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THRESHOLD PHENOMENON FOR THE QUINTIC WAVE EQUATION
IN THREE DIMENSIONS

JOACHIM KRIEGER, KENJI NAKANISHI, WILHELM SCHLAG

Abstract. For the critical focusing wave equation�u “ u5 onR3`1 in the radial
case, we establish the role of the “center stable” manifoldΣ constructed in [18]
near the ground statepW,0q as a threshold between blowup and scattering to
zero, establishing a conjecture going back to numerical work by Bizoń, Chmaj,
Tabor [3]. The underlying topology is stronger than the energy norm.

1. Introduction

We consider the energy-critical focusing nonlinear wave equation

�u “ u5, � “ B2
t ´ ∆x, ur0s “ pu, utqt“0 “ pu0, u1q (1.1)

on the Minkowski spaceR3`1 with radial data. The conserved energy is

Epu, 9uq “
ż

R3

`1
2

|∇t,xu|2 ´ 1
6

|u|6
˘

dx

In a remarkable series of papers, [5, 6, 7, 8] Duyckaerts, Kenig, and Merle gave the
following characterization of the long-time dynamics for radial dataur0s P 9H1 ˆ
L2pR3q of arbitrary energy: either one has type-I blowup, i.e.,}urts} 9H1ˆL2 Ñ 8
in finite time, or the solution decomposes into a (possible empty) sum of time-
dependent dilates of the ground state stationary solution

Wpxq :“ p1 ` |x|2{3q´ 1
2

together with a radiation term that acts like a free wave, up to aop1q ast Ñ T˚ P
p0,8s. Herer0,T˚q is the existence interval of the solution. See [8] for the pre-
cise theorem. We remark that Kenig, Merle [15] had studied the case of energies
Epu0, u1q ă EpW, 0q and established a finite-time blowup vs. scattering dichotomy
depending on whether}∇u0}2 ą }∇W}2 or }∇u0}2 ă }∇W}2. For the subcritical
case, Payne and Sattinger [25] had given such a criterion butwith global existence,
and the scattering remained unknown. The latter gap was closed only recently by
Ibrahim, Masmoudi, and the second author [12] using the Kenig-Merle method.
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The dynamics for the caseEpu0, u1q “ EpW, 0q was described by Duyckaerts,
Merle [9, 10] who constructed the one-dimensional stable and unstable manifolds
associated withW. Finally, [5] allowed energies slightly larger thanEpW, 0q, and it
was shown there that general type-II blowup occurs by dynamical non-selfsimilar
rescaling ofW. The existence of such blowup solutions was established by the first
and third authors and Tataru in [19]. An analogous construction in infinite time
was carried out by Donninger and the first author in [4]. In this context we would
also like to mention the type-II blowup construction by Hillairet and Raphaël [11]
for the 4-dimensional semilinear wave equation.

From a different perspective, and motivated in part by the phenomenological
work [3] of Bizoń, Chmaj, and Tabor, the first and third authors investigated in [18]
the question ofconditional stabilityof the ground stateW. This is a very delicate
question, and remains unsolved in the energy topology. Notethat the aforemen-
tioned blowup solutions can be chosen to lie arbitrarily close relative to the energy
topology to the soliton curveS :“ tWλuλą0 whereWλpxq “

?
λWpλxq. However,

in a much stronger topology, [18] established the existenceof a codimension-1
Lipschitz manifoldΣ nearW so that data chosen from this manifold exhibit asymp-
totically stable dynamics. See [18] for the exact formulation.

The question remained as to the dynamics for data nearΣ, but which do not fall
onΣ. As a start in this direction we mention the work by Karageorgis-Strauss [13]
for a related model equation of the same scaling class as (1.1) where they show
blow up for certain data with energy above that of the ground state, which are in a
sense ’above the tangent space’ ofΣ.
In the subcritical case, the second and third authors had shown, see [20, 21, 22, 23],
that this hypersurfaceΣ divides a small ball into two halves which exhibit the finite-
time blowup vs. scattering dichotomy in forward time. This was carried out in the
energy class, andΣ was identified with the center-stable manifold associated with
the hyperbolic dynamics generated by linearizing about theground state. See the
seminal work by Bates, Jones [2] for an invariant manifold theorem in infinite di-
mensions, with applications to a certain class of Klein-Gordon equations.

For the energy critical wave equation (1.1), the authors [16, 17] had shown a
somewhat weaker result, namely the existence of four pairwise disjoint setsA˘,˘ in
the energy space near the soliton curve such that: (i) each set has nonempty interior
(ii) the long-term dynamics (in both positive and negative times) for data taken
from each set is determined as either blowup or global existence and scattering.

However, the question of existence of a center-stable manifold nearW in the
energy space remains open and appears delicate. Therefore,the results of [16, 17]
are not as complete as those in [23], in the sense that no comprehensive description
of the dynamics near the soliton curve is obtained. This is also explained by the fact
that the dynamics of the energy critical equation appear more complex due to the
scaling invariance which is not a feature of the Klein-Gordon equation considered
in [23], as evidenced by the variety of exotic type-II solutions. Moreover, the
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construction of the “center-stable” manifold1 in [18] is significantly more involved
than the corresponding manifold for the subcritical Klein-Gordon equation.

In this paper, we return to the point of view of [18] in order toestablish a descrip-
tion of all possible dynamics with data nearpW, 0q in the following main theorem,
albeit in a stronger topology than that given by the energy. To formulate it, we need
the linearized operatorH :“ ´∆ ´ 5W4. It exhibits a unique negative eigenvalue
´k2

0 with Hg0 “ ´k2
0 g0, andg0 ą 0 is smooth, radial, and exponentially decaying.

Theorem 1.1. Fix R ą 1. There exists anε˚ “ ε˚pRq ą 0 with the following
property. Consider all initial datapW ` uqr0s :“ pW ` f1, f2q with } f1}H3 `
} f2}H2 ă ε˚ and both f1,2 supported within Bp0,Rq. Also, denote byΣ the co-
dimension one hypersurface within this neighborhood constructed in [18]. Pick
initial data ur0s P Σ with

up0, ¨q “ f1 ` hp f1, f2qg0, utp0, ¨q “ f2

where we havexk0 f1 ` f2, g0y “ 0. Then the following holds:

‚ if ε˚ ą δ0 ą 0, then initial data

ũp0, ¨q “ W ` f1 ` php f1, f2q ` δ0qg0, ũtp0, ¨q “ f2

lead to solutions blowing up in finite positive time.
‚ if ´ε˚ ă δ0 ă 0, then initial data

ũp0, ¨q “ W ` f1 ` php f1, f2q ` δ0qg0, ũtp0, ¨q “ f2

lead to solutions existing globally in forward time and scattering to zero
in the energy space.

The hyper-planexk0 f1 ` f2, g0y “ 0 is the tangent space toΣ at pW, 0q, and
it is denoted byΣ0 in [18]. The functionh is constructed in [18] and for any
0 ă δ ď ε˚pRq one has the following properties: define the space

XR :“ tp f1, f2q P H3
radpR3q ˆ H2

radpR3q | suppp f jq Ă Bp0,Rqu
Thenh : Bδp0q Ă Σ0 Ñ R whereBδp0q is relative toXR and one has the estimates

|hp f1, f2q| . }p f1, f2q}2
XR
, @ p f1, f2q P Bδp0q

|hp f1, f2q ´ hp f̃1, f̃2q| . δ}p f1, f2q ´ p f̃1, f̃2q}XR @ p f1, f2q, p f̃1, f̃2q P Bδp0q
The Lipschitz graphΣ is given byp f1 ` hp f1, f2qg0, f2q wherep f1, f2q P Bδp0q Ă
Σ0. It is a Lipschitz hypersurface inXR which approachesΣ0 quadratically near the
point pW, 0q. It is thus clear thatΣ0 is the tangent space toΣ at pW, 0q.

Finally, we note that our choice of topology is not optimal for this type of the-
orem, and our approach can be extended to more general initial conditions. On
the other hand, we emphasize that the distinction between the energy topology
9H1 ˆ L2 on the one hand, and a stronger one such as ours has very dramatic effects.

Indeed, solutions starting on the manifoldΣ as constructed in [18] are shown there
to approachWap8q up to a radiation part whereap8q P p0,8q. If a center-stable

1We place “center-stable” in quotation marks, sinceΣ cannot be interpreted as such an object. In
fact, the spaceXR is not invariant under the flow.
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manifold can be constructed in9H1 ˆ L2, then we cannot expect the same behavior
for solutions associated with such an object. Indeed, from [19] and [4] we know
that energy solutions exist arbitrarily close topW, 0q in the energy topology for
which aptq can approach either 0 or8 in finite or infinite time.

The idea of the proof of the theorem is to combine the precise description of
solutions with data onΣ contained in [18, Definition 3] with the exit characteri-
zation of solutions established in [16]. The latter work allows us to confine our-
selves to the situation in which the solution is close toS, the family of rescalings
Wλ “ λ

1
2 Wpλ¨q of W, whence we can rely purely on perturbative methods. The

key for the proof is the following result.

Proposition 1.2. There exists1 " ε0 " ε˚ with the following property: Let̃ur0s be
data as in Theorem 1.1. Then there existδ̃0 , 0 of the same sign asδ0, a constant
k8 with |k0 ´ k8| ! 1, and a finite time T“ Tpũr0sq with ε0 “ |δ̃0|ek8T " ε˚ and
such that at time t“ T, we have a decoupling

ũpt, ¨q “ WαT ` ṽαT , |1 ´ αT | ! 1,

with

xṽαT ,Λ
˚gαT y “ 0, Λ “ rBr ` 1

2
(1.2)

and furthermore
xṽαT , gαT y » δ̃0ek8T (1.3)

Proposition 1.2 guarantees that data which are obtained by adding δ0g0 to a
point onΣ diverge exponentially away fromΣ. The trajectory moves away from
the “tube” of rescaled ground statesS in a specific direction, depending on the
sign of δ0. Note that the “excitation” of the unstable modeg0 can be arbitrarily
small in Theorem 1.1. This is the main distinction from our previous works [16,
17]. Indeed, in those cases this excitation needed to be sufficiently large so as
to dominate the evolution from the beginning (and for as longas the trajectory
remained inside a small neighborhood ofpW, 0q, since otherwise the linearized
dynamics cannot be compared to the nonlinear one).

At least on a heuristic level, our construction in Proposition 1.2 is motivated
by the generalizations of the well-known Hartman-Grobman linearization theorem
which applies to ODEs of the form9x “ Ax` f pxq in Rn where f p0q “ D f p0q “ 0
providedA has no eigenvalues on the imaginary axis. In that case there exists a
homeomorphismy “ ypxq nearx “ 0 which linearizes the ODE in the sense that
9y “ Ay. If A does have spectrum on the imaginary axis, then there is a result known
as Shoshitaishvili’s theorem [26, 27], see also Palmer [24], which ensures partial
linearization of the ODE in the form

9y “ By` ϕpyq, 9z “ Cz, (1.4)

after a change of variables nearx “ 0. HereB has its spectrum on the imaginary
axis, andC is the hyperbolic part, andϕ satisfiesϕp0q “ Dϕp0q “ 0 (they-equation
captures the center-dynamics). Note that in the formulation (1.4) the center-stable
manifold is precisely given byz̀ “ 0 wherez̀ are the coordinates for whichC is
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expanding. In addition, since the change of coordinates is in fact bi-Hölder it also
follows from (1.4) that the center-stable manifoldMcs is exponentially repulsive
in the sense that if a trajectory starts near but not onMcs, then it will move away
exponentially fromMcs.

However, in this paper we do not rely on a partial linearization as in (1.4) since
such a result is not available in our context. Rather, we showthat the coupling
between the “center-stable” dynamics obtained in [18] and the unstable hyperbolic
dynamics is of higher order in a suitable sense, which implies the exponential push
away fromΣ.

We conclude this introduction by showing how to deduce the main theorem from
the previous proposition.

Proof of Theorem 1.1 assuming Proposition 1.2.Pickingε˚ sufficiently small, the
theory of [16] applies. In particular, while the data ˜ur0s “

`
ũp0, ¨q, ũtp0, ¨q

˘
satisfy

dist 9H1ˆL2pũr0s,S Y ´Sq . ε˚ (1.5)

where we identifyS :“ pWλ, 0qλą0, we have

dist 9H1ˆL2pũrTs,S Y ´Sq » |δ̃0|ek8T (1.6)

provided we choose|δ̃0|ek8T (and thusε0) sufficiently large in relation toε˚. In-
deed, this is a direct consequence of (1.3) combined with [16, Lemma 2.2]. But
then equation (3.44) as well as Proposition 5.1, Proposition 6.2 in [16] imply that
data withδ0 ą 0 result in finite time blow up, while data withδ0 ă 0 scatter to
zero ast Ñ `8, with finite Strichartz norms. �

Inspection of this proof shows that we rely on several previous results. On the
one hand, the proof of Proposition 1.2 depends crucially on the asymptotic analysis
of the stable solutions constructed in [18], including all dispersive estimates of the
radiative part. On the other hand, for the non-perturbativeanalysis we rely on
key elements of our previous work [16], namely the one-pass theorem and the
ejection mechanism in relation to the variational structure (see theK-functional
in [16]). Note also that the latter paper requires the main theorem from [5] in order
to preclude blowup in the regimeK ě 0 once the solution has excited the soliton
tube.

2. Proof of Proposition 1.2

It remains to prove Proposition 1.2, which we carry out via a bootstrap argument
using suitable norms. The norms we use for the perturbation are adapted from those
introduced in [18].

2.1. A modified representation of the data. Throughout we assume thatp f1, f2q
satisfy the conditions of Theorem 1.1. We start with data of the form

p f1 ` hp f1, f2qg0, f2q P Σ
with the orthogonality conditionxk0 f1 ` f2, g0y “ 0. According to [18], these data
can be evolved globally in forward time to a functionupt, ¨q so thatWaptq ` upt, ¨q
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solves (1.1), with|aptq ´ ap0q| ! 1 for all t ě 0. Let g8 “ g8p f1, f2q be the
unstable mode for the operator

Hpap8qq “ ´∆´ 5W4
ap8q “: ´∆` V

which is the reference Hamiltonian att “ `8. Writing

Σ0 :“ txk0 f1 ` f2, g0y “ 0u
for the tangent plane toΣ, pick h̃p f1, f2q such that

p f1 ` hp f1, f2qg0 ´ h̃p f1, f2qg8, f2q P Σ0.

This is possible since}g0 ´ g8}2 ! 1. The map

p f1, f2q ÞÑ p f1 ` hp f1, f2qg0 ´ h̃p f1, f2qg8, f2q “: p f̃1, f2q
is a Lipschitz continuous2 homeomorphism from a small neighborhoodU Ă Σ0 of
0 (within the admissible data set as in Theorem 1.1) to another neighborhoodV. In
fact, it equals the identity plus a Lipschitz map with very small Lip constant. This
follows from the fact that (see [18], Section 4)

|h̃p f1, f2q| » |hp f1, f2q| . }p f1, f2q}2,
ˇ̌
hp f1, f2q ´ hpg1, g2q

ˇ̌
! } f1 ´ g1}H3 ` } f2 ´ g2}H2

Committing abuse of notation, we writẽh “ h̃p f̃1, f2q, g8 “ g8p f̃1, f2q, where it
is to be kept in mind thatg8 is associated with the asymptotic operator determined
by the datap f1 ` hp f1, f2qg0, f2q. Then we have the identity

f1 ` hp f1, f2qg0 “ f̃1 ` h̃p f̃1, f2qg8

and furthermore

p f̃1 ` h̃p f̃1, f2qg8, f2q P Σ
We next need to find an analogous representation for the shifted initial data

p f1 ` php f1, f2q ` δ0qg0, f2q
Observe that the map

p f̃1, f2, δ̃0q ÞÑ f̃1 ` pδ̃0 ` h̃p f̃1, f2qqg8

is again Lipschitz and a homeomorphism for small values of the arguments. In
particular, we can write

f1 ` php f1, f2q ` δ0qg0 “ f̃1 ` pδ̃0 ` h̃p f̃1, f2qqg8

whereδ̃0 is a Lipschitz-function ofp f1, f2, δ0q. Also, observe thatΣ divides the
data space into two connected components, which can be characterized byδ̃0 ą 0,
δ̃0 ă 0. The same comment applies toδ0, and necessarilyδ0 ą 0 corresponds to
δ̃0 ą 0.

2In fact, this map is smoother but we do not make this explicit in [18].
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2.2. The perturbative ansatz. Now given f1, f2, δ0, let u be the solution of (1.1)
corresponding to the data

pW ` f̃1 ` h̃p f̃1, f2qg8, f2q, p f̃1 ` h̃p f̃1, f2qg8, f2q P Σ
These are of course in general different fromp f1 ` hp f1, f2qg0, f2q. Note thatg8
is the unstable eigenmode corresponding to the evolution ofu at t “ `8. Also,
denote by ˜u the solution corresponding to the data

pW ` f1 ` php f1, f2q ` δ0qg0, f2q “ pW ` f̃1 ` pδ̃0 ` h̃p f̃1, f2qqg8, f2q
We shall first make the simple perturbative ansatz

ũ “ u ` η “ Waptq ` u˚ ` η (2.1)

where we use the decoupling

upt, ¨q “ Waptq ` u˚pt, ¨q
given in [18] with the bounds

}u˚pt, ¨q}L8
x

ď δxty´1, }∇xu˚pt, ¨q}L2
x`L8

x
ď δxty´ε (2.2)

}∇u˚pt, ¨q}L2
x

` }∇2u˚pt, ¨q}L2
x

ď δ, |u˚px, tq| . δxxy´1 (2.3)

for suitableδ “ δpε˚,Rq ! 1; in fact, δ “ C0ε˚ whereC0 is a big constant
(depending onR). For the dilation parameter one has the bounds

|aptq ´ a8| ď δxty´1, | 9aptq| ď δxty´2 (2.4)

and in particular|aptq´a8| ! 1. In view of (2.1), we obtain the following equation
for η:

Bttη `Hpap8qqη “ Npu˚ ` η,Waptqq ´ Npu˚,Waptqq
`

`
Hpap8qq ´Hpaptqq

˘
η “: Fptq (2.5)

Here we setHpaq “ ´∆x ´ 5W4
a, and borrowing notation from [18], we have

Npv,Waq “ pv ` Waq5 ´ W5
a ´ 5W4

av (2.6)

The right-hand side in (2.5) further equals

Fptq “ 5pu4 ´ W4
aptqqη ` 10u3η2 ` 10u2η3 ` 5uη4 ` η5

` 5pW4
aptq ´ W4

ap8qqη
pu4 ´ W4

aptqqη “ pu4
˚ ` 4u3

˚Waptq ` 6u2
˚W2

aptq ` 4u˚W3
aptqqη

(2.7)

Note that all terms linear inη are of the formopηq, and they are also localized in
space due to the decay ofu˚ andW. We shall writeHpap8qq “ H8 from now on,
and denote the corresponding unstable mode byg8, withH8g8 “ ´k2

8g8. It is
natural to decompose

η “ PgK
8
η ` δptqg8 “: η̃pt, ¨q ` δptqg8 (2.8)

The key to proving Proposition 1.2 is the following result.
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Proposition 2.1. Let T ą 0 be such that|δ̃0|ek8T ď ε0. Then for any tP r0,Ts,
we have the bounds

|δptq| » |δ̃0|ek8 t, }η̃pt, ¨q}L2
x

` }∇xη̃pt, ¨q}L2
x

` }∇2
xη̃pt, ¨q}L2

x
! |δ̃0|ek8t (2.9)

for some fixed large M. Also,δptq has the same sign asδ̃0.

Proof of Proposition 2.1.Recall that

Fptq “ Npu˚ ` η,Waptqq ´ Npu˚,Waptqq `
`
H8 ´Hpaptqq

˘
η

Then according to Section 3 in [18], we can write

δptq “ p2k8q´ 1
2 rn`ptq ` n´ptqs,

n˘ptq “ pk8
2

q 1
2 δ̃0ĕ k8t `

ż t

0
ĕ k8pt´sqxFpsq, g8y ds

(2.10)

Moreover, we have the Duhamel-type formula

η̃pt, ¨q “ ´
ż t

0

sinrpt ´ sq
?
H8s?

H8
PgK

8
Fpsq ds (2.11)

Assume that the solution exists on some intervalr0, T̃q, T̃ ď T, and that it satisfies
the following estimates, which we refer to asbootstrap assumptions:

|δptq| ď 10|δ̃0|ek8t

}η̃pt, ¨q}L2
x

` }∇xη̃pt, ¨q}L2
x

` }∇2
xη̃pt, ¨q}L2

x
ď 2

K
|δ̃0|ek8t

(2.12)

for some largeK, which will be chosen to depend onε0.
We shall now infer that|δptq| » |δ̃0|ek8 t with a proportionality factor inr1

4 , 4s
and we will improve the second inequality by replacing2

K by 1
K . A standard conti-

nuity argument then implies Proposition 2.1.

(A) Improving the bound oñη. We start with theL2
x-norm. To control it, we use

the simple bound
›››sinpt

?
H8q?
H8

PgK
8

f
›››

L2
x

“
›››

ż t

0
cosps

a
H8q ds PgK

8
f
›››

L2
x

. |t|} f }L2
x

(2.13)

Assume that we have the bound

}Fps, ¨q}L2
x

! |δ̃0|
K

ek8s (2.14)

Then (2.13) implies
›››

ż t

0

sinrpt ´ sq
?
H8s?

H8
PgK

8
Fpsq ds

›››
L2

x

! |δ̃0|
K

ż t

0
pt ´ sqek8sds.

|δ̃0|
K

ek8t
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which recovers the dispersive type bound for ˜η. The above bound (2.14) forF can
be easily proved: for the difference

Npu˚ ` η,Waptqq ´ Npu˚,Waptqq
it suffices to consider the “extreme” terms

u˚W3
aptqη, u4

˚η, u3η2, η5, (2.15)

see (2.7). We now check (2.14) for each of these expressions,boundingη as in (2.8)
via (2.12) as follows:

}ηpt, ¨q}L2
x

` }∇xηpt, ¨q}L2
x

` }∇2
xηpt, ¨q}L2

x
ď C1|δ̃0|ek8 t

with an absolute constantC1. In what follows, we will need to ensure thatε0 !
K´1 (so that alsoδ ! K´1).

For the first term in (2.15), we get

››u˚W3
aptqη

››
L2

x
. }u˚}L8

x
}W3

aptq}L8
x

}η}L2
x

! |δ̃0|
K

xty´1ek8 t

For the second term in (2.15), we get

››u4
˚η

››
L2

x
. }u˚}4

L8
x

}η}L2
x

! |δ̃0|
K

xty´4ek8 t

For the third term in (2.15), use thatH2pR3q Ă L8 to obtain the bound

››u3η2
››

L2
x
. }u3}L8

x
}η}L8

x
}η}L2

x
. δ̃2

0e2k8t ! |δ̃0|
K

ek8 t

For the last term in (2.15), we similarly obtain

››η5
››

L2
x
. }η}4

L8
x

}η}L2
x
. |δ̃0|5e5k8 t ! |δ̃0|

K
ek8t

In order to complete the proof of the bound (2.14), it remainsto control the term
`
H8 ´Hpaptqq

˘
η

Due to the fast decay rate (» xxy´4) of the potentialV “ ´5W4
aptq, one easily

infers

}
`
H8 ´Hpaptqq

˘
η}L2

x
. |ap8q ´ aptq||δ̃0|ek8 t ! |δ̃0|

K
xty´1ek8t

This completes the bootstrap for the norm}η̃}L2
x
.

Next, consider the norm}∇η̃}L2
x
. To control it, we use [18, eq. (36)] withV “

´5Wpap8qq4:

}∇η̃}L2
x

ď }
a
H8 η̃}L2

x
` }|V| 1

2 η̃}L2
x

ď
ż t

0
}Fps, ¨q}L2

x
ds` }|V| 1

2 }L8
x

}η̃}L2
x

! |δ̃0|
K

ek8 t
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Finally, we consider}∇2
xη̃}L2

x
:

}∇2η̃}L2
x

ď }H8 η̃}L2
x

` }Vη̃}L2
x

ď
ż t

0
}

a
H8PgK

8
Fps, ¨q}L2

x
ds` }V}L8

x
}η̃}L2

x

The final term here is! |δ̃0|
K ek8t as desired, and for the integral we continue us-

ing [18, eq. (35)]:
ż t

0
}

a
H8PgK

8
Fps, ¨q}L2

x
ds.

ż t

0
}∇Fps, ¨q}L2

x
ds (2.16)

To bound the integral on the right, we again consider the terms in (2.15). For the
first of these, we have

››∇x
`
u˚W3

aptqη
˘››

L2
x

. }∇xu˚}L2
x`L8

x
}W3

aptq}L8
x XL2

x
}η}L8

x
` }u˚}L8

x
}∇xpW3

aptqq}L8
x

}η}L2
x

` }u˚}L8
x

}W3
aptq}L8

x
}∇xη}L2

x

! |δ̃0|
K

xty´εek8 t ` |δ̃0|
K

xty´1ek8t

For the second term in (2.15), we obtain the contribution

››∇x
`
u4

˚η
˘››

L2
x
. }∇xu˚}L2

x
}u3

˚}L8
x

}η}L8
x

` }u4
˚}L8

x
}∇xη}L2

x
! |δ̃0|

K
xty´3ek8t

For the last two terms of (2.15), we have the bounds
››∇x

`
u3η2

˘››
L2

x
. }∇xpu3q}L2

x
}η}2

L8
x

` }u3}L8
x

}∇xη}L2
x
}η}L8

x

. δ̃2
0e2k8 t ! |δ̃0|

K
ek8t

››∇xpη5q
››

L2
x
. }∇xη}L2

x
}η4}L8

x
. |δ̃0|5ek8 t ! |δ̃0|

K
ek8t

Finally, one also easily checks that

››∇x
`
pH8 ´Hpaptqqqη

˘››
L2

x
. |ap8q ´ aptq||δ̃0|ek8 t ! |δ̃0|

K
xty´1ek8t

Before continuing, we make the following important observation from the proof:

Corollary 2.2. The bootstrap assumption implies that we can write for j“ 0, 1, 2

∇
j
xη̃ptq “ η̃

p jq
1 ` η̃

p jq
2

where we have

}η̃p jq
1 pt, ¨q}L2

x
! |δ̃0|

K
xty´εek8t

}η̃p jq
2 pt, ¨q}L2

x
! |δ̃0|2e2k8t

(2.17)
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This corollary is important since it shows that the interactions of η̃ with itself
as well as with the driving termu˚ are much weaker than the principal unstable
component ofη, i.e.,δptq. We will have to take advantage of this improved bound
in order to control the evolution ofδptq.

(B) Improving the control overδptq. In order to complete the bound onη, we next
need to control the growth of the coefficientsn˘ptq. This appears more difficult due
to the quadratic interactions inFps, ¨q of the formu˚ηW3

aptq. The issue here is that

the dispersive bound foru˚ only givesxty´1 decay, which just fails to be integrable.
We start by deducing an improved bound forn´ptq departing from our bootstrap
assumption. In view of (2.10) we have

n´ptq “ pk8
2

q 1
2 δ̃0é k8 t `

ż t

0
é k8pt´sqxFps, ¨q, g8y ds

Using the bound (2.14) with the improvement implied by Corollary 2.2, we get the
bound

|n´ptq| . |δ̃0|xty´ ε
2 ek8t ` δ̃2

0e2k8t (2.18)

We now use this, together with Corollary 2.2 as well as the a priori bounds onu˚,
to derive the improved control overn`ptq. We depart from the differential equation

9n`ptq ´ k8n`ptq

“ n`ptq
p2k8q 1

2

xg8
`
20u˚W3

ap8q ` pap8q ´ aptqqBλV|λ“ap8q
˘
, g8y ` F`ptq, (2.19)

where we use the notationVλ :“ ´5W4
λ

and

F`ptq “ n´ptq
p2k8q 1

2

x20u˚g8W3
aptq, g8y ` x20u˚η̃W

3
aptq, g8y

` n`ptq
p2k8q 1

2

xg8
`
Vap8q ´ Vaptq ´ pap8q ´ aptqqBλV|λ“ap8q

˘
, g8y

` G`ptq
with

G`ptq “ n`ptq
p2k8q 1

2

x20u˚g8pW3
aptq ´ W3

ap8qq, g8y

` xNpu˚ ` η,Waptqq ´ Npu˚,Waptqq ´ 20δptqu˚g8W3
aptq, g8y

` x
`
H8 ´Hpaptqq

˘
rη̃ ` p2k8q´ 1

2 n´ptqg8s, g8y
We infer from (2.19) that

n`ptq “ p δ̃0

2
q 1

2 ek8t`Γp0,tq `
ż t

0
ek8pt´sq`Γps,tqF`psq ds (2.20)

where we use the notation

Γps, tq :“
ż t

s
xg8

`
u˚ps1, ¨qW3

ap8q ` pap8q ´ aps1qqBλV|λ“ap8q
˘
, g8y ds1
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In order to proceed, we shall obtain uniform bounds on the phase functionΓps, tq.
These hinge on Proposition 3.2, to be proved in the next section. This proposition
implies that

sup
s,tą0

ˇ̌
ˇ
ż t

s
xg8

`
u˚ps1, ¨qW3

ap8q, g8y ds1

ˇ̌
ˇ . }u˚}L8

x L1
t

! 1 (2.21)

It remains to estimate

sup
s,t

ż t

s
pap8q ´ aps1qq ds1 (2.22)

Note that the integrand decays likeś 1
1 from the bounds in [18], which is no in-

tegrable. Lemma 2.3 shows nevertheless that (2.22) is uniformly bounded. This
again hinges on Proposition 3.2.

Lemma 2.3. We have the averaged estimate

sup
tą0

ˇ̌
ˇ
ż t

0
pap8q ´ apsqq ds

ˇ̌
ˇ ! 1

Proof. Here we use the equation definingaptq in [18], given by (51) in loc. cit.,
which we copy here fort & 1:

9aptq “ ´c0
` aptq

ap8q
˘ 5

4 xBλWλ|λ“ap8q, pVap8q ´ Vaptqqu˚pt, ¨q ` Npu˚pt, ¨q,Waptqqy

We write this equation somewhat schematically in the form

9aptq “ ´c0pap8q ´ aptqqxBλWλ|λ“ap8q, u˚pt, ¨qBλVλ|λ“ap8qy
` Op|ap8q ´ aptq|2x|BλWλ|λ“ap8q|, |u˚pt, ¨q|xxy´4yq

´ c0
` aptq

ap8q
˘ 5

4 xBλWλ|λ“ap8q,Npu˚pt, ¨q,Waptqqy

Setαptq :“ ap8q ´ aptq, and write this ODE in the form

9α “ ´ασ ´ H

σptq “ ´c0xBλWλ|λ“ap8q, u˚pt, ¨qBλVλ|λ“ap8qy
Hptq : “ Op|ap8q ´ aptq|2x|BλWλ|λ“ap8q|, |u˚pt, ¨q|xxy´4yq

´ c0
` aptq

ap8q
˘ 5

4 xBλWλ|λ“ap8q,Npu˚pt, ¨q,Waptqqy

(2.23)

Solving fromt “ 8 one obtains

αptq “
ż 8

t
e

şs
t σ Hpsq ds (2.24)

Proposition 3.2 implies that

sup
s,t

ˇ̌
ˇ
ż s

t
σ

ˇ̌
ˇ ! 1
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which ensures thate
şs
t σ “ Op1q uniformly in s, t. We now claim that

ż t

0
pap8q ´ apt̃qq dt̃ “ t

ż 8

t
e

şs
t σ Hpsq ds

`
ż t

0
sσpsq

ż 8

s
e

ş s̃
sσ Hps̃q ds̃ ds

(2.25)

To verify this, note first that both sides vanish att “ 0. Furthermore, taking a
derivative int reduces the equation to (2.24).

One has the bound

|Hptq| . xu2
˚, xxy´4y ` δxty´3 (2.26)

with 0 ă δ ! 1. Therefore, on the one hand,

sup
tą0

ˇ̌
t
ż 8

t
e

şs
t σ Hpsq ds

ˇ̌
! 1

On the other hand, supsě0 |sσpsq| ! 1 whence
ˇ̌
ˇ
ż t

0
sσpsq

ż 8

s
e

ş s̃
sσ Hps̃q ds̃ ds

ˇ̌
ˇ .

ż t

0

ż 8

s
|Hps̃q| ds̃ ds

“ t
ż 8

t
|Hps̃q| ds̃`

ż t

0
s|Hpsq| ds

(2.27)

The first term is! 1 from (2.26), whereas the second integral is dominated by

sup
tą0

ˇ̌
ˇ
ż t

0
s|Hpsq| ds

ˇ̌
ˇ . sup

są0
}sů ps, ¨q}L8

x
}u˚}L8

x L1
s

` δ ! 1

In conclusion (2.27) is! 1 which completes the proof of the lemma. �

In conjunction with (2.27) the lemma implies that the phase correctionsΓps, tq
are uniformly small.

We next estimate the contributions of the various constituents ofF`ps, ¨q to the
integral in (2.20). This will then lead to the completion of the proof of Proposi-
tion 2.1.

(1) The contribution of n´ptq
p2k8q

1
2

xu˚g8W3
aptq, g8y ` xu˚η̃W3

aptq, g8y.

Using (2.18) as well as Corollary 2.2, we bound this by

!
ż t

0
ek8pt´sq`Γps,tqxsy´1r|δ̃0|xsy´ ε

2 ek8 s ` δ̃2
0e2k8ss ds

. |δ̃0|ek8 t ` δ̃2
0e2k8 t

(2) The contribution of n`ptq
p2k8q

1
2

xg8
`
Vap8q´Vaptq´pap8q´aptqqBλV|λ“ap8q

˘
, g8y.

We can bound this by

. |δ̃0|
ż t

0
ek8pt´sq`Γps,tqek8s|ap8q ´ apsq|2 ds! |δ̃0|ek8 t
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We next consider the contributions of the constituents ofG`ptq:
(3) The contribution of n`ptq

p2k8q
1
2

x20u˚g8pW3
aptq ´ W3

ap0qq, g8y.

Use the boundˇ̌
n`ptqxu˚g8pW3

aptq ´ W3
ap8qq, g8y

ˇ̌
! xty´1|ap8q ´ aptq||n`ptq|

Hence the corresponding contribution is bounded by

!
ż t

0
ek8pt´sq`Γps,tqxsy´1|ap8q ´ apsq||n`psq| ds

!
ż t

0
ek8pt´sq`Γps,tqxsy´2|δ̃0|ek8s ds. |δ̃0|ek8t

where we have used the bound (2.18) as well as the bootstrap assumption to con-
trol n`ptq.

(4) The contribution ofxNpu˚`η,Waptqq´Npu˚,Waptqq´20δptqu˚g8W3
aptq, g8y.

Here we need to estimate the contributions of the following schematically writ-
ten terms:

xu˚η̃W
3
aptq, g8y, xη2W3

aptq, g8y, xηu4
˚, g8y, xη5, g8y (2.28)

For the first term, we can bound the contribution by

!
ż t

0
ek8pt´sq`Γps,tqpxsy´1´ ε

2 |δ̃0|ek8 s ` δ̃2
0xsy´1e2k8sq ds. |δ̃0|ek8 t

The remaining terms are handled similarly.

(5) The contribution ofx
`
Hpap8qq ´Hpaptqq

˘
rη̃ ` p2k8q´ 1

2 n´ptqg8s, g8y.
Using (2.18) and Corollary 2.2, we bound the corresponding contribution by the

exact same expression as in(4).

This completes the proof of Proposition 2.1. �

It remains to prove Proposition 1.2. Thus fix a timeT with 1 " |δ̃0|ek8T " ε˚
where we can write

ũpT, ¨q “ WapTq ` u˚ ` η

as before. We need to pass to a representation

ũpT, ¨q “ WαT ` ṽαT (2.29)

which satisfiesxṽαT ,Λ
˚gαT y “ 0. From [18] we can write

u˚pt, ¨q “ PgK
8

u˚ ` δ˚ptqg8, |δ˚ptq| . Cpε˚qxty´1

In order to obtain the desired decomposition (2.29), we needto satisfy the relation

xPgK
8

pu˚ ` ηq ` pδpTq ` δ˚pTqqg8 ` WapTq ´ WαT ,Λ
˚gαT y “ 0 (2.30)

Observe that

WapTq ´ WαT “ papTq ´ αTqBλWλ|λ“apTq ` Op|apTq ´ αT |2q
and from (2.13) in [16] we have

|xBλWλ|λ“apTq,Λ
˚gapTqy| » 1
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It follows that for |apTq ´ αT | ! 1 there is a unique solution of (2.30) which
satisfies

|apTq ´ αT| . |δ̃0|ek8T ! 1

To verify the condition (1.3), we need to compute

xPgK
8

pu˚ ` ηq ` pδpTq ` δ˚pTqqg8 ` WapTq ´ WαT , gαT y (2.31)

From Proposition 2.1 we have

|δpTq| " |xPgK
8

pu˚ ` ηq, gαT y| ` |δ˚pTq|,
and furthermore

|xWapTq ´ WαT , gαT y| “ Op|apTq ´ αT |2q ! |δ̃0|ek8T » |δpTq|
We have now proved the key growth condition

xṽαT , gαT y » δ̃0ek8T

which completes the proof of Proposition 1.2.

3. Proof of the dispersive estimate on }u˚}L8
x L1

t
.

This section is devoted to the one estimate, namely on}u˚}L8
x L1

t
, which is not

contained in [18]. As evidenced by the previous section thisnorm is of crucial
importance for the nonlinear argument.

This section is devoted to the proof of this estimate, starting with the linear case.
We use the expansions for the linear evolution associated with �` V, V “ ´5W4,
as derived in [18]. In what follows,H “ ´∆ ` V in R3 whereHψ “ 0 andψ is
the unique zero energy resonance function, i.e.,|ψpxq| » |x|´1 for large |x|. We
assume thatH does not have zero energy eigenfunctions.

Proposition 3.1. We have the bounds
›››
´sinpt

?
Hq?

H
Pc ´ c0ψ b ψ

¯
f
›››

L8
x L1

t

. } f }W1,1 (3.1)
››› cospt

?
HqPc f

›››
L8

x L1
t

. } f }W2,1 (3.2)

Proof. We begin withV “ 0. For the sine evolution, we get (putting the argument
x “ 0)

ż 8

0

1
t

ˇ̌
ˇ

ż

r|y|“ts

f pyqσpdyq
ˇ̌
ˇ dt “

ż 8

0
t´2

ˇ̌
ˇ

ż

r|y|ďts

∇p f pyqyq dy
ˇ̌
ˇ dt (3.3)

.

ż

R3

|∇ f pyq| dy `
´ ż

R3

| f pyq|
|y| dy

¯
.

ż

R3

|∇ f pyq| dy

The last step uses integration by parts in polar coordinates.
For the cosine evolution, one has
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cospt
?

Hq f pxq “ Bt t
ż

S2

f px ` tyqσpdyq

“
ż

S2

“
f px ` tyq ` tp∇ f qpx ` tyq ¨ y

‰
σpdyq

and so ›› cospt
?

Hq f
››

L8
x L1

t
.

›› f

|x|2
››

L1
x

`
››∇ f

|x|
››

L1
x
. }D2 f }L1

x

In caseV , 0 we write thesinpt
?

Hq?
H

evolution in the form

1
iπ

8ż

0

sinptλq
λ

rR`
V pλ2q ´ R´

V pλ2qs λdλ “ 1
iπ

8ż

´8

sinptλqRpλqdλ (3.4)

where we have setRpλq :“ R`
V pλ2q if λ ą 0 andRpλq “ Rp´λq if λ ă 0. For the

free resolvent, we write this asR0. Then, by the usual resolvent expansions,

R “
2n´1ÿ

k“0

p´1qkR0pVR0qk ` pR0VqnRpVR0qn (3.5)

We distinguish between small energies and all other energies. For the latter, we
use (3.5). Letχ0pλq “ 0 for all |λ| ď λ0 andχ0pλq “ 1 if |λ| ą 2λ0. Hereλ0 ą 0
is some small parameter. Fix somek as in (3.5) and consider the contribution of
the corresponding Born term (ignoring a factor ofp4πq´k´1):

ż

R3pk`2q

8ż

´8

χ0pλq sinptλqeiλ
řk

j“0 |xj´xj`1|
śk

j“1 Vpx jq
śk

j“0 |x j ´ x j`1|
f px0q dλdx0 . . . dxk

“ 1
2i

ÿ

˘
˘

ż

R

ż

R3k

pχ0pξq
ż

r|x0´x1|“˘t´ξ´
řk

j“1 |xj ´xj`1|ą0s

f px0q
|x0 ´ x1| σpdx0q

śk
j“1 Vpx jq

śk
j“1 |x j ´ x j`1|

dx1 . . . dxk dξ

(3.6)

wherexk`1 is fixed. Placing absolute values inside these integrals andintegrating
overt P R yields an upper bound

ż

R

| pχ0pξq|
ż

R3

| f px0q|
|x0 ´ x1| dx0

ż

R3k

śk
j“1 |Vpx jq|

śk
j“1 |x j ´ x j`1|

dx1 . . .dxk dξ

. }∇ f }1}∇V}k
1

(3.7)
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It remains to bound the contribution by the final term in (3.5)which involves the
resolventRpλq. Its kernelKpx, yq can be reduced to the form

ż
ĕ itλχ0pλqxRpλqpVR0pλqqnp¨, xq, pVR0p´λqqnp¨, yqy dλ

“
ż

eiλr˘t`p|x|`|y|qsχ0pλqxRpλqpVR0pλqqn´1VGxpλ, ¨q, (3.8)

pVR0p´λqqn´1VGyp´λ, ¨qy dλ (3.9)

where

Gxpλ, uq :“ eiλp|x´u|´|x|q

4π|x ´ u|
and the scalar product appearing in (3.9) is just another wayof writing the compo-
sition of the operators. One has the following elementary bounds, see for example
Lemma 11 in [18]:

sup
xPR3

››› d j

dλ j
Gxpλ, ¨q

›››
L2,´σ

ă C j,σ provided σ ą 1
2

` j

sup
xPR3

››› d j

dλ j
Gxpλ, ¨q

›››
L2,´σ

ă
C j,σ

xxy provided σ ą 3
2

` j

(3.10)

for all j ě 0. Let for some largen (sayn “ 10)

ax,ypλq :“ χ0pλqxRpλqpVR0pλqqn´1VGxpλ, ¨q, pVR0p´λqqn´1VGyp´λ, ¨qy
Then in view of the preceding one concludes thatax,ypλq has two derivatives inλ
and ˇ̌

ˇ d j

dλ j
ax,ypλq

ˇ̌
ˇ . p1 ` λq´2 for j “ 0, 1, 2 and all λ ą 1 (3.11)

Moreover,
ˇ̌
ˇ d j

dλ j
ax,ypλq

ˇ̌
ˇ . p1 ` λq´2pxxyxyyq´1 for j “ 0, 1, and all λ ą 1 (3.12)

The decay inλ here comes from the limiting absorption principle which refers to
the following standard bounds for the free and perturbed resolvents:

}RVpλ2 ˘ i0q}L2,σÑL2,´σ . λ´1, σ ą 1
2

(3.13)

}BℓλRVpλ2 ˘ i0q}L2,σÑL2,´σ . 1, σ ą 1
2

` ℓ, ℓ ě 1

for λ separated from zero. The estimates (3.11) and (3.12) only require |Vpxq| .
xxy´κ with κ ą 3.

Let us assume first thatt ą 1. To estimate (3.9) we distinguish between|t ´
p|x| ` |y|q| ă t{10 and the opposite case. In the former case, we conclude that

maxp|x|, |y|q & t

so that due to (3.11) we obtain
ˇ̌
ˇ
ż

eiλr˘t`p|x|`|y|qsax,ypλq dλ
ˇ̌
ˇ . χr|x|`|y|ątspxxyxyyq´1 (3.14)
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Integrating (3.14) overt P R yields a boundOp1q which implies anL1
x Ñ L8

y L1
t

estimate.
In the latter case we integrate by parts twice which gainst´2 for |t| ą 1 from (3.11):

ˇ̌
ˇ
ż

eiλr˘t`p|x|`|y|qsax,ypλq dλ
ˇ̌
ˇ . |t|´2

For |t| . 1 one hasOp1q. We can again integrate this overt P R as before.
We now turn to the contribution of smallλ to the sin-evolution. We recall the

following representation of the resolvent at small energies, see (105) in [18]:

Rpλq “ i
β

λ
R0pλqvS1vR0pλq ` R0pλq ´ R0pλqvEpλqvR0pλq. (3.15)

where withw :“
a

|V|,

S1 “ }wψ}´2
2 wψ b wψ “: ψ̃ b ψ̃

andβ “ 4π
´ ş
R3

Vψdx
¯´2

}wψ}2
2. For the explicit form ofEpλq see (104) in [18].

Next, we describe the contribution of each of the three termsin (3.15) to the sine-
transform (3.4). We can ignore the second one, since it leadsto the free case. The
first term on the right-hand side of (3.15) yields the following expression in (3.4):

S0ptqpx, yq :“ β

π

ż
sinptλq
λ

χ1pλq
“
R0pλqvS1vR0pλq

‰
px, yq dλ

:“ }wψ}´2
2 βψpxqψpyq ´ }wψ}´2

2

β

2π

ż

R6

ż

r|τ|ąts
pχ1pτ ` |x ´ x1| ` |y1 ´ y|q

Vpx1qψpx1q Vpy1qψpy1q
4π|x ´ x1| 4π|y1 ´ y| dτdx1dy1

We need to verify that uniformly inx, y P R3 the integral overt P R of the last line
is Op1q. Indeed

ż

R6

ż

R6

ż

r|τ|ąts
|pχ1pτ ` |x ´ x1| ` |y1 ´ y|q| |Vpx1qψpx1q Vpy1qψpy1q|

4π|x ´ x1| 4π|y1 ´ y| dτdx1dy1
ˇ̌
ˇ

.

ż

r|x´x1|`|y´y1|ăt{2s

ż

r|τ|ąts
|pχ1pτ ` |x ´ x1| ` |y1 ´ y|q| dτ

|Vpx1qψpx1q| |Vpy1qψpy1q|
|x ´ x1| |y1 ´ y| dx1dy1

`
ż

r|x´x1|`|y´y1|ąt{2s

ż
|pχ1pτ ` |x ´ x1| ` |y1 ´ y|q| dτ

|Vpx1qψpx1q| |Vpy1qψpy1q|
|x ´ x1| |y1 ´ y| dx1dy1
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The first integral in the final expression is rapidly decayingin t, and thus gives the
desired bound, whereas the second one upon integration int is bounded by

ż
p|x ´ x1| ` |y ´ y1|q |Vpx1qψpx1q| |Vpy1qψpy1q|

|x ´ x1| |y1 ´ y| dx1dy1
. 1 (3.16)

Finally, we turn to the third term on the right-hand side of (3.15). The convergence
of the Neumann series definingEpλq in L2 for smallλ was established in [18]. We
analyze the contribution by the constant term, viz.

Ep0q “ pA0 ` S1q´1 ` E1p0qS1mp0q´1S1 ` S1E2p0qS1 ` S1mp0q´1S1E1p0q
see (104) in [18]. From (108), (109) in [18] one has

ż

R3

8ż

´8

sinptλqχ1pλqrR0pλqvEp0qvR0pλqspx, yq dλ f pxq dx

“ 1
32iπ2

ż

R3

ż

R6

8ż

´8

δpt ` ξ ` r|x ´ x1| ` |y1 ´ y|sq pχ1pξq dξ (3.17)

vpx1qEp0qpx1, y1qvpy1q
|x ´ x1| |y ´ y1| dx1dy1 f pxq dx

´ 1

32iπ2

ż

R3

ż

R6

8ż

´8

δp´t ` ξ ` r|x ´ x1| ` |y1 ´ y|sq pχ1pξq dξ (3.18)

vpx1qEp0qpx1, y1qvpy1q
|x ´ x1| |y ´ y1| dx1dy1 f pxq dx

Placing absolute values inside these expressions and integrating overt P R yields
an upper bound of the form (fory fixed)

.

ż

R3

ż

R6

8ż

´8

|pχ1pξq| dξ
|vpx1qEp0qpx1, y1qvpy1q|

|x ´ x1| |y ´ y1| dx1dy1 | f pxq| dx

`
ż

R3

ż

R6

8ż

´8

|pχ1pξq| dξ
|vpx1qEp0qpx1, y1qvpy1q|

|x ´ x1| |y ´ y1| dx1dy1 | f pxq| dx

which in turn is bounded by

}pχ1}1 sup
x

››› vpx1q
|x ´ x1|

›››
2

L2
x1

} |Ep0qp¨, ¨q| }2Ñ2} f }1 . } f }1 (3.19)

sinceEp0q is absolutely bounded onL2, see [18].
To deal withEpλq we proceed as in [18] using theFpλq-method. To be specific,

we claim the bound
8ż

´8

ˇ̌
ˇ
ż

R6

8ż

´8

sinptλqχ1pλqrR0pλqvFpλqvR0pλqspx, yq dλ f pxq dx
ˇ̌
ˇ dt . } f }1 (3.20)
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provided the operator-valued functionFpλq satisfies

8ż

´8

››› |yχ1Fpξqp¨, ¨q|
›››

2Ñ2
dξ ă 8 (3.21)

The latter property holds forEpλq, see (113), (116), (117) in [18]. To prove (3.20)
we letχ1χ2 “ χ1 for some bump functionχ2 and compute

ż

R3

8ż

´8

sinptλqχ1pλqrR0pλqvFpλqvR0pλqspx, yq dλ f pxq dx

“ 1

32iπ2

ż

R3

ż ż

R6

8ż

´8

δpt ` ξ ` η ` r|x ´ x1| ` |y1 ´ y|sq pχ1pξq dξ

vpx1qyχ2Fpηqpx1, y1qvpy1q
|x ´ x1| |y ´ y1| dx1dy1dη f pxq dx

´ 1

32iπ2

ż

R3

ż ż

R6

8ż

´8

δp´t ` ξ ` η ` r|x ´ x1| ` |y1 ´ y|sq pχ1pξq dξ

vpx1qyχ2Fpηqpx1, y1qvpy1q
|x ´ x1| |y ´ y1| dx1dy1dη f pxq dx

Placing absolute values inside and integrating overt P R yields the upper bound

}pχ1}1 sup
x

››› vpx1q
|x ´ x1|

›››
2

L2
x1

8ż

´8

››› |yχ1Fpξqp¨, ¨q|
›››

2Ñ2
dξ } f }1 . } f }1 (3.22)

uniformly in y P R3. This concludes the smallλ argument for the sin-evolution,
and in combination with the previous estimate forλ ą λ0 ą 0 we have estab-
lished (3.1).

It remains to estimate the cos-evolution, see (3.2). We baseour analysis on the
relation by

cospt
?

HqPc “ Bt
sinpt

?
Hq?

H
Pc (3.23)

The small frequencies present no problem, as (3.23) shows that the only difference
in the oscillatory integrals is a factor ofλ, which is small and thus immaterial. On
the other hand, for largeλ this extra factor accounts for the additional derivative
on the data. To be more specific, the final term in the Born-series (3.5) does not
present a problem either. This is due to the fact that in (3.11) and (3.12) we may
obtain arbitrary decay inλ by takingn in (3.5) as large as wish (but of course fixed).
In particular, we can absorb the extra power ofλ coming from theBt. It therefore
just remains to treat the summands in (3.5) involving only the free resolvent. In
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analogy with (3.6) one has
ż

R3pk`2q

8ż

´8

χ0pλq cosptλqλeiλ
řk

j“0 |xj ´xj`1|
śk

j“1 Vpx jq
śk

j“0 |x j ´ x j`1|
f px0q dλdx0 . . . dxk

“
ż

R3pk`2q

8ż

´8

χ0pλq cosptλqL˚
”
eiλ

řk
j“0 |xj´xj`1|

śk
j“1 Vpx jq

śk
j“0 |x j ´ x j`1|

f px0q
ı

dλdx0 . . . dxk

wherexk`1 is fixed and with

L :“ 1
iλ

x0 ´ x1

|x0 ´ x1| ¨ Bx0

Note thatLeiλ|x0´x1| “ eiλ|x0´x1|. The x0-derivative in (3.24) can fall on either
|x0 ´ x1|´1 or f px0q. In the latter case we proceed exactly as in (3.6) and obtain
an upper bound for theL8

y L1
t -norm by}D2 f }1. In the former case one replacesf

with f px0q
|x0´x1| and again proceeds as in (3.6). The resulting bound is

sup
x1PR3

›››∇x
` f pxq

|x ´ x1|
˘›››

L1
x

. }D2 f }1

as desired. �

We use the preceding proposition to obtain the following keybound onu˚:

Proposition 3.2. Let Waptq ` u˚ be the solution of(1.1)with data ů r0s “ p f1 `
hp f1, f2qg0, f2q P Σ, as given in[18]. Then we have the bound

}u˚}L8
x L1

t
! 1 (3.24)

Proof. We use formula (33) in [18] which gives the representation

u˚pt, ¨q “ cospt
?
H8qPgK

8
w1 ` SptqPgK

8
w2

´
ż t

0
9apsq cosprt ´ ss

?
H8qPgK

8

“
BλWλ|λ“apsq ´

`ap8q
apsq

˘ 5
4 BλWλ|λ“ap8q

‰
ds

´
ż t

0
Spt ´ sqPgK

8

“
pVap8q ´ Vapsqqu˚ps, ¨q ` Npu˚,Wapsqq

‰
ds

´ Rpt, ¨q
with Rpt, ¨q compactly supported int and bounded, whence irrelevant for the proof.
Also, we have

w1 “ f1 ` hp f1, f2qg0, w2 “ f2
and we use the notation

Sptq “ sinpt
?

H8q?
H8

Pc ´ c0ψ b ψ

with the same notation as in Proposition 3.1. Then the bound (3.24) is implied by
Proposition 3.1 for the expression

cospt
?
H8qPgK

8
w1 ` SptqPgK

8
w2
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and hence it remains to bound the Duhamel terms. We write
ż t

0
9apsq cosprt ´ ss

?
H8qPgK

8

“
. . .

‰
ds

“
ż 8

0
9apsq cosprt ´ ss

?
H8qPgK

8

“
. . .

‰
ds

´
ż 8

t
9apsq cosprt ´ ss

?
H8qPgK

8

“
. . .

‰
ds

and similarly for the expression
ż t

0
Spt ´ sqPgK

8

“
. . .

‰
ds

(1) Contribution of the cosine terms.
From [18] we infer the bound

ˇ̌
∇

j
x

`
BλWλ|λ“apsq ´

`ap8q
apsq

˘ 5
4 BλWλ|λ“ap8q

˘ˇ̌
. |ap8q ´ apsq|xxy´3´ j

whence from (2.4) we infer

›› 9apsqPgK
8

“
BλWλ|λ“apsq ´

`ap8q
apsq

˘ 5
4 BλWλ|λ“ap8q

‰››
L1

sW2,1 !
››xsy´3

››
L1

s
. 1

Then Proposition 3.1 implies

››
ż 8

0
9apsq cosprt ´ ss

?
H8qPgK

8

“
. . .

‰
ds

››
L8

x L1
t

! 1

For the second Duhamel cosine term,
ş8
t 9apsq cosprt ´ ss

?
H8qPgK

8

“
. . .

‰
ds, we

can crudely use Sobolev embeddingH2pR3q Ă L8:

ˇ̌ ż 8

t
9apsq cosprt ´ ss

?
H8qPgK

8

“
. . .

‰
ds

ˇ̌

ď
››

ż 8

t
9apsq cosprt ´ ss

?
H8qPgK

8

“
. . .

‰
ds

››
H2

.

ż 8

t
ś 2}PgK

8

“
. . .

‰
}H2 ds! t´2

which is integrable.

(2) Contribution of the sine terms.
First, consider the term

ż 8

0
Spt ´ sqPgK

8

“
pVap8q ´ Vapsqqu˚ps, ¨q ` Npu˚,Wapsqq

‰
ds

Using Proposition 3.1, it suffices to prove

}PgK
8

“
pVap8q ´ Vapsqqu˚ps, ¨q ` Npu˚,Wapsqq}L1

sW1,1 ! 1
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Note that

}pVap8q ´ Vapsqqu˚ps, ¨q}W1,1 . |ap8q ´ apsq|
`
}u˚ps, ¨q}L8

x
` }∇xu}L2

x`L8
x

˘

! xsy´1´ε

thanks to (2.2), which is integrable. As for the termNpu˚,Wapsqq, we consider the
contributions ofu2

˚W3
apsq, u5

˚. For the first, we obtain

››u2
˚ps, ¨qW3

apsq
››

W1,1 . }u˚ps, ¨q}L8
x

}u˚}W1,2`W1,M }W3
apsq}L1`

x
. xsy´1´ ε

2

where we have interpolated between the second bound of (2.2)and the first one of
(2.3); this decay rate is again integrable.
For the pure power term, we get

››u5
˚
››

W1,1 . }u˚ps, ¨q}L8
x

}u˚ps, ¨q}W1,2`W1,M }u3
˚}L1`

x XL2
x

! xsy´1´ ε
2

Here we have also used the strong spatial decay estimate foru˚, i. e. the second
bound of (2.3). This completes the estimate for the contribution of the first sine
Duhamel term.

It remains to consider the expression
ż 8

t
Spt ´ sqPgK

8

“
pVap8q ´ Vapsqqu˚ps, ¨q ` Npu˚,Wapsqq

‰
ds

where we will again use a pointwise decay bound. This time we have to combine
the strong dispersive bound provided by the key Proposition9 in [18] with Sobolev.
We decompose

ż 8

t
Spt ´ sqPgK

8

“
pVap8q ´ Vapsqqu˚ps, ¨q ` Npu˚,Wapsqq

‰
ds

“
ż t`1

t
Spt ´ sqPgK

8

“
pVap8q ´ Vapsqqu˚ps, ¨q ` Npu˚,Wapsqq

‰
ds

`
ż 8

t`1
Spt ´ sqPgK

8

“
pVap8q ´ Vapsqqu˚ps, ¨q ` Npu˚,Wapsqq

‰
ds

For the first term, use
››pVap8q ´ Vapsqqu˚ps, ¨q ` Npu˚,Wapsqq

››
H2 ! xsy´2

whence we get, usingH2pR3q Ă L8,

››
ż t`1

t
Spt ´ sqPgK

8

“
pVap8q ´ Vapsqqu˚ps, ¨q ` Npu˚,Wapsqq

‰
ds

!
ż t`1

t
xsy´2 dsď xty´2,

an integrable bound.
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For the second integral above, we bound it by

}
ż 8

t`1
Spt ´ sqPgK

8

“
pVap8q ´ Vapsqqu˚ps, ¨q ` Npu˚,Wapsqq

‰
ds}L8

x

.

ż 8

t`1
pt ´ sq´1

››“
pVap8q ´ Vapsqqu˚ps, ¨q ` Npu˚,Wapsqq

‰››
W1,1 ds

!
ż 8

t`1
pt ´ sq´1xsy´1´ ε

2 ds. log txty´1´ ε
2 ,

which is again integrable int. This concludes the proof of Proposition 3.2. �
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