plant asymp-
totically to the set

Ay = {y ∈ Rp | ‖y‖ ≤ γyb(e)} , (9)

where γy is given by:

γy = max
θ∈[0, 2π[

∥∥∥∥[C 0p×n]
(
eiθI2n −G

)−1

H

∥∥∥∥ . (10)

where γy is called the L2-gain of the control system. The
matrices G and H are given by

G =

[
Aτ −BτK
LC Aτ −BτK − LC

]
, H2 =

[
0n×n Bτ
In 0n×m

]
.

Controller synthesis has been traditionally performed by
minimizing LQR and LQG costs [10]. Recently, Majum-
dar et al. [19] showed how to synthesize a controller co-
optimizing both the LQR/LQG cost and the region of prac-
tical stability. They optimize a weighted linear combi-
nation of the two cost functions using a stochastic local
search technique. The optimization problem is non-convex,
and is solved using particle swarm optimization (PSO),
a population-based stochastic optimization approach [15].
PSO iteratively solves an optimization problem by maintain-
ing a population (or swarm) of candidate controllers, called
particles, and moving them around in the search-space of
possible controllers, trying to minimize the objective func-
tion.

In each step of PSO, given a new controller, a bound on
the implementation error is estimated for a naive implemen-
tation. The value of the objective function is computed by
taking the weighted sum of the LQR-LQG cost and this
bound. Note that the implementation does not consider all
possible expressions for a controller. If the controller is given
by K = [k1, k2, . . . , kn] and the state of the plant is denoted
by x = [x1, x2, . . . , xn], then the expression that is consid-
ered for the implementation of the fixed-point program is of
the form f = (((k1x1 + k2x2) + k3x3) + . . . + knxn). We
refer to this expression as the naive expression. Note that
the implementation of another expression may give a better
bound on the error. The expression giving the least bound
for the error is referred to as the best expression.

We call the implemented controller corresponding to the
naive expression the baseline implementation. The naive ex-
pression can be passed through the genetic algorithm based
rewriting method to get the best expression, and the cor-
responding controller implementation is called the improved
implementation. Let us suppose that the controller gains
synthesized by the PSO method in [19] is denoted by K.
Let us assume that the bound on the error in its baseline
implementation is bbK , and that for its improved implemen-
tation is biK . Now there may exist another controller K′

with the bounds on the error in its baseline implementation
and improved implementation to be bbK′ and biK′ respectively
such that bbK < bbK′ , and biK′ < biK . This implies that if we
use the method in [19] to implement the baseline controller
and then employ the rewriting scheme to get the improved

controller, we may not obtain the best possible controller
implementation.

To achieve the best possible implementation for a con-
troller, we take the following strategy. In every step of PSO,
for a given controller, we start with the naive expression
and apply our genetic-programming-based rewriting tech-
nique to find the best expression. We use this bound on the
implementation error of the best expression in the objective
function. The controller implemented using this new objec-
tive function is referred as the optimal implementation. In
the next section, we show that such combination of search
strategies substantially improves the guaranteed properties
of the synthesized controllers, showing that techniques for
synthesis of fixed-point programs have concrete benefits for
practical controller synthesis.

6. EXPERIMENTS
We evaluate our technique on a number of benchmarks.

Our benchmarks include a bicycle model [4], a DC motor po-
sition control [28], a pitch angle control [28], an inverted pen-
dulum [28] and a batch reactor process [9]. The controllers
for these system were taken from [19], which attempted to
minimize the size of the region of practical stability by choos-
ing a controller whose fixed point implementation has the
best possible bound on the error among all controllers that
stabilize the plant. To show the scalability of our tool we
choose the example of a locomotive pulling a train car where
the connection between the locomotive and the car is mod-
eled by a spring in parallel with a damper [24]. By increas-
ing the number of cars, we can increase the dimension of
the system. We also consider a nonlinear controller for a
rigid body [3] and the nonlinear B-splines functions [18].
Though most of our benchmarks are from the controller do-
main, nothing in our approach is actually domain specific.

Each benchmark consists of one expression and ranges for
its input parameters. We wish to minimize the error on the
one output value it computes over all possible inputs. Some
of the benchmarks compute internal states of a controller
(denoted with e.g. “state 1”). Since each state is computed
with a different expression, we treat them here as separate
benchmarks.

For all benchmarks we consider a fixed bit length, signed
fixed-point format and truncation as the rounding mode.
Table 6 lists the maximum absolute errors (computed by
our analysis tool) for the best expressions found by GP for
all our benchmarks.2 The benchmarks are ordered approx-
imately by complexity with the smaller linear benchmarks
first and the nonlinear benchmarks at the end of the table.
From the third column we can see that we get substantial
improvements in precision of up to 70%.

6.1 Exhaustive Rewriting
For our smaller benchmarks (linear with up to 6 terms)

we also generate all possible rewrites up to commutativity
and determine tight bounds on the maximum errors by sim-
ulation. For this, we first automatically generate a fixed-
point implementation, which we then evaluate on a number
of random inputs. We use the floating-point code as ref-
erence, thus obtaining a lower bound on the error. Using
a large enough number of random inputs (10 000 000), we

2The source code for our tool is avaiblable on reviewer re-
quest.

Benchmark Original
Best

(% of original)
Worst

(% of original)
Added bit

(% of original)
batch processor (out 1) 2.89e-3 0.91 1.37 0.51
batch processor (out 2) 7.20e-3 0.81 1.13 0.49
batch processor (state 1) 2.66e-3 0.52 1.02 0.50
batch processor (state 2) 3.06e-3 0.45 1.03 0.50
batch processor (state 3) 2.66e-3 0.50 1.16 0.49
batch processor (state 4) 2.24e-3 0.61 1.40 0.51
traincar 1 (out) 5.29e-5 0.78 1.02 0.60
traincar 1 (state 1) 1.02e-6 0.97 1.01 0.50
traincar 1 (state 2) 2.66e-7 0.71 1.02 0.52
traincar 1 (state 3) 2.04e-7 0.74 1.14 0.48

Figure 7: Best and worst absolute errors, determined by simulation.

Benchmark err
orig.- no-cross

orig.
orig.- best

orig.
g

bicycle (out1) 2.66e-3 0.00 0.00 -
bicycle (state1) 2.53e-4 0.19 0.19 1
bicycle (state2) 1.82e-4 0.00 0.00 -
dc motor (out1) 1.06e-4 0.00 0.00 -
dc motor (state1) 2.77e-4 0.00 0.00 -
dc motor (state2) 3.75e-4 0.25 0.25 4
dc motor (state3) 1.27e-4 0.00 0.00 -
pendulum (out1) 8.09e-8 0.03 0.03 5
pendulum (state1) 5.13e-9 0.17 0.17 1
pendulum (state2) 6.11e-9 0.38 0.38 16
pendulum (state3) 5.14e-9 0.00 0.00 -
pendulum (state4) 4.97e-9 0.27 0.27 7
pitch angle (out1) 1.33e-7 0.18 0.18 4
pitch angle (state1) 4.26e-9 0.30 0.30 2
pitch angle (state2) 2.79e-9 0.00 0.00 -
pitch angle (state3) 3.81e-9 0.20 0.20 2
batch reactor (out1) 5.15e-4 0.00 0.00 -
batch reactor (out2) 1.28e-3 0.12 0.12 2
batch reactor (state1) 3.46e-4 0.15 0.15 1
batch reactor (state2) 2.77e-4 0.00 0.00 -
batch reactor (state3) 3.55e-4 0.26 0.26 2
batch reactor (state4) 4.11e-4 0.23 0.23 7
traincar 1 (out) 1.11e-4 0.09 0.09 2
traincar 1 (state 1) 1.98e-6 0.03 0.03 6
traincar 1 (state 2) 3.57e-7 0.25 0.25 16
traincar 1 (state 3) 2.79e-7 0.24 0.24 7
traincar 2 (out) 7.40e-5 0.09 0.09 19
traincar 2 (state 3) 1.23e-7 0.49 0.59 21
traincar 3 (out) 1.26e-3 0.13 0.13 7
traincar 3 (state 6) 1.32e-7 0.48 0.58 21
traincar 3 (state 7) 1.31e-7 0.43 0.53 17
traincar 4 (out) 9.34e-3 0.26 0.29 27
traincar 4 (state 1) 7.29e-8 0.73 0.73 19
traincar 4 (state 2) 7.34e-8 0.67 0.73 25
traincar 4 (state 3) 1.01e-7 0.66 0.60 14
traincar 4 (state 4) 6.96e-8 0.64 0.70 26
traincar 4 (state 5) 1.42e-7 0.61 0.68 26
traincar 4 (state 6) 1.67e-7 0.59 0.59 16
traincar 4 (state 7) 1.67e-7 0.56 0.56 13
traincar 4 (state 8) 1.38e-7 0.60 0.60 19
traincar 4 (state 9) 1.67e-7 0.47 0.47 7
bspline 1 2.29e-4 0.36 0.36 6
bspline 2 1.66e-4 0.52 0.52 4
rigid-body (out1) 1.08e-1 0.33 0.33 5
rigid-body (out2) 9.92e-1 0.20 0.20 15

Figure 6: Maximum absolute errors for the best ex-
pression found by GP with the settings elitism: 2,
tournament selection: 4, with and without crossover
(seed used: 4357). err is the analyzed error. g de-
notes the generation in which the solution is found.

obtain reasonably tight error bounds. Figure 7 shows the
simulation results for the original formulation of the expres-
sion and the best and worst among all the possible rewrites.
From the 10 benchmarks, 6 have an error in the original for-
mulation that is about as bad as it gets. But we can also
see that the best possible rewrite can improve the precision
substantially. On the other hand, the expression may also
be such that no matter how we rewrite it, the precision does
not vary much, as is the case with the traincar 1, state 1
benchmark. This case, however, seems to be rather rare.

The other possibility of improving the precision is to in-
crease the bit length. We do so in a minimal way by al-
lowing one more bit for each intermediate variable, i.e. we
increase the bit length by one and evaluate the precision
with simulation. Note that in many cases, such a gradual
increase may not be possible and one would have to add a
whole word, e.g. go from 16 to 32 bits, with the associated
hardware cost. Compile-time transformations, on the other
hand, come “for free” and, as Figure 7 shows, can have an
effect on the same order as the addition of a bit. In the case
of longer benchmarks, the effect of rewriting can be even
larger (see Figure 6), while the added bit always gains only
about 50% of precision as compared to the original error.

6.2 Genetic Programming
Table 6 shows the results obtained for the most success-

ful setting we have found. It also shows the results with
crossover turned off. The comparison of these two columns
suggests that crossover is helpful. We therefore expect that
randomized local search techniques are not as effective as ge-
netic programming, but they still produce useful reductions
in the errors.

Optimality.
For the smaller benchmarks, GP always finds the same

expressions with respect to the error bounds. Exhaustive
enumeration has confirmed that the found expressions are
indeed the optimal ones. For larger benchmarks, we do get
improvements and we know of no technique to obtain better
results.

Performance.
The runtimes of our GP algorithm depend in general

mostly on the number of generations considered and the
population size. Crossover only has a small effect on the
overall runtime, but we have found that it provides the best
results in the setting given above. In Table 8 we report the
running times of our benchmarks with the default setting of
30 generations with a population size of 30 and the best GP
settings we found.

Examples Runtime (s)
batch (out1) 1.964
batch (state2) 2.735
traincar 1 (state 3) 6.358
traincar 2 (state 5) 9.794
traincar 3 (state 7) 15.388
traincar 4 (state 9) 17.228
rigid-body (out1) 1.394
rigid-body (out2) 2.698
bspline 1 2.234

Figure 8: Average runtimes of GP on selected
benchmarks in seconds. Experiments were per-
formed on a 3.5GHz Linux desktop with 16GB
RAM.

Example GP Random (Rnd-GP)/Rnd
traincar 4 (out) 0.00934 0.0103 0.09
traincar 4 (1) 7.29e-8 2.07e-7 0.65
traincar 4 (2) 7.34e-8 2.08e-7 0.65
traincar 4 (3) 1.01e-7 1.90e-7 0.47
traincar 4 (4) 6.96e-8 1.74e-7 0.60
traincar 4 (5) 1.42e-7 3.21e-7 0.56
traincar 4 (6) 1.67e-7 2.86e-7 0.42
traincar 4 (7) 1.67e-7 2.57e-7 0.35
traincar 4 (8) 1.38e-7 2.28e-7 0.39
traincar 4 (9) 1.67e-7 1.97e-7 0.15

Figure 9: Comparison of maximal errors between
best expressions from GP and random search.

0.E+00	

1.E-­‐07	

2.E-­‐07	

3.E-­‐07	

0	
 4	
 8	
 12	
 16	
 20	
 24	
 28	
 Ab
so
lu
te
	
 e
rr
or
	
 (a

na
ly
ze
d)
	

Genera3on	

min	
 max	
 average	

Figure 10: Evolution of errors across generations for
the traincar 4 - state 1 example.

Efficiency improvement over random search.
For the expressions of the traincar 4 controller (15 terms)

we also compare the results from the GP algorithm against a
random search. This experiment is performed by generating
900 random and unique rewrites of the original expression,
and comparing the best seen expressions against each other.
Since we run the GP algorithm for 30 generations with a
population of 30, we can see at most 900 unique expressions.
As the results in Table 9 confirm, the GP based search is
more effective than a random one. The third column shows
the relative difference between the errors. Thus, many times
the GP found expression is by over 50% more accurate than
a randomly found one. That GP does not perform a random
search can also be seen on the evolution of the population
in Figure 10 for one benchmark (traincar 4, state 1). The
plot shows the best, worst and the average errors of the
expressions in each generation. The convergence to a low-
error expression is clear.

6.3 Performance Enhancement in Control
Systems

We implemented the algorithm presented in Section 5
in Matlab. The algorithm incorporates genetic algorithm
based expression rewriting in the search for the optimal
controller using PSO. We use a PSO function in Matlab
from [7]. We have used the same setup for PSO as used in
[19]. In Table 11 we provide the synthesized controllers and
the time required to synthesize them. The synthesis exper-
iments were done on a laptop running Mac OS X version
10.7.4 with 2 GHz Intel Core i7 CPU and 8GB 1600MHz
DDR3 Memory.

In Table 12, we present the size of the region of practical
stability for the baseline, improved and the optimal con-
trollers for different benchmark systems and also the per-

Control lub of LQR cost LQG cost
systems Baseline Optimal Baseline Optimal
bicycle 4.33+3‖x‖2 4.33e+3‖x‖2 2.46e-2 2.47e-2
dc motor 1.38e+3‖x‖2 1.50e+3‖x‖2 3.67e+1 3.67e+1
pitch angle 2.99e+6‖x‖2 2.99e+6‖x‖2 1.80e-3 1.58e-3
pendulum 5.35e+4‖x‖2 5.35e+4‖x‖2 3.90e-1 3.90e-1
batch reactor 2.23e+2‖x‖2 2.23e+2‖x‖2 9.49e-2 9.08e-2

Figure 13: Least upper bound (lub) on the LQR cost,
for a given initial condition x and the LQG cost for
the baseline and the optimal implementations.

centage improvement in the size of the region for the im-
proved and the optimal controllers. The baseline and the
improved implementations are based on the controllers pro-
vided in [19], and the optimal implementations are based
on the controllers synthesized using the algorithm presented
in Section 5. Note that the region of practical stability for
the baseline implementation varies from the result provided
in [19]. For example, for bicycle, the size of the region was
presented as 0.0513 ignoring the effect of disturbance and
measurement noise, the corresponding figure is 0.0785 in
our experiment. This discrepancy is due to the fact that we
use a different method to estimate the bound on the error
in the fixed-point implementation. Our abstract interpreta-
tion based error estimation method is an order of magnitude
faster than the mixed-integer linear programming approach
in [19], which is apparent from the “time cost” column in Ta-
ble 12. Even after incorporating the genetic programming
based expression evaluation method in the synthesis process,
our tool takes less time to synthesize a controller for all the
benchmarks. Moreover, though our error estimation is less
precise in comparison to that of [19] for 16 bit implementa-
tions, for 32 bit implementations (pitch angle and inverted
pendulum) our estimation is significantly more precise.

The results in Table 12 show that we can improve the size
of the region by rewriting the expression used in the base-
line implementation. However, the improvement becomes
significant when we incorporate the rewriting technique in
the search method. Our results show that it is even possible
to achieve more that 50% improvement in the synthesized
controller with respect to the baseline controller. Table 13
shows the LQR/LQG cost of the baseline and the optimal
controllers. The results show that in most of the examples,
LQR and LQG costs do not degrade in the optimal con-
troller with respect to the baseline controller. Only for the
DC motor position example, the degradation in LQR cost is
8%. In a few instances, the LQG cost even improves.

Control systems # bits Synthesized gains Time cost
K L

bicycle 16 [3.0265e+ 0 1.2608e+ 1] [6.9088e− 3 1.1135e− 1]T 51m36s
dc motor 16 [1.1760e-1 1.7400e-2 1.3300e-2] [4.0400e-2 3.6720e-1 -1.2400e-2]T 43m15s

pitch angle 32 [-1.2022e-1 4.2566e+1 1.0004e+0] [3.2131e-4 2.1565e-5 1.8907e-3]T 1hr21m58s

pendulum 32 [-1.5362e+0 -2.0254e+0 1.6519e+1 2.7358e+0]

[
1.7000e-3 2.1000e-3 1.2000e-3 0.0000e+0
1.0000e-4 1.8000e-3 1.2200e-2 7.7000e-2

]
T 38m43s

batch reactor 16

[
5.9434e-2 9.0617e-1 3.2788e-1 8.7115e-1

-2.4646e+0 -4.4966e-2 -1.7086e+0 1.1691e+0

] [
7.6055e-2 -1.8342e-3 2.9025e-2 3.0801e-2
-1.1106e-2 2.2255e-2 3.9666e-2 -9.2832e-4

]
T 2hr45m35s

Figure 11: Synthesized gains and required time for synthesizing them.

Control Region of Practical Stability Improvement (%)
systems Baseline Improved Optimal Improved Optimal
bicycle 7.85e-02 7.70e-02 6.99e-02 1.93 10.96

dc motor 1.64e-02 1.44e-02 9.80e-03 12.14 40.24
pitch angle 1.08e-02 8.87e-03 5.15e-03 18.00 52.32
pendulum 3.11e-04 2.64e-04 2.51e-04 14.76 19.26

batch reactor 2.59e-01 2.24e-01 2.07e-01 13.31 20.08

Figure 12: Improvement in the size of region of practical stability for the improved and synthesized controllers

7. OPTIMAL FIXED-POINT PROGRAM
SYNTHESIS PROBLEM IS NP-HARD

This section shows that given an arithmetic expression,
the problem of finding a mathematically equivalent expres-
sion for which the computed worst-case error bound of the
output of the fixed-point implementation is least is NP-hard.
This justifies our use of a heuristic search method such as
genetic programming. Though our algorithm supports op-
erators ‘+’, ‘-’ , ‘*’ or ‘/’, we show the NP-hardness proof
already for a problem that deals with the operator ‘+’ alone.

For such an expression T , we define E(T) as the worst-
case error bound of the best fixed-point implementation, as
follows.

Let the set of internal nodes of T be denoted by ni and
consider the best fixed-point implementation of T with tight
intervals, as introduced in Subsection 2.1. As the worst case
error ei at node ni we use

ei = R(max(abs(rmini), abs(rmaxi))))/2v−1

where R is a function used to make the bound uniform.
A possible sound choice for R include s R(x) = 2dlog2 xe,
which, according to the Definition (1) makes the error equal
to the value of the least significant bit 2−w. Another, slightly
more conservative choice, is R(x) = 21+log2 x = 2x, which
we adopt here.

Minimum-Error Fixed-point Set Range Sum (MEFxRS): Let
X = {x1, . . . , xp} denote a set of variables, xi ∈ R. Given
an expression of the form

∑p
i=1 xi, where each variable xi

can take value from a range [rmini , rmaxi], find the ordering of
the addition operations that yields the minimal worst-case
error bound of the best fixed-point implementation of the
expression.

Our objective is to show that the problem MEFxRS is NP-
hard. Towards that end, we first define a simplified problem
where we compute the sum of a set of integers (instead of
intervals). Note that the numbers may be both positive and
negative.

Minimum-Error Fixed-point Set Value Sum (MEFxVS): Let
X = {v1, . . . , vp} denote a set of integers. Given an expres-
sion of the form

∑p
i=1 vi, find out the ordering of the ad-

dition operations, that yields the minimal worst-case error

bound at the output of the best fixed-point implementation
of the expression.

It is straight-forward to show that an instance of a
MEFxVS problem with values vi can be reduced to a
MEFxRS problem, for example, by letting rmini = rmaxi =
vi. In what follows, we show that MEFxVS is NP-hard.

To derive an expression for the worst-case error bound,
we consider the AST of the expression, and in particular
one internal node ni representing a partial sum. Let the
fixed-point value at ni be ci. To use our definition for the
worst-case error bound, note that rmini = rmaxi = ci. Then,

ei =
1

2v−1
R(|ci|) =

1

2v−2
|ci|

Thus, at any internal node ni, the error ei is α|ci| for

α = 2−(v−2). The errors at the leaf nodes are constant and
we denote their sum by e0. The worst-case error bound for
the implementation tree T is thus given by E(T) = e0 +
α
∑p−1
i=1 |ci| For a fixed number of overall bits v , e0 and α is

constant. The implementation error can thus be minimized
by minimizing the partial sum at the internal nodes of an
implementation tree. This sum is called the cost of T and
is given by C(T) =

∑p−1
i=1 |ci| in [13].

Kao and Wang show in [13, Section 2] that the decision
problem C(T) ≤ K, where C(T) is the cost of the imple-
mentation tree T and K is a positive integer, is NP-hard.
Using that result we have the following theorem.

Theorem 1. The Minimum-Error Fixed-point Set Range
Sum (MEFxRS) problem is NP-hard.

8. RELATED WORK
The range analysis problem has been studied extensively

in the context of optimum bit-width allocation to interme-
diate variables in a fixed-point program, mostly in the DSP
domain. Both static [18, 17, 25] and simulation-based [5,
20] approaches have been used. Existing work applied ge-
netic programming as a technique to construct asynchronous
circuits [23] or programs that can be model checked [14].

Jha [12] gives an algorithm for optimal fixed-point pro-
gram synthesis based on inductive synthesis. His objective
is to find the best fixed-point implementation for a given

expression, and does not consider rewriting of expressions.
Moreover, it takes several minutes to synthesize a fixed-point
program corresponding to an expression, whereas our tech-
nique can synthesize a fixed-point program corresponding to
an expression in seconds.

To our knowledge, the only work that considers rewriting
of expressions to improve precision in the context of abstract
interpretation is [11]. The authors develop an abstract do-
main for representing an under-approximation of mathemat-
ically equivalent expressions. They then use a local, greedy
search to extract some expression with a more precise formu-
lation in a floating-point implementation. While the compu-
tation of precision is similar to ours, this approach excludes
many possible expressions due to the local search and due
to the under approximation in the abstract domain. Also,
no validation of the results obtained with a static analysis
tool as compared to “true” errors is performed and thus the
issue of imprecision when dealing with nonlinear expressions
is missed. In previous work [21] the authors also considered
fixed-point arithmetic. They used, however, only the max-
imum number of bits required to hold the integer part as
the precision measure, which is too imprecise to distinguish
many expressions.

9. CONCLUSION
We have presented an optimal fixed-point program synthe-

sis methodology based on expression rewriting and genetic
programming. We have shown how our technique helps im-
prove the quality of controller implementations. Our con-
troller synthesis tool can be seamlessly added to any au-
tomatic code generation tool flow to enhance its capability
to generate correct-by-construction high performance con-
troller software. Though we have presented our results on
the benchmarks from the control engineering domain, our
method is a general one, and can be used in enhancing the
quality of a fixed-point implementation in any domain.

Abstract interpretation based technology has been very
efficient in estimating the error bound of a fixed-point imple-
mentation of a linear controller program, and thus has been
very useful in controller synthesis based on the minimization
of the effect of the implementation error on the performance
of the controller. However, the technique does not work very
well for the nonlinear controllers. Our effort on estimating
the error bound for a jet engine controller [16] reveals that
the abstract interpretation based error estimation technique
may end up providing very pessimistic bounds. This bench-
mark motivates research towards enhancing the capabilities
of abstract interpretation based tools to deal with nonlinear
arithmetic.

10. REFERENCES
[1] T. Aamodt and P. Chow. Embedded ISA Support for

Enhanced Floating-Point to Fixed-Point ANSI C
Compilation. In CASES, 2000.

[2] A. Anta, R. Majumdar, I. Saha, and P. Tabuada.
Automatic verification of control system implementations.
In Proceedings of EMSOFT, 2010.

[3] A. Anta and P. Tabuada. To Sample or not to Sample:
Self-Triggered Control for Nonlinear Systems. IEEE Trans.
Automatic Control, 55(9), 2010.

[4] K. J. Astrom and R. M. Murray. Feedback systems.
Princeton University Press, 2008.

[5] P. Belanovic and M. Rupp. Automated Floating-point to
Fixed-point Conversion with the Fixify Environment. In

Proc. Rapid System Prototyping, 2005.

[6] E. Darulova and V. Kuncak. Trustworthy numerical
computation in Scala. In OOPSLA, pages 325–344, 2011.

[7] S. Ebbesen, P. Kiwitz, and L. Guzzella. A generic particle
swarm optimization function for Matlab. In American
Control Conference, 2012.

[8] C. F. Fang, R. A. Rutenbar, and T. Chen. Fast, Accurate
Static Analysis for Fixed-Point Finite-Precision Effects in
DSP Designs. In ICCAD, 2003.

[9] M. Green and D. J. N. Limebeer. Linear robust control.
Prentice Hall, August 1994.

[10] J. P. Hespanha. Linear systems theory. Princeton
University Press, 2009.

[11] A. Ioualalen and M. Martel. A New Abstract Domain for
the Representation of Mathematically Equivalent
Expressions. In SAS, 2012.

[12] S. Jha. Towards Automated System Synthesis Using
SCIDUCTION. PhD thesis, University of California at
Berkeley, 2011.

[13] M.-Y. Kao and J. Wang. Efficient minimization of
numerical summation errors. In Automata, Languages and
Programming. Springer, 1998.

[14] G. Katz and D. Peled. Model Checking-Based Genetic
Programming with an Application to Mutual Exclusion. In
TACAS, pages 141–156, 2008.

[15] J. Kennedy and R. Eberhart. Particle swarm optimization.
In Proceedings of IEEE International Conference on
Neural Networks, pages 1942–1948, 1995.

[16] M. Krstic and P. Kokotovic. Lean backstepping design for a
jet engine compressor model. In Proceedings of IEEE Conf.
Control App., pages 1047–1052, 1995.

[17] J. A. López, C. Carreras, and O. Nieto-Taladriz. Improved
Interval-Based Characterization of Fixed-Point LTI
Systems with Feedback Loops. IEEE Trans. on CAD of
Integrated Circuits and Systems, 26, 2007.

[18] D. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk,
and G. A. Constantinides. Accuracy-Guaranteed Bit-Width
Optimization. IEEE Trans. on CAD of Integrated Circuits
and Systems, 25(10), 2006.

[19] R. Majumdar, I. Saha, and M. Zamani. Synthesis of
minimal-error control software. In EMSOFT, pages
123–132, 2012.

[20] A. Mallik, D. Sinha, P. Banerjee, and H. Zhou. Low-Power
Optimization by Smart Bit-Width Allocation in a
SystemC-Based ASIC Design Environment. IEEE Trans.
on CAD of Integrated Circuits and Systems, 26(3), 2007.

[21] M. Martel. Enhancing the implementation of mathematical
formulas for fixed-point and floating-point arithmetics.
Formal Methods in System Design, 35(3), 2009.

[22] The MathWorksTM . Simulink Fixed Point.
http://www.mathworks.com/products/simfixed/.

[23] T. McConaghy, P. Palmers, M. Steyaert, and G. G. E.
Gielen. Trustworthy Genetic Programming-Based Synthesis
of Analog Circuit Topologies Using Hierarchical
Domain-Specific Building Blocks. IEEE Trans.
Evolutionary Computation, 15(4):557–570, 2011.

[24] P. McLane, L. Peppard, and K. Sundareswaran.
Decentralized feedback controls for the brakeless operation
of multilocomotive powered trains. IEEE Trans. Autom.
Control, 21(3), 1976.

[25] W. G. Osborne, R. C. C. Cheung, J. G. F. Coutinho,
W. Luk, and O. Mencer. Automatic Accuracy-Guaranteed
Bit-Width Optimization for Fixed and Floating-Point
Systems. In Proc. FPL, pages 617–620, 2007.

[26] R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide
to Genetic Programming. Lulu Enterprises, 2008.

[27] H. H. Rosenbrock. Computer-Aided Control System
Design. Academic Press, 1974.

[28] Control Tutorial for Matlab and Simulink. Available online
at http://www.library.cmu.edu/ctms/ctms/.

