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THRESHOLD PHENOMENON FOR THE QUINTIC WAVE EQUATION
IN THREE DIMENSIONS

JOACHIM KRIEGER, KENJI NAKANISHI, WILHELM SCHLAG

Asstract. For the critical focusing wave equatiani = u® onR3*? in the radial
case, we establish the role of the “center stable” manifotdnstructed in[18]
near the ground stat@\, 0) as a threshold between blowup and scattering to
zero, establishing a conjecture going back to numericakwgrBizoh, Chmaj,
Tabor [3]. The underlying topology is stronger than the gperorm.

1. INTRODUCTION
We consider the energy-critical focusing nonlinear waveagiqn
OU =W, O = 67 — Ax, U[0] = (U, Uth—o = (Uo, Un) (1.1)

on the Minkowski spac&3*! with radial data. The conserved energy is

EW0) | (517eatl? - Glul°) dx
R3
In a remarkable series of papefs,[[5,16./7, 8] Duyckaertsig<amd Merle gave the
following characterization of the long-time dynamics fadial datau[0] € H! x
L2(R3) of arbitrary energy: either one has type-I blowup, il@lt]] ., 2. — ©
in finite time, or the solution decomposes into a (possibl@tginsum of time-
dependent dilates of the ground state stationary solution

W(x) = (1+ [x2/3)2

together with a radiation term that acts like a free wave,cupd(1) ast — T, €
(0,0]. Here[0,T,) is the existence interval of the solution. See [8] for the pre
cise theorem. We remark that Kenig, Meile|[15] had studiedcdise of energies
E(uo, u1) < E(W,0) and established a finite-time blowup vs. scattering diangto
depending on whethgiVup|2 > ||[VW|2 or ||[Vuo|2 < [VW||2. For the subcritical
case, Payne and Sattinger|[25] had given such a criteriowitiuglobal existence,
and the scattering remained unknown. The latter gap wasdatlosly recently by
Ibrahim, Masmoudi, and the second auttor [12] using the dcdferle method.
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The dynamics for the cadg(up, u;) = E(W,0) was described by Duyckaerts,
Merle [9,[10] who constructed the one-dimensional stabtkwarstable manifolds
associated withV. Finally, [5] allowed energies slightly larger th&{W, 0), and it
was shown there that general type-ll blowup occurs by dyoahmion-selfsimilar
rescaling olW. The existence of such blowup solutions was establishetdofirst
and third authors and Tataru in_[19]. An analogous condtrdh infinite time
was carried out by Donninger and the first author_in [4]. s tontext we would
also like to mention the type-Il blowup construction by Hitet and Rapha&l [11]
for the 4-dimensional semilinear wave equation.

From a diferent perspective, and motivated in part by the phenomgiuaio
work [3] of Bizoh, Chmaj, and Tabor, the first and third authimvestigated ir [18]
the question otonditional stabilityof the ground stat®V. This is a very delicate
guestion, and remains unsolved in the energy topology. Muatethe aforemen-
tioned blowup solutions can be chosen to lie arbitrarilyseloelative to the energy
topology to the soliton curvd := {W,} =0 whereW,(x) = v/ AW(1x). However,
in a much stronger topology, [18] established the existerfcae codimension-1
Lipschitz manifoldX nearW so that data chosen from this manifold exhibit asymp-
totically stable dynamics. See [18] for the exact formalati

The question remained as to the dynamics for data hidaut which do not fall
onZX. As a start in this direction we mention the work by Karagesjrauss/ [13]
for a related model equation of the same scaling clask_a} \hére they show
blow up for certain data with energy above that of the grouateswhich are in a
sense 'above the tangent spaceZof
In the subcritical case, the second and third authors hasrstsee([20, 21, 22, 23],
that this hypersurface divides a small ball into two halves which exhibit the finite-
time blowup vs. scattering dichotomy in forward time. Thiasicarried out in the
energy class, anH was identified with the center-stable manifold associatéd w
the hyperbolic dynamics generated by linearizing abougtioeind state. See the
seminal work by Bates, Jones [2] for an invariant manifolelottem in infinite di-
mensions, with applications to a certain class of Kleind®orequations.

For the energy critical wave equatidn _([1.1), the author$ [} had shown a
somewhat weaker result, namely the existence of four psérdisjoint seté\, . in
the energy space near the soliton curve such that: (i) eatlas@onempty interior
(ii) the long-term dynamics (in both positive and negativees) for data taken
from each set is determined as either blowup or global exést@nd scattering.

However, the question of existence of a center-stable mianifearW in the
energy space remains open and appears delicate. Thetéfresults ofi[16, 17]
are not as complete as thoselin/[23], in the sense that no ebmmsive description
of the dynamics near the soliton curve is obtained. Thissis ekplained by the fact
that the dynamics of the energy critical equation appeaemomplex due to the
scaling invariance which is not a feature of the Klein-Gor@guation considered
in [23], as evidenced by the variety of exotic type-ll saduis. Moreover, the
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construction of the “center-stable” manif@lih [18] is significantly more involved
than the corresponding manifold for the subcritical KI&nfdon equation.

In this paper, we return to the point of view 0f [18] in ordeettablish a descrip-
tion of all possible dynamics with data ne@¥, 0) in the following main theorem,
albeit in a stronger topology than that given by the energyfofmulate it, we need
the linearized operatdd := —A — 5W*. It exhibits a unique negative eigenvalue
—kZ with Hgo = —k3 go, andgo > 0 is smooth, radial, and exponentially decaying.

Theorem 1.1. Fix R > 1. There exists a@, = &.(R) > 0 with the following
property. Consider all initial dataW + u)[0] := (W + fq, f2) with | fi[lqs +
|f2|y2 < e« and both f, supported within BO,R). Also, denote b{ the co-
dimension one hypersurface within this neighborhood conostd in[18]. Pick
initial data u[0] € X with

u(O,-) = fr + h(fy, f2)a0, w(0,-) = f>
where we havéky f; + f2, goy = 0. Then the following holds:
e if &, > §g > 0, then initial data

U(0,-) =W+ fy + (h(fy, f2) + 60)do,  T(0,-) = f2

lead to solutions blowing up in finite positive time.
e if —g, < 89 < O, then initial data

U(0,-) =W+ f1 + (h(f1, f2) + 60)go, T(0,-) = T2

lead to solutions existing globally in forward time and sedhg to zero
in the energy space.

The hyper-plan€kyf; + f2,90) = O is the tangent space ®at (W, 0), and
it is denoted byZg in [18]. The functionh is constructed in[[18] and for any
0 < 6 < &«(R) one has the following properties: define the space

Xg = {(f1, f2) € H3(R3) x HZ (R3) | supff;) = B(O,R)}

rad rad
Thenh: Bs(0) < Xy — R whereB;(0) is relative toXg and one has the estimates

h(f1. f2)] < [(f1. )& ¥ (1. T2) € Bs(0)
Ih(f1, f2) — h(f1, ©2)] 5 6] (fr, ) — (f. R)Ixe ¥ (fa, f2), (fo. f2) € B5(0)

The Lipschitz graplt is given by(fi1 + h(f1, f2)go, f2) where(fy, f2) € Bs(0) <
>o. Itis a Lipschitz hypersurface Mg which approachesg quadratically near the
point (W, 0). Itis thus clear thaky is the tangent space at (W, 0).

Finally, we note that our choice of topology is not optimal fis type of the-
orem, and our approach can be extended to more general gutiditions. On
the other hand, we emphasize that the distinction betwesretlergy topology
H® x L2 on the one hand, and a stronger one such as ours has very idreffieats.
Indeed, solutions starting on the manif@ds constructed in [18] are shown there
to approachN, ) up to a radiation part wher@c) € (0, 0). If a center-stable

Iwe place “center-stable” in quotation marks, sidioeannot be interpreted as such an object. In
fact, the spacer is not invariant under the flow.
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manifold can be constructed k' x L2, then we cannot expect the same behavior
for solutions associated with such an object. Indeed, fib8} &nd [4] we know
that energy solutions exist arbitrarily close (%/0) in the energy topology for
which a(t) can approach either 0 ov in finite or infinite time.

The idea of the proof of the theorem is to combine the preceseription of
solutions with data oz contained in[[18, Definition 3] with the exit characteri-
zation of solutions established in [16]. The latter worload us to confine our-
selves to the situation in which the solution is clos&Stahe family of rescalings
W, = /I%W(/l-) of W, whence we can rely purely on perturbative methods. The
key for the proof is the following result.

Proposition 1.2. There existd » &y » &, with the following property: Lefi[0] be
data as in Theoref 1.1. Then there exigt: 0 of the same sign a%, a constant
koo With |ko — k| « 1, and a finite time T= T (€[0]) with 5o = |50|€*T » &, and
such that at time & T, we have a decoupling

U(t,:) = Wy + V%, |[1—a7| <1,
with 1
Ggrs A*Qer) =0, A =710 + > (1.2)

and furthermore
oy Gy =~ S0 T (1.3)

Proposition 1.2 guarantees that data which are obtaineddBiyn@dogo to a
point onX diverge exponentially away frof. The trajectory moves away from
the “tube” of rescaled ground staté&sin a specific direction, depending on the
sign of §o. Note that the “excitation” of the unstable modg can be arbitrarily
small in Theoreni_1]1. This is the main distinction from oueypous works[[15,
17]. Indeed, in those cases this excitation needed to firisutly large so as
to dominate the evolution from the beginning (and for as lasghe trajectory
remained inside a small neighborhood (4%, 0), since otherwise the linearized
dynamics cannot be compared to the nonlinear one).

At least on a heuristic level, our construction in Proposifi.2 is motivated
by the generalizations of the well-known Hartman-Grobniaedrization theorem
which applies to ODEs of the forta= Ax+ f(x) in R" wheref(0) = Df(0) = 0
provided A has no eigenvalues on the imaginary axis. In that case thésts @
homeomorphisny = y(x) nearx = 0 which linearizes the ODE in the sense that
y = Ay. If Adoes have spectrum on the imaginary axis, then there is f kaswn
as Shoshitaishvili's theorem [26, 127], see also Palmer, [24hjch ensures partial
linearization of the ODE in the form

y=By+o¢(y), z=Cz (1.4)

after a change of variables near= 0. HereB has its spectrum on the imaginary
axis, andC is the hyperbolic part, andsatisfiesp(0) = Dy (0) = 0 (they-equation
captures the center-dynamics). Note that in the formulafiod) the center-stable
manifold is precisely given bg, = 0 wherez, are the coordinates for whichis
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expanding. In addition, since the change of coordinates fiadt bi-Holder it also
follows from (1.4) that the center-stable manifoMs is exponentially repulsive
in the sense that if a trajectory starts near but nofMdg, then it will move away
exponentially fromMgs.

However, in this paper we do not rely on a partial linearmaias in[[1.4) since
such a result is not available in our context. Rather, we sti@at the coupling
between the “center-stable” dynamics obtained in [18] &iedinstable hyperbolic
dynamics is of higher order in a suitable sense, which irsplie exponential push
away fromz.

We conclude this introduction by showing how to deduce thmtieorem from
the previous proposition.

Proof of Theorerh 111 assuming Proposition| 1PAcking .. suficiently small, the
theory of [16] applies. In particular, while the datf] = (T(0, -), t(0, -)) satisfy

dist1,2(T[0], S U —8) < & (1.5)
where we identifyS := (W,, 0),~0, we have
distyr, 2(U[T], S U —8S) ~ [do|e=T (1.6)

provided we choose§0|ekwT (and thuseg) suficiently large in relation t&,. In-
deed, this is a direct consequence[0f](1.3) combined withl[&éhma 2.2]. But
then equation (3.44) as well as Proposition 5.1, Propos&i@ in [16] imply that
data withég > 0 result in finite time blow up, while data wiidy < O scatter to
zero ad — +o0, with finite Strichartz norms. O

Inspection of this proof shows that we rely on several pigvigesults. On the
one hand, the proof of Propositibn 1.2 depends crucialljherasymptotic analysis
of the stable solutions constructed(in|[18], including ddlpersive estimates of the
radiative part. On the other hand, for the non-perturbatinmalysis we rely on
key elements of our previous work [16], namely the one-passrem and the
ejection mechanism in relation to the variational struet(gee theK-functional
in [16]). Note also that the latter paper requires the madotbm from[[5] in order
to preclude blowup in the regink€ > 0 once the solution has excited the soliton
tube.

2. Proor oF ProposiTion[1.2

It remains to prove Propositidn 1.2, which we carry out vimetbtrap argument
using suitable norms. The norms we use for the perturbat®adeapted from those
introduced in[[18].

2.1. A modified representation of the data. Throughout we assume th@h, f;)
satisfy the conditions of Theordm 1.1. We start with daténhefform

(fl + h( f1, fz)go, fg) eX

with the orthogonality conditiodky f1 + f2, gp) = 0. According to[[18], these data
can be evolved globally in forward time to a functia(t, -) so thatWa) + u(t, -)
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solves [(1.1), witha(t) — a(0)] « 1 forallt > 0. Letg,, = gy (f1, f2) be the
unstable mode for the operator

H(a(w)) = —A — 5w A+ V

a(o0) —
which is the reference Hamiltoniantat +oco0. Writing
To := {(kofL + f2,00) = 0}

for the tangent plane B, pick ﬁ( f1, f2) such that

(f1 + h(fy, f2)go — h(f1, f2)3w0, F2) € Zo.
This is possible sincggo — 9|2 « 1. The map
(fe, f2) — (fo+ h(f1, f2)go — (f1, f2)gee, T2) =: (f1, f2)

is a Lipschitz continuo@momeomorphism from a small neighborhddd= X, of
0 (within the admissible data set as in Theofen 1.1) to anotbighborhood/. In
fact, it equals the identity plus a Lipschitz map with veryadinbip constant. This
follows from the fact that (seé [18], Section 4)

Ih(fy, f2)| ~ |h(f1, T2)| < (1, T2)[2
In(f1, f2) = (91, G2)| « [ 12— Gallns + [ f2 — el 2

Committing abuse of notation, we write= h(f1, f2), g, = 9o (f1, f2), where it
is to be kept in mind that, is associated with the asymptotic operator determined
by the datg f; + h(f1, f2)do, f2). Then we have the identity

f1 + h(fy, f2)do = f1 + h(f1, 12)ges
and furthermore
(fl + h( f1, fz)gw, fg) ex
We next need to find an analogous representation for theedhiittial data
(f1 + (h(f1, f2) + 60)go. T2)
Observe that the map
(f1, f2,80) — f1 + (8o + h(f1, ©2))Ges

is again Lipschitz and a homeomorphism for small values efatguments. In
particular, we can write

f1 + (h(f1, f2) + 60)go = f1 + (S0 + h(f1, £2))g

wheredg is a Lipschitz-function of(f;, f,60). Also, observe thakt divigles the
data space into two connected components, which can bectiiazad byso > O,
09 < 0. The same comment appliesdg and necessarilyo > 0 corresponds to
0o > 0.

2In fact, this map is smoother but we do not make this explicfiB].
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2.2. The perturbative ansatz. Now given f, f,, 6o, let u be the solution of (1]1)
corresponding to the data

(W + f1 + (e, £2)00s f2), (f1 + D(f1, T2)0es, T2) € 2

These are of course in generaffdrent from(f; + h(fy, f2)go, f2). Note thatg,,
is the unstable eigenmode corresponding to the evolutianatt = +oo0. Also,
denote byuthe solution corresponding to the data

(W—i— f1 + (h( f1, fz) + (50)90, fz) = (W + ﬂ_ + (So + ﬁ(ﬂ_, fz))goo, fz)
We shall first make the simple perturbative ansatz

L~J=U—|—77=Wa(t)~|-u*—|-77 (2.2)

where we use the decoupling

U(t, ) = Wa(t) + Uy (t’ )

given in [18] with the bounds
Jus(t, e <8O [Vata(t, )| zye <8O (2.2)
[Vus (6 )z + VUt )z <6, Ju(xt)] 6007 (2.3)

for suitables = 6(e4,R) « 1; in fact,§ = Cpe, WhereCy is a big constant
(depending omR). For the dilation parameter one has the bounds

la(t) — ap| < 8L Jat)| < 62 (2.4)

and in particulata(t) —a,| « 1. In view of (2.1), we obtain the following equation
for n:

own + H(@(o0))n = N(Usx + 17, Wary) — N(Us, Wyr))
+ (H(a(0)) — H(a())y =: F(t)
Here we sefH(a) = —Ax — 5Wa, and borrowing notation froni [18], we have
N(V,Wa) = (V+ Wa)® — WS — BWiv (2.6)
The right-hand side in(2.5) further equals
F(t) = 5(u* — Wi )n + 100352 + 10u%;® + 5un® + n°
+ 5(W§(t) - W;‘(OO))U (2.7)
)i = (U + AU Wagy + BUEWS ) + 4u WS )

(2.5)

(T Wg(t)

Note that all terms linear in are of the formo(n), and they are also localized in
space due to the decay wf andW. We shall writeH (a(c0)) = H,, from now on,
and denote the corresponding unstable modg.bywith H..g, = —k2 9. Itis
natural to decompose

n=Pgn+ 6(t)Ge0 =171(t, ) + 6(t)9eo (2.8)

The key to proving Propositidn_ 1.2 is the following result.
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Proposition 2.1. Let T > 0 be such thatdo|éT < &o. Then for any & [0, T],
we have the bounds

5(t)] ~ [Bolet, i(t. )iz + [Vudi(t. )z + V2t )iz « [0t (2.9)
for some fixed large M. Alsé(t) has the same sign as.
Proof of Propositiori 2]1 Recall that
F(t) = N(Us + 7, Wa)) — N(Us, Wagy) + (Hoo — H(a(t)))n

Then according to Section 3 in [18], we can write

o(t) = (2koo)"[n+( ) +n_(V)],

1~ (2.10)
ns() = (%)% f e =9 (F(5),g..) ds
Moreover, we have the Duhamel—type formula
t i _
() = _J St =9 VHolp | £(s)ds 2.11)
0 VHy *

Assume that the solution exists on some intef@al ), T < T, and that it satisfies
the following estimates, which we refer to lagotstrap assumptions

6(t)] < 10|50|€""
3 2 (2.12)
7t )z + [ Vadi(t )z + [ V&R )] 2 < R\(Sole‘“t

for some largek, which will be chosen to depend @p.
We shall now infer thats(t)| ~ |5o|€" with a proportionality factor ir{%, 4]

and we will improve the second inequality by replacifdy +. A standard conti-
nuity argument then implies Proposition12.1.

(A) Improving the bound ofi. We start with the_2-norm. To control it, we use
the simple bound

- |

(2.13)
Sl

Assume that we have the bound

IF(s )z « == (2.14)

Then [2.18) implies

fsmt—s ]P LF(s d#

« % (t — s)e<Sds< |§—K0|ek0Ot

0
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which recovers the dispersive type boundfoifhe above bound (2.114) fér can
be easily proved: for the flerence

N(u. + 7, Wa(t)) — N(us, Wa(t))
it suffices to consider the “extreme” terms

u* Was(t) 77, ui 77’ u3772’ 775, (2 " 15)

seel(2.77). We now chedk (2]14) for each of these expres$ionsding, as in [2.8)
via (Z.12) as follows:

It )iz + [Vsan(t. )z + [ V5n(t )iz < Caldole™!

with an absolute consta@;. In what follows, we will need to ensure theg «
K1 (so that als@ « K~1).

For the first term in[(2.15), we get

60| . _
Wl sl W g Il < S et
For the second term i (2.115), we get
60| .\ _
HUiUHLﬁ 5 HU*H‘E;«J Inll 2 « ?@ Aekrt

For the third term in[(2.15), use thE?(R3) = L™ to obtain the bound

3.2 3 =2 |50|
(] g < WP Inluz Il g s 536" « —mest

For the last term if(2.15), we similarly obtain

% |60
175 < Il Inllg < 13ol%e%" « St
In order to complete the proof of the bound(2.14), it rem#insontrol the term
(Ho — H(a(t))n

Due to the fast decay rate-({x)~%) of the potentialvV = —5W§(t), one easily
infers

] 5
(e~ H@)) s < falee) — alt) ol « 2Lty
This completes the bootstrap for the nofi, 2.

Next, consider the norrii| 2. To control it, we use [18, eq. (36)] with =
—5W(a(w0))*:

~ ~ i,
IVitllz < [ vVHeo 7l 2 + [IV]27] 2

t
1 ~
< jo IF(s g ds+ [IVI2lige il

|50‘ t
« g
K
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. . 2,., .
Finally, we considef V5ij| 2:

2n ~ ~
Vil e < [Hoodillz + Vil 2
t
< fo INF Py F(s )iz ds-+ [V e il

The final term here i< "%"‘ekwt as desired, and for the integral we continue us-
ing [18, eq. (35)]:

t t
| VAR Fs g ds [ 19F(s g ds (2.16)

To bound the integral on the right, we again consider thesam{2.1%). For the
first of these, we have

|V (U*W:(t) n) HL§
S 1Vl 2 WS e il + Ul Lz [T Wl Il
g W2 e [Vl
« %(D‘gekwt + |5—£|<t>1é‘”t
For the second term ib_(Z2.115), we obtain the contribution
|6

ol .
HVX(UiU) HL§ N HVXU*HLEHUE g lmlge + Ju I [Vl 2 « ?<t> St

For the last two terms of (2.15), we have the bounds

[Vx(wn?) [z < IVl + 10 IVarlzlnloz

~ 5
< 6267t « ‘—Ko|equt

~ 60|
[Vx ()] 2 < [Vtlz iy < |60/°" « ?ek“t

Finally, one also easily checks that

[V ((He — H(@)n) | 2 < la(0) — at)[[dole=" « %GWG“’Ot
Before continuing, we make the following important obséprafrom the proof:
Corollary 2.2. The bootstrap assumption implies that we can write fer (, 1, 2
viit) = iy + i)
where we have
(s« 0Lty

179 () |z < [5o[2€P<

(2.17)
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This corollary is important since it shows that the intei@ts of 77 with itself
as well as with the driving term, are much weaker than the principal unstable
component ofy, i.e.,5(t). We will have to take advantage of this improved bound
in order to control the evolution a{t).

(B) Improving the control oves(t). In order to complete the bound ghwe next
need to control the growth of the déieientsn, (t). This appears moreflicult due

to the quadratic interactions (s, -) of the formu*nW )" The issue here is that

the dispersive bound far, only gives(t)~* decay, which just fails to be integrable.
We start by deducing an improved bound for(t) departing from our bootstrap
assumption. In view of{Z.10) we have

t
R R GLO L

Using the bound(2.14) with the improvement implied by Clamgi[2.2, we get the
bound

In_(t)] < |8o|(t)~ 2kt 4 §2ePeet (2.18)
We now use this, together with Corolldry .2 as well as thei@igoounds oru,,
to derive the improved control over. (t). We depart from the dierential equation

Ny (1) — kony (1)

n (t) 3 (2.19)
= — 7 (g (20U, W —a(t))aV|aza(o) )» 9o + F4 (1),
(2km)%<g ( (o) + (a(0) —a(t))daV | 1—a( 1)s Qoo + Fi (1)
where we use the notatiory, := —5W7 and
n_(t) 3
Fio(t) = 1<2(11*900W goo>+<2w*77w ,goo>
T (ke
n ()
Vaoo _Va - - t av =a(o0) /» Yo
1 & Vet ~ Vag — (@) ~20) 0V )-8
+ G (b)
with
6.0 - =Y 20, M2, - W2 )00

(2Ke0)2
+ (N(ux + 7, Wa(t)) - N(U*aWa(t)) — 205(t )U*ng a(t)’ O,

+ ((Hoo = H(@()) [ii + (k) 2N (1)) G)
We infer from [2.19) that

IS t
n, (t) = (‘5—20)%e‘<wt”<°vt> + L ge(=9+IEYE, (5)ds (2.20)
where we use the notation

t
M8 = [ e (Un(on ME,) + (a0) — a(80)0V et B I
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In order to proceed, we shall obtain uniform bounds on thesgMfianctionl'(s, t).
These hinge on Proposition 8.2, to be proved in the next@eclihis proposition
implies that

up (U (S IWE s Gonp A5 | S U Lops < L (2.21)
st>

It remains to estimate
t
sutpf (a(0) — a(s1)) dsy (2.22)
S, S

Note that the integrand decays Iib&él from the bounds in[[18], which is no in-
tegrable. Lemma_2l3 shows nevertheless fhai{2.22) ismmifdbounded. This
again hinges on Proposition 8.2.

Lemma 2.3. We have the averaged estimate

ff(f" fot(a(oo) - a(s))d# «1

Proof. Here we use the equation definia¢) in [18], given by (51) in loc. cit.,
which we copy here for > 1.

at) = —Co(%)%@awah—a(oo), (Vageo) — Va))Us(t, 1) + N(Ux (L, ), Wag) )

We write this equation somewhat schematically in the form
a(t) = —co(a(oo) — a(t))(0aWala=a(on)» Us(t, -)0aVala=a(en))

+ O(la(20) — a(t) (| 0aWal 1= a(oo| Jus (8, )[00™)

- CO(%) *(0aWi 1=a(on) N (U (8, ), Wagy)))

Seta(t) := a(w) — a(t), and write this ODE in the form

a=—aoc—H
o (t) = —Co{aWa|a=a(o0)» Us (L, ) 0Vl a=a(eo))
H(t) : = O(la(o0) — a(t)[*| o1 Wa | aza(en) |» U (8, ) [0 ™)) (2.23)
- o 5 Mo, N(Us (1) W)

Solving fromt = oo one obtains

0 S
at) = f &7 H(s)ds (2.24)
t
Propositiori 3.2 implies that
sup” 0" «1
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which ensures that & = O(1) uniformly in s, t. We now claim that

f(a(OO) —a(f))di = tfoo 7 H(s)ds
° t t 0 .
+ L SO'(S)L s H(3)d3ds

To verify this, note first that both sides vanishtas 0. Furthermore, taking a
derivative int reduces the equation {0 (2]24).
One has the bound

(2.25)

IH(t)| < WZ, 0™ + 6¢t)~3 (2.26)

with 0 < ¢ « 1. Therefore, on the one hand,

0 S
sup\tf i H(s)dd « 1
t

>0
On the other hand, sup, |so(s)| « 1 whence

”C:s;(s) LOO els” H(3) d§ds+ < Ltj:o
_ tf@ H(3)|d5+ f SH(s)|ds
t 0

The first term is« 1 from (2.26), whereas the second integral is dominated by

(2.27)

sup” sH(s \d# < supHsu* Mg [Uellor +6 <1
t>0

In conclusion[(Z2.2]7) i< 1 which completes the proof of the lemma. O

In conjunction with [[2.2]7) the lemma implies that the phasgectionsl'(s, t)
are uniformly small.

We next estimate the contributions of the various constituefF . (s, -) to the
integral in [2.2D). This will then lead to the completion be&tproof of Proposi-
tion[2.1.

(1) The contribution of(—t)<u*gooW at) ,000) + <u*nW ,goo>
Using [2.18) as well as Corollafy 2.2, we bound this by

« f;ekw<t5>+”&t><s>1[\50\<s>iekws + 55e™°] ds
< |8o| €t + 52eP!
(2) The contribution of;;—(t))%@oo (Va(oo)—Van —(a(0)—a(t)) 01V i—a(eo) ) » G-
We can bound this by
< |60 Lt oo (t=9)+T(SY keS| 3 (o0) — a(s)? ds « |Sp|e!
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We next consider the contributions of the constituentS oft):
TR n (1) 3 \3
(3) The contribution omeOu*gm (Wa(t) Wa(o)), O )-
Use the bound
N4 (00U Goe (Wa ) — WS ), o) « (O Ya(o0) — a(t)]n (1)
Hence the corresponding contribution is bounded by

« f =948 () Lia(o0) — a(s) I, (9] ds
0

t
« f o (S48 (=215 1 e s |Gkt
0
where we have used the bound (2.18) as well as the bootssampson to con-
trol n, (t).

(4) The contribution 0N (U +17, Wa(ty) — N(Us, Wa)) —206(t)u*goowg(t), Qo )-
Here we need to estimate the contributions of the followictgesnatically writ-
ten terms:

For the first term, we can bound the contribution by

t
< f oo (=941 (97173 | 5o | rS 1 §52(5) e S) ds < ||
0
The remaining terms are handled similarly.

(5) The contribution of (H (a(c0)) — H(a(t))) [ + (2ke) 2N (t)Geo ], Geo -
Using [Z.18) and Corollafy 2.2, we bound the correspondorgribution by the
exact same expression aq4#).

This completes the proof of Propositibn2.1. |

It remains to prove Propositidn 1.2. Thus fix a tiffiavith 1 » |ole*T » &,
where we can write
CI(T, ) = Wa(T) +Ux + 1
as before. We need to pass to a representation
(T, ) = War + V4 (2.29)
which satisfiesV,,, A*g,, »y = 0. From [18] we can write
Uy (L, +) = Pgs Us + 05 (1)Foo, |04 (1)] < Clex)(*
In order to obtain the desired decompositibn (2.29), we needtisfy the relation
(Pg (Us + 1) + (6(T) + 64(T))Goo + Warr) — Wor, A"Ger) =0 (2.30)
Observe that
Wyry — Wor = (&(T) — a1)0aWa|1=ary + O(J&(T) — atl?)
and from (2.13) in[[16] we have
[<OAWi | a=a(ry> A Qarry)| ~ 1
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It follows that for |a(T) — at| « 1 there is a unique solution of (ZIJ30) which
satisfies

|a(T) — at| < [dol€T « 1
To verify the condition[(1.13), we need to compute
(Pgt (Us + 1) + (6(T) + 64(T))Geo + War) = Warr» Gar) (2.31)
From Propositiofl Z]1 we have
16(T)| » [(Pge (Us + 1), Gar )| + [0x(T)],
and furthermore
[(War) = Wor, Gar)| = O(|&(T) — ar[?) « [5olT ~ [5(T)|
We have now proved the key growth condition
<\7aT, gaT> = Soeka
which completes the proof of Proposition]l.2.

3. PROOF OF THE DISPERSIVE ESTIMATE ON [|Uy[| oo 1.

This section is devoted to the one estimate, namelywf 1, which is not
contained in[[1B]. As evidenced by the previous section imisn is of crucial
importance for the nonlinear argument.

This section is devoted to the proof of this estimate, stgnvith the linear case.
We use the expansions for the linear evolution associattowi- V, V = —5W*4,
as derived in[[18]. In what followsi{ = —A + V in R3 whereHy = 0 andy is
the unique zero energy resonance function, jygx)| ~ |x|~* for large |x|. We
assume thatl does not have zero energy eigenfunctions.

Proposition 3.1. We have the bounds

H (&\/%FH)PC — Y ® ¢> f o S [ £ lwaa (3.1)
H cog(t vVH)Pcf o S | ez (3.2)

X =t

Proof. We begin withvV = 0. For the sine evolution, we get (putting the argument

x = 0)
L t\ f fy dy dt Loot—z‘ f V(f(y )dy‘dt (3.3)

[lyl=t] [lyl<t]

f
sf|Vf<y>|dy+ f‘M ij )/ dy
R3 R3

The last step uses integration by parts in polar coordinates
For the cosine evolution, one has



16 JOACHIM KRIEGER, KENJI NAKANISHI, WILHELM SCHLAG

costt VH) F(x) = & tf F(x + ty) o (dy)
S2

_ f[f(x-|-ty) + 4V E) (X + ty) - y] o (dy)
82

and so ¢ v
| cost VH) [ 2 < HWHL% + HWH@ < D%y

In caseV # 0 we write thes'”(:/‘_() evolution in the form
1 si 1 r
= o ( _ '
mj RV -R, (1 )] ada = o j sin(t)R(2)da (3.4)
0 —0

where we have s&(1) := R} (4?) if 1 > 0 andR(1) = R(—2) if 1 < 0. For the
free resolvent, we write this &. Then, by the usual resolvent expansions,
2n—1

R= Z D*Ro(VR)* + (RoV)"R(VRy)" (3.5)

We distinguish between smaII energies and all other ererdter the latter, we
use [3.5). Lejo(1) = O for all || < Ag andyo(1) = 1if [2] > 21p. Heredp > 0

is some small parameter. Fix sorkeas in [3.5) and consider the contribution of
the corresponding Born term (ignoring a factor(4f) —*~1):

0 k )
fxo(z)sin(u)éﬂi?_oxjle kH,-:lv(xJ)
[Ti—o %) = Xj41

R3(k+2) —

- %gi [ R!k)?o(f) | %amm)

[[x0—Xa|=%t—£—3"_ [xj—Xj 41/>0]
k
Hj:lv(xj)

k
[ Ti—1 IXj = Xjsa

f(Xp)dadxg ... dx

dxg...dxcdé
(3.6)

wherexy, 1 is fixed. Placing absolute values inside these integraldgrdadrating
overt € R yields an upper bound

k
f V(X
[ ooyt [ L0 g [ Pt g
R J X0 — X4 S TTi—a 1% — Xjea (3.7)
< |VE2| vV
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It remains to bound the contribution by the final term[in{3alich involves the
resolventR(1). Its kernelK(x,y) can be reduced to the form

f (R (VR X (VRo(~))" () o
- f HEL XML 1) (R() (VRo(A)" 2V G(4, ), (3.8)
(VRo(=2)"VGy(—2,-))da (3.9)
where
_ gA(Ix=u[—[x])
Gx(/l, U) = m

and the scalar product appearing[in3.9) is just anotherafayiting the compo-
sition of the operators. One has the following elementaryniog, see for example
Lemma 11 in[[18]:

j
sup d—GX( ) < Cj provided o > 1 + ]
XGRS d/U L2’70 ? 2
§ 2 (3.10)
—G ided =
Xsel]g 0 x(4,+) o < > provided o > 2+j

for all j > 0. Let for some larga (sayn = 10)

Ay(4) 1= xo(A){R() (VR(4))"VGx(4, ). (VRo(=2))" TV Gy(~4,))
Then in view of the preceding one concludes thaf(1) has two derivatives in

and _
di

= axy(a)] <@+ 2for =012 andalld>1 (3.11)

Moreover,
i
‘%aw(ﬂ)\ S L+ 0)72(¢y) " for j=0,1, andalla>1  (3.12)

The decay im here comes from the limiting absorption principle whichersfto
the following standard bounds for the free and perturbedlvests:

_ 1
IRv(22 £i0)| 20 2 <sA7Y, o> > (3.13)
_ 1
|08Ry(A2 £10)|2r 12w S 1, O > SH+6 (=1

for A separated from zero. The estimafes(B.11) and(3.12) oglyiree|V(X)| <
X~ * with k > 3.

Let us assume first that> 1. To estimate[(3]19) we distinguish between-
(x| + |y|)| < t/10 and the opposite case. In the former case, we conclude that

max(|x], ly|) 2 t
so that due td(3.11) we obtain

‘ f éd[tt+(\x\+|y\)]aw(/1) dA| < x[x+lyi>t] ((xXX(y)) 7L (3.14)
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Integrating [3.14) ovet € R yields a boundD(1) which implies anLy — L{’L{
estimate.
In the latter case we integrate by parts twice which gaigor |t| > 1 from (3.11):

”eMHHUXHVD]aX,y(/l) da| < [t| 2

For|t| < 1 one ha$D(1). We can again integrate this oves R as before.
We now turn to the contribution of smallto the sin-evolution. We recall the
following representation of the resolvent at small enexgsee (105) in [18]:

R(1) = IERo(VSIVR(1) + Rofl) — Ro(AVE(VRS (). (3.15)

where withw := /|V|,
S1 = |wy |y 2wy @ Wy =1 § @y
—2
andp — 47r( { vy dx) |wig||2. For the explicit form ofE(1) see (104) in[[18].
R3

Next, we describe the contribution of each of the three tem(8.18) to the sine-
transform [(3.4). We can ignore the second one, since it leatte free case. The
first term on the right-hand side d¢f (3]115) yields the follogriexpression if(314):

Soxy) = £ [

~ ;B0 0 ) — w2 | f[ LR =)
R6

x1(2)[Ro(2)VS1VRy(2) ] (x, y) dA

VXD (X) V(Y )y(y)
drx — X[ 4nly —y| dr dxdy

We need to verify that uniformly ix, y € R3 the integral ovet € R of the last line
isO(1). Indeed

V(X)w(X) VY)Y
”Lm e+ [x= x|+ 1Y 9| i e dxdy

| 4rly =Yl

< f Rl X=X+ 1Y -y dr
x|+ yyl <tz 077
VOO () VYY)
dxXd
X=Xy — Y
N f fm<r+|x—%|+|>/—y|>|dr
[Ix=X|+|y—y'[>1/2]

VOO V)]
x—xly -y Y
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The first integral in the final expression is rapidly decayimg, and thus gives the
desired bound, whereas the second one upon integratida ounded by

VOO (XD IVY)e ()]
X—X|+1]y— dXdy <1 (3.16)
ety -y L iy
Finally, we turn to the third term on the right-hand side[afl&. The convergence
of the Neumann series definifig 1) in L? for small 1 was established in [18]. We
analyze the contribution by the constant term, viz.
E(0) = (Ao + S1) + E1(0)S1m(0) 1Sy + S1E2(0)S1 + S1m(0)1S;E1(0)

see (104) in[[18]. From (108), (109) in 18] one has

| | simtna ) ROVEOVR(D](x) dt £(x)dx

N 32‘1n2 JJ T“”“ [x—=X|+ 1Y —yi]) %1(¢) dé (3.17)
T 302 ff T‘S(—t +E+ [Ix= X[ + 1y —YI]) X1 (€) d¢ (3.18)

Placing absolute values inside these expressions andatitegovert € R yields
an upper bound of the form (forfixed)

”f” e |> OO YV g0 o

x|y
R3R6 —00
[ ] o I 00
R3R6 —00
which in turn is bounded by
walsp| U] O ool sl @19)

sinceE(0) is absolutely bounded dnz, see[[18].
To deal withE (1) we proceed as i [18] using th&1)-method. To be specific,
we claim the bound

[ 1] ] smevmsiRovEvRIxy) di fx dx de< 1] (3.20)

—o0 R6 —00
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provided the operator-valued functiéi{1) satisfies

f aF @], de <o (3.21)

The latter property holds fdg(1), see (113), (116), (117) in[18]. To prove (3.20)
we lety1y2 = y1 for some bump functio, and compute

| | simtmaRovF @RI x.) 2 () dx

280
_ fl,rszf T&(t+g+n+[IX—%| + 1y = YI]) x1(é) d¢
RS R6—0
T
_ Wlﬂzjjf T&(—t+§+n+ [Ix =X+ 1Y = ¥I]) x1(¢) dé
R3 RO -0
T

Placing absolute values inside and integrating ¢weR yields the upper bound

‘ v(X)
X —X|

ee}
2 —
Jfalssup L | larecol], eifsif @22
Xl—%

uniformly iny € R3. This concludes the small argument for the sin-evolution,
and in combination with the previous estimate for- 1o > 0 we have estab-
lished [3.1).

It remains to estimate the cos-evolution, $e€(3.2). We basanalysis on the
relation by

sin(tv/H) 3.23
costvVH)P¢ = ¢ NG Pe (3.23)

The small frequencies present no problem[as (3.23) shat#th only diference
in the oscillatory integrals is a factor af which is small and thus immaterial. On
the other hand, for large this extra factor accounts for the additional derivative
on the data. To be more specific, the final term in the Borresd.5) does not
present a problem either. This is due to the fact thatin {3ahd [3.12) we may
obtain arbitrary decay in by takingnin (3.5) as large as wish (but of course fixed).
In particular, we can absorb the extra powenafoming from thec;. It therefore
just remains to treat the summands[in3.5) involving onby fitte resolvent. In
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analogy with [(3.6) one has

@ k
) 1 V(X

f f)(o(/l) cos(u)/léﬁzjk=o|xi—><j+1l {I“l (i) f(x0)dAdxy...dx

R3(k+2) —00 1_[J':O |Xj — Xj41]
X k
. 1 V(X

= f f)(o(/l) cos(td) £* [éﬂZTzolxvmll p‘*l () f(xo)] dadx.. . dx

R3(k+2) —00 Hj=0 |Xi - Xj+l|

wherexy. 1 is fixed and with
1l x—x
= ol %
Note thatLgo—xl — dix—xl The xo-derivative in [3.24) can fall on either

IXo — X1/ 7t or f(xo). In the latter case we proceed exactly adinl(3.6) and obtain
an upper bound for thb;OLtl—norm by|D?f 1. In the former case one replacés

with |Xfo(i(.;()1| and again proceeds as [n (3.6). The resulting bound is
f(x) )
X — x|

sup
X' eR3

as desired. m]

Vi (

2
4 =10l

We use the preceding proposition to obtain the following lkeynd onu,:

Proposition 3.2. Let W(t) + u, be the solution oflL.1) with data u.[0] = (f1 +
h(f1, f2)go, f2) € %, as given iN18]. Then we have the bound

Proof. We use formula (33) ir_[18] which gives the representation
Ui (t,+) = COS(t VH o) Pyr Wi + S(t)Pys Wy

Al

t
—f a(s) cos([t — S| VH )Py [01Wal1—a(s) — (%) 01Wa1=a(c0) | ds

0 s)

t
- L S(t— S)Pgolo [<Va(oo) - Va(s))u*<3, )+ N(U*aWa(s))] ds

—R(,")
with R(t, -) compactly supported inand bounded, whence irrelevant for the proof.
Also, we have
Wp = f1 + h( f1, fz)go, Wy = f2
and we use the notation
sin(t+v/Hy)
S = VA, Pc—Ccoy @y
with the same notation as in Propositionl3.1. Then the bd8d# is implied by
Propositior 3.1 for the expression

coqt VHey ) P9J06 wy + S(t) P9J06 Wy



22 JOACHIM KRIEGER, KENJI NAKANISHI, WILHELM SCHLAG

and hence it remains to bound the Duhamel terms. We write

f a(s) cos([t — S| VH. )Py, [ ... ] ds
0

Q0

~ | atscosit— sl vty [ ] s

0

~ [ a0t - o VLR [ s

and similarly for the expression

ftS(t—s)Pgolo[...]ds

0
(1) Contribution of the cosine terms
From [18] we infer the bound

a()

a(s) )F0MW a5 fa(o0) — a(9)[ (9%

‘V£(61W1|A:a(s) - (

whence from[(Z}4) we infer
. a(o0), 5 B
6Py [0t~ (G7) s ges <9y 51

Then Propositiof 3]1 implies

f 9)cos([t — 5| VFH)Py [ ... ]

Lo «1

For the second Duhamel cosine terffi,a(s) co([t — s] VH o, )Py [ ... | ds we
can crudely use Sobolev embeddidg( R3 c L®:

]f s) cos([t — S| VH )Py, [ ... | ds
Hf s) cos([t — S| VH )Py [ ... | dg ;.

sf 2Py [ e dsc 2
t

which is integrable.

(2) Contribution of the sine terms.
First, consider the term

oo
L S(t - S)PgOLO [(Va(oo) - Va(s))u*(& ) + N(“*’Wa(s))] ds

Using Proposition 311, it $fices to prove
H F’gaLO [(Va(oo) - Va(s))u*(& ) + N(“*’ Wa(s))HL%WLl «1
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Note that

|(Va(eo) = Va(s) U (S ) lwas < [a(o0) — a(9)|([lue(s )y + | Vatlz 1)
O

thanks to[(2.R), which is integrable. As for the teN(u.., Wy ), we consider the

contributions ofuiwg(s), u2. For the first, we obtain

(S WE g s < T (8 )z s bz g W3 g v < (9728

where we have interpolated between the second bourd dfg@d2he first one of
(2.3); this decay rate is again integrable.
For the pure power term, we get

5 3 —1-£
Ju2lwar < s (s )l lue(s ) lwaz pwam [UZ a2 < (972

Here we have also used the strong spatial decay estimatg fare. the second
bound of [2.B). This completes the estimate for the cortiobuof the first sine
Duhamel term.

It remains to consider the expression

o0
ft S(t — 9Py [(Vaue) — Va(e)Ua(S ) + N(Us, Wyg)] ds

where we will again use a pointwise decay bound. This time s tto combine
the strong dispersive bound provided by the key Proposttimr{18] with Sobolev.
We decompose

o0
ft S(t— S)Pgoio [(Va(oo) — Va9))Us(S, ) + N(U*’Wa(s))] ds

t+1
= ft S(t - S)Pgolo [(Va(oo) - Va(s))u*(& ) + N(u*’wa(s))] ds
ee}

+ t 1S<t — S)PgOLO [(Va(oo) — Va(s))u*(s, ) + N(U*,Wa(s))] ds
+

For the first term, use
H (Va(oo) - Va(s))u*(& )+ N(“*aWa(s))HHz < <S>72

whence we get, using?(R3) c L=,
t+1
” t S(t— S)Pgoio [(Va(oo) - Va(s))u*(s’ )+ N(U*aWa(s))] ds

t+1
« () 2ds< ()72
t

an integrable bound.
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For the second integral above, we bound it by

o0
I t 1S(t — )Pyt [(Va(e) — Va(e))Ux(S ) + N(Us, Was)) | dS|is
+

o0
: ft (= 8) Y [(Va(oo) = Vas) s (S ) + N(Use, Wa(s)) ]y d
+

0 e &
« f (t— 9N 1% ds < logt(ty1,
t

+1

which is again integrable in This concludes the proof of Proposition|3.2. o
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