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Abstract

We live in a world characterized by massive information transfer and real-time com-
munication. The demand for efficient yet low-complexity algorithms is widespread across
different fields, including machine learning, signal processing and communications. Most
of the problems that we encounter across these disciplines involves a large number of
modules interacting with each other. It is therefore natural to represent these interactions
and the flow of information between the modules in terms of a graph. This leads to the
study of graph-based information processing framework. This framework can be used to
gain insight into the development of algorithms for a diverse set of applications.

We investigate the behaviour of large-scale networks (ranging from wireless sensor
networks to social networks) as a function of underlying parameters. In particular, we
study the scaling laws and applications of graph-based information processing in sensor
networks/arrays, sparsity pattern recovery and interactive content search.

In the first part of this thesis, we explore location estimation from incomplete informa-
tion, a problem that arises often in wireless sensor networks and ultrasound tomography
devices. In such applications, the data gathered by the sensors is only useful if we can
pinpoint their positions with reasonable accuracy. This problem is particularly challeng-
ing when we need to infer the positions based on basic information/interaction such as
proximity or incomplete (and often noisy) pairwise distances.

As the sensors deployed in a sensor network are often of low quality and unreliable,
we need to devise a mechanism to single out those that do not work properly. In the
second part, we frame the network tomography problem as a well-studied inverse problem
in statistics, called group testing. Group testing involves detecting a small set of defective
items in a large population by grouping a subset of items into different pools. The result
of each pool is a binary output depending on whether the pool contains a defective
item or not. Motivated by the network tomography application, we consider the general
framework of group testing with graph constraints. As opposed to conventional group
testing where any subset of items can be grouped, here a test is admissible if it induces a
connected subgraph. Given this constraint, we are interested in bounding the number of
pools required to identify the defective items. Once the positions of sensors are known and
the defective sensors are identified, we investigate another important feature of networks,
namely, navigability or how fast nodes can deliver a message from one end to another by
means of local operations.

In the final part, we consider navigating through a database of objects utilizing com-
parisons. Contrary to traditional databases, users do not submit queries that are subse-
quently matched to objects. Instead, at each step, the database presents two objects to
the user, who then selects among the pair the object closest to the target that she has in
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mind. This process continues until, based on the user’s answers, the database can iden-
tify the target she has in mind. The search through comparisons amounts to determining
which pairs should be presented to the user in order to find the target object as quickly
as possible. Interestingly, this problem has a natural connection with the navigability
property studied in the second part, which enables us to develop efficient algorithms.

Keywords: Sensor networks, Sparse recovery, Network tomography, Positioning, Cal-
ibration, Matrix completion, Group testing, Social networks, Small world, Navigability,
Active learning, Binary search, Graphical models.



Résumé

Le monde actuel est caractérisé par des transferts d’information massifs et des com-
munications en temps réel. La demande pour des algorithmes efficaces et néanmoins peu
complexes est présente dans différents domaines, en particulier l’apprentissage automa-
tique, le traitement du signal et les télécommunications. La plupart des problèmes ren-
contrés dans ces disciplines mettent en jeu un grand nombre de modules interagissant. Il
est donc naturel de représenter les interactions entre ces modules et le flot d’informations
échangées à l’aide d’un graphe. Ceci nous amène à considérer le traitement de l’informa-
tion du point de vue des graphes, ainsi qu’à développer des algorithmes pour diverses
applications.

Nous explorons le comportement de réseaux à grande échelle (tels les réseaux de cap-
teurs sans fil ou les réseaux sociaux) en fonction des paramètres sous-jacents du problème.
En particulier, nous étudions des lois d’échelle et des applications du traitement de l’in-
formation basé sur les graphes à des réseaux ou tableaux de capteurs, à l’identification de
structures de faible densité, ainsi qu’à la recherche interactive de contenu.

Dans la première partie de cette thèse, nous explorons le problème de localisation à
partir d’informations incomplètes, qui surgit souvent dans les réseaux de capteurs sans
fil et la tomographie à ultrasons. Dans de telles applications, les données rassemblées
par les capteurs sont utiles seulement lorsqu’il est possible de localiser avec précision les
positions exactes de ceux-ci. Ce problème se révèle être particulièrement difficile lorsqu’on
doit déduire les positions à partir d’informations ou d’interactions simples telles que la
proximité ou les distances mutuelles entre capteurs (souvent bruitées).

Du fait que les capteurs déployés dans un réseau sont souvent de faible qualité et pas
forcément fiables, il est nécesssaire de développer des mécanismes pour identifier ceux qui
ne fonctionnent pas correctement. Dans la seconde partie, nous formulons le problème
de tomographie d’un réseau comme un problème de test de groupe, un problème bien
étudié en statistiques. Le test de groupe consiste en la détection d’un petit ensemble
d’éléments défectueux dans une grande population par regroupement des éléments en
différents sous-ensembles. Chaque sous-ensemble émet une décision binaire indiquant ou
non la présence d’un élément défectueux au sein du groupe. Motivés par l’application
à la tomographie des réseaux, nous considérons le cadre général du test de groupe avec
des contraintes sur le graphe. Dans notre cas, un test n’est admissible que s’il induit un
sous-graphe connecté, contrairement au test de groupe conventionnel, où n’importe quel
sous-ensemble peut être formé. Etant donné cette contrainte, nous sommes intéressés à
majorer le nombre de groupes requis pour identifier les éléments défectueux. Une fois que
les positions des capteurs sont connues et que les éléments défectueux sont identifiés, nous
étudions une autre propriété importante des réseaux: leur navigabilité, à savoir la rapidité
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à laquelle les noeuds peuvent transmettre un message d’un bout à l’autre du réseau en
effectuant seulement des opérations locales.

Dans la dernière partie, nous considérons la navigation dans une base de données au
moyen de comparaisons. Contrairement aux bases de données traditionnelles, les utilisa-
teurs ne soumettent pas des requêtes qui sont ensuite mises en correspondance avec des
objets. Au lieu de cela, à chaque pas, la base de données présente deux objets à l’utilisa-
teur, qui sélectionne celui le plus proche de la cible visée. Ce processus continue jusqu’à
ce que la base de données puisse identifier la cible sur la base des réponses de l’utilisateur.
Afin de rendre la recherche par comparaisons efficace, il importe de déterminer quelles
paires présenter à l’utilisateur. De manière intéressante, ce problème a un lien naturel
avec la propriété de navigabilité étudiée dans la deuxième partie, ce qui nous permet à
développer des algorihmes efficaces pour la résolution du problème.

Mots-clés: Réseaux de capteurs, Identification de structures de faible densité, Tomogra-
phie des réseaux, Positionnement, Calibration, Complétion de matrice, Test de groupe,
Réseaux sociaux, Phénomène dit du “petit monde”, Navigabilité, Apprentissage actif,
Recherche binaire, Modèles graphiques.
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“A journey of a

thousand miles

starts with a single

step.”

Chinese proverb

Introduction 1
This thesis describes a framework for “graph-based information processing” that pro-

vides a mechanism for exploiting the graph structure in complex systems such as large
scale networks. Such systems comprise different modules interacting with each other. One
way to visualize these interactions is through a graph-based model where nodes represent
the modules and edges the interactions.

An illustrative example is a wireless sensor network deployed in the Swiss Alps for en-
vironment monitoring [BISV08]. A wireless sensor network consists of spatially distributed
sensors that monitor physical or environmental conditions such as temperature, vibration,
and pressure. Moreover, these sensors should cooperatively pass their data through the
network to a few locations. Due to energy constraints, each sensor can only communicate
with a few of its close-by neighbours. As a result, we have a graph where nodes indicate
the sensors and edges the communication links. We can even illustrate more complicated
and perhaps more realistic scenarios with the same graph. For instance, two close-by sen-
sors might not be able to detect each other’s presence due to weather conditions (e.g.,
snow, rain, you name it). Hence, we can associate a probability of detection if two nodes
are within the communication range of one another. This probability may well decay as a
function of the pairwise distance between the two sensors. To incorporate this phenomenon
in our graph-based model, we simply associate a weight (between 0 and 1) to each link.
Consequently, we obtain a weighted graph that indicates which nodes communicate with
one another and also what the quality of communication is.

Note that in many applications of sensor networks, we have access to many sensors
scattered randomly on the field (e.g., dropping them off from an airplane). These sensors
are cheap and battery conservative. Once the sensors start working, their first task is to
estimate their location. Clearly, without this information the data gathered by the sensors
is of little values. For example, the data might indicate that somewhere in the Alps it is
snowing (not a surprise!), but we do not know where because we failed to find the positions
of the sensors detecting snow. There are many ways to go about solving this problem. We
can simply equip each sensor with a GPS device. This not only increases the cost of the
device but it is not even appropriate in some situations (e.g., no reception of a GPS signal
because there is a big rock in front of the sensor). As a result, some sensors might know
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2 Introduction

their exact locations (and they can live happily until their battery runs down), but most
should somehow estimate them. It is not hard to see that if all pairwise distances were
known, the positioning problem would be easy to solve. Unfortunately, due to energy
constraints, only nearby sensors are able to communicate with one another and thus
estimate their pairwise distances. Therefore, most of the pairwise distances are unknown.
This uncertainty, coupled with the fact that even the known distances are noisy, makes
the localization problem very challenging. Again, we can represent the problem through a
graph-based model. Like before, nodes represent the sensors and edges the communication
links. This time, however, the weight of a link indicates the pairwise distance between two
sensors. To estimate the missing pairwise distances, we can simply calculate the shortest
paths on the graph. This way, we will have a rough estimate of all the pairwise distances,
based on the ones for which we can calculate the positions.

Another interesting example that shows how the available information is constrained
by the graph structure is network tomography. Consider again the sensors deployed in the
Swiss Alps for environment monitoring. Recall that these sensors are cheap and affected
by the changes in their surroundings. This simply implies that every now and then, one
or more sensors (hopefully not too many) will malfunction, e.g., drop all the packets.
Hence, it is important to single out the defective sensors on a regular basis. One naive
way is to test periodically every single sensor. This seems like a waste of energy and time,
since only a small fraction of sensors are defective. It also requires direct access to sensors
at all times. An alternative way that has recently gained a lot of attention is to make
use of collective end-to-end measurements [NT07, CCL+04]. To do so, we can imagine
the following protocol. Assume that at a particular node s, we wish to identify the set
of defective sensors by distributing packets that originate from s in the network. First, s
generates a packet containing a time stamp t and sends it to a randomly chosen neighbour,
who in turn, decrements the time stamp and forwards the packet to a randomly chosen
neighbour. The process continues until the time stamp reaches zero, at which point the
packet is sent back to s along the same path it has traversed. This can be achieved for
example by storing the route to be followed (which is randomly chosen at s) in the packet.
By using this procedure, the source node generates a number of independent packets,
distributed in the network. Each packet is either returned back to s in a timely manner,
or eventually does not reach s due to the presence of a defective sensor within the route.
By choosing an appropriate timeout, s can determine the packets that are routed through
the defective sensors. Note that this scheme tries to make use of group tests in order to
identify the faulty sensors. However, not any group test is possible, i.e., each group here
must conform to the constraints imposed by the graph structure of the network.

Our final example to illustrate the importance of graph structure in information pro-
cessing is geographic routing. Again, let us look back to our sensor network scenario. At
the end of the day, the goal of deploying such a complex system is to gather information.
To this end, sensors should be able to route collectively the information from one end to
the other. As we mentioned earlier, the sensors can only detect their close-by neighbours
and are not usually aware of the rest of the network. In such settings, a sensor that holds
a message should operate based only on local information. One method that stands out as
an efficient routing algorithm is greedy forwarding, in which each node forwards the mes-
sage to the neighbour that is most suitable from a local point of view. The most suitable
neighbour can be the one who minimizes the distance to the destination in each step. This
algorithm is of course sub-optimal with respect to an algorithm that has the full view of
the network and routes the information via shortest paths. However, a greedy forwarding
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protocol possesses a number of important properties. First, it is a fully distributed algo-
rithm. Second, the system is very robust against changes in the topology of the network;
sensors can be added or removed arbitrarily. And third, it is a low complexity algorithm,
i.e., each node only needs to know among its neighbours which one is closest to the target.

The issue raised above, namely routing, is also present in the context of social net-
works such as Facebook or MySpace. These are networks in which nodes are people (or
groups of people) and edges represent social interactions such as friendships, professional
relationships, or many other types of connections. One of the most important features
to appreciate about social networks is the small-world phenomenon. To understand the
concept, let us conduct the following thought experiment [EK10]. First, find a friend of
yours who grew up in another country. Following a path through this friend, to his/her
parents, and to their friends, it is very likely that you end up in a different part of the
world in only three steps. In my case for example, if I consider my Swiss friend Antonino,
his Italian father Geovanni, and his father’s friends who live in Sicily, I will end up with
the people from another generation who live far from Tehran and have very little in com-
mon with me. This idea that the world looks small and it takes a short chain of friends to
get from you to anyone else on the planet has been termed the small-world phenomenon
or in popular culture referred to as the six degrees of separation. It is a matter of common
experience to see that sending a message or spreading a rumour across a large network
takes only a few steps. As our simple thought experiment and of course many empirical
studies reveal, in social networks short paths exist in abundance. What is even more sur-
prising is that people are remarkably good at finding them. Of course if a person knows
the structure of an entire network (who is friends with whom) finding short paths is a
matter of computation. Participants of a social network such as Facebook, however, do
not know the whole network and are probably only aware of a very small part. Yet they
are still able to route a message rapidly to the desired target. As Kleinberg observed, it is
possible and indeed common to construct a network that has short paths between nodes.
Nevertheless finding these short paths for participants lacking the full view of the network
is very hard [Kle00]. Hence, not all networks with a small diameter enjoy the small-world
phenomenon. As suggested by Kleinberg, a network should possess a particular structure
so that nodes can route messages efficiently without a global knowledge of the network.

Outline

In the following we present a brief summary of the individual problems that are studied
in each chapter.

Robust Positioning from Incomplete Information

Obtaining a good estimation of where wireless devices are located is crucial in wireless
network applications including environment monitoring, geographic routing and topology
control. When the positions of the devices are unknown and only local distance informa-
tion is given, we need to infer the positions from these local distance measurements. This
problem is particularly challenging when we have access only to measurements that have
limited accuracy and are incomplete. In Chapter 2, we look at the problem of localiz-
ing wireless devices in an ad-hoc network embedded in a d-dimensional Euclidean space.
We consider the extreme case of this limitation on the available information, when only
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the connectivity information is available, i.e., we only know whether a pair of nodes is
within a fixed detection range of each other or not, and we have no information about
how far apart they are. Furthermore, to account for detection failures, we assume that
even if a pair of devices is within the detection range, it fails to detect the presence of one
another with some probability and this probability of failure depends on how far apart
those devices are. We are mainly interested in answering the following question:

Given this limited information, how well can we estimate the position of the
sensors?

To answer this question, we investigate the performance of a centralized positioning
algorithm MDS-MAP introduced by Shang et al. [SRZF03], and its distributed version
Hop-TERRAIN introduced by Savarese et al. [SLR02]. In particular, for a network
consisting of n devices positioned randomly, we provide a bound on the resulting error
for both algorithms. We show that the error is bounded, decreasing at a rate that is
proportional to RCritical/R, where RCritical is the critical detection range when the resulting
random network starts to be connected, and R is the detection range of each device.

Calibration Through Matrix Completion

In Chapter 3, we study the calibration process in circular ultrasound tomography de-
vices based on Time-of-Flight (ToF) measurements. Our goal is to accurately estimate the
positions of the sensors deviating from the circumference of a perfect circle. This problem
arises in a variety of applications in signal processing such as breast imaging for cancer
detection. In the presence of all the pairwise ToF measurements, we can easily estimate
the sensor positions using multi-dimensional scaling (MDS) method. In practice however,
due to the transient behaviour of the sensors and the beam shaper of the transducers,
the ToFs for close-by sensors are unavailable. Furthermore, random malfunctioning of the
sensors leads to random missing ToF measurements. In addition to the missing entries,
we observe that an unknown time delay is also added to the measurements. The question
is:

Faced with the set of missing ToFs and the unknown time delay, how well can
we calibrate a circular ultrasound tomography device?

To answer this question, we incorporate the fact that a matrix defined by all the ToFs
measured in a homogeneous medium is of rank at most 4. In order to estimate the missing
ToFs, we apply a state-of-the-art low-rank matrix completion algorithm, OptSpace. To
find the correct positions of the sensors (our ultimate goal), we then apply MDS. We show
analytic bounds on the overall error of the entire process in the presence of noise.

Graph-Constrained Group Testing

Inverse problems, with the goal of recovering a signal from partial and noisy observa-
tions, come in many different formulations and arise in many applications. One important
property of an inverse problem is that it should be well-posed, i.e., there should exist a
unique and stable solution to the problem. In this respect, prior information about the
solution, like sparsity, can be used as a “regularizer” to transform an ill-posed problem
into a well-posed one. In Chapter 4, we look at a well-studied inverse problem in statistics,
called “group testing”, where we try to identify the set of defective items in a large pop-
ulation. The main idea is that, instead of testing items one by one, it might be possible
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to pool them in large groups, and then apply the tests on the groups without affecting
reliability of the tests. A notable example is the method proposed in World War II to weed
out the soldiers carrying syphilis. It was proposed to combine blood samples drawn from
individuals and test the combined samples for syphilis. Once a group is tested negative,
all the members participating in the group must be negative and this may save a large
number of tests. Otherwise, a positive test reveals that at least one of the individuals in
the group must be positive. A fundamental question involves

How to design a pooling strategy that allows for the identification of the exact
set of infected items by using as few tests as possible.

Inspired by applications in network tomography, sensor networks and infection propaga-
tion, in Chapter 4, we formulate a variation of group testing problems on graphs. Unlike
conventional group testing problems, each group here must conform to the constraints
imposed by a graph. For instance, items can be associated with vertices and each pool
is any set of nodes that is path connected. This way, a test is simply associated with a
random walk. In this context, conventional group testing corresponds to the special case
of a complete graph on n vertices.

For interesting classes of graphs we obtain a rather surprising result: the number of
tests required to identify d defective items is substantially similar to what is required in
conventional group testing problems, where no such constraints on pooling is imposed.
Specifically, if T (n) corresponds to the mixing time of the graph G, it is shown that
with m = O(d2T 2(n) log(n/d)) non-adaptive tests, we can identify the defective items.
Consequently, for the Erdős-Rényi random graph G(n, p), as well as expander graphs with
constant spectral gap, it follows that m = O(d2 log3 n) non-adaptive tests are sufficient to
identify d defective items. We also consider the noisy counterparts and develop parallel
results.

Navigability with a Bias

Routing information through networks is one of the fundamental tasks in many com-
plex systems. When each node has a full view or global map of the network, finding the
shortest route is only a matter of computation. In many networks, including social, peer-
to-peer and neural networks, even though most nodes are not neighbours of each other,
they can still reach one another through a small number of intermediate nodes. In Chap-
ter 5, we look at this phenomenon, known as the small-world phenomenon. The fact that
nodes can reach each other rather quickly suggests that short routes exist in abundance.
Many models in the literature are proposed to capture this property [WS98, Wat99, BC88].
However, as Kleinberg observed [Kle01], the existence of such short paths does not imply
that a decentralized algorithm such as greedy forwarding can find them. In Chapter 5, we
consider the following general framework for designing small-world networks:

Given a graph embedded in a metric space, how should we augment this graph
by adding edges in order to minimize the expected cost of greedy forwarding
over this graph?

We consider the above problem under the scenario of heterogeneous demand, i.e., the
probability that a message is sent from a node to another is not uniform. We first show
that the small-world network design problem under the general heterogeneous demand is
NP-hard. We then propose a novel mechanism for edge addition and provide an upper



6 Introduction

bound on the performance of the greedy forwarding in terms of the bias of the demand
distribution, as well as the embedding.

Content Search Through Comparisons

In the problem of content search through comparisons, a user searching for a target
object navigates through a database in the following manner: the user is asked to select
the object most similar to her target from a small list of objects. A new object list is
then presented to the user based on her earlier selection. This process is repeated until
the target is included in the list presented, at which point the search terminates. Now,
the main question is the following:

Which objects should be presented to the user in order to find the target
object as quickly as possible?

This problem is strongly related to the small-world network design. More precisely, one
way of searching over the database is to establish a small-world network over the target
set and employ an oracle to successively progress closer to the target object through
greedy forwarding. In Chapter 6, we adopt this approach. Contrary to prior work, which
focuses on cases where objects in the database are equally popular, we consider the case
where the demand for objects may be heterogeneous, i.e., objects are requested with
different frequencies. We provide an algorithm for deciding which sequence of objects
to show to the user and bound its cost in numbers of queries. We also provide a lower
bound on the cost among all such algorithms. Our upper and lower bounds relate the
cost of content search to two important properties of the demand distribution, namely
its entropy and its doubling constant. These illustrate interesting connections between
content search through comparisons to classic results from information theory. Finally,
based on these results, we propose an adaptive learning algorithm for content search that
meets the performance guarantees achieved by the above mechanisms.

Comparison-Based Active Learning

In Chapter 7, we consider again the problem of search through comparisons. Our main
objective is to answer the following question:

In the case of noisy user feedback, is it still possible to navigate through the
database robustly?

To answer this question we first propose a new strategy based on rank nets and show that,
for target distributions with a bounded doubling constant, it finds the target in a number
of comparisons close to the entropy of the target distribution, hence of the optimum. We
then consider the case of noisy user feedback. In this context, we propose a variant of
rank-nets, for which we establish performance bounds within a slowly growing function
(doubly logarithmic) of the optimum.

How to (not) Read This Thesis

The material presented in each of the technical chapters of this thesis (Chapters 2–
7) are intended to be self-contained so that they can be read in any order. However,
for the interested reader who wants to gain more insight about our work, we modestly
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suggest the following order. Our first suggestion is to read Chapter 2 before Chapter 3.
Both chapters look at the localization problem, albeit in a different context. Following
the same philosophy, it is more informative to read Chapter 6 before Chapter 7. To
better understand the link between the small network design and content search through
comparisons, we believe that Chapter 5 should be skimmed through prior to Chapter 6.

Throughout this thesis, we do our best to follow the same structure. Each chapter
begins with an introduction followed by related work. Then the required notation is in-
troduced and the problem setting is stated. Thereafter, the main results are explained in
detail. We also provide intuition on the results. The proofs are all presented at the end of
the chapters in an attempt to help the reader grasp the main ideas behind our work and
not lose sight of the forest for the trees.

The additional mathematical background required for each chapter is provided when
needed, to the extent of not losing focus. For a comprehensive study of the basic tools
used, we refer the reader to [CT91] (information theory), [New10] (network models),
[MR95, MU05] (probabilistic methods), [KF09] (graphical models), [HLW06] (expander
graphs), [AB09] (complexity theory), and [DH99] (group testing).

Each chapter opens up with a quotation. To understand the phrase, the reader needs
to be familiar with the morse code (see the Appendix). After all, this is a thesis on
information processing.
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Where Are We?
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Passerby:

'Pardon me sir,

how do I get to

Carnegie Hall?'

Arthur Rubinstein:

'Practice,

practice,

practice!'

New York

Robust Positioning from
Incomplete Information 2

In this chapter 1, we address the problem of positioning when only partial information
on pairwise distances is provided. Location estimation of individual nodes is required for
many wireless sensor network applications such as environmental monitoring, geographic
routing and topology control, to name a few [JH01, Xu02]. In environmental monitoring,
for instance, the measurement data by the wireless sensor network is more useful when
accompanied by the location information. One way to acquire the positions is to equip
all the sensors with a global positioning system (GPS). The use of GPS not only adds
considerable cost to the system, but more importantly, it does not work in indoor en-
vironments or when the received GPS signal is jammed [CHH02]. Alternatively, we can
use an algorithm that derives positions of sensors based on local and basic information
such as proximity (which nodes are within communication range of each other) or local
distances (pairwise distances between neighbouring sensors).

Two common techniques for obtaining the local distance and connectivity information
are Received Signal Strength Indicator (RSSI) and Time Difference of Arrival (TDoA).
RSSI is a measurement of the ratio of the power present in a received radio signal and a
reference power. Signal power at the receiving end decreases as a function of the distance,
and RSSI has the potential to be used to estimate the distance. Altenatively, TDoA
techniques use the time difference between the receipt of two different signals with different
velocities, for instance ultrasound and radio frequency signals [PCB00, SHS01]. These
techniques can be used, independently or together, for distance estimation.

Given a set of such measurements, we want to find the positions. One common ap-
proach, known as multi-dimensional scaling (MDS) [BG05], assumes that all pairwise
distances are known. However, in almost all practical scenarios such information is un-
available for two major reasons. First, sensors are typically highly resource-constrained
(e.g., power) and have limited communication range. Thus, distant sensors cannot com-
municate to obtain their pairwise distances. Second, due to noise and interference among
sensors, there is always the possibility of non-detection or completely incoherent measure-
ments.

1. This chapter is the result of a collaboration with S. Oh and A. Montanari.
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Many algorithms have been proposed to resolve these issues by using heuristic approx-
imations to the missing distances, and their success has mostly been measured experi-
mentally. Regarding the mechanisms deployed for estimating sensor locations, one can
divide the localization algorithms into two categories: range-based and range-free. In the
range-based protocols the absolute point-to-point distance estimates are used for inferring
the locations, whereas in the range-free protocols no assumptions about the availability
of such information are made and only the connectivity information is provided. As a
result, range-free algorithms are more effective in terms of stability and cost, hence more
favourable to be deployed in practical settings. In the sensor network literature, “range-
free” is also referred to as “connectivity-based”, and “range-based” is also referred to as
“range-aware”.

The theoretical guarantees associated with the performance of the existing methods
are, however, of the same interest and complementary in nature. Such analytical bounds
on the performance of localization algorithms can provide answers to practical questions:
for example, “How large should the radio range be in order to get the reconstruction error
within a threshold?” With this motivation in mind, our work takes a step forward in this
direction.

We first focus on providing a bound on the performance of a popular localization algo-
rithm MDS-MAP [SRZF03] when applied to sensor localization from only connectivity
information. We should stress here that pairwise distances are invariant under rigid trans-
formations (rotation, translation and reflection). Hence, given connectivity information,
we can only hope to determine the configuration or the relative map of the sensors. In
other words, localization is possible only up to rigid transformations. With this point in
mind, we prove that using MDS-MAP, we are able to localize sensors up to a bounded er-
ror in a connected network where most of distances are missing and only local connectivity
information is given.

More precisely, assume that there are n sensors positioned randomly in a d-dimensional
unit cube with the radio range R = o(1). Further, assume that each pair can detect each
other with probability at least p0. Let the n × d matrices X and X̂ denote the true
sensor positions and their estimates by MDS-MAP, respectively. Define L = In×n −
(1/n)1n1

T
n where In×n is the identity matrix and 1n is the all ones vector. The quantity

LXXTL satisfies nice properties: (a) it is invariant under rigid transformations and (b) if
LXXTL = LX̂X̂TL, then X and X̂ are equal up to rigid transformations. Therefore,
a natural distance metric is:

dinv(X, X̂) =
1

n

∥∥LXXTL−LX̂X̂TL
∥∥
F
,

where ‖ · ‖F denote the Frobenius norm. Using this, we establish an upper bound on the
error of MDS-MAP:

dinv(X, X̂) ≤ RMDS

R
+ o(1),

where RMDS = Cd(ln(n)/(p0 n))1/d for some constant Cd that only depends on the dimen-
sion d.

One consequence of the ad-hoc nature of the underlying networks is the lack of a
central infrastructure. This hinders the use of a centralized algorithm like MDS-MAP. In
particular, centralized algorithms suffer from scalability problems, making them difficult
to implement in large scale sensor networks. Centralized algorithms also require higher
computational complexity [MFA07]. This leads us to investigate if similar performance
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guarantees can be obtained in a distributed setting, where each sensor tries to estimate its
own global position. As mentioned above, this task cannot be accomplished unless some
additional information, other than local measurements, is provided. It is well known that
in a d-dimensional Euclidean space, we need to know the global positions of at least d+ 1
sensors, referred to as anchors, in order to uniquely determine the global positions [NN01].

Under such decentralized scenario, we analyze the performance of a popular localiza-
tion algorithm: HOP-TERRAIN [SLR02]. This algorithm can be seen as a distributed
version of MDS-MAP. We prove that HOP-TERRAIN can localize sensors up to a
bounded error in a connected network where most of the pairwise distances are unknown
and only local connectivity information is given.

Similarly as in the case of MDS-MAP, assume n sensors in a d-dimensional unit cube
and d+ 1 anchors in general positions. We show that when only connectivity information
is available, the Euclidean distance between the estimate x̂i and the correct position xi is
bounded by

‖xi − x̂i‖ ≤
RHOP

R
+ o(1),

for all i where RHOP = C ′d(log n/(p0n))
1
d for some constant C ′d that only depends on d.

One main contribution of our work in contrast to previous work is that we consider a
general scenario where two sensors within a communication radio range may still fail to
detect the presence of each other due to hostile environment or sensor malfunction.

2.1 Related work

The localization problem has attracted significant research interests in recent years. A
general survey of the area and an overview of recent techniques can be found in [NN01] and
[MFA07]. In the case when all pairwise distances are known, the coordinates can be de-
rived by using a classical method known as multidimensional scaling (MDS) [BG05]. The
underlying principle of MDS is to convert distances into an inner product matrix, whose
singular vectors are the unknown coordinates. In the presence of noise, MDS tolerates
errors gracefully due to the overdetermined nature of the problem. However, when most
distances are missing, finding coordinates becomes more challenging. Three types of prac-
tical centralized algorithms have been proposed in the literature. The first group consists
of algorithms that try first to estimate the missing entries of the distance matrix and then
apply MDS to the reconstructed distance matrix to find the coordinates of the sensors.
MDS-MAP, introduced in [SRZF03] and further studied in [SRZF04], is a well-known
example, where the shortest paths are computed in order to approximate the missing
distances. The algorithms in the second group mainly consider the sensor localization as
a non-convex optimization problem and directly estimate the coordinates of sensors. A
famous example of this type is a relaxation to semidefinite programming (SDP)[BY04].
In the third group, the problem is formulated through a stochastic optimization where
the main technique used in these algorithms is the stimulated annealing, which is a gen-
eralization of the Monte Carlo method in combinatorial optimization [KMV06, KM06].

Perhaps a more practical and interesting case is when there is no central infrastructure.
[LR03] identifies a common three-phase structure of three popular distributed sensor-
localization algorithms, namely robust positioning [SLR02], ad-hoc positioning [NN03]
and N-hop multilateration [SPS03]. Table 2.1 illustrates the structure of these algorithms.
In the first phase, nodes share information to collectively determine the distances from
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Table 2.1 – Distributed localization algorithm classification [LR03]

Phase Robust positioning Ad-hoc positioning N -hop multilateration
1. Distance DV-HOP Euclidean Sum-dist
2. Position Lateration Lateration Min-max
3. Refinement Yes No Yes

each of the nodes to a number of anchors. Anchors are special nodes with a priori knowl-
edge of their own position. In the second phase, nodes determine their position based on
the estimated distances to the anchors. In the last phase, the initial estimated positions
are iteratively refined. It is empirically demonstrated that these simple three-phase dis-
tributed sensor-localization algorithms are robust and energy-efficient [LR03]. However,
depending on which method is used in each phase, there are different tradeoffs between
localization accuracy, computation complexity and power requirements.

The performances of these algorithms are measured through simulations and little is
known about their theoretical performance. A few exceptions are in the following work.
In [DJMI+06] the authors use matrix completion methods [Faz02] as a means to recon-
struct the distance matrix. The main contribution of their paper is that they are able to
provably localize the sensors up to a bounded error. However, their analysis is based on a
number of strong assumptions. First, they assume that even far-away sensors have a non-
zero probability of detecting their distances. Second, the algorithm explicitly requires the
knowledge of detection probabilities between all pairs. Third, their theorem only works
when the average degree of the network (i.e., the average number of nodes detected by
each sensor) grows linearly with the number of sensors in the network.

Our first result on the analysis of MDS-MAP provides a theoretical guarantee that
backs up experimental results. We use shortest paths as our primary guess for the missing
entries in the distance matrix and apply MDS to find the relative positions of the nodes up
to a rigid motion. In contrast to [DJMI+06], we require significantly weaker assumptions.
More specifically, we assume that only neighbouring sensors have information about each
other and that only connectivity information is known. Furthermore, for the purpose
of estimating the positions, the algorithms presented in this chapter do not require the
knowledge of the detection probability. And last, in our analysis we assume that the
average degree grows logarithmically, instead of linearly, with the number of sensors, which
results in needing many less revealed entries in the distance matrix. On the one hand,
we would like to choose the radio range large enough such that the graph is connected.
Otherwise, we would be wasting the part of the graph that is not connected to the giant
component. On the other hand, we would like to use as small a radio range as possible to
save power consumption and operation cost. Hence, choosing a radio range which gives the
average number of neighbors of order log n is desired. We provide the first error bounds
on the performance of MDS-MAP.

Of particular interest are the two new results on the performance of sensor localization
algorithms. In [JM11], Javanmard et al. proposed a new reconstruction algorithm based on
semidefinite programming where lower and upper bounds on the reconstruction errors of
their algorithm are established. Similarly, in [KOPV10], through new advances in matrix
completion methods [CR08], the authors analysed the performance of OptSpace [KM10],
a novel matrix completion algorithm, in localizing the sensors. Interestingly, they did not
need to adhere to the assumptions made by [DJMI+06]. However, they have a restrictive
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assumption about the topology of the network: sensors are scattered inside an annulus.

The above analytical results crucially rely on the fact that there is a central processor
with access to the distance measurements. However, centralized algorithms suffer from
the scalability problem and require higher computational power. Hence, a distributed
algorithm with a similar performance bound is desirable. In our second result, we analyse
the reconstruction error of a distributed algorithm. To the best of our knowledge, we show
for the first time that HOP-TERRAIN, introduced in [SLR02], achieves a bounded error
when only local connectivity information is given.

2.2 Model definition

In this section, we define a probabilistic model considered in this chapter. We assume
we have no fine control over the placement of the sensors that we call unknown nodes
(e.g., the nodes are dropped from an airplane). Hence, n nodes are placed uniformly at
random in a d-dimensional cube [0, 1]d. We assume that there are m special sensors, which
we call anchors, with a priori knowledge of their own positions in some global coordinate.
In practice, it is reasonable to assume that we have some control over the position of
anchors. Anchors can be some nodes that are planted on the field before any positioning
takes place. Let Va = {1, . . . ,m} denote the set of m vertices corresponding to the anchors
and Vu = {m+ 1, . . . ,m+ n} the set of n vertices corresponding to the unknown nodes.
We use xi to denote the position of node i and X ∈ Rn×d to denote the position matrix
where the i-th row corresponds to xi.

In positioning, due to attenuation and power constraints, only measurements between
close-by nodes are available. As a result, the pairwise distance measurements can be
represented by a random geometric graph G(n + m,R) = (V,E, P ), where V = Vu ∪ Va,
E ⊆ V × V is a set of edges that connect pairs of sensors that are detected, and P :
E → R+ is a non-negative real-valued function. Edge weights P is a mapping from an
edge (i, j) to a pairwise distance measurement.

A common model for this random geometric graph is the disc model where node i and
j are connected if the Euclidean distance di,j ≡ ‖xi−xj‖ is at most a positive radio range
R. There are a variety of ways to measure the connectivity between two nodes, including
TDoA and RSSI. Due to limited resources, there is a probability of non-detection. Think
of RF ranging in the presence of an obstacle or in the case of multiple paths. Depending
on the acquisition mechanism, this may result in the absence of measurements.

To model this failure of detection, we assume that two nodes can detect each other with
a probability that only depends on the distance di,j. Namely, (i, j) ∈ E with probability
p(di,j) if di,j ≤ R. The detection probability p(·) : [0, R] → [0, 1] is a non-increasing
function of the distance. Our main results on the error achieved by localization algorithms
assumes that the detection probability p(·) is lower bounded by a parameter p0 such that
p(z) ≥ p0 , for z ≤ R. For example, p(·) might be a simple function parameterized by two
scalar values p0 and β:

p(z) = min

(
1, p0

( z
R

)−β)
, (2.1)

for some p0 ∈ (0, 1] and β. This includes the disc model with perfect detection as a special
case (i.e., p0 = 1, β = 0).
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Figure 2.1 – This plot shows how the probability of detection changes as the distance
between two sensor changes.

Figure 2.2 – This example shows the model. Nodes a and b are connected since they are
within R. Although b and c are also within R, they are not connected due to detection
failure. a and c are not connected because they are far apart.

To each edge (i, j) ∈ E, we associate the distance measurement Pi,j between sensors i
and j. In an ideal case, we have exact distance measurements available for those pairs in
E. This is called the range-based model. Formally, Pi,j = di,j if (i, j) ∈ E and ∗ otherwise,
where a ∗ denotes that the distance measurement is unavailable. In the following, the
algorithms presented in this chapter only uses values of Pi,j’s where it is well defined (i.e.
for (i, j) ∈ E, and equivalently for Pi,j 6= ∗). In this chapter, we assume that we are given
only network connectivity information and no distance information. This is known as the
connectivity-based model. Formally,

Pi,j =

{
1 if (i, j) ∈ E,
∗ otherwise.

In the following, let D denote the n × n distance matrix where Di,j = di,j, and let
D̄ denote the n × n squared distance matrix where D̄i,j = d2

i,j. By definition, D̄ =
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Table 2.2 – Summary of Notation.

n number of unknown sensors Vu set of unknown nodes
m number of anchors Va set of anchors
R communication range 1n all ones vector of size n

Pi,j distance measurements D̂ estimated squared distance matrix
di,j Pairwise distance between nodes i and j In×n n× n identity matrix
xi position of node i x̂i estimated position of node i
p0 minimum detection probability X positions matrix

d dimension X̂ estimated positions matrix
D̄ squared distance matrix d̂i,j shortest path between node i and j
O(d) orthogonal group of d× d matrices ‖ · ‖F Frobenius norm
〈A,B〉 Frobenius inner product ‖ · ‖2 spectral norm

a1Tn + 1na
T − 2XXT , where a ∈ Rn is a vector with ai = ‖xi‖2 and 1n is the all ones

vector. As D̄ is a sum of two rank-1 matrices and a rank-d matrix, its rank is at most
d+ 2.

2.3 Algorithms

Depending on the application, we might want a relative map or an absolute map of
the locations. A relative map is a configuration that have the same neighborhood rela-
tionships as the underlying graph G. In the following we use the terms configuration and
relative map interchangeably. An absolute map, on the other hand, determines the abso-
lute geographic coordinates. In this chapter, our objective is two-fold. First, we present a
centralized algorithm MDS-MAP, that finds a configuration that best fits the proximity
measurements. Then, we discuss its distributed version, HOP-TERRAIN, where the
goal is for each sensor to find its absolute position.

2.3.1 Centralized Positioning Algorithm: MDS-MAP

The centralized MDS-MAP algorithm, assumes no anchors in the system. We denote
the random positions of n sensors by xi’s. MDS-MAP consists of two steps:

Algorithm 2.1 MDS-MAP [SRZF03].

Input: dimension d, graph G = (V,E, P ).

1: Compute the shortest paths, and let D̂ be the squared shortest paths matrix.
2: Apply MDS to D̂, and let X̂ be the output.

Shortest paths. The shortest path between nodes i and j in graph G = (V,E, P )
is defined as a path between two nodes such that the sum of the proximity measures of
its constituent edges is minimized. Let d̂i,j be the computed shortest path between node

i and j. Then, the squared shortest paths matrix D̂ ∈ Rn×n is defined as D̂ij = d̂2
i,j for

i 6= j, and 0 for i = j.
Multidimensional scaling. In step 2, we apply the Multidimensional scaling (MDS)

to D̂ to get a good estimate of X, specifically, we compute X̂ = MDSd(D̂). MDS refers
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Figure 2.3 – The shortest path between two nodes is defined in terms of the minimum
number of hops multiplied by the radio range R.

to a set of statistical techniques used in finding the configuration of objects in a low
dimensional space such that the measured pairwise distances are preserved [BG05]. It is
often used for a visual representation of the proximities between a set of items. Formally,
MDS finds a lower dimensional embedding x̂is that minimize the stress :

stress ≡

√√√√∑i 6=j(f(di,j)− d̂i,j)2∑
i 6=j d̂

2
i,j

,

where di,j is the input similarity (or dissimilarity), d̂i,j = ‖x̂i−x̂j‖ is the Euclidean distance
in the lower dimensional embedding, and f(·) is some function on the input data. When
MDS perfectly embeds the input data, we will have f(di,j) = d̂i,j and the stress is zero.

Algorithm 2.2 Classic Metric MDS [SRZF03].

Input: Dimension d, estimated squared distance matrix D̂
Output: Estimated positions MDSd(D̂)

1: Compute (−1/2)LD̂L, where L = In − (1/n)1n1
T
n ;

2: Compute the best rank-d approximation UdΣdU
T
d of (−1/2)LD̂L;

3: Return MDSd(D̂) ≡ UdΣ
1/2
d .

In this chapter we use what is called the classic metric MDS [CC01], where f(·) is the
identity function and the input dissimilarities correspond to the Euclidean distances such
that di,j = ‖xi−xj‖ for some lower dimensional embedding {xi}. This algorithm has been
frequently used in positioning applications; and from here on whenever we say MDS we
refer to the above algorithm. Let MDSd(D̄) denote the n × d matrix returned by MDS
when applied to the squared distance matrix D̄. Then, in formula, given the singular
value decomposition (SVD) of a symmetric and positive definite matrix (−1/2)LD̄L as
(−1/2)LD̄L = UΣUT ,

MDSd(D̄) ≡ UdΣ
1/2
d ,
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where Ud denotes the n × d left singular matrix that corresponds to the first d singular
values and Σd denotes the d× d diagonal matrix with top d singular values. This is also
known as the MDSLocalize algorithm in [DJMI+06]. Note that as the columns of U
are orthogonal to 1n by construction, it follow that L ·MDSd(D̄) = MDSd(D̄).

It is crucial that we apply the double scaling by L to the squared distance matrix:

D̄ = a1Tn + 1na
T − 2XXT .

Since by construction, L is orthogonal to 1n, but preserves the n − 1 dimensional com-
plementary subspace, the double scaling eliminates the first two terms.

Hence, when MDS is applied to D̄ without noise, the configuration of sensors are
exactly recovered up to a rigid motion:

−(1/2)LD̄L = LXXTL . (2.2)

Note that we only obtain the configuration and not the absolute positions, in the sense
that MDSd(D̄) is one version of infinitely many solutions that matches the distance mea-
surements D̄. We introduce a formal definition of rigid transformation and related terms
below.

Let O(d) = {Q|QQT = QTQ = Id} denote the orthogonal group of d×d matrices. We
say Y ∈ Rn×d is a rigid transformation of X, if there exists a shift vector s ∈ Rd and an
orthogonal matrix Q ∈ O(d) such that Y = XQ + 1ns

T . Here Y is a result of rotating
X by Q and then adding a shift by s. Similarly, when we say two position matrices X
and Y are equal up to a rigid transformation, we mean that there exists a rotation Q and
a shift s such that Y = XQ+1ns

T . Also, we say a function f(X) is invariant under rigid
transformation if and only if for all X and Y that are equal up to a rigid transformation
we have f(X) = f(Y ). Under these definitions, it is clear that D̄ is invariant under rigid
transformation, as for all (i, j), since D̄ij = ‖xi− xj‖2 = ‖(xiQ+ sT )− (xjQ+ sT )‖2, for
any Q ∈ O(d) and s ∈ Rd.

Although MDS works perfectly when D̄ is available, in practice not all proximity
measurements are available because of the limited radio range R. This is why, in the
first step, we estimated the unavailable entries of D̄ by finding the shortest path between
disconnected nodes.

2.3.2 Distributed Positioning Algorithm: HOP-TERRAIN

Recall that HOP-TERRAIN is a distributed algorithm that aims at finding the
global map. In order to fix the global coordinate system in a d dimensional space, we
need to know the positions of at least d+ 1 anchors, nodes with known positions. In this
section, we assume that we have m anchors. Based on the robust positioning algorithm
introduced in [SLR02], the distributed sensor localization algorithm consists of two steps:

Algorithm 2.3 MDS-MAP [SRZF03].

1: Each node i computes the shortest paths {d̂i,a : a ∈ Va} between itself and the
anchors.

2: Each node i derives an estimated position x̂i by triangulation with a least squares
method.
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Distributed shortest paths: Similar to MDS-MAP, the first step is about finding
the shortest path. The difference is that in the first step each of the unknown nodes only
estimates the distances between itself and the anchors. These approximate distances will
be used in the next triangulation step to derive an estimated position. In other words,
the shortest path between an unknown node i and an anchor a in the graph G provides
an estimate for the Euclidean distance di,a = ‖xi − xa‖.

We denote by d̂i,a the computed length of the shortest path. When the corresponding

graph is defined as in the connectivity-based model, the shortest path d̂i,a is equivalent to
the minimum number of hops between two nodes, scaled by the radio range R.

In order to compute the number of hops in a distributed way, we use a method similar
to DV-HOP [NN03]. Each unknown node maintains a table {xa, ha} that is initially
empty, where xa ∈ Rd refers to the position of the anchor a and ha to the number of hops
from the unknown node to the anchor a. First, each of the anchors initiates a broadcast
containing its known location and a hop count of one. All of the one-hop neighbors
surrounding the anchor, on receiving this broadcast, record the anchor’s position and a
hop count of one, and then broadcast the anchor’s known position and a hop count of
two. From then on, whenever a node receives a broadcast, it does one of the two things. If
the broadcast refers to an anchor that is already in the record and the hop count is larger
than or equal to what is recorded, then the node does nothing. Otherwise, if the broadcast
refers to an anchor that is new or has a hop count that is smaller, the node updates its
table with this new information on its memory and broadcasts the new information after
incrementing the hop count by one. When every node has computed the hop count to all
the anchors, the number of hops is multiplied by the radio range R. Note that to begin
triangulation, not all the hop counts to all the anchors are necessary. A node can start
triangulation as soon as it has estimated distances to d+ 1 anchors.

The above step of computing the minimum number of hops is the same distributed
algorithm as described in DV-HOP. However, one difference is that instead of multiply-
ing the number of hops by a fixed radio range R, in DV-HOP, the number of hops is
multiplied by an average hop distance. The average hop distance is computed from the
known pairwise distances between anchors and the number of hops between the anchors.
Although numerical simulations show that the average hop distance provides a better
estimate, the difference between the computed average hop distance and the radio range
R becomes negligible as n grows large.

Triangulation using least squares. In the second step, each unknown node i uses
a set of estimated distances {d̂i,a : a ∈ Va} together with the known positions of the
anchors, to perform a triangulation. The resulting estimated position is denoted by x̂i.
For each node, the triangulation consists in solving a single instance of a least squares
problem (Ax = b) and this process is known as Lateration [SRB01, LR03]. The position
vector xi and the anchor positions {xa : a ∈ {1, . . . ,m}} satisfy the following:

‖x1 − xi‖2 = d2
i,1 ,

...

‖xm − xi‖2 = d2
i,m .

Geometrically, the above equalities simply say that the point xi is the intersection point of
m circles centred at x1, x2, . . . , xm (see Figure 2.4). This set of equations can be linearised
by subtracting each line from the next line. By reordering the terms, we get a series of
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x1

x2 x3

x1

x2 x3

Figure 2.4 – Multilateration with exact distance measurements (left) and with approxi-
mate distance measurements (right). Three solid circles denote the anchors (red) and the
white circle denotes the unknown nodes. The intersection of the blue lines corresponds to
the solution of multilateration.

linear equations in the form Axi = b
(i)
0 , for A ∈ R(m−1)×d and b ∈ Rm−1 defined as

A ≡

 2(x1 − x2)T

...
2(xm−1 − xm)T

 ,

b
(i)
0 ≡

 ‖x1‖2 − ‖x2‖2 + d2
i,2 − d2

i,1
...

‖xm−1‖2 − ‖xm‖2 + d2
i,m − d2

i,m−1

 .

Note that the matrix A does not depend on the particular unknown node i and all the
entries are known accurately to all the nodes. However, the vector b

(i)
0 is not available at

node i, because di,a’s are not known. Hence we use an estimation b(i), that is defined from

b
(i)
0 by replacing di,a by d̂i,a everywhere. Notice that d̂i,a ≥ di,a. As a result, the circles

centred at x1, x2, . . . , xm have potentially larger radii. Therefore, the intersection between
circles is no longer a single point, but rather a closed area. Then, finding the optimal
estimation x̂i of xi that minimizes the mean squared error is solved in a closed form using
a standard least squares approach:

x̂i = (ATA)−1AT b(i) . (2.3)

Computational complexity and network connectivity

Complexity analysis. For bounded d = o(1), a single least squares operation has com-
plexity O(m), and applying it n times results in the overall complexity of O(nm). No
communication between the nodes is necessary for this step. In the MDS-MAP algorithm
we require that all-pairs shortest paths be found. This problem has an efficient algorithm
whose complexity is O(n2 log n + n|E|) [Joh77]. For R = C(log n/n)1/d with constant C,
the graph is sparse with |E| = O(n log n), whence the complexity is O(n2 log n). Contrary
to MDS-MAP, in HOP-TERRAIN we must only compute the shortest paths between
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Figure 2.5 – The red vertices indicate the anchors. Under the right scaling of the radio
range R, the graph stays connected (left figure) whereas otherwise there will be nodes
without any means of communication to others (right figure).

the unknown nodes and the anchors. This distributed shortest paths algorithm can be
done efficiently with total complexity of O(nm).

Network connectivity. In general when the graph G is not connected, the localization
problem is not well defined, and there are multiple configurations resulting in the same
observed proximity measures. For instance if graph G consists of two disconnected com-
ponents, they can be placed in any way with respect to each other without violating any
constraints imposed by G.

In this work, we are interested in a scalable system of n unknown nodes for a large
value of n. As n grows, it is reasonable to assume that the average number of connected
neighbors for each node should stay constant. This happens, in our model, if we chose
the radio range R = C/n1/d. However, in the unit square, assuming sensor positions
are drawn uniformly, the random geometric graph is connected, with high probability, if
πR2 > (log n+ cn)/n for cn →∞ [GK98]. A similar condition can be derived for generic
d-dimensions as CdR

d > (log n + cn)/n, where Cd ≤ π is a constant that depends on
d. Moreover, in case CdR

d < (log n + cn)/n, not only the graph is not connected, there
will be isolated nodes with hight probability. In this case, both MDS-MAP and HOP-
TERRAIN algorithms will be in trouble (see Figure 2.5). Hence, we focus in the regime
where the average number of connected neighbors is slowly increasing with n. Let Rcritical

be the critical detection range where the resulting graph starts to be connected. Then we
are interested in the regime R = CRCritical, for some positive constant C ≥ 1 such that
the graph stays connected with high probability.

2.4 Main results

In this section we present our main results regarding the performance of MDS-MAP
and HOP-TERRAIN algorithms.
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2.4.1 MDS-MAP

Our first result establishes an upper bound on the error achieved by MDS-MAP under
the connectivity-based model. Let X̂ denote an estimate for X. Then, we need to define
a metric for the distance between the original position matrix X and the estimation X̂,
which is invariant under rigid transformation. Recall the matrix L ≡ In − (1/n)1n1

T
n in

the MDS algorithm. L is an n × n symmetric matrix with rank n − 1, which eliminates
the contributions of the translation, in the sense that LX = L(X + 1sT ) for all s ∈ Rd.
As we noted earlier, L has the following nice properties:

1. LXXTL is invariant under rigid transformation.

2. LXXTL = LX̂X̂TL implies that X and X̂ are equal up to a rigid transformation.

As a result, we can define the distance between X and X̂:

dinv(X, X̂) =
1

n

∥∥LXXTL−LX̂X̂TL
∥∥
F
. (2.4)

Notice that the factor (1/n) corresponds to the usual normalization by the number of

entries in the summation. Furthermore, dinv(X, X̂) = 0 implies that X and X̂ are equal
up to a rigid transformation. With this metric, our main result establishes an upper bound
on the resulting error. The proof of this theorem is provided in Section 2.5. We define

RMDS ≡ 32

(
12 log n

p0(n− 2)

) 1
d

. (2.5)

Theorem 2.1 (connectivity-based model). Assume n nodes are distributed uniformly
at random in the [0, 1]d hypercube, for a bounded dimension d ∈ {2, 3}. For a positive
radio range R with a minimum detection probability p0, we are given the connectivity
information of the nodes according to the range-free model with probabilistic detection.
Then, with a probability larger than 1−1/n4, the distance between the estimate X̂ produced
by MDS-MAP and the correct position matrix X is bounded by

dinv(X, X̂) ≤ RMDS

R
+ 20R , (2.6)

for R > (1/p0)1/dRMDS, where dinv(·) is defined in (2.4) and RMDS in (2.5).

The following corollary trivially follows, as for each (i, j) ∈ E, we have di,j ≤ R.

Corollary 2.2 (range-based model). Under the hypotheses of Theorem 2.1 and in the
case of range-based model, with high probability

dinv(X, X̂) ≤ RMDS

R
+ 20R .

As described in the previous section, we are interested in the regime where R =
C(log n/n)1/d for some constant C. Given a small positive constant δ, this implies that

MDS-MAP is guaranteed to produce estimated positions that satisfy dinv(X, X̂) ≤
δ with a large enough constant C and a large enough n. When p0 is fixed and R =
C(log n/n)1/d for some positive parameter C, the error bound in (2.6) becomes

dinv(X, X̂) ≤ C1

Cp
1/d
0

+ C2C

(
log n

n

)1/d

,
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Figure 2.6 – Average error for MDS-MAP with R = C
√

log n/n under range-free model.
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Figure 2.7 – Average error of MDS-MAP under the range-based model.

for some numerical constants C1 and C2. The first term is inversely proportional to C
and p

1/d
0 and is independent of n, whereas the second term is linearly dependent on C

and vanishes as n grows large. This is illustrated in Figure 2.6, which shows numerical
simulations with n sensors randomly distributed in the 2-dimensional unit square, and
assuming (2.1). Notice that the resulting error decreases with p0 and is independent of β.

Even though the upper bounds for both range-free and range-based models have the
same form, their behaviours is different as R grows. In the range-free case, up to some
point, the performance of MDS-MAP improves as R increases. This is due to the fact
that the first and second terms go in opposite directions as a function of R. However, in
the range-based case (where we measure the pairwise distances exactly if the pair is within
a radio range R), as R increases, we obtain more measurements with the exact Euclidean
distances. As a result, once the radio range increases, the resulting error of MDS-MAP
decreases and we do not see the contribution of the second term. This phenomenon is
illustrated in Figure 2.7.

Using the above theorem, we can further show that there is a linear transformation
S ∈ Rd×d, such that when applied to the estimations, we get a similar bound in the
Frobenius norm of the error in the positions.
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Theorem 2.3. Under the hypotheses of Theorem 2.1, with probability larger than 1−1/n4,

min
S∈Rd×d

1√
n
‖LX −LX̂S‖ ≤

√
6

(
RMDS

R
+ 20R

)
.

Note that although for the sake of simplicity, we focus on [0, 1]d hypercube; our analysis
easily generalizes to any bounded convex set and homogeneous Poisson process model
with density ρ = n. The homogeneous Poisson process model is characterized by the
probability that there are exactly k nodes appearing in any region with volume A :

P(kA = k) = (ρA)k

k!
e−ρA. Here, kA is a random variable defined as the number of nodes in

a region of volume A.
To simplify calculations, we assumed that d is either 2 or 3. However, the analysis

easily applies to general d and only the constant in the bound (2.6) would change as long
as d = O(1).

2.4.2 HOP-TERRAIN

Our second result establishes that HOP-TERRAIN [SLR02] achieves an arbitrarily
small error for a radio range R = C(log n/n)1/d with a large enough constant C, when
we have only the connectivity information as in the case of the connectivity-based model.
The same bound holds immediately for the range-based model, when we have an approx-
imate measurements for the distances, and the same algorithm can be applied without
any modification. To compute better estimates for the actual distances between the un-
known nodes and the anchors, the extra information can be readily incorporated into the
algorithm. We define

RHOP ≡ 12

(
12 log n

p0(n− 2)

) 1
d

. (2.7)

Theorem 2.4. Assume n sensors and m anchors are distributed uniformly at random in
the [0, 1]d hypercube for d ∈ {2, 3}. For a given radio range R > (1/p0)1/dRHOP, with a
minimum detection probability p0, and the number of anchors m = Ω(log n), the following
is true with probability at least 1 − 1/n4. For all unknown nodes i ∈ Vu, the Euclidean
distance between the estimate x̂i given by HOP-TERRAIN and the correct position xi
is bounded by

‖xi − x̂i‖ ≤
RHOP

R
+ 24R . (2.8)

The proof is provided in Section 2.5. As described in the previous section, we are
interested in the regime where R = C(log n/n)1/d for some constant C. Given a small
positive constant δ, this implies that HOP-TERRAIN is guaranteed to produce esti-
mated positions that satisfy ‖xi − x̂i‖ ≤ δ for all i with a large enough constant p0 and
large enough n.

When the number of anchors is bounded and the positions of the anchors are chosen
randomly, it is possible that, in the triangulation step, we get an ill-conditioned matrix
ATA, resulting in a large estimation error. This happens, for instance, if three anchors
fall close to a line. However, as mentioned in the introduction, it is reasonable to assume
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Figure 2.8 – Three anchors in fixed positions ([0, 0], [1, 0], [0, 1]) with d = 2.

that, for the anchors, the system designer has some control over where they are placed. In
that case, the next theorem shows that when the positions of anchors are properly chosen,
only d+ 1 anchors suffice to get a similar bound. Note that this is the minimum number
of anchors necessary for triangulation. For simplicity we assume that one anchor is placed
at the origin and d anchors are placed at positions corresponding to d-dimensional unit
vectors. The position of the d+ 1 anchors are {[0, . . . , 0], [1, 0, . . . , 0], . . .}. (see figure 2.8)

Theorem 2.5. Under the hypotheses of Theorem 2.4, assume that there are d+1 anchors,
one of which is placed at the origin, and the position vectors of the d remaining anchors
are the d-dimensional unit vectors. Then, the following is true with probability at least
1− 1/n4. For all i ∈ Vu, Hop-TERRAIN achieves

‖xi − x̂i‖ ≤ 2
RHOP

R
+ 48R . (2.9)

The proof is provided in Section 2.5. There is nothing particular about the position of
the anchors in unit vectors. Any d+1 anchors in general position will give similar bounds.
The only difference is that the constant term in the definition of RHOP changes with the
anchor positions.

Consider a case where you are designing a sensor network system for environmental
monitoring. You want to decide how many sensors to deploy (dropping them from an
airplane) and how much radio power each sensors need to be equipped with, in order to
be able to determine the positions of the sensors up to an error of ε, for any positive ε.
Then, our main results in (2.8) gives us a guideline for choosing appropriate n and R
such that the design goal is met. Precisely, choosing R =

√
RHOP/24 which minimizes the

right-hand side of (2.8) and choosing n ≥ C/(ε6) for some universal constant C achieves
the desired design goal. A similar argument is true for a centralized system as well.

There is no known theoretical lower bound for localization under the model considered.
One implication of our main results is that we guarantee, with high probability, that for
any arbitrarily small constant ε, you can achieve error less than ε with radio range R which
scales as Rcritical. You cannot hope to achieve a small error with R < Rcritical, since the
graph starts to be disconnected. However, as we saw in the above example, the dependence
on the desired error ε might not be optimal, and there might be better algorithms that
can achieve the error with smaller R.
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Figure 2.9 – Average error of HOP-TERRAIN for R = C
√

log n/n under connectivity-
based model.
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Figure 2.10 – Average error under range-based model.

Corollary 2.6 (range-based model). Under the hypotheses of Theorem 2.4 and in the
range-based model, with high probability

‖xi − x̂i‖ ≤
RHOP

R
+ 24R .

The similar result holds true when sensors are places deterministically, specifically, under
the hypothesis of Theorem 2.5, with high probability,

‖xi − x̂i‖ ≤ 2
RHOP

R
+ 48R .

As it was the case for MDS-MAP, when R = C(log n/n)1/d for some positive param-

eter C, the error bound in (2.9) is ‖xi − x̂i‖ ≤ C1

Cp
1/d
0

+ C2C
(

logn
n

)1/d
, for some numerical

constants C1 and C2. The first term is inversely proportional to C and p
1/d
0 and is inde-

pendent of n, whereas the second term is linearly dependent in C and vanishes as n grows
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Figure 2.11 – 200 randomly placed nodes with 3 anchors in blue (left). Location estimation
using HOP-TERRAIN (right).

large. This is illustrated in Figure 2.9, which shows numerical simulations with n = 5, 000
sensors in the unit square. To compute the average error we use {(1/n)

∑n
i=1 ‖xi−x̂i‖2}1/2.

Figure 2.11 shows a network consisting of n = 200 nodes placed randomly in the
unit circle. The three anchors in fixed positions are displayed by solid blue circles. In
this experiment the distance measurements are from the range-based model and the radio
range is

√
0.8 log n/n. In the final estimated positions using HOP-TERRAIN, the circles

represent the correct positions, and the solid lines represent the differences between the
estimates and the correct positions. The average error in this example is 0.075.

2.5 Analysis

2.5.1 Proof of Theorem 2.1

We start by bounding the distance dinv(X, X̂), as defined in Eq. (2.4). Recall that
‖A‖F denotes the Frobenius norm and ‖A‖2 denotes the spectral norm. For a rank r

matrix A we have ‖A‖2 ≤ ‖A‖F ≤
√
r‖A‖2. Since L(XXT −X̂X̂T )L has rank at most

2d, we get

‖L(XXT − X̂X̂T )L‖F ≤
√

2d‖L(XXT − X̂X̂T )L‖2 .

To bound the spectral norm, let M = −(1/2)LD̂L. Then,

‖L(XXT − X̂X̂T )L‖2 ≤ ‖LXXTL−M‖2 + ‖M − X̂X̂T ‖2
≤ (1/2)‖L(−D̄ + D̂)L‖2

+(1/2)‖L(−D̂ + D̄)L‖2
≤ ‖D̂ − D̄‖2 , (2.10)

where in the first inequality we used the triangular inequality and the fact that X̂ = LX̂.
In the second inequality we used (2.2) and the fact that ‖M−X̂X̂T‖2 = minA:rank(A)≤d ‖M−
A‖2, which follows from the definition of X̂. From the definition of X̂ = MDSd(D̂),

we know that X̂X̂T is the best rank-d approximation to M . Hence, X̂X̂T minimizes
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‖M − A‖2 for any rank-d matrix A. Since the rank of −(1/2)LD̄L is d, this implies

‖M − X̂X̂T‖2 ≤ ‖M + (1/2)LD̄L‖2. The inequality (2.10) follows trivially from the
observation that ‖L‖2 = 1.

Next, to bound ‖D̂ − D̄‖2, we use the following key result. The main idea is that,
the number of hops scaled by the radio range R provides a good estimate of the correct
distance. Let R̃ ≡ 2(12 log n/(p0(n− 2)))1/d.

Lemma 2.7. (Bound on the distance estimation) Under the hypotheses of Theorem 2.1,
with probability larger than 1− 1/n4, for any pair of nodes i ∈ V and j ∈ V , the number
of hops between nodes i and j is bounded by

hi,j ≤
(

1 +
R̃

R

)di,j
R

+ 2 ,

for R > max{7R̃, (1/p0)1/dR̃}.

The proof of this lemma is provided in Section 2.5.7. The distance estimate from the
first step of MDS-MAP is d̂i,j = Rhi,j. The following corollary gives a bound on the
error.

Corollary 2.8. Under the hypotheses of Lemma 2.7,

d̂2
i,j − d2

i,j ≤
30R̃

14R
d2
i,j + 8R .

Proof. From Lemma 2.7, we know that

(Rhi,j)
2 − d2

i,j ≤
2R̃

R

(
1 +

R̃

2R

)
d2
i,j + 2R

(
1 +

R̃

R

)
di,j + 4R2 .

The corollary follows from the assumption that 7R̃ < R ≤ 1 and d ≤ 3.

Define an error matrix Z = D̂−D̄. Then by Corollary 2.8, Z is element-wise bounded
by 0 ≤ Zij ≤ (30R̃/(14R))D̄ij +8R. We can bound the spectral norm of Z as follows. Let
u and v be the left and right singular vectors of the non-negative matrix Z, respectively.
Then by Perron-Frobenius theorem, u and v are also non-negative. It follows that

‖D̂ − D̄‖2 = uTZv

≤ (30R̃/(14R))uTD̄v + (1Tu)(1Tv)8R

≤ (30R̃/(14R))‖D̄‖2 + 8Rn

≤ (30R̃/(14R))dn+ 8Rn . (2.11)

The first inequality follows from the element-wise bound on Z and the non-negativity of
u and v, and the second inequality follows form the definition of the spectral norm and
the Cauchy-Schwarz inequality. In the last inequality, we used ‖D̄‖2 ≤ dn, which follows
from the fact that D̄ is non-negative and element-wise bounded by d. Typically we are
interested in the regime where R = o(1), and by assumption we know that R ≥ R̃ and
d ≤ 3. Therefore, the first term in (2.11) dominates the error. Substituting this bound on

‖D̂ − D̄‖2 in (2.10) proves the theorem.
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2.5.2 Proof of Theorem 2.3

Using SVD we can write LX as Un×dΣd×dV
T
d×d where UTU = Id×d, V TV = V V T =

Id×d and Σ is a diagonal matrix. We also denote the inner product of matrices by 〈A,B〉 ≡∑
i,j Ai,jBi,j. It is easy to show that 〈A,B〉 = Tr(ATB) ≤ ‖A‖F‖B‖F . Now, for S =

X̂TLUΣ−1V T , then

‖LX −LX̂S‖F = sup
B∈Rn×d,‖B‖F≤1

〈B,LX −LX̂S〉 (2.12)

The above equation can be further written as

(2.12) = sup
B∈Rn×d,‖B‖F≤1

〈B, (LXV ΣUT −LX̂X̂TL)UΣ−1V T 〉

= sup
B∈Rn×d,‖B‖F≤1

〈BV Σ−1UT ,LXXTL−LX̂X̂TL〉

= sup
B∈Rn×d,‖B‖F≤1

‖BV Σ−1UT ‖F ‖LXXTL−LX̂X̂TL‖F .

Using the fact ‖A‖F = Tr(ATA) and the cyclic property of the trace, i.e., Tr(ABC) =
Tr(BCA), we obtain

‖BV Σ−1UT‖2
F = Tr(BV Σ−2V TBT ) ≤ σ−2

min‖B‖2
F ,

where σmin is the smallest singular value of LX. It remains to show that σmin ≥
√
n/6

holds with high probability when nodes are placed uniformly at random. To this end
we need to consider two facts. First, the singular values (and in particular the smallest
singular value) are Lipschitz functions of the entries. Second, we have E(LXXTL) =
(n/12)Id×d. By using concentration of measure for Lipschitz functions on bounded inde-
pendent random variables, the result follows.

2.5.3 Proof of Theorem 2.4

In this section we provide the proofs of the theorems 2.4, and proofs of the technical
lemmas are provided in the following sections . From Eq. (2.3), we get

‖xi − x̂i‖ = ‖(ATA)−1AT b
(i)
0 − (ATA)−1AT b(i)‖

≤ ‖(ATA)−1AT‖2‖b(i)
0 − b(i)‖ , (2.13)

First, to bound ‖b(i)
0 − b(i)‖, we use Corollary 2.8. Since d2

i,j ≤ d for all i and j, we have

‖b(i)
0 − b(i)‖ =

(m−1∑
k=1

(
d2
i,k+1 − d2

i,k − d̂2
i,k+1 + d̂2

i,k

)2
)1/2

≤ 2
√
m− 1

(
30R̃

14R
d+ 8R

)
, (2.14)

Next, to bound ‖(ATA)−1AT‖2, we use the following lemma.
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Lemma 2.9. Under the hypothesis of Theorem 2.4, the following is true. Assuming ran-
dom anchor model in which m = Ω(log n) anchors are chosen uniformly at random among
n sensors. Then we have

‖(ATA)−1AT‖2 ≤
√

3

m− 1
,

with high probability.

By assumption we know that R ≥ R̃ and d ≤ 3. By combining (2.13), (2.14) and
Lemma 2.9 proves Theorems 2.4.

2.5.4 Proof of Theorem 2.5

Similarly to the proof of Theorem 2.4, for an unknown node i, and the estimate x̂i we
have

‖xi − x̂i‖ ≤ ‖(ATA)−1AT‖2‖b(i)
0 − b(i)‖ ,

We have already bounded the expression ‖b(i)
0 −b(i)‖ in (2.14). To bound ‖(ATA)−1AT‖2,

we use the following lemma.

Lemma 2.10. Under the hypothesis of Theorem 2.5, the following are true. We assume
a deterministic anchor model, where m = d + 1 anchors are placed on the positions
x1 = [1, 0, . . . , 0], . . . , xm = [0, 0, . . . , 0]. Then, ‖(ATA)−1AT‖2 ≤ d

2
, with high probability.

This finishes the proof of Theorems 2.5.

2.5.5 Proof of Lemmas 2.9 (Random Model)

In order to upper bound ‖(ATA)−1A‖2 we need to lower bound the smallest singular
value of A. Let the symmetric matrix B be defined as ATA. The diagonal entries of B
are

bi,i = 4
m−1∑
k=1

(xk,i − xk+1,i)
2, (2.15)

for 1 ≤ i ≤ d and the off-diagonal entries are

bi,j = 4
m−1∑
k=1

(xk,i − xk+1,i)(xk,j − xk+1,j), (2.16)

for 1 ≤ i 6= j ≤ d where xk,i is the i-th element of vector xk. In the following lemmas, we
show that with high probability, as m increases, the diagonal entries of B will all be of
the order of m, i.e., bi,i = Θ(m), and the off-diagonal entries will be bounded from above

by m
1
2

+ε, i.e., bi,j = o(m).

Lemma 2.11. For any ε > 0 the diagonal entries of B are bounded as follows.

P
(
|bi,i − 2(m− 1)/3| > 4m

1
2

+ε
)
≤ 4e−m

2ε

.
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We use Hoeffding’s inequality. To this end, we need to divide the sum in (2.15) into
sums of even and odd terms as follows:

bi,i = bie + bio,

where

bie = 4
∑
k∈even

(xk,i − xk+1,i)
2, (2.17)

bio = 4
∑
k∈odd

(xk,i − xk+1,i)
2. (2.18)

This separation ensures that the random variables in summations (2.17) and (2.18) are
independent. Let the random variable zik denote the term 4(xk,i− xk+1,i)

2 in (2.17). Since
zik ∈ [0, 4] and all the terms in bie are independent of each other, we can use Hoeffding’s
inequality to upper bound the probability of the deviation of bie from its expected value:

P
(
|bie − (m− 1)/3| > 2m

1
2

+ε
)
≤ 2e−m

2ε

, (2.19)

for any fixed ε > 0. The same bound holds for bo. Namely,

P
(
|bio − (m− 1)/3| > 2m

1
2

+ε
)
≤ 2e−m

2ε

. (2.20)

Hence,

P
(
|bi,i − 2(m− 1)/3| > 4m

1
2

+ε
)

≤ P
(
|be − (m− 1)/3|+ |bo − (m− 1)/3| > 4m

1
2

+ε
)
,

where we used triangular inequality. Applying union bound, this is upper bounded by
4e−m

2ε
.

Lemma 2.12. For any ε > 0 the off-diagonal entries of B are bounded as follows.

P
(
|bi,j| > 16m

1
2

+ε
)
≤ 4e−m

2ε

.

Using the Gershgorin circle theorem [HJ85] we can find a lower bound on the minimum
eigenvalue of B.

λmin(B) ≥ min
i

(bi,i −Ri), (2.21)

where Ri =
∑

j 6=i |bi,j|. Now, let Bii denote the event that {bi,i < 2(m−1)/3−4m
1
2

+ε} and

Bij (for i 6= j) denote the event that {bi,j > 16m
1
2

+ε}. Since the matrix B is symmetric,
we have only d(d+1)/2 degrees of freedom. Lemma 2.11 and 2.12 provide us with a bound
on the probability of each event. Therefore, by using the union bound we get

P

(⋃
i≤j

Bij

)
≤ 1−

∑
i≤j

P(Bij)

= 1− 3d2e−m
2ε

.
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Therefore with probability at least 1− 3d2e−m
2ε

we have

bi,i −Ri ≥
2(m− 1)

3
− 16d ·m 1

2
+ε, (2.22)

for all 1 ≤ i ≤ d. As m grows, the RHS of (2.22) can be lower bounded by (m− 1)/3. By
combining (2.21) and (2.22) we get

P
(
λmin(B) ≥ (m− 1)

3

)
≥ 1− 3d2e−m

2ε

. (2.23)

As a result, from (2.25) and (2.23) we have

P

(
‖(ATA)−1A‖2 ≤

√
3

m− 1

)
≥ 1− 3d2e−m

2ε

, (2.24)

which finishes the proof.

2.5.6 Proof of Lemmas 2.10 (Deterministic Model)

By using the singular value decomposition of a tall m− 1×d matrix A, we know that
it can be written as A = UΣV T where U is an orthogonal matrix, V is a unitary matrix
and Σ is a diagonal matrix. Then, (ATA)−1A = UΣ−1V T . Hence,

‖(ATA)−1A‖2 =
1

σmin(A)
, (2.25)

where σmin(A) is the smallest singular value of A. This means that in order to upper
bound ‖(ATA)−1A‖2 we need to lower bound the smallest singular value of A.

By putting the sensors in the mentioned positions the d× d matrix A will be Toeplitz
and have the following form.

A = 2


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
. . . . . .

...
0 · · · 0 0 1

 .
We can easily find the inverse of matrix A.

A−1 =
1

2


1 1 1 · · · 1
0 1 1 · · · 1
...

...
. . . . . .

...
0 · · · 0 0 1

 .
Note that the maximum singular value of A−1 and the minimum singular value of A are
related as σmin(A) = (σmax(A

−1))−1. To find the maximum singular value of A−1, we

need to calculate the maximum eigenvalue of A−1 (A−1)
T

. Using the Gershgorin circle

theorem [HJ85] we can find an upper bound: λmax

(
A−1 (A−1)

T
)
≤ d2

4
. Combining this

with (2.25), we get ‖(ATA)−1A‖2 ≤ d
2
.
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Figure 2.12 – Two dimensional illustration of a bin Ai,j when two nodes are far apart
(left), and bin Bi,j when two nodes are less than R apart (right).

2.5.7 Proof of the Bound on the Number of Hops

We start by applying a bin-covering technique in a similar way as in [MP05, OKM10,
KO10], but for a more general model where there can be a detection failure. In this
section, for simplicity, we assume that the nodes are placed in a 3-dimensional space, but
analogous argument is true for d = 2 as well.

For each ordered pair of nodes (i, j) we are going to define a corresponding d-dimensional
space, which we call a ‘bin’ (see Figure 2.12). When two nodes are far apart, i.e. di,j > R,
we define a ‘bin’ as

Ai,j =
{
x ∈ [0, 1]3

∣∣ R− δ ≤ d(x, xi) ≤ R,](xj − xi, x− xi) ≤ θ
}
,

where δ and θ are positive parameters which define the size of the bin, and we specify
their values later. Here, ](·, ·) is the angle between two vectors. We say a bin Ai,j is
occupied if there is a node inside the bin that is detected by node i (i.e., connected to
node i in the graph G). We want δ and θ large enough that all bins are occupied (with high
probability), but we want them to be small enough that the furthest distance between
two nodes in the same bin is small: this distance bounds the maximum error we make in
each bin.

Next, when (i, j) is close by, di,j ≤ R, we define a bin:

Bi,j =
{
x ∈ [0, 1]3

∣∣ d(x, xi) ≤ R, d(x, xj) ≤ R
}
.

We say a bin Bi,j is occupied if there is a node inside the bin that is simultaneously
detected by nodes i and j. When n nodes are deployed in [0, 1]d uniformly at random, we
want to ensure that, with high probability, all bins are occupied for appropriate choices
of δ and θ as functions of d, R, and p0, where p0 is the minimum probability of detection.
First when di,j > R,

P
(
Ai,j occupied

)
= 1−

∏
l 6=i,j

(1− P(node l occupies Ai,j)) (2.26)

The above probability can be lower bounded as follows:

(2.26) ≥ 1−
(

1− 1

4

∫ θ

0

∫ R

R−δ
2πr2 sin(φ)p0drdφ

)n−2

= 1−
(

1− 1

2
πp0(1− cos(θ))

1

3
(R3 − (R− δ)3)

)n−2
.

The factor 1/4 in the first line comes from the fact that, in the worst case the intersection
of Ai,j and the 3-dimensional cube [0, 1]3 is at most a quarter of the bin Ai,j, which happens
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for instance if xi = [0, 0, 0] and xj = [1, 0, 0]. We choose θ such that 1 − cos(θ) = π/6.
Then using the facts that 1− z ≤ exp(−z) and 1− z3 ≥ (1− z)3 for z ∈ [0, 1], we have

P
(
Ai,j is occupied

)
≥ 1− exp

(
−p0δ

3(n− 2)
)
,

which is larger than 1− 1/n6 if we set δ = (12 log n/(p0(n− 2)))1/3.
Next we consider the case when nodes i and j are at most R apart. Notice that nodes

i and j may not be directly connected in the graph. The probability that they are not
directly connected is at least p0, which does not vanish even for large n. But we can show
that nodes i and j are at most 2 hops apart with overwhelming probability. Then,

P
(
Bi,j is occupied

)
= 1−

∏
l 6=i,j

(1− P(node l is detected by i and j))

≥ 1− (1− V (Bi,j)p
2
0)n−2

≥ 1− exp
{
−V (Bi,j)p

2
0(n− 2)

}
, (2.27)

where V (Bi,j) is the volume of Bi,j, and we used the fact that the probability of de-
tection is lower bounded by p0. V (Bi,j) is the smallest when nodes i and j are dis-
tance R apart and lie on one of the edges of the cube [0, 1]3. In a 3-dimensional space,
V (Bi,j) ≥ (1/4)(5/12)πR3 ≥ (1/4)R3. Substituting these bounds in (2.27), we get

P
(
Bi,j is occupied

)
≥ 1− exp

{
−(1/4)p2

0R
3(n− 2)

}
, (2.28)

which is larger than 1− 1/n6 for R ≥
(
(24 log n)/((n− 2)p2

0)
)1/3

.
For each ordered pair (i, j), we are interested in the bin Ai,j if di,j > R and Bi,j if

di,j ≤ R. Using the bounds in (2.27) and (2.28) and applying union bound over n(n− 1)
ordered pairs, all bins are occupied with a probability larger than 1− 1/n4.

Now assuming all bins are occupied, we first show that the number of hops between
two nodes i and j is bounded by a function F (di,j) that only depends on the distance
between the two nodes. The function F : R+ → R+ is defined as

F (z) =

{
2 if z ≤ R ,
k + 2 if z ∈ Lk for k ∈ {1, 2, . . .} ,

where Lk denotes the interval (k(R −
√

3δ) +
√

3δ, k(R −
√

3δ) + R]. Our strategy is to
use induction to show that for all pairs,

hi,j ≤ F (di,j) . (2.29)

First, assume nodes i and j are at most R apart. Then, by the assumption that Bi,j is
occupied there exists a node connected to both i and j. Then the number of hops hi,j is
at most two. Next, assume that (2.29) is true for all (l,m) with

dl,m ≤
√

3δ + k(R−
√

3δ).

For two nodes i and j at distance di,j ∈ Lk, consider a line segment `i,j in the 3-dimensional
space with one end at xi and the other at xj. Let y ∈ R3 be the point in the line segment
`i,j that is at distance R from xi. We want to show that there exists a node that is close
to y and is connected to node i. By definition, y is inside the bin Ai,j. We know that the
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Figure 2.13 – Comparison of upper and lower bound of shortest paths {d̂i,j} with respect
to the correct distance {di,j} under connectivity-based model.

bin Ai,j is occupied by at least one node that is connected to node i. Let us denote one
of these nodes by l. Then d(y, xl) ≤

√
3δ because

sup
z∈Ai,j

d(z, y) =
√
δ2 + 2R(R− δ)(1− cos(θ)) ≤

√
3δ.

We use the following triangular inequality: hi,j ≤ hi,l + hl,j. Since l is connected to i
we have hi,l = 1. By triangular inequality, we also have dl,j ≤ d(y, xj) + d(y, xl). It follows
from d(y, xj) = di,j −R and d(y, xl) ≤

√
3δ that

dl,j ≤ di,j −R +
√

3δ.

Recall that we assumed di,j ≤ R + k(R −
√

3δ). Since we assumed that (2.29) holds
for dl,j ≤

√
3δ + k(R −

√
3δ), we have hi,j ≤ k + 2, for all nodes i and j such that

di,j ≤ R + k(R −
√

3δ). By induction, this proves that the bound in (2.29) holds for all
pairs (i, j).

We can upper bound F (z) with a simple affine function:

F (z) ≤ 2 +
1

R−
√

3δ
z

≤ 2 +
(

1 +
2δ

R

) z
R
,

where the last inequality is true for R ≥ 2
√

3δ/(2−
√

3). Together with (2.29) this finishes
the proof of the lemma.

Figure 2.13 illustrates the comparison of the upper bounds F (di,j) and Fa(di,j), and the

trivial lower bound d̂i,j ≥ di,j in a simulation with d = 2, n = 6000 and R =
√

64 log n/n.
The simulation confirms that the shortest paths lie between the analytical upper and
lower bounds. Although the gap between the upper and lower bound is seemingly large,
in the regime where R = C

√
log n/n with a constant C, the vertical gap R vanishes as

n grows large and the slope of the affine upper bound can be made arbitrarily small by
taking large enough C.



“Yes, they are
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Jennifer Jergens

Calibration Through Matrix
Completion 3

In most applications that involve sensing, finding the correct positions of the sensors
is of crucial importance for obtaining reliable results. This is particularly true in the
case of inverse problems that can be very sensitive to incorrect sensor placement. This
requirement can be satisfied in two ways: We can put the effort in the construction of the
instruments and try to place the sensors exactly in the desired positions, or we can use a
method to find the exact positions after the construction of the device. In this chapter 1,
we will consider this method for obtaining the sensor positions, called calibration. Note
that even in the former case, due to the precision of the construction instruments, a
calibration is needed afterwards to determine the exact sensor positions. Although in rare
cases a single calibration might be enough throughout the lifetime of the measurement
system, it is very useful to have a calibration procedure that can be repeated easily and
with low cost.

In this chapter, our focus is on the calibration problem in circular sensing devices, in
particular, those manufactured and deployed in [DLP+07, JSV09]. These devices consist
of a circular ring that surrounds an object and scans horizontal planes. Ultrasound sensors
are placed on the interior boundary of the ring and act both as transmitters and receivers.

The calibration problem we address here is the following: In circular tomography
devices, sensors are not placed exactly on a perfect circle. This uncertainty in the positions
of the sensors acts as a source of error in the reconstruction algorithms used to obtain
the characteristics of the enclosed object. We develop a simple method for calibrating the
system with correct sensor positions at low cost and without using any extra calibrating
instruments.

In order to find the correct sensor positions, we incorporate the time-of-flight (ToF)
of ultrasound signals between pairs of sensors, which is the time taken by an ultrasound
wavefront to travel from a transmitter to a receiver. If we have all the ToF measurements
between all pairs of sensors when the enclosed medium is homogeneous, then we can
construct a ToF matrix where each entry corresponds to the ToF between each pair of
sensors. We can infer the positions of the sensors by using this ToF matrix.

1. This chapter is the result of a collaboration with R. Parhizkar, S. Oh and M. Vetterli.
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To obtain reliable ToF entries appropriate for our purpose, we assume that no object
is placed inside the ring during the calibration phase nor prior to actual measurements.
There are a number of challenges we encounter:

– the ToF matrices obtained in a practical setup have missing entries,
– the measured entries of the ToF matrices are corrupted by noise,
– there is an unknown time delay added to the measurements.

If we had the complete and noiseless ToF matrix without time delay, the task of finding the
exact positions would be very simple. As we saw in the previous chapter, this problem is
addressed in the literature as multi-dimensional scaling (MDS) [DJMI+06]. Unfortunately,
the ToF matrix in practical setups is never complete and many of the time-of-flight values
are missing. The missing entries can be divided into two categories: structured missing
entries caused by the inability of sensors to compute the mutual time of flights with their
close-by neighbors; and random missing entries due to the malfunctioning of sensors or
the ToF estimation algorithm during the measurement procedure.

A good estimation of the positions of the sensors can be obtained, if we have a good
estimation of the missing entries of the ToF matrix. In general, it is a difficult task to
infer missing entries of a matrix. However, it has recently been established that if the
matrix is low-rank, a small random subset of its entries permits an exact reconstruction
[CR08]. Because a modified version of the ToF matrix (when the entries are the squared
ToF measurements) is low-rank, its missing entries can be accurately estimated, using
matrix completion algorithms. To this end, we use OptSpace, a robust matrix completion
algorithm developed by Keshavan et al. [KMO09].

On top of the missing entries, we also need to deal with an unknown time delay. This
delay it due to the fact that, in practice, the impulse response of the piezoelectric and
the time origin in the measurement procedure are not known and this causes an unknown
time delay, which is added to the measurements. To infer this time delay simultaneously
with the positions of the sensors, we propose a heuristic algorithm based on OptSpace.

In circular setups, the sensors are not necessarily on a circle and deviate from the
circumference, which in fact necessitates the calibration process. We therefore need to
assume that they are in the proximity of a circle (the precise statement is given later)
and we are required to find the exact positions. Our approach is to estimate the local
and random missing pairwise distances from which we can then infer the positions. As we
have already mentioned, we show that a modified version of the ToF matrix has rank at
most four; and by using this property, we propose our calibration procedure. The block
diagram shown in Figure 3.1 summarizes the overall procedure.

3.1 Related Work

Calibration for circular tomography devices is a variant of sensor localization, the
problem that we discussed in the previous chapter. As we have seen, in sensor localization,
given the local connectivity, the objective is to devise an algorithm that can infer the global
position of the sensors. We have also mentioned several methods that are deployed as a
means to obtain the local information: the Signal Strength, the Angle of Arrival (AOA),
and the Time Difference of Arrival (TDoA). Our problem here is naturally related to
sensor localization when estimated TDoAs are used to measure the pairwise distances
between nearby nodes. As we have noted, due to energy constraints, each node has a
small communication range, compared to the field size they are installed. Consequently,
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Figure 3.1 – Block diagram for the calibration procedure prior to ultrasound tomography.
The incomplete distance matrix is passed through the OptSpace algorithm that denoises
it, estimates the missing entries and removes the unknown time delay. The calibration is
finished then by applying the MDS algorithm on the completed matrix that estimates the
actual sensor positions.

only nodes within the communication range of each other can communicate hence estimate
their pairwise TDoA’s. This situation is depicted in Figure 3.2.

In the calibration problem, however, the local connectivity is precisely the kind of
information that is missing. In fact, the beam width of transducers and the transient
behaviour of ultrasound sensors prevent us from having reliable ToFs for nearby sensors
(see Section 3.2). For this reason, in practice, the ToFs for close-by sensors are discarded
and no information regarding their pairwise distances can be deduced. Consequently, in
our scenario we are faced with a different setting from that of sensor localization:

– the pairwise distances of neighboring sensors are missing,
– only the pairwise distances of faraway sensors can be figured out from their ToFs.

This situation is demonstrated in Figure 3.2. By comparing these two scenarios in Fig-
ure 3.2, one can think of the calibration problem for ultrasound sensors as the dual
problem of sensor localization. As a result, all sensor localization algorithms that rely on
local information/connectivity are doomed to fail in our scenario. To confirm this fact, in
Section 3.6, through numerical simulations we compare the performance of our proposed
method with the state-of-the-art algorithms for sensor localization applied to our setting.

The first sensor localization algorithm we consider is MDS-MAP [SRZF03]. Recall from
the previous chapter that this algorithm has two phases. First, the Euclidean distance of
far-off sensors are approximated by the shortest path between them. Then, to estimate
the relative positions of sensors, multidimensional scaling is applied to the approximated
distance matrix. We can easily see, however, that given faraway sensors’ distances, the
shortest path is a very coarse estimate of the distance between the close-by sensors. This
makes MDS-MAP perform very poorly in our setting.

One of the most prominent algorithms for centralized sensor localization is based
on semi-definite programming (SDP). The method was first introduced by Biswas et al.
in [BY04, BLT+06] and solves the sensor localization problem using convex relaxation.
From a practical point of view, the major problem of SDP-based methods is their heavy
computations. According to [BLT+06], the sensor localization for more than 200 sensors
is computationally prohibitive. Theoretical guarantees of such methods were provided
recently by Javanmard et al. [JM11]. As their results suggest, in the case of sensor lo-
calization, once the number of sensors grows, we cannot reduce the error of semidefinite
programming below a threshold unless we increase the communication range, hence the
power consumption of sensors. We will show, however, using matrix completion, the error
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Figure 3.2 – In sensor localization (left figure) the local connectivity information is avail-
able and faraway ones are missing whereas in calibration (right figure) the opposite is
true.

decreases as the number of transmitter/receivers grows.
In the core of our proposed method is matrix completion, an algorithm that recovers a

low-rank matrix from its randomly known entries. It is easy to show that a matrix formed
by pairwise distances is low-rank (see Lemma 3.1). Based on this property, Drineas et al.
suggested using matrix completion for inferring the unknown distances [DJMI+06]. In the
previous chapter, we have mentioned that their analysis relied on the assumption that
even for faraway nodes, there was a non-zero probability of communication. Thinking
back to duality between sensor localization and our problem, this assumption suggests
that, in our case, the pairwise distances of nearby transmitters/receivers can be obtained
with a non-zero probability, an assumption that does not hold.

Recently, we have witnessed many improvements on the matrix completion algo-
rithms. Candès et al. showed that a small random fraction of the entries suffices to
reconstruct a low-rank matrix exactly. In a series of papers [KMO10, KMO09, KO09],
Keshavan et al. studied an efficient implementation of a matrix completion algorithm,
called OptSpace, and showed its optimality. Furthermore, they proved that their algo-
rithm is robust against noise [KMO09]. In view of this progress, we show in this chapter
that OptSpace is also capable of finding the missing nearby distances in our scenario
hence providing us with their corresponding ToFs. To the best of our knowledge, all the
above work, as well as the recent matrix completion algorithms [Rec09, RXH11], deal
only with random missing entries. However, in our case, we encounter structured missing
entries, in addition to the random ones (see Section 3.2), which is an aspect that was
absent from the previous work. Therefore, one of our contributions is to provide analytic
bounds on the error of OptSpace in the presence of structured missing entries.

3.2 Circular Time of Flight Tomography

The focus of this chapter is ultrasound tomography with circular apertures. In this
setup, n ultrasound transmitters and receivers are installed on the interior edge of a circu-
lar ring and an object with unknown acoustic characteristics is placed inside the ring. At
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Figure 3.3 – Circular setup for ultrasound tomography considered in this work. Ultrasound
transducers are distributed on the edge of a circular ring and the object with unknown
characteristics is put inside. Transmitters and receivers are collocated. In practice, the
positions deviate from an ideal circle.

each time instance a transmitter is fired, sending ultrasound signals with frequencies rang-
ing from hundreds to thousands of kHz, while the rest of the sensors record the received
signals. The same process is repeated for all the transmitters. Each one of n sensors on the
ring is capable of transmitting and receiving ultrasound signals. The aim of tomography
in general is to use the recorded signals in order to reconstruct the characteristics of the
enclosed object (e.g., sound speed, sound attenuation, etc.) The general configuration for
such a tomography device is depicted in Figure 3.3. By employing these measurements,
we can construct an inverse problem whose solution provides the acoustic characteristics
of the enclosed object.

There are two common methods for solving the inverse problem. The solutions are
either based on the wave equation [NW01] or the bent-ray theory [Jov08]. Both techniques
consist of forward modeling the problem and comparing the simulation results with the
measured data. For the details see [NW01] and [Jov08]. In both cases, in order to simulate
the forward model and rely on the recorded data, a very precise estimate of the sensor
positions is needed. In most applications (e.g., [JHSV07, SHD07, Nat08]), however, it
is assumed that the sensors are positioned equidistantly apart on a circle and no later
calibration is performed to find the exact sensor positions.

Homogeneous Medium and Dimensionality Reduction

In order to estimate sensor positions, we utilize the ToF measurements for a homoge-
neous medium (e.g., water in the context of breast cancer detection). Let us assume that
the mutual ToFs are stored in a matrix T . In a homogeneous medium, the entries of T
represent the travel time of sound in a straight line between each pair of a transmitter
and receiver.

Knowing the temperature and the characteristics of the medium inside the ring, we
can accurately estimate the constant sound speed c0. Thus, it is reasonable to assume
that c0 is fixed and known. Having the ToFs for a homogeneous medium where no object
is placed inside the ring, we can construct a distance matrix D consisting of the mutual
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distances between the sensors as

D = [di,j] = c0T , T = [ti,j] , i, j ∈ {1, · · · , n} (3.1)

where ti,j is the ToF between sensors i and j and n is the total number of sensors around
the circular ring. Notice that the only difference between the ToF matrix T and distance
matrix D, is the constant c0. This is why in the rest of this chapter, our focus will be
mainly on the distance matrix rather than the actual measured matrix T .

As the enclosed medium is homogeneous, the matrix T is a symmetric matrix with
zeros on the diagonal, and so is the matrix D. Even though, the distance matrix D is
full rank in general, a simple point-wise transform of its entries will lead to a low-rank
matrix.

Lemma 3.1. If one constructs the squared distance matrix D̄ as

D̄ =
[
d2
i,j

]
,

then the matrix D̄ has rank at most 4 [DJMI+06] and if the sensors are placed on a circle,
the rank is exactly 3.

In practice, as we will explain in the next section, many of the the entries of the ToF
matrix (or equivalently the distance matrix) are missing and there is an unknown time
delay added to all the measurements.

Time-of-Flight Estimation

Several methods for ToF estimation have been proposed in the signal processing com-
munity [Jov08, LHD+09]. These methods are also known as time-delay estimation in
acoustics [CHB04]. In these methods, the received signal is compared to a reference signal
(ideally the sent signal), and the relative delay between the two signals is estimated. As
the sent signal is not available in most cases, the received signal (that passed through
the enclosed object) is compared to the received signal when the underlying medium is
homogeneous. Unfortunately, we cannot use these methods in our scenario because in
the calibration process we have only access to signals passed though the homogeneous
medium.

Due to this limitation, we are forced to estimate the absolute ToFs. For this purpose,
we use the first arrival method. This method probes the received signal and defines the
time of flight as the time instant at which the received signal power exceeds a predefined
threshold.

In practical screening systems, to record measurements for one fired transmitter, all
the sensors are turned on simultaneously and after some unknown transition time (which
is caused by the system structure, different sensor responses, etc.), the transmitter is fed
with the electrical signal and the receivers start recording the signal. This unknown time
can change for each pair of transmitters and receivers. We will see later that accurately
estimating this unknown time delay is a critical part of the calibration process.

The beam width of the transducers and the transition behaviour of the ultrasonic
sensors prevent the sensors from having a reliable ToF measurement for close-by neigh-
bours. This results in incorrect ToF values for the sensors positioned close to each other.
Therefore, numbering the sensors on the ring from 1 to n, in the ToF matrix T , we will
not have measurements on a certain band around the main diagonal and on the lower left
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Figure 3.4 – The beam width of the transmitter causes the neighbouring sensors to not
have reliable ToF measurements. This is shown by dashed lines in the figure. The area
shown in gray corresponds to the part not covered by the transmitter’s wave beam. This
results in the structured missing entries.

T =

?

?

? .

Figure 3.5 – A sample incomplete ToF matrix with structured and random missing entries.

and upper right parts as well. We call these missing entries structured missing entries.
This is illustrated in Figure 3.4. The links shown by dashed lines do not contribute to the
ToF measurements, because the beam for the transmitter does not cover the gray part.

During the measurement procedure, it can also happen that some sensors do not act
properly and give outliers. Consequently, we perform a post processing on the measure-
ments, in which a smoothness criterion is defined and the measurements not satisfying
this criterion are removed from the ToF matrix. We call these entries random missing
entries. An instance of the ToF matrix with the structured and random effects is shown
in Figure 3.5, where T

inc
denotes the incomplete ToF matrix and the gray entries corre-

spond to the missing entries. Furthermore, in practice, the measurements are corrupted
by noise.

The above mentioned problems result in an incomplete and noisy matrix T that cannot
be used for position reconstruction unless the time delay effect is removed, the unknown
entries are estimated, and the noise is smoothed.
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r

a

Figure 3.6 – Sensors are distributed around a circle of radius r with small deviations from
the circumference.

3.3 Problem Statement

We have observed that the distance matrix, when the aperture is in homogeneous
medium, is calculated as in (3.1). We have also seen in the previous section that the
measurements for the ToF matrix T have three major problems : they are noisy, some of
them are missing, and the measurements contain some unknown time delay. For simplic-
ity, we will assume that this time delay is constant for all the transmitters, i.e., all the
transmitters send the electrical signal after some fixed but unknown delay t0. Hence, we
can rewrite the ToF matrix as follows

T̃ = T + t0A + Z0 ,

where T consists of ideal measurements for ToF, Z0 is the noise matrix and A is defined
as

A = [ai,j] , ai,j =

{
1 if i 6= j ,

0 otherwise .

With the above considerations, the distance matrix can also be written as

D̃ = D + d0A + Z , (3.2)

where D = c0T , d0 = c0t0, and Z = c0Z0.

In our model, we do not assume that the sensors are placed exactly on the ring. In
practice, the sensor positions deviate from the circumference and our ultimate goal is
to estimate these deviations or equivalently the correct positions (see Figure 3.6). The
general positions taken by sensors are denoted by the set of vectors {x1, . . . ,xn}.

To incorporate the structured missing entries, we assume that any measurements be-
tween sensors of distance less than δn are missing (see Figure 3.6). Hence, the number
of structured missing entries depends on δ2

n. We are interested in the regime where we
have a small number of structured missing entries per row in the large systems limit.
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Accordingly, a typical range of interest for δn is δn = Θ( r
√

log n/n). A random set of
structured missing indices S ⊆ [n]× [n] is defined from {xi} and δn, by

S = {(i, j) : di,j ≤ δn and i 6= j} ,

where di,j = ‖xi − xj‖. Then, the structured missing entries are denoted by a matrix

Ds
i,j =

{
Di,j if (i, j) ∈ S ,
0 otherwise .

Note that the matrix Ds̄ = D−Ds captures the noiseless distance measurements that are
not affected by structured missing entries. This way, we can interpret the matrix Ds as
additive noise in our model. Likewise, for the constant additive time delay we can define

As̄
i,j =

{
Ai,j if (i, j) ∈ S⊥ ,
0 otherwise ,

where S⊥ denotes the complementary set of S. Next, to model the noise we add a random
noise matrix Z s̄.

Z s̄
i,j =

{
Zi,j if (i, j) ∈ S⊥ ,
0 otherwise .

We do not assume a prior distribution on Z, and the main theorem is stated for any
general noise matrix Z, deterministic or random. One practical example of Z is an i.i.d.
Gaussian model.

Finally, to model the random missing entries, we assume that each entry of Ds̄ +
t0c0A

s̄ + Z s̄ is sampled with probability pn. In the calibration data, we typically see a
small number of random missing entries. Hence, in order to model it we assume that
pn = Θ(1). Let E ⊆ [n]× [n] denote the subset of indices which are not erased by random
missing entries. Then a projection PE : Rn×n → Rn×n is defined as

PE(M)i,j =

{
Mi,j if (i, j) ∈ E ,

0 otherwise .

We denote the observed measurement matrix by

NE = PE(Ds̄ + d0A
s̄ + Z s̄), (3.3)

where d0 = t0c0 is a constant. Notice that the matrix NE has the same shape as T
inc

shown already schematically in Figure 3.5.

Now we can state the goal of our calibration problem: Given the observed matrix
NE and the missing indices S ∪ E⊥, we want to estimate a low-rank matrix D̂ close (in

Frobenius norm) to the correct squared distance matrix D̂. This issue is investigated under
the name of matrix completion, which is the topic of the next section. Having estimated
the missing entries of NE, the sensor positions can be then retrieved by applying MDS
on D̂ (we talked extensively about MDS in Section 2.3.1).
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3.4 Matrix Completion

OptSpace, introduced in [KMO10], is an algorithm for recovering a low-rank matrix
from noisy data with missing entries. The steps are shown in Algorithm 3.1. Let M be a
rank-q matrix of dimensions n×n, Z the measurement noise, and E the set of indices of the
measured entries. Then, the measured noisy and incomplete matrix is ME = PE(M+Z).

Algorithm 3.1 OptSpace [KMO10]

Input: Observed matrix ME = PE(M + Z).
Output: Estimate M .

1: Trimming: remove over-represented columns/rows;
2: Rank-q projection on the space of rank-q matrices according to (3.4);
3: Gradient descent: Minimize a cost function F (·) defined in (3.5);

In the trimming step, a row or a column is over-represented if it contains more samples
than twice the average number of samples per row or column. These rows or columns
can dominate the spectral characteristics of the observed matrix ME. Thus, some of
their entries are removed uniformly at random from the observed matrix. Let M̃E be
the resulting matrix of this trimming step. This trimming step is presented here for
completeness, but in the case when pn is larger than some fixed constant (like in our

case where pn = Θ(p)), ME=M̃E with high probability and the trimming step can be
omitted.

In the second step, we first compute the singular value decomposition (SVD) of M̃E.

M̃E =
n∑
i=1

σi(M̃
E)uiv

T
i ,

where σi(·) denotes the i-th singular value of a matrix. Then, the rank-q projection returns
the matrix

Pq(M̃E) = (1/pn)

q∑
i=1

σi(M̃
E)uiv

T
i , (3.4)

obtained by setting to 0 all but the q largest singular values.

Starting from the initial guess provided by the rank-q projection Pq(M̃E), the final
step solves a minimization problem stated as the following [KMO10]:
Given X ∈ Rn×q,Y ∈ Rn×q with XTX = Iq×q and Y TY = Iq×q, define

F (X,Y ) = min
S∈Rq×q

F(X,Y ,S) , (3.5)

F(X,Y ,S) =
1

2

∑
(i,j)∈E

(Mi,j − (XSY T )i,j)
2 . (3.6)

Values for X and Y are computed by minimizing F (X,Y ). This consists of writing

Pq(M̃E) = X0S0Y
T

0 and minimizing F (X,Y ) locally with initial condition X = X0 and
Y = Y0. This last step is an attempt to get us as close as possible to the correct low-rank
matrix M .
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Table 3.1 – Summary of Notation.

n number of sensors D complete noiseless distance matrix
r0 radius of the circle from which the sensors deviate D̄ squared distance matrix

a/2 maximum radial deviation from the circle D̃ noisy distance matrix

PE projection onto matrices with entries on index set E D̂ estimated squared distance matrix
t0 unknown time delay added to the ToF measurements Z noise matrix
d0 distance mismatch caused by the unknown time delay NE observed matrix
pn probability of having random missing entries X positions matrix

δn radius of the circle defining structured missing entries X̂ estimated positions matrix
Ds distance matrix with observed entries on index set S T ToF matrix

3.5 Main Results

We have seen that the OptSpace algorithm is not directly applicable to the squared
distance matrix because of the unknown delay. Since A in (3.2) is a full rank matrix, the

matrix D̃ � D̃ = [d̃2
i,j] no longer has rank four. Moreover, because the measurements are

noisy, we cannot hope to estimate the exact value of d0. Therefore, in the following, we
will provide error bounds on the reconstruction of the positions assuming that the time
delay (equivalently d0) is known. Afterwards, a heuristic method is proposed to estimate
the value of d0.

Theorem 3.2. Assume n sensors are distributed independently and uniformly at random
on an annulus of width a with central radius r0 as in Figure 3.4. Let δn = δ r0

√
log n/n.

The resulting distance matrix D is corrupted by structured missing entries Ds and mea-
surement noise Z s̄. Further, the entries are missing randomly with probability pn = p.
Then, there exist constants C1 and C2, such that the output of OptSpace D̂ achieves

1

n
‖D̄ − D̂‖F ≤ C1

(√
log n

n

)3

+ C2
‖PE(Y s̄)‖2

p n
, (3.7)

with probability larger than 1−n−3, provided that the right-hand side is less than σ4(D̄)/n.
In (3.7), Y s̄

i,j = Z s̄2
i,j + 2Z s̄

i,jD
s̄
i,j.

The above theorem holds in general for any noise matrix Z, deterministic or random.
The above guarantees only hold up to numerical constants. To see how good OptSpace
is in practice, we need to run numerical experiments. For more results supporting the
robustness of OptSpace, we refer to [KO09].

Theorem 3.2 provides us with a good estimate of D̄. To find the positions of the
sensors we can now apply MDS. More precisely, the estimated position matrix will be
X̂ = MDS2(D̂). Recall the distance we defined in the previous chapter between X and

X̂,

dinv(X, X̂) =
1

n

∥∥LXXTL−LX̂X̂TL
∥∥
F
.

Then, the following theorem bounds the overall error of the process.
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Algorithm 3.2 Finding d0.

Input: Matrix NE;
Output: Estimate d0;

1: Construct the candidate set Cd = {d(1)
0 , . . . , d

(M)
0 } containing discrete values for d0.

2: for k = 1 to M do
3: Set NE

(k) = NE − d(k)
0 AE;

4: Set N̄E
(k) = NE

(k) �NE
(k);

5: Apply OptSpaceon N̄E
(k) and call the output N̂ (k);

6: Apply MDS and let X(k) = MDS2(N̂ (k));
7: Find c(k)

c(k) =
∑

(i,j)∈E∩S⊥
(
d

(k)
0 + ‖X(k)

i −X
(k)
j ‖ −NE

i,j

)2
;

8: end for
9: Find d0 satisfying

d0 = d
(l)
0 , l = arg mink c

(k);

Theorem 3.3. Applying multidimensional scaling algorithm on D̂, the error on the re-
sulting coordinates will be bounded as follows

dinv(X, X̂) ≤ C1

(√
log n

n

)3

+ C2
‖PE(Y s̄)‖2

p n
, (3.8)

with probability larger than 1− 1/n3.

In Algorithm 3.2, we propose a heuristic method for estimating the value of d0 along
with completion of the squared distance matrix. In fact, this algorithm guarantees that
after removing the effect of the time delay, we will find the best rank-4 approximation of
the distance squared matrix. In other words, if we remove exactly the mismatch d0, we
will have an incomplete version of a rank-4 matrix and after reconstruction, the measured
values will be close to those reconstructed.

3.6 Numerical Evaluation

As we have discussed in Section 3.1, we can treat the calibration problem as a special
case of the sensor localization problem. However, there is a duality between the calibration
problem and the traditional sensor localization problems. We mentioned in Section 3.2
that in the calibration problem the local distance/connectivity information is not avail-
able, whereas most of the state-of-the-art algorithms for sensor localization are based on
the local information. In order to compare the performance of these algorithms with our
proposed method, a set of simulations are performed. Figure 3.7 demonstrates the position
reconstruction error of our method versus MDS-MAP [SRZF03], SDP-based [BLT+06] and
Svd-Reconstruct [DJMI+06] algorithms, as the number of sensors grows.

For the simulations, we set the value of a to 1 cm, δ to 1, r0 to 10 cm, t0 to zero,
and the percentage of the random missing entries to 5. The distance measurements are
corrupted by a white Gaussian noise with mean zero and standard deviation 0.6 mm. For
each algorithm and each n, the experiment is performed 10 times for different positions
and different noises, and the average error is taken. For the SDP-based method, we use the
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Figure 3.7 – Error in position estimation versus the number of sensors for different meth-
ods.

algorithm presented in [BLT+06] and the code published by the same authors. For MDS-
MAP, we estimate the shortest paths using Johnson’s algorithm [Joh77]. Finally, for Svd-
Reconstruct, we use the algorithm in [DJMI+06]. In order to adapt the measurements
with the assumptions of the method, we assume that pij = 1 − 0.05 = 0.95 for the
measured points (note that 0.05 is on average the probability of having a random missing
entry) and γij = 0.

As the results in Figure 3.7 suggest, MDS-MAP and Svd-Reconstruct methods
perform very badly compared to the other two methods. The poor performance of MDS-
MAP is due to the fact that it highly relies on the presence of local distance information,
whereas in our case these measurements are in fact missing. Recall that this method is
based on estimating the missing distance measurements by the shortest path between the
two sensors. However, we can easily see that given faraway sensor distances, the shortest
path is a very coarse approximation of the distance between close-by sensors. Also note
that, as the simulation results show, there is no guarantee that the estimation error will
decrease as n grows.

For Svd-Reconstruct, the unrealistic assumption that all the sensors have a non-
zero probability of being connected causes the bad performance of the method. In our case,
the probability that the close-by sensors are connected is zero because of the structured
missing entries. In fact, since pij is high, we can see this method as simply applying the
classic MDS on the incomplete distance matrix. The surprising observation about the
performance of this method is that the estimation error does not change much with n.

In contrast to the two aforementioned algorithms, the SDP-based method performs
very well for estimating the sensor positions and the reconstruction error is very close
to our proposed method. This is due to the fact that this method does not directly
rely on the local distance information. In fact, the distance measurements are fed to the
algorithm as the constraints of a convex optimization problem. However, as the number
of sensors becomes large, the number of measurements also increases as does the number
of constraints for the semi-definite program. This causes the method to fail for n larger
than 150. The same limitation is also reported by the authors of [BLT+06].

To show the importance of calibration in an ultrasound scanning device, we perform
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another simulation as follows. Note that if the ToF measurements correspond to the
correct positions of sensors (without time delay t0), reconstruction of water will lead to
a homogeneous region with values equal to the water sound speed. On the contrary, an
inaccurate estimate of sensor positions and t0 causes the inverse method to give incorrect
values for the sound speed to compensate the effect of position mismatch and time delay.

In our experiment, we simulate the reconstruction of the water sound speed (c0 = 1500)
using the ToF measurements. In this setup, 200 sensors are distributed around a circle with
radius r0 = 10 cm where they deviate at most 5 mm from the circumference. Moreover,
the time delay t0 = 4µs is added to ToF measurements.

In order to complete the distance matrix and find the time delay at the same time, we
use Algorithm 3.2 in which we force the rank of D̄ to 4. The estimated value of t0 is 4µs,
which is exactly as set in the simulation. The outputs of OptSpace algorithm together
with those of the MDS method are used to estimate the positions. These positions are
then fed to a tomography algorithm to reconstruct the water sound speed. The results of
the overall process are shown in Figure 3.8.

In Figure 3.8a, the ToF matrix is not complete, it contains the time delay t0, and the
positions are not calibrated. The dark gray ring is caused by the non-zero time delay in the
ToF measurements. In Figure 3.8b, the time mismatch is resolved by using Algorithm 3.2,
but the sensor positions are not calibrated and the ToF matrix is still not complete.
This figure shows clearly that finding the unknown time delay improves significantly
the reconstruction image. Figure 3.8c shows the reconstructed medium when the ToF
matrix is completed and time mismatch is removed, but the sensor positions are not yet
calibrated. From this figure, it is confirmed that accurate time of flights are necessary but
not sufficient to have a good reconstruction of the inclosed object. Finally, Figure 3.8d
shows the reconstruction when the positions are also calibrated. Notice the change in the
dynamic range for the last case.

3.7 Analysis

3.7.1 Proof of Theorem 3.2

To prove our main theorem, we apply Theorem 1.2 of [KMO09] to the rank-4 matrix
D̄ and the observed matrix NE = PE(D̄ − D̄s + Z s̄).

First, let us recall the incoherence property of D̄ from [KMO09]. A rank-4 symmetric
matrix D̄ ∈ Rn×n is said to be µ-incoherent if the following conditions hold. Let UΣUT

be the singular value decomposition of D̄.
A0. For all i ∈ [n], we have

∑4
k=1 U

2
i,k ≤ 4µ/n.

A1. For all i ∈ [n], j ∈ [n], we have
∣∣D̄i,j/σ1(D̄)

∣∣ ≤ √4µ/n.
The extra 1/n terms in the right hand side are due to the fact that, in this chapter, we
assume that the singular vectors are normalized to unit norm, whereas in [KMO09] the
singular vectors are normalized to have norm

√
n.

Theorem 1.2 of [KMO09] states that if a rank-4 matrix D̄ is µ-incoherent, then the
following is true with probability at least 1 − 1/n3. Let σi(D̄) be the i-th singular value

of D̄ and κ(D̄) = σ1(D̄)/σ4(D̄) be the condition number of D̄. Also, let D̂ denote the
estimation returned by OptSpace with input NE = PE(D̄ − D̄s + Y s̄). Then, there
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Figure 3.8 – Results of the inversion procedure for finding the sound speed inside the ring
filled with only water. (a) Reconstruction of homogeneous water when no calibration is
performed. (b) Reconstruction after t0 is removed from the ToF matrix, but the matrix
is still incomplete and the positions are not calibrated. (c) Reconstruction when the
matrix is also completed, but the positions are not yet calibrated. (d) Reconstruction
with completed ToF matrix and calibrated positions.

exists numerical constants C1 and C2 such that

1

n
||D̄ − ̂̄D||F ≤ C1

‖PE(D̄s)‖2 + ‖PE(Y s̄)‖2

p n
, (3.9)

provided that

np ≥ C2µ
2κ(D̄)6 log n , (3.10)

and

C1
‖PE(D̄s)‖2 + ‖PE(Y s̄)‖2

p n
≤ σ4(D̄)

n
. (3.11)

First, using Lemma 3.4, we show that the bound in (3.9) gives the desired bound in the
theorem. Then, it is enough to show that there exists a numerical constant N such that
the conditions in (3.10) and (3.11) are satisfied with high probability for n ≥ N .
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Lemma 3.4. In the model defined in the previous section, n sensors are distributed in-
dependently and uniformly at random on a circular ring of width a with central radius r0.
Then, with probability larger than 1− n−3, there exists a constant c such that

‖PE(D̄s)‖2 ≤ cδ3(r0 + a)2
(√ log n

n

)3

p n . (3.12)

The proof of this lemma can be found in [PKV11].
Now, to show that (3.10) holds with high probability for n ≥ C log n/p for some

constant C, we show that κ ≤ fκ(r0, a) and µ ≤ fµ(r0, a) with high probability, where fκ
and fµ are independent of n. Recall that κ(D̄) = σ1(D̄)/σ4(D̄). We have

D̄i,j = ‖xi‖2 + ‖xj‖2 − 2xTi xj

= (r0 + ρi)
2 + (r0 + ρj)

2 − 2xTi xj

= 2r2
0 + (2r0ρi + ρ2

i ) + (2r0ρj + ρ2
j)− 2xTi xj ,

where ρi is distributed in such a way that we have uniform distribution over the circular
band. Thus, one can show that

D̄ = ASAT ,

where

A =

r0 x1,1 x1,2 2r0ρ1 + ρ2
1

...
...

...
...

r0 xn,2 xn,2 2r0ρn + ρ2
n

 ,

S =


2 0 0 1

r0

0 −2 0 0
0 0 −2 0
1
r0

0 0 0

 .

One can write S as

S = UΛU−1,

Λ = diag

(
−2,−2,

r0 +
√

1 + r2
0

r0

,
r0 −

√
1 + r2

0

r0

)
,

It follows that

σ1(D̄) ≤ r0 +
√

1 + r2
0

r0

σ1(AAT )

and

σ4(D̄) ≥ min
(

2,

√
1 + r2

0 − r0

r0

)
σ4(AAT ).

We can compute the expectation of this matrix over the distribution of node positions.
With a uniform distribution of the sensors over the circular ring, we have for the proba-
bility distribution of ρ:

pρ(ρ) =
r0 + ρ

r0a
, for − a

2
≤ ρ ≤ a

2
.
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Thus, the expectation of the matrix ATA is easily computed as

E[ATA] =


nr2

0 0 0 nr0
a2

4

0 n
2
(r2

0 + a2

4
) 0 0

0 0 n
2
(r2

0 + a2

4
) 0

nr0
a2

4
0 0 n(a

2

16
+

r20a
2

3
)

 .

Let the largest and smallest singular values of E[ATA] be nσmax(r0, a) and nσmin(r0, a).
Using the fact that σi(·) is a Lipschitz continuous function of its arguments, together with
the Chernoff bound for large deviation of sums of i.i.d. random variables, we get

P(σ1(AAT ) > 2nσmax(r0, a)) ≤ e−Cn ,

P(σ1(AAT ) < (1/2)nσmax(r0, a)) ≤ e−Cn , (3.13)

P(σ4(AAT ) < (1/2)nσmin(r0, a)) ≤ e−Cn , (3.14)

for some constant C. Hence, with high probability,

κ(D̄) ≤ 4σmax(r0, a)

σmin(r0, a)
= fκ(r0, a).

Now, to bound µ, note that with probability 1 the columns of A are linearly indepen-
dent. Therefore, there exists a matrix B ∈ Rr×r such that A = V BT with V TV = I.
The SVD of D̄ then reads D̄ = UΣUT with Σ = QTBTSBQ and U = V Q for some
orthogonal matrix Q. To show incoherence property A0, we need to show that, for all
i ∈ [n],

‖Vi‖2 ≤ 4µ

n
.

Since Vi = B−1Ai, we have

‖Vi‖2 ≤ σ4(B)−2‖Ai‖2 ≤ σ4(A)−2‖Ai‖2.

Combined with

‖Ai‖2 = r2
0 + (r0 + ρi)

2 + (2r0ρi + ρ2
i )

2 ≤ r2
0 + (r0 + a)2 + (2r0a+ a2)2

and (3.14), we have

‖Ui‖2 ≤ fµ(r0, a)

n
, (3.15)

with high probability, where fµ(r0, a) = 2(r2
0 + (r0 + a)2 + (2r0a+ a2)2).

To show incoherence property A1, we use

|D̄ij| ≤ (2r0 + a)2

and

σ1(D̄) ≥ 1

4
nσmin(r0, a) min

(
2,

√
1 + r2

0 − r0

r0

)
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from (3.13). Then,

|D̄ij|
σ1(D̄)

≤ g(r0, a)

n
, (3.16)

with high probability, where

g(r0, a) = max

(
2,

4r0√
1 + r2

0 − r0

)
(2r0 + a)2/σmin(r0, a).

Combining (3.15) and (3.16), we see that the incoherence property is satisfied, with high
probability.

Further, (3.11) holds, with high probability, if the right-hand side of (3.7) is less than

C3

√
1+r20+r0

r0
σmax(r0, a), since

σ4(D̄) ≤ 1

2
n

√
1 + r2

0 + r0

r0

σmax(r0, a).

This completes the proof of Theorem 3.2.

3.7.2 Proof of Lemma 3.1

The proof for the general case where the sensors are not on a circle is provided in
[DJMI+06]. In the circular case however, we have D̄i,j = ‖xi‖2 + ‖xj‖2 − 2xTi xj = 2r2 −
2xTi xj, where r is the circle radius. Thus, the squared distance matrix is decomposable
to

D̄ = V ΣV T ,

where

V =

r x1,1 x1,2
...

...
...

r xn,1 xn,2

 ,

Σ =

2 0 0
0 −2 0
0 0 −2

 .

This finishes the proof.

3.7.3 Proof of Theorem 3.3

The proof follows the same steps as in the proof of Theorem 2.1. In particular, note
that (LXXTL−LX̂X̂TL) has rank at most 4. Therefore,

‖LXXTL−LX̂X̂TL‖F ≤ 2‖LXXTL−LX̂X̂TL‖2,

where we used the fact that for any matrix A of rank k we have ‖A‖F ≤
√
k‖A‖2.

Furthermore, the spectral norm can be bounded in terms of D̄ and D̂ as follows.

‖LXXTL−LX̂X̂TL‖2

(a)

≤ ‖LXXTL− 1

2
LD̂L‖2 + ‖1

2
LD̂L− X̂X̂T‖2

(b)

≤ 1

2
‖L(D̄ − D̂)L‖2 +

1

2
‖L(−D̄ + D̂)L‖2, (3.17)
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where in (a), we used the triangle inequality and LX̂ = X̂. In (b), we used the fact that

for any matrix A of rank 2, ‖1
2
LD̂L−X̂X̂T‖2 ≤ ‖1

2
LD̂L−A‖2. In particular, by setting

A = 1
2
LD̄L the second term in (3.17) follows. Since L is a projection matrix we have

‖L‖2 = 1. Hence, from (3.17) we can conclude that

‖LXXTL−LX̂X̂TL‖2 ≤ ‖ ̂̄D − D̄‖2.

This immediately leads to Theorem 3.3.
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“The middle of
every successful

project looks

like a disaster.”

Rosabeth Moss

Cantor

Graph-Constrained Group
Testing 4

In this chapter 1 we introduce the graph-constrained group testing problem motivated
by applications in network tomography, sensor networks and infection propagation.

Group testing involves identifying at most d defective items out of a set of n items. In
non-adaptive group testing, which is the subject of this chapter, we are given an m × n
binary matrix, M , usually referred to as a test or measurement matrix. Ones on the
jth row of M indicate which subset of the n items belongs to the jth pool. A test is
conducted on each pool; a positive outcome indicating that at least one defective item is
part of the pool; and a negative test indicating that no defective items are part of the pool.
The conventional group testing problem is to design a matrix M with minimum number
of rows m that guarantees error free identification of the defective items. While the best
known (probabilistic) pooling design requires a test matrix with m = O(d2 log(n/d)) rows,
and an almost-matching lower bound of m = Ω(d2(log n)/(log d)) is known on the number
of pools (cf. [DH99, Chapter 7]), the size of the optimal test still remains open.

Note that in the standard group testing problem the test matrix M can be designed
arbitrarily. In this chapter we consider a generalization of the group testing problem to
the case where the matrix M must conform to constraints imposed by a graph G =
(V,E). In general, as we will describe shortly, such problems naturally arise in several
applications such as network tomography [Duf06, NT07], sensor networks [NT06], and
infection propagation [CHKV09].

In our graph group testing scenario the n items are either vertices or links (edges) of
the graph; at most d of them are defective. The task is to identify the defective vertices
or edges. The test matrix M is constrained as follows: for items associated with vertices
each row must correspond to a subset of vertices that are connected by a path on the
graph; similarly, for items associated with links each row must correspond to links that
form a path on G. The task is to design an m × n binary test matrix with minimum
number of rows m that guarantees error free identification of the defective items.

We will next describe several applications, which illustrate the graph constrained group
testing problem.

1. This chapter is the result of a collaboration with M. Cheraghchi, S. Mohajer, and V. Saligrama.
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Figure 4.1 – In our setup, graph constrained group testing, the route 1→ 4→ 6→ 7→
8→ 9 is valid while 2→ 6→ 5 is not.

Network Tomography: For a given network, identification of congested links from
end-to-end path measurements is one of the key problems in network tomography [NT07],
[Duf06]. In many settings of today’s IP networks, there is one or a few links along the
path which cause packet losses along the path. Finding the locations of such congested
links is sufficient for most of the practical applications.

This problem can be phrased as a graph-constrained group testing problem as follows.
We model the network as a graph G = (V,E) where the set V denotes the network
routers/hosts and the set E denotes the communication links (see Fig. 4.1). Suppose, we
have a monitoring system that consists of one or more end hosts (so called vantage points)
that can send and receive packets. Each vantage point sends packets through the network
by assigning the routes and the end hosts.

All measurement results (i.e., whether each packet has reached its destination) will be
reported to a central server whose responsibility is to identify the congested links. Since
the network is given, not any route is a valid one. A vantage point can only assign those
routes which form a path in the graph G. The question of interest is to determine the
number of measurements that is needed in order to identify the congested links in a given
network.

Sensor Networks: The network tomography problem is also present in wireless sensor
networks (WSN). As described in [NT06] the routing topology in WSN is constantly
changing due to the inherent ad-hoc nature of the communication protocols. The sensor
network is static with a given graph topology such as a geometric random graph. Sensor
networks can be monitored passively or actively. In passive monitoring, at any instant,
sensor nodes form a tree to route packets to the sink. The routing tree constantly changes
unpredictably but must be consistent with the underlying network connectivity. A test is
considered positive if the arrival time is significantly large, which indicates that there is at
least one defective sensor node or a congested link. The goal is to identify defective links or
sensor nodes based on packet arrival times at the sink. In active monitoring network nodes
continuously calculate some high level, summarized information such as the average or
maximum energy level among all nodes in the network. When the high level information
indicates congested links, a low level and more energy consuming procedure is used to
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Figure 1: Collective sampling using agents. ⊗ symbols represent infected people among healthy
people indicated by • symbols. The dashed lines show the people contacted by the agents.

One way to acquire collective samples is by sending agents inside the population, whose task is
to contact people. Once an agent has made contact with an infected person, there is a chance that
it gets infected, too. By the end of the testing procedure, all the agents are gathered and tested for
the disease. Here, we assume that each agent has a log file by which we can figure out with whom
he has made contact (see Figure 1). One way to implement the log in practice is to use identifiable
devices (for instance, cell phones) that can exchange unique identifiers when in range. This way,
one can for instance ask an agent to randomly meet a certain number of people in the population
and at the end learn which individuals have been met from the data gathered by the device that
is carried by the agent. Note that, even if an agent contacts an infected person, he will not get
infected with certainty. Hence, it may well happen that an agent’s result is negative (meaning that
he is not infected) despite a contact with some infected person. We will assume that when an agent
gets infected, the resulting infection will not be contagious, i.e., an agent will never infect other
people. Then, our ultimate goal is to identify the infected persons with the use of a simple recovery
algorithm, based on the test results.

It is important to notice the basic difference between this setup and the classical group testing
where each contact with an infected person will infect the agent with certainty. In other words, in
the classical group testing the decoder fully knows the sampling procedure, whereas in our setup,
it has only uncertain knowledge. Hence, in this scenario the decoder has to cope simultaneously
with two kinds of uncertainty, the unknown infected people and the partially unknown sampling
procedure.

The collective sampling can be done in adaptive or non-adaptive ways. In the former, the
sampling is made one at a time, using the outcomes of the previous agents while in the latter, the
sampling strategy is specified and fixed before seeing the the outcomes of any of the agents. In this
paper we only focus on non-adaptive sampling methods, which is more favorable for applications.

The idea behind our setup is mathematically related to compressed sensing [2, 7]. Neverthe-
less, they differ in one significant way: in compressed sensing the samples are gathered as linear
observations of a sparse real signal and typically a linear programming method is applied for the
reconstruction. To do so, it is assumed that the decoder knows the measurement matrix a priori.

Figure 4.2 – Collective sampling using agents. The ⊗ symbols represent infected people
whereas the healthy population is indicated by • symbols. The dashed lines show the
group of people contacted by each agent [CHKV09].

accurately locate the trouble spots.

Infection Propagation: Suppose that we have a large population where only a small
number of people are infected by a certain viral sickness (e.g., a flu epidemic). The task
is to identify the set of infected individuals by sending agents among them. Each agent
contacts a pre-determined or randomly chosen set of people. Once an agent has made
contact with an infected person, there is a chance that he gets infected, too. By the
end of the testing procedure, all agents are gathered and tested for the disease. While
this problem has been described in [CHKV09], the analysis ignores the inherent graph
constraints that need to be further imposed. It is realistic to assume that, once an agent
has contacted a person, the next contact will be with someone in close proximity of that
person. Therefore, in this model we are given a random geometric graph that indicates
which set of contacts can be made by an agent (see Fig. 4.2). Now, the question is to
determine the number of agents that is needed in order to identify the set of infected
people.

These applications present different cases where graph constrained group testing can
arise. However, there are important distinctions. In the wired network tomography sce-
nario the links are the items and each row of the matrix M is associated with a route
between any two vantage points. A test is positive if a path is congested, namely, if it
contains at least one congested link. Note that in this case since the routing table is as-
sumed to be static, the route between any two vantage points is fixed. Consequently, the
matrix M is deterministic and the problem reduces to determining whether or not the
matrix M satisfies identifiability.

Our problem is closer in spirit to the wireless sensor network scenario. In the passive
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case the links are the items and each row of the matrix M is associated with a route
between a sensor node and the sink. A test is positive if a path is congested, namely, if
it contains at least one congested link. Note that in this case since the routing table is
constantly changing, the route between a sensor node and the sink is constantly changing
as well. Nevertheless the set of possible routes must be drawn from the underlying connec-
tivity graph. Consequently, the matrix M can be assumed to be random and the problem
is to determine how many different tests are required to identify the congested links. Note
that, in contrast to the wired scenario, tests conducted between the same sensor node and
sink yields new information here. A similar situation arises in the active monitoring case
as well. Here one could randomly query along different routes to determine whether or
not a path is congested. These tests can be collated to identify congested links. Note that
in the active case the test matrix M is amenable to design in that one could selectively
choose certain paths over others by considering weighted graphs.

Motivated by the WSN scenario we describe pool designs based on random walks on
graphs. As is well known a random walk is the state evolution on a finite reversible Markov
chain. Each row of the binary test matrix is derived from the evolution of the random
walk, namely, the ones on the jth row of M correspond to the vertices visited by the jth
walk. This is close to the WSN scenario because as in the WSN scenario the path between
two given nodes changes randomly. We develop several results in this context.

First, we consider random walks that start either at a random node or an arbitrary
node but terminate after some appropriately chosen number of steps t. By optimizing
the length of the walk we arrive at an interesting result for important classes of graphs.
Specifically we show that the number of tests required to identify d defective items is
essentially similar to that required in conventional group testing problems, except the
fact that an extra term appears which captures the topology of the underlying graph.
The best known result for the number of tests required when no graph constraints are
imposed scales as O(d2 log(n/d)). For the graph constrained case we show that with m =
O(d2T 2(n) log(n/d)) non-adaptive tests one can identify the defective items, where T (n)
corresponds to the mixing time of the underlying graph G. Consequently, for the Erdős-
Rényi random graph G(n, p) with p = Ω((log2 n)/n), as well as expander graphs with
constant spectral gap, it follows that m = O(d2 log3 n) non-adaptive tests are sufficient to
identify d defective items. In particular, for a complete graph where no pooling constraint
is imposed, we have T (n) = 1, and therefore, our result subsumes the well-known result
for the conventional group testing problem.

Next we consider unbounded-length random walks that originate at a source node
and terminate at a sink node. Both the source node and the sink node can either be
arbitrary or be chosen uniformly at random. This directly corresponds to the network
tomography problem that arises in the WSN context. This is because the source nodes
can be viewed as sensor nodes, while the sink node maybe viewed as the fusion center,
where data is aggregated. At any instant, we can assume that a random tree originating at
the sensor nodes and terminating at the sink is realized. While this random tree does not
have cycles, there exist close connections between random walks and randomly generated
trees. Indeed, it is well known that the so called loop-erased random walks, obtained by
systematically erasing loops in random walks, to obtain spanning trees, is a method for
sampling spanning trees from a uniform distribution [Wil96]. In this scenario, we show
that m = O(d3 log3 n) non-adaptive tests are sufficient to identify d defective items. By
considering complete graphs we also establish that the cubic dependence on d in this
result cannot be improved.
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Figure 4.3 – In the dilution model, each element of matrix Mij passes through a Z-
channel. The zeros of the matrix remain zeros while the ones are converted to zeros with
probability 1− p.

We will also consider noisy counterparts of the graph constrained group testing prob-
lem, where the outcome of each measurement may be independently corrupted (flipped)
with probability 2 0 ≤ q < 1/2. We develop parallel results for these cases. In addition
to a setting with noisy measurement outcomes, these results can be used in a so called
dilution model (as observed in [AS09, CHKV09]). In this model, each item can be diluted
in each test with some a priori known probability (see Figure 4.3). In a network setting,
this would correspond to the case where a test on a path with a congested link can turn
out to be negative with some probability. We show that similar scaling results hold for
this case as well.

4.1 Related Work

Since its emergence decades ago, group testing has found a large number of appli-
cations that are too numerous to be extensively treated here. We particularly refer to
applications in industrial quality assurance [SG59], DNA library screening [PL94], soft-
ware testing [BG02], and multi-access communications [Wol85], among others.

Several variations of classical group testing have been studied in the literature that
possess a graph theoretic nature. A notable example is the problem of learning hidden
sparse subgraphs (or more generally, hypergraphs), defined as follows (cf. [Aig88]): Assume
that, for a given graph, a small number of edges are marked as defective. The problem
is to use a small number of measurements of the following type to identify the set of
defective edges: Each measurement specifies a subset of vertices, and the outcome would
be positive iff the graph induced on the subset contains a defective edge. Another variation
concerns group testing with constraints defined by a rooted tree. Namely, the set of items
corresponds to the leaves of a given rooted tree, and each test is restricted to pool all the
leaves that descend from a specified node in the tree (see [DH99, Chapter 12]).

We should also point out the relationship between our setup and the compressed sens-
ing framework [Don06, CRT06]. We primarily deal with Boolean operations on binary
valued variables in this chapter, namely, link states are binary valued and the measure-
ments are boolean operations on the link states. Nevertheless, the techniques described

2. It is clear that if q > 1/2, one can first flip all the outcomes, and then reduce the problem to the
q < 1/2 regime. For q = 1/2, since we only observe purely random noise, there is no hope to recover from
the errors.
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here can be extended to include non-boolean operations and non-binary variables as well.
Specifically, suppose there is a sparse set of links that take on non-zero values. These non-
zero values could correspond to packet delays, and packet loss probabilities along each link.
Measurements along each path provides aggregate delay or aggregate loss along the path.
The set of paths generated by m random walks forms a m× |E| routing matrix M . For
an appropriate choice of m and graphs studied in this chapter, it turns out (see [XMT11])
that such routing matrices belongs to the class of so called expander matrices. These
expander type properties in turn obey a suitable type of restricted-isometry-property (1-
RIP) [BGI+08]. Such properties in turn are sufficient for recovering sparse vectors using
`1 optimization techniques. Consequently, the results of this chapter have implications for
compressed sensing on graphs.

4.2 Definitions and Notation

In this section we introduce some tools, definition and notations which are used
throughout the chapter.

Disjunct Matrix

For two given boolean vectors S and T of the same length we denote their element-wise
logical or by S ∨T . More generally, we will use

∨d
i=1 Si to denote the element-wise or of d

boolean vectors S1, . . . , Sd. The logical subtraction of two boolean vectors S = (s1, . . . , sn)
and T = (t1, . . . , tn), denoted by S \ T , is defined as a boolean vector which has a 1 at
position i if and only if si = 1 and ti = 0. We also use |S| to show the number of 1’s in
(i.e., the Hamming weight of) a vector S.

We often find it convenient to think of boolean vectors as characteristic vectors of sets.
That is, x ∈ {0, 1}n would correspond to a set X ⊆ [n] (where [n] := {1, . . . , n}) such that
i ∈ X iff the entry at the ith position of x is 1. In this sense, the above definition extends
the set-theoretic notions of union, subtraction, and cardinality to boolean vectors.

Matrices that are suitable for the purpose of group testing are known as disjunct
matrices. The formal definition is as follows.

An m × n boolean matrix M is called d-disjunct, if, for every column S0 and every
choice of d columns S1, . . . , Sd of M (different from S0), there is at least one row at which
the entry corresponding to S0 is 1 and those corresponding to S1, . . . , Sd are all zeros.
More generally, for an integer e ≥ 0, the matrix is called (d, e)-disjunct if for every choice
of the columns Si as above, they satisfy

|S0 \
d∨
i=1

Si| > e.

A (d, 0)-disjunct matrix is said to be d-disjunct.
A classical observation in group testing theory states that disjunct matrices can be used

in non-adaptive group testing schemes to distinguish sparse boolean vectors (cf. [DH99]).
More precisely, suppose that a d-disjunct matrix M with n columns is used as the mea-
surement matrix; i.e., we assume that the rows of M are the characteristic vectors of the
pools defined by the scheme. Then, the test outcomes obtained by applying the scheme
on two distinct d-sparse vectors of length n must differ in at least one position. More gen-
erally, if M is taken to be (d, e)-disjunct, the test outcomes must differ in at least e + 1
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positions. Thus, the more general notion of (d, e)-disjunct matrices is useful for various
“noisy” settings, where we are allowed to have a few false outcomes (in particular, up to
b(e− 1)/2c incorrect measurement outcomes can be tolerated by (d, e)-disjunct matrices
without causing any confusion).

Graph Consistent Disjunct Matrix

For our application, sparse vectors (that are to be distinguished) correspond to boolean
vectors encoding the set of defective vertices (or edges) in a given undirected graph. The
encoding is such that the coordinate positions are indexed by the set of vertices (edges)
of the graph and a position contains 1 iff it corresponds to a defective vertex (edge).
Moreover, we aim to construct disjunct matrices that are also constrained to be consistent
with the underlying graph.

Let G = (V,E) be an undirected graph, and A and B be boolean matrices with |V |
and |E| columns, respectively. The columns of A are indexed by the elements of V and
the columns of B are indexed by the elements of E. Then,

– The matrix A is said to be vertex-consistent with G if each row of A, seen as the
characteristic vector of a subset of V , exactly represents the set of vertices visited
by some walk on G.

– The matrix B is said to be edge-consistent with G if each row of B, seen as the char-
acteristic vector of a subset of E, exactly corresponds to the set of edges traversed
by a walk on G.

Note that the choice of the walk corresponding to each row of A or B need not be
unique. Moreover, a walk may visit a vertex (or edge) more than once.

Mixing Time and Conductance

An undirected graph G = (V,E) is called (D, c)-uniform, for some c ≥ 1, if the degree
of each vertex v ∈ V (denoted by deg(v)) is between D and cD. Throughout this chapter,
the constraint graphs are considered to be (D, c)-uniform, for an appropriate choice of D
and some (typically constant) parameter c. When c = 1, the graph is D-regular.

Before being able to define the mixing time, we need to define the distance between
two probability distributions. In particular, the point-wise distance of two probability
distributions µ, µ′ on a finite space Ω is defined as

‖µ− µ′‖∞ := max
i∈Ω
|µ(i)− µ′(i)|,

where µ(i) (resp., µ′(i)) denotes the probability assigned by µ (resp., µ′) to the outcome
i ∈ Ω. We say that the two distributions are δ-close if their point-wise distance is at most
δ.

For notions such as random walks, stationary distribution and mixing time we refer
to standard books on probability theory, Markov chains, and randomized algorithms. In
particular for an accessible treatment of the basic notions, see [MR95, Chapter 6] or
[MU05, Chapter 7]. The particular variation of the mixing time that we will use in this
work is defined with respect to the point-wise distance as follows.

Definition 4.1. Let G = (V,E) with |V | = n be a (D, c)-uniform graph and denote by µ
its stationary distribution. For v ∈ V and an integer τ , denote by µτv the distribution that
a random walk of length τ starting at v ends up at. Then, the δ-mixing time of G (with
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respect to the `∞ norm 3) is the smallest integer t such that ‖µτv − µ‖∞ ≤ δ, for ∀τ ≥ t
and ∀v ∈ V . For concreteness, we define the quantity T (n) as the δ-mixing time of G for
δ := (1/2cn)2.

For a graph to have a small mixing time, a random walk starting from any vertex
must quickly induce a uniform distribution on the vertex set of the graph. Intuitively this
happens if the graph has no “bottle necks” at which the walk can be “trapped”, or in
other words, if the graph is “highly connected”. The standard notion of conductance, as
defined below, quantifies the connectivity of a graph.

Definition 4.2. Let G = (V,E) be a graph on n vertices. For every S ⊆ V , define
∆(S) :=

∑
v∈S deg(v), S̄ := V \ S, and denote by E(S, S̄) the number of edges crossing

the cut defined by S and its complement. Then the conductance of G is defined by the
quantity

Φ(G) := min
S⊆V : ∆(S)≤|E|

E(S, S̄)

∆(S)
.

Random and Expander Graphs

We also formally define two important classes of graphs, for which we will specialize
our results.

Definition 4.3. Take a complete graph on n vertices, and remove edges independently
with probability 1 − p. The resulting graph is called the Erdős-Rényi random graph, and
denoted by G(n, p).

Definition 4.4. For a graph G = (V,E) with |V | = n, the (edge) expansion of G is
defined as

h(G) = min
S⊆V : 0<|S|≤n

2

E(S, S̄)

|S| .

A family G of D-regular graphs is called an (edge) expander family if there exists a constant
σ > 0 such that h(G) ≥ σ for each G ∈ G. In particular each G ∈ G is called an expander
graph.

For a general study of Erdős-Rényi random graphs and their properties we refer to the
fascinating book of Bollobás [BC88]. For the terminology on expander graphs, we refer
the reader to the excellent survey by Hoory, Linial and Wigderson [HLW06].

Random Walk

Consider a particular random walk W := (v0, v1, . . . , vt) of length t on a graph G =
(V,E), where the random variables vi ∈ V denote the vertices visited by the walk, and
form a Markov chain.

Definition 4.5. We distinguish the following quantities related to the walk W :
– For a vertex v ∈ V (resp., edge e ∈ E), denote by πv (resp., πe) the probability that
W passes v (resp., e).

3. Note that the mixing time highly depends on the underlying distance by which the distance between
two distributions is quantified. In particular, we are slightly deviating from the more standard definition
which is with respect to the variation (`1) distance (see, e.g., [MU05, Definition 11.2]).
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Figure 4.4 – The result of pool 1 is negative because it does not contains a defective item,
whereas the result of pool 2 is positive because it contains a defective item. Pool 3 is not
consistent with the graph and thus not allowed because the items are not connected by a
path.

– For a vertex v ∈ V (resp., edge e ∈ E) and subset A ⊆ V , v /∈ A (resp., B ⊆ E,
e /∈ B), denote by πv,A (resp., πe,B) the probability that W passes v but none of the
vertices in A (resp., passes e but none of the edges in B).

Note that these quantities are determined by not only v, e, A,B (indicated as sub-
scripts) but they also depend on the choice of the underlying graph, the distribution of
the initial vertex v0 and length of the walk t. However, we find it convenient to keep the
latter parameters implicit when their choice is clear from the context.

In the previous definition, the length of the random walk was taken as a fixed parameter
t. Another type of random walks that we consider in this work have their end points as
a parameter and do not have an a priori fixed length. In the following, we define similar
probabilities related to the latter type of random walks.

Consider a particular random walk W := (v0, v1, . . . , u) on a graph G = (V,E) that
continues until it reaches a fixed vertex u ∈ V .

Definition 4.6. We distinguish the following quantities related to W : For a vertex v ∈ V
(resp., edge e ∈ E) and subset A ⊆ V , v /∈ A (resp., B ⊆ E, e /∈ B), denote by π

(u)
v,A

(resp., π
(u)
e,B) the probability that W passes v but none of the vertices in A (resp., passes e

but none of the edges in B).

Again these quantities depend on the choice of G and the distribution of v0 that we
will keep implicit.

4.3 Problem Statement

Consider a given graph G = (V,E) in which at most d vertices (resp., edges) are defec-
tive. The goal is to characterize the set of defective items using a number of measurements
that is as small as possible, where each measurement determines whether the set of ver-
tices (resp., edges) observed along a path on the graph has a non-empty intersection with
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the defective set. We call the problem of finding defective vertices vertex group testing
and that of finding defective edges edge group testing.

As mentioned earlier, not all sets of vertices can be grouped together, and only those
that share a path on the underlying graph G can participate in a pool (see Fig. 4.4).

4.4 Main Results

In the following, we introduce four random constructions (designs) for both problems.
The proposed designs follow the natural idea of determining pools by taking random walks
on the graph.

Design 1.

Given: a constraint graph G = (V,E) with r ≥ 0 designated vertices s1, . . . , sr ∈ V , and
integer parameters m and t.

Output: an m× |V | boolean matrix M .

Construction: Construct each row of M independently as follows: Let v ∈ V be any of
the designated vertices si, or otherwise a vertex chosen uniformly at random from
V . Perform a random walk of length t starting from v, and let the corresponding
row of M be the characteristic vector of the set of vertices visited by the walk.

Design 2.

Given: a constraint graph G = (V,E) and integer parameters m and t.

Output: an m× |E| boolean matrix M .

Construction: Construct each row of M independently as follows: Let v ∈ V be any
arbitrary vertex of G. Perform a random walk of length t starting from v, and let
the corresponding row of M be the characteristic vector of the set of edges visited
by the walk.

Design 3.

Given: a constraint graph G = (V,E) with r ≥ 0 designated vertices s1, . . . , sr ∈ V , a
sink node u ∈ V , and integer parameter m.

Output: an m× |V | boolean matrix M .

Constructions: Construct each row of M independently as follows: Let v ∈ V be any of
the designated vertices si, or otherwise a vertex chosen uniformly at random from V .
Perform a random walk starting from v until we reach u, and let the corresponding
row of M be the characteristic vector of the set of vertices visited by the walk.

Design 4.

Given: a constraint graph G = (V,E), a sink node u ∈ V , and integer parameter m.

Output: an m× |E| boolean matrix M .

Construction: Construct each row of M independently as follows: Let v ∈ V be any
arbitrary vertex of G. Perform a random walk, starting from v until we reach u,
and let the corresponding row of M be the characteristic vector of the set of edges
visited by the walk.
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By construction, Designs 1 and 3 (resp., Designs 2 and 4) output boolean matrices
that are vertex- (resp., edge-) consistent with the graph G. Our main goal is to show that,
when the number of rows m is sufficiently large, the output matrices become d-disjunct
(for a given parameter d) with overwhelming probability.

Designs 1 and 3 in particular provide two choices for constructing the measurement
matrix M . Namely, the start vertices can be chosen within a fixed set of designated
vertices, or, chosen randomly among all vertices of the graph. As we will see later, in
theory there is no significant difference between the two schemes. However, for some
applications it might be the case that only a small subset of vertices are accessible as
the starting points (e.g., in network tomography such a subset can be determined by
the vantage points), and this can be modeled by an appropriate choice of the designated
vertices in Designs 1 and 3.

The following theorem states the main result of this work, showing that our proposed
designs indeed produce disjunct matrices that can be used for the purpose of graph-
constrained group testing. We will state both noiseless results (corresponding to d-disjunct
matrices), and noisy ones (corresponding to (d, e)-disjunct ones, where the noise tolerance
e depends on a fixed “noise parameter” η ∈ [0, 1)). The proof of the following theorem is
given in Section 4.5.1.

Theorem 4.7. Let η ≥ 0 be a fixed parameter, and suppose that G = (V,E) is a (D, c)-
uniform graph on n vertices with δ-mixing time T (n) (where δ := (1/2cn)2). Then there
exist parameters with asymptotic values given in Table 4.1 such that, provided that D ≥
D0,

1. Design 1 with the path length t := t1 and the number of measurements m := m1

outputs a matrix M that is vertex-consistent with G. Moreover, once the columns
of M corresponding to the designated vertices s1, . . . , sr are removed, the matrix
becomes d-disjunct with probability 1−o(1). More generally, for m := m′1 the matrix
becomes (d, e1)-disjunct with probability 1− o(1).

2. Design 2 with path length t := t2 and m := m2 measurements outputs a matrix
M that is edge-consistent with G and is d-disjunct with probability 1 − o(1). More
generally, for m := m′2 the matrix becomes (d, e2)-disjunct with probability 1− o(1).

3. Design 3 with the number of measurements m := m3 outputs a matrix M that is
vertex-consistent with G. Moreover, once the columns of M corresponding to the
designated vertices s1, . . . , sr and the sink node u are removed, the matrix becomes
d-disjunct with probability 1−o(1). More generally, for m := m′3 the matrix becomes
(d, e3)-disjunct with probability 1− o(1).

4. Design 4 with the number of measurements m := m4 outputs a matrix M that is
edge-consistent with G and is d-disjunct with probability 1 − o(1). More generally,
for m := m′4 the matrix becomes (d, e4)-disjunct with probability 1− o(1).

In Designs 1 and 3, we need to assume that the designated vertices (if any) are not
defective, and hence, their corresponding columns can be removed from the matrix M .
By doing so, we will be able to ensure that the resulting matrix is disjunct. Obviously,
such a restriction cannot be avoided since, for example, M might be forced to contain an
all-ones column corresponding to one of the designated vertices and thus, fail to be even
1-disjunct.

By applying Theorem 4.7 on the complete graph (using Design 1), we getO(d2 log(n/d))
measurements, since in this case, the mixing time is T (n) = 1 and also c = 1. Thereby, we
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Table 4.1 – The asymptotic values of various parameters in Theorem 4.7.

Parameter Value

D0 O(c2dT 2(n))
m1,m2 O(c4d2T 2(n) log(n/d))
m3 O(c8d3T 4(n) log(n/d))
m4 O(c9d3DT 4(n) log(n/d))
t1 O(n/(c3dT (n)))
t2 O(nD/(c3dT (n)))

e1, e2, e3, e4 Ω(ηd log(n/d)/(1− η)2)
m′i, i ∈ [4] O(mi/(1− η)2)

recover the trade-off obtained by the probabilistic construction in classical group testing
(note that classical group testing corresponds to graph-constrained group testing on the
vertices of the complete graph).

We will show in Section 4.5.2 that, for our specific choice of δ := (1/2cn)2, the δ-
mixing time of an Erdős-Rényi random graph G(n, p) is (with overwhelming probability)
T (n) = O(log n). This bound more generally holds for any graph with conductance Ω(1),
and in particular, expander graphs with constant spectral gap. Thus we have the following
result (with a summary of the achieved parameters given in Table 4.2).

Theorem 4.8. There is an integer D0 = Ω(d log2 n) such that for every D ≥ D0 the
following holds: Suppose that the graph G is either

1. A D-regular expander graph with normalized second largest eigenvalue (in absolute
value) λ that is bounded away from 1; i.e., λ = 1− Ω(1), or,

2. An Erdős-Rényi random graph G(n,D/n).

Then for every η ∈ [0, 1), with probability 1 − o(1) Designs 1, 2, 3, and 4 output (d, e)-
disjunct matrices (not considering the columns corresponding to the designated vertices
and the sink in Designs 1 and 3), for some e = Ω(ηd log n), using respectively m1,m2,m3,m4

measurements, where

m1 = O(d2(log3 n)/(1− η)2),

m2 = O(d2(log3 n)/(1− η)2),

m3 = O(d3(log5 n)/(1− η)2),

m4 = O(d3D(log5 n)/(1− η)2).

The fixed-input case. Recall that, as Theorem 4.7 shows, our proposed designs al-
most surely produce disjunct matrices using a number of measurements summarized in
Table 4.1. Thus, with overwhelming probability, once we fix the resulting matrix, it has
the combinatorial property of distinguishing between any two d-sparse boolean vectors
(each corresponding to a set of up to d defective vertices, not including designated ones,
for Designs 1 and 3, or up to d defective edges for Designs 2 and 4) in the worst case.
However, the randomized nature of our designs can be used to our benefit to show that,
practically, one can get similar results with a number of measurements that is almost by
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Table 4.2 – The asymptotic values of the bounds achieved by Theorem 4.8.

Parameter Value

D0 O(d log2 n)

m1,m2 O(d2(log3 n)/(1− p)2)

m3 O(d3(log5 n)/(1− p)2)

m4 O(d3D(log5 n)/(1− p)2)
e Ω(ηd log n)

a factor d smaller than what required by Theorem 4.7. Of course, assuming a substan-
tially lower number of measurements, we should not expect to obtain disjunct matrices,
or equivalently, to be able to distinguish between any two sparse vectors in the worst case.
However, it can be shown that, for every fixed d-sparse vector x, the resulting matrix with
overwhelming probability will be able to distinguish between x and any other d-sparse
vector using a lower number of measurements. In particular, with overwhelming proba-
bility (over the choice of the measurements), from the measurement outcomes obtained
from x, it will be possible to uniquely reconstruct x. More precisely, it is possible to show
the following theorem, as proved in Section 4.5.1.

Theorem 4.9. Consider the assumptions of Theorem 4.7, and let γ := (log n)/(d log(n/d)).
Consider any fixed set of up to d vertices S ⊆ V such that |S| ≤ d and S∩{s1, . . . , sr} = ∅
and any fixed set of up to d edges T ⊆ E, |T | ≤ d. Then with probability 1− o(1) over the
randomness of the designs the following holds.

Let M1, . . .M4 respectively denote the measurement matrices produced by Designs 1, . . . , 4
with the number of rows set to O(γm′i). Then for every S ′ ⊆ V and every T ′ ⊆ E such
that S ′ 6= S, T ′ 6= T and |S ′| ≤ d, S ′ ∩ {s1, . . . , sr} = ∅, |T ′| ≤ d, we have that

1. The measurement outcomes of M1 on S and S ′ (resp., M3 on S and S ′) differ at
more than Ω(γe1) (resp., Ω(γe3)) positions.

2. The measurement outcomes of M2 on T and T ′ (resp., M4 on T and T ′) differ at
more than Ω(γe2) (resp., Ω(γe4)) positions.

A direct implication of this result is that (with overwhelming probability), once we
fix the matrices obtained from our randomized designs with the lowered number of mea-
surements (namely, having O(γm′i) ≈ O(m′i/d) rows), the fixed matrices will be able to
distinguish between almost all pairs of d-sparse vectors (and in particular, uniquely iden-
tify randomly drawn d-sparse vectors, with probability 1− o(1) over their distribution).
Example in Network Tomography. Here we illustrate a simple concrete example that
demonstrates how our constructions can be used for network tomography in a simplified
model. Suppose that a network (with known topology) is modeled by a graph with nodes
representing routers and edges representing links that connect them, and it is suspected
that at most d links in the network are congested (and thus, packets routed through them
are dropped). Assume that, at a particular “source node” s, we wish to identify the set
of congested links by distributing packets that originate from s in the network.

First, s generates a packet containing a time stamp t and sends it to a randomly
chosen neighbor, who in turn, decrements the time stamp and forwards the packet to a
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randomly chosen neighbor, etc. The process continues until the time stamp reaches zero,
at which point the packet is sent back to s along the same path it has traversed. This
can be achieved by storing the route to be followed (which is randomly chosen at s) in
the packet. Alternatively, for practical purposes, instead of storing the whole route in the
packet, s can generate and store a random seed for a pseudorandom generator as a header
in the packet. Then each intermediate router can use the specified seed to determine one
of its neighbors to which the packet has to be forwarded.

Using the procedure sketched above, the source node generates a number of indepen-
dent packets, which are distributed in the network. Each packet is either returned back to
s in a timely manner, or, eventually does not reach s due to the presence of a congested
link within the route. By choosing an appropriate timeout, s can determine the packets
that are routed through the congested links.

The particular scheme sketched above implements our Design 2, and thus Theorem 4.7
implies that, by choosing the number of hops t appropriately, after generating a sufficient
number of packets (that can be substantially smaller than the size of the network), s
can determine the exact set of congested links. This result holds even if a number of the
measurements produce false outcomes (e.g., a congested link may nevertheless manage
to forward a packet, or a packet may be dropped for reasons other than congestion), in
which case by estimating an appropriate value for the noise parameter p in Theorem 4.7
and increasing the number of measurements accordingly, the source can still correctly
distinguish the congested links. Of course one can consider different schemes for routing
the test packets. For example, it may be more desirable to forward the packets until they
reach a pre-determined “sink node”, an approach that is modeled by our Designs 3 and 4
above.

4.5 Analysis

This section contains the proofs of our main theorems.

4.5.1 Proof of Theorems 4.7 and 4.9

Before discussing Theorem 4.7 and its proof, we introduce some basic propositions
that are later used in the proof. The omitted proofs will be presented in the appendix.
Throughout this section, we consider an underlying graph G = (V,E) that is (D, c)-
uniform, with mixing time T (n).

Proposition 4.10. Let A,B1, B2, . . . , Bn be events on a finite probability space, define
B := ∪ni=1Bi, and suppose that:

1. For every i ∈ [n], Pr[A | Bi] ≤ ε.

2. For every set S ⊆ [n] with |S| > k, ∩i∈SBi = ∅.
Then, Pr[A | B] ≤ εk.

The proof of this proposition may be found in Section 4.5.5. The following proposition
is a corollary of a well-known result for the stationary distribution of irregular graphs
[MU05, Theorem 7.13]. A formal proof of this proposition is given in Section 4.5.6.
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Proposition 4.11. Let G = (V,E) be a (D, c)-uniform graph, and denote by µ the
stationary distribution of G (assuming that G is not bipartite). Then for each v ∈ V ,
1/cn ≤ µ(v) ≤ c/n.

Proposition 4.12. For the quantities πv and πe in Definition 4.5, we have

πv = Ω

(
t

cnT (n)

)
, πe = Ω

(
t

cDnT (n)

)
.

The proof of this Proposition 4.12 is presented in Section 4.5.7. In fact, a stronger
statement than this proposition can be obtained, that with noticeable probability, every
fixed vertex (or edge) is hit by the walk at least once but not too many times nor too
“early”. This is made more precise in the following two propositions, which are proved in
Sections 4.5.8 and 4.5.9, respectively.

Proposition 4.13. Consider any walk W in Design 1 (resp., Design 2). There is a
k = O(c2T (n)) such that, for every v ∈ V and every e ∈ E, the probability that W passes
v (resp., e) more than k times is at most πv/4 (resp., πe/4).

Proposition 4.14. For any random walk W in Design 1, let v ∈ V be any vertex that is
not among the designated vertices s1, . . . , sr. Then the probability that W visits v within
the first k steps is at most k/D.

The following proposition shows that the distributions of two vertices on a random
walk that are far apart by a sufficiently large number of steps are almost independent.
The proof of this proposition may be found in Section 4.5.10.

Proposition 4.15. Consider a random walk w := (v0, v1, . . . , vt) on G starting from an
arbitrary vertex, and suppose that j ≥ i+T (n). Let E denote any event that only depends
on the first i vertices visited by the walk. Then for every u, v ∈ V ,

|Pr[vi = u|vj = v, E ]− Pr[vi = u|E ]| ≤ 2/(3cn).

The following lemmas, which form the technical core of this work, lower bound the
quantities πv,A, πe,B, π

(u)
v,A, π

(u)
e,B as defined by Definitions 4.5 and 4.6.

Lemma 4.16. There is a D0 = O(c2dT 2(n)) and t1 = O(n/(c3dT (n))) such that whenever
D ≥ D0, by setting the path lengths t := t1 in Design 1 the following holds. Let v ∈ V ,
and A ⊆ V be a set of at most d vertices in G such that v /∈ A and A ∪ {v} does not
include any of the designated vertices s1, . . . sr. Then

πv,A = Ω

(
1

c4dT 2(n)

)
. (4.1)

Proof. Denote by µ the stationary distribution of G. We know from Proposition 4.11 that
for each u ∈ V , 1/cn ≤ µu ≤ c/n.

Let k = O(c2T (n)) be the quantity given by Proposition 4.13, B denote the bad event
that W hits some vertex in A. Moreover, let G denote the good event that W hits v no
more than k times in total and never within the first 2T (n) steps. The probability of G
is, by Propositions 4.13 and 4.14, at least

Pr(G) ≥ 1− 2T (n)/D −O(t/cnT (n)),
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which can be made arbitrarily close to 1 (say larger than 0.99) by choosing D sufficiently
large and t sufficiently small (as required by the statement). Now,

πv,A = Pr[¬B, v ∈ W ]

≥ Pr[¬B, v ∈ W,G]

= Pr[v ∈ W,G](1− Pr[B | v ∈ W,G]). (4.2)

By taking D large enough, and in particular, D = Ω(c2dT 2(n)), we can ensure that

2T (n)/D ≤ πv/4.

Combined with Proposition 4.13, we have Pr[v ∈ W,G] ≥ πv/2, since

Pr[v ∈ W,G] = Pr[v ∈ W ] + Pr[G]− Pr[(v ∈ W ) ∪ G]

≥ πv + (1− πv/2)− 1 = πv/2.

Thus, (4.2) gives
πv,A ≥ πv(1− Pr[B | v ∈ W,G])/2. (4.3)

Now we need to upperbound π := Pr[B | v ∈ W,G]. Before doing so, fix some i > 2T (n),
and assume that vi = v. Moreover, fix some vertex u /∈ A and assume that v0 = u. We
first try to upperbound Pr[B | vi = v, v0 = u].

Let ` := i−T (n) and ρ := i+T (n), and for the moment, assume that T (n) + 1 < ` <
ρ < t (a “degenerate” situation occurs when this is not the case). Partition W into four
parts:

W1 := (v0, v1, . . . , vT (n)),

W2 := (vT (n)+1, vT (n)+2, . . . , v`−1),

W3 := (v`, v`+1, . . . , vρ),

W4 := (vρ+1, vρ+2, . . . , vt).

For j = 1, 2, 3, 4, define

πj := Pr[Wj enters A | vi = v, v0 = u].

Now we upperbound each of the πj. In a degenerate situation, some of the Wi may be
empty, and the corresponding πj will be zero.

Each of the sub-walks W2 and W4 are “oblivious” to the conditioning on vi and v0

(because they are sufficiently far from both and Proposition 4.15 applies). In particular,
the distribution of each vertex on W4 is point-wise close to µ. Therefore, under our condi-
tioning the probability that each such vertex belongs to A is at most |A|(c/n+δ) < 2dc/n.
The argument on W2 is similar, but more care is needed. Without the conditioning on vi,
each vertex on W2 has an almost-stationary distribution. Moreover, by Proposition 4.15,
the conditioning on v2 changes this distribution by up to δ′ := 2/(3cn) < 1/n at each
point. Altogether, for each j ∈ {T (n) + 1, . . . , `− 1}, we have

Pr[vj ∈ A | vi = v, v0 = u] ≤ |A|(c/n+ δ + δ′)

≤ 2dc/n.

Using a union bound on the number of steps, we conclude that π2 + π4 ≤ 2dct/n.
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In order to bound π3, we observe that of all D or more neighbors of vi, at most d can
lie on A. Therefore,

Pr[vi+1 ∈ A | vi = v, v0 = u] ≤ d/D.

Similarly,
Pr[vi+2 ∈ A | vi = v, v0 = u, vi+1] ≤ d/D,

regardless of vi+1 which means

Pr[vi+2 ∈ A | vi = v, v0 = u] ≤ d/D,

and in general,

(∀j = i+ 1, . . . , ρ), Pr[vj ∈ A | vi = v, v0 = u] ≤ d/D. (4.4)

Similarly we have,
Pr[vi−1 ∈ A | vi = v] ≤ d/D,

and by Proposition 4.15 (and time-reversibility), conditioning on v0 changes this proba-
bility by at most dδ′. Therefore,

Pr[vi−1 ∈ A | vi = v, v0 = u] ≤ d/D + dδ′,

and in general,

(∀j = `, . . . , i− 1),

Pr[vj ∈ A | vi = v, v0 = u] ≤ d/D + dδ′. (4.5)

Altogether, using a union bound and by combining (4.4) and (4.5), we get that

π3 ≤ 2dT (n)/D + dT (n)/n ≤ 3dT (n)/D.

Using the same reasoning, π1 can be bounded as

π1 ≤ dT (n)/D + dT (n)/n ≤ 2dT (n)/D.

Finally, we obtain

Pr[B | vi = v, v0 = u] ≤ π1 + π2 + π3 + π4

≤ 5dT (n)

D
+

2dct

n
. (4.6)

Our next step is to relax the conditioning on the starting point of the walk. The probability
that the initial vertex is in A is at most d/n (as this happens only when the initial vertex
is taken randomly), and by Proposition 4.15, conditioning on vi changes this probability
by at most dδ′ < d/n. Now we write

Pr[B | vi = v] ≤ Pr[v0 ∈ A] + Pr[B | vi = v, v0 /∈ A]

≤ Pr[v0 ∈ A] + π1 + π2 + π3 + π4

≤ 5dT (n)

D
+

4dct

n
,
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where we have used the chain rule in the first inequality, and Proposition 4.10 with k = 1
for the second one. Now, since Pr[G] is very close to 1, conditioning on this event does
not increase probabilities by much (say no more than a factor 1.1). Therefore,

Pr[B | vi = v,G] ≤ 1.1

(
5dT (n)

D
+

4dct

n

)
.

Now in the probability space conditioned on G, define events Gi, i = 2T (n)+1, . . . t, where
Gi is the event that vi = v. Note that the intersection of more than k of the Gi is empty (as
conditioning on G implies that the walk never passes v more than k times), and moreover,
the union of these is the event that the walk passes v. Now we apply Proposition 4.10 to
conclude that

Pr[B | v ∈ W,G] ≤ 1.1k

(
5dT (n)

D
+

4dct

n

)
= O

(
c2T (n)

(
5dT (n)

D
+

4dct

n

))
.

By taking D = Ω(c2dT 2(n)) and t = O(n/c3dT (n)) we can make the right hand side
arbitrarily small (say at most 1/2). Now we get back to (4.3) to conclude, using Proposition
4.12, that

πv,A ≥ πv/4 = Ω

(
t

cnT (n)

)
= Ω

(
1

c4dT 2(n)

)
.

Similarly, we can bound the edge-related probability πe,B as in the following lemma.
The proof of the lemma is very similar to that of Lemma 4.16, and is therefore skipped
for brevity.

Lemma 4.17. There is a D0 = O(c2dT 2(n)) and t2 = O(nD/c3dT (n)) such that whenever
D ≥ D0, by setting the path lengths t := t2 in Design 2 the following holds. Let B ⊆ E be
a set of at most d edges in G, and e ∈ E, e /∈ B. Then

πe,B = Ω

(
1

c4dT 2(n)

)
. (4.7)

In Designs 3 and 4, the quantities π
(u)
v,A and π

(u)
e,B defined in Definition 4.6 play a similar

role as πv,A and πe,B. In order to prove disjunctness of the matrices obtained in Designs

3 and 4, we will need lower bounds on π
(u)
v,A and π

(u)
e,B as well. In the following we show the

desired lower bounds.

Lemma 4.18. There is a D0 = O(c2dT 2(n)) such that whenever D ≥ D0, in Design 3
the following holds. Let v ∈ V , and A ⊆ V be a set of at most d vertices in G such that
v /∈ A and A ∪ {v} is disjoint from {s1, . . . sr, u}. Then

π
(u)
v,A = Ω

(
1

c8d2T 4(n)

)
. (4.8)
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Proof. LetD0 and t1 be quantities given by Lemma 4 4.16. Let w0 denote the start vertex of
a walk performed in Design 3, and consider an infinite walk W = (v0, v1, v2, . . .) that starts
from a vertex identically distributed with w0. Let the random variables i, j, k respectively
denote the times that W visits v, u, and any of the vertices in A for the first time.
Therefore, vi = v, vj = u, and vk ∈ A, vt 6= v for every t < i and so on. Then the

quantity π
(u)
v,A that we wish to bound corresponds to the probability that i < j < k, that

is, probability of the event that in W , the first visit of v occurs before the walk reaches
the sink node u for the first time, and moreover, the walk never hits A before reaching
u. Observe that this event in particular contains the sub-event that i ≤ t1, t1 < j ≤ 2t1,
and k > 2t1, where t1 is picked as in Lemma 4.16. Denote by W ⊆ V t1+1 the set of all
sequences of t1 + 1 vertices of G (i.e., walks of length t1) that include v but not any of
the vertices in A ∪ {u}. Now, we can write

π
(u)
v,A = Pr[i < j < k] (4.9)

≥ Pr[i ≤ t1 < j ≤ 2t1 < k]

= Pr[(i ≤ t1) ∧ (j > t1) ∧ (k > t1)] ·
Pr[t1 < j ≤ 2t1 < k |

(i ≤ t1) ∧ (j > t1) ∧ (k > t1)]

= Pr[(v0, . . . , vt1) ∈ W ] ·
Pr[t1 < j ≤ 2t1 < k | (v0, . . . , vt1) ∈ W ]

(4.10)

The probability Pr[(v0, . . . , vt1) ∈ W ] is exactly πv,A∪{u} with respect to the start
vertex w0. Therefore, Lemma 4.16 gives the lower bound

Pr[(v0, . . . , vt1) ∈ W ] = Ω

(
1

c4dT 2(n)

)
.

Furthermore observe that, regardless of the outcome (v0, . . . , vt1) ∈ W , we have

Pr[t1 < j ≤ 2t1 < k | v0, . . . , vt1 ] = πu,A

where πu,A is taken with respect to the start vertex vt1 . Therefore, since vt1 /∈ A ∪ {u},
again we can use Lemma 4.16 to conclude that

Pr[t1 < j ≤ 2t1 < k | (v0, . . . , vt1) ∈ W ] = Ω

(
1

c4dT 2(n)

)
.

By plugging the bounds in (4.10) the claim follows.

A similar result can be obtained for Design 4 on the edges. Since the arguments are
very similar, we only sketch a proof.

Lemma 4.19. There is a D0 = O(c2dT 2(n)) such that whenever D ≥ D0, in Design 4
the following holds. Let B ⊆ E be a set of at most d edges in G, and e ∈ E, e /∈ B. Then

π
(u)
e,B = Ω

(
1

c9d2DT 4(n)

)
. (4.11)

4. In fact, as will be clear by the end of the proof, Lemma 4.16 should be applied with the sparsity
parameter d+ 1 instead of d. However, this will only affect constant factors that we ignore.
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Proof. (sketch) Similar to the proof of Lemma 4.18, we consider an infinite continuation
W = (v0, v1, . . .) of a walk performed in Design 4 and focus on its first t1 + t2 steps, where
t1 and t2 are respectively the time parameters given by Lemmas 4.16 and 4.17. Let

W1 := (v0, . . . , vt1),

W2 := (vt1+1, . . . , vt1+t2).

Again following the argument of Lemma 4.18, we lower bound π
(u)
e,B by the probability of

a sub-event consisting the intersection of the following two events:

1. The event E1 that W1 visits e but neither the sink node u nor any of the edges in
B, and

2. The event E2 that W2 visits the sink node u but none of the edges in B.

Consider the set A ⊆ V consisting of the endpoints of the edges in B and denote by
v ∈ V any of the endpoints of e. Let p := πv,A (with respect to the start vertex v0).
Now, Pr[E1] ≥ p/(cD) since upon visiting v, there is a 1/ deg(v) chance that the next
edge taken by the walk turns out to be e. The quantity p in turn, can be lower bounded
using Lemma 4.16. Moreover, regardless of the outcome of W1, the probability that W2

visits u but not B (and subsequently, the conditional probability Pr[E2 | E1]) is at least
the probability πe′,B (with respect to the start vertex vt1), where e′ ∈ E can be taken as
any edge incident to the sink node u. This latter quantity can be lower bounded using
Lemma 4.17. Altogether, we obtain the desired lower bound on π

(u)
e,B.

It is natural to ask whether the exponent of d2 in the denominator of the lower bound in
Lemma 4.18 can be improved. We argue that this is not the case in general, by considering
the basic example where the underlying graph is the complete graph Kn and each walk is
performed starting from a random node. Consider an infinite walk W starting at a random
vertex and moreover, the set of d + 2 vertices A′ := A ∪ {u, v}. Due to the symmetry of
the complete graph, we expect that the order at which W visits the vertices of A′ for the
first time is uniformly distributed among the (d+2)! possible orderings of the elements of

A′. However, in the event corresponding to π
(u)
v,A, we are interested in seeing v first, then

u, and finally the elements of A in some order. Therefore, for the case of complete graph
we know that π

(u)
v,A = O(1/d2), and thus, the quadratic dependence on d is necessary even

for very simple examples.

Another question concerns the dependence of the lower bound in Lemma 4.19 on
the degree parameter D. Likewise above, an argument for the case of complete graph
suggests that in general this dependence cannot be eliminated. For edge group testing on
the complete graph, we expect to see a uniform distribution on the ordering at which we
visit a particular set of edges in the graph. Now the set of edges of our interest consists
of the union of the set B ∪ {e} and all the n− 1 edges incident to the sink node u, and is

thus of size n+ d. The orderings that contribute to π
(u)
e,B must have e as the first edge and

an edge incident to u as the second edge. Therefore we get that, for the case of complete
graph,

π
(u)
e,B = O(1/n) = O(1/D),

which exhibits a dependence on the degree in the denominator. Now, we are ready to
prove our main theorem.



4.5. Analysis 79

Proof of Theorem 4.7. We prove the first part of the theorem. Proofs of the other parts
follow the same reasoning. The high-level argument is similar to the well known prob-
abilistic argument in classical group testing, but we will have to use the tools that we
have developed so far for working out the details. By construction, the output matrix
M is vertex-consistent with G. Now, take a vertex v ∈ V and A ⊆ V such that v /∈ A,
|A| ≤ d, and ({v}∪A)∩{s1, . . . , sr} = ∅. For each i = 1, . . .m1, define a random variable
Xi ∈ {0, 1} such that Xi = 1 iff the ith row of M has a 1 entry at the column correspond-
ing to v and all-zeros at those corresponding to the elements of A. Let X :=

∑m1

i=1 Xi.
Note that the columns corresponding to v and A violate the disjunctness property of M
iff X = 0, and that the Xi are independent Bernoulli random variables. Moreover,

E[Xi] = Pr[Xi = 1] = πv,A,

since Xi = 1 happens exactly when the ith random walk passes vertex v but never hits
any vertex in A. Now by using Lemma 4.16 we can ensure that, for an appropriate choice
of D0 and t1 (as in the statement of the lemma), we have πv,A = Ω(1/(c4dT 2(n))).

Denote by pf the failure probability, namely that the resulting matrix M is not d-
disjunct. By a union bound we get

pf ≤
∑
v,A

(1− πv,A)m1

≤ exp
(
d log

n

d

)
·
(

1− Ω

(
1

c4dT 2(n)

))m1

.

Thus by choosing

m1 = O
(
d2c4T 2(n) log

n

d

)
we can ensure that pf = o(1), and hence, M is d-disjunct with overwhelming probability.

For the claim on (d, e1)-disjunctness, note that a failure occurs if, for some choice of
the columns (i.e., some choice of v,A), we have X ≤ e1. Set

η′ := ηπv,A = Ω

(
η

c4dT 2(n)

)
,

and e1 := η′m′1. Note that E[X] = πv,Am
′
1. Now by a Chernoff bound, we get

Pr[X ≤ η′m′1] ≤ exp

(
−(E[X]− η′m′1)2

2E[X]

)
= exp(−E[X](1− η)2/2).

So now, by a union bound, the failure probability pf becomes

pf ≤ exp
(
d log

n

d
−m′1(1− η)2π̃/2

)
, (4.12)

where π̃ is the lower bound Ω(1/(c4dT 2(n))) on πv,A. Thus we will have pf = o(1) by
choosing

m′1 = O
(
d2 log

n

d
c4T 2(n)/(1− η)2

)
.
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Proof of Theorem 4.9. The proof follows line-by-line the same arguments as in the proof
of Theorem 4.7, except that for the last union bound it would suffice to enumerate a
substantially lower number of choices of v and A. In particular, consider Design 1 as in
the proof of Theorem 4.7 (the argument for the other designs is essentially the same).
Then the only part of the proof that needs to be changed is the union bound from which
(4.12) follows. Contrary to the proof of Theorem 4.7, in the case we consider here, only
up to n choices of the tuple (v, A), in particular the following set, need to be enumerated:

B := {(v, A) : v ∈ V \ {s1, . . . , sr}, A = S \ {v}}.

Now assume that the resulting matrix “satisfies” all the choices of the tuples (v, A) ∈
B, in that it has enough rows at which the entry corresponding to v is 1 while those
corresponding to A are all zeros (this is guaranteed to hold, with overwhelming probability,
by the union bound).

Consider the case where S ′ * S and take any v ∈ S ′ \ S. Since (v, S) ∈ B, we can be
sure that the measurement outcome corresponding to S ′ would be positive at more than
Ω(γe1) of the positions while at those positions, the outcome of S must be zero. A similar
argument is true for the case S ′ ⊆ S, in which case it would suffice to take any v ∈ S \S ′
and observe that (v, S \ {v}) ∈ B.

Altogether, from the above observations, the estimate (4.12) can be improved to

pf ≤ exp
(
log n− m̃(1− η)2π̃/2

)
,

where m̃ is the number of measurements. Therefore, we can ensure that pf = o(1) by
taking m̃ = O(γm′1), i.e., a factor γ less than what needed by Theorem 4.7.

4.5.2 Proof of Theorem 4.8

In Theorem 4.8 we consider two important instantiations of the result given by The-
orem 4.7, namely when G is taken as an expander graph with constant spectral gap, and
when it is taken as an Erdős-Rényi random graph G(n, p). In the following we show that
in both cases (and provided that p is not too small), the mixing time is O(log n) (with
probability 1− o(1)). Then Theorem 4.7 will lead to the proof.

Before we proceed, we need to bound the distance between the stationary distribution
and the distribution obtained after t random steps on a graph. The following theorem,
which is a direct corollary of a result in [SJ89], is the main tool that we will need. We
skip the proof of this theorem here and refer to the main article for interested readers.

Theorem 4.20 ([SJ89]). Let G be an undirected graph with stationary distribution µ, and
denote by dmin and dmax the minimum and maximum degrees of its vertices, respectively.
Let µtv be the distribution obtained by any random walk on G in t steps starting at node
v. Then for all v ∈ V

‖µtv − µ‖∞ ≤ (1− Φ(G)2/2)tdmax/dmin,

where Φ(G) denotes the conductance of G (see Definition 4.2).
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4.5.3 The Erdős-Rényi Random Graph

First, we present some tools for the case of random graphs. Consider a random graph
G(n, p) which is formed by removing each edge of the complete graph on n vertices
independently with probability 1 − p. Our focus will be on the case where np � lnn.
In this case, the resulting graph becomes (almost surely) connected and the degrees are
highly concentrated around their expectations. In particular, we can show the following
fact, which we believe to be folklore. The proof of this is presented in Section 4.5.11.

Proposition 4.21. For every ε > 0, with probability 1− o(1), the random graph G(n, p)
with np ≥ (2/ε2) lnn is (np(1− ε), (1 + ε)/(1− ε))-uniform.

In light of Theorem 4.20, all we need to show is a lower bound on the conductance of
a random graph. This is done in the following.

Lemma 4.22. For every ϕ < 1/2, there is an α > 0 such that a random graph G = G(n, p)
with p ≥ α lnn/n has conductance Φ(G) ≥ ϕ with probability 1− o(1).

Proof. First, note that by Proposition 4.21 we can choose α large enough so that with
probability 1− o(1), the degree of each vertex in G is between D(1− ε) and D(1 + ε), for
an arbitrarily small ε > 0 and D := np. We will suitably choose ε later.

Fix a set S ⊆ V of size i. We wish to upper bound the probability that S makes the
conductance of G undesirably low, i.e., the probability that E(S, S̄) < ϕ∆(S). Denote
this probability by pS. By the definition of conductance and (D, ε)-uniformity of G, we
only need to consider subsets of size at most ηn, for η := (1 + ε)/2(1− ε).

There are i(n− i) “potential” edges between S and its complement in G, where each
edge is taken independently at random with probability p. Therefore, the expected size
of E(S, S̄) is

ν := Di(1− i/n) ≥ Di(1− η).

Now note that the event E(S, S̄) < ϕ∆(S) implies that

E(S, S̄) < ϕDi(1 + ε) < ϕ′ν,

where ϕ′ := ϕ(1+ε)/(1−η). So it suffices the upper bound the probability that E(S, S̄) <
ϕ′ν. Note that, since ϕ < 1/2, we can choose ε small enough to ensure that ϕ′ < 1. Now,
by a Chernoff bound,

pS ≤ Pr[E(S, S̄) < ϕ′ν]

≤ exp(−(1− ϕ′)2ν)

≤ n−iα(1−ϕ′)2(1−η).

Set α large enough (i.e., α ≥ 2/(1 − ϕ′)2(1 − η)) so that the right hand side becomes
at most n−2i. Therefore, with high probability, for our particular choice of S we have
E(S, S̄)/ϕ(S) ≥ ϕ.

Now we take a union bound on all possible choices of S to upper bound the probability
of conductance becoming small as follows.

Pr[Φ(G) < ϕ] ≤
ηn∑
i=1

(
n

i

)
n−2i

≤
ηn∑
i=1

n−i = o(1).
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Thus with probability 1− o(1), we have Φ(G) ≥ ϕ.

By combining Lemma 4.22 and Theorem 4.20 we get the following corollary, which is
formally proved in Section 4.5.12.

Corollary 4.23. There is an α > 0 such that a random graph G = G(n, p) with p ≥
α lnn/n has δ-mixing time bounded by O(log(1/δ)) with probability 1− o(1).

In particular, for our specific choice of δ := (1/2cn)2, the δ-mixing time of G(n, p)
would be T (n) = O(log n).

4.5.4 Expander Graphs with Constant Spectral Gap

Similar to Corollary 4.23, we need to show that the mixing time of an expander graph
with second largest eigenvalue that is bounded away from 1 is bounded by O(log n).

Lemma 4.24. If G = (V,E) is an expander graph with a (normalized) second largest
eigenvalue that is bounded away from 1 by a constant, then T (n) = O(log n).

Proof. We first recall a well known result in graph theory (cf. [HLW06]), which states that
any regular graph with a normalized adjacency matrix whose second largest eigenvalue
(in absolute value) is bounded away from 1 must have good expansion (i.e., σ = Ω(1)).

Moreover, note that for regular graphs we have ∆(S) = D|S|, and therefore the two
notions of conductance (see Definition 4.2) and expansion (Definition 4.4) coincide (except
a multiplicative constant).

Finally, we can applying Theorem 4.20 to find the smallest t which satisfies

(1− Φ(G)2/2)t ≤ 1

(2n)2
,

which implies T (n) = O(log n).

We now have all the tools required for proving Theorem 4.8.

Proof of Theorem 4.8. Follows immediately by combining Theorem 4.7, Proposition 4.21,
Corollary 4.23, and Lemma 4.24.

4.5.5 Proof of Proposition 4.10

We can write

Pr[A | B] =

∑n
i=1 Pr[A|Bi] Pr[Bi]

Pr[B]

≤ ε ·
∑n

i=1 Pr[Bi]

Pr[B]

≤ εk.

The last inequality is due to the fact that each element of the sample space can belong to
at most k of the Bi, and thus, the summation

∑n
i=1 Pr[Bi] counts the probability of each

element in B at most k times.
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4.5.6 Proof of Proposition 4.11

We start with a well-known result [MU05, Theorem 7.13], that a random walk on any
graph graph G that is not bipartite converges to a stationary distribution µ, where

µ(v) =
d(v)

2|E| .

Since G is a (D, c)-uniform graph we know that D ≤ d(v) ≤ cD and that nD ≤ 2|E| ≤
ncD.

4.5.7 Proof of Proposition 4.12

Let t′ := bt/T (n)c, and for each i ∈ {0, . . . , t′}, wi := viT (n). Denote by W ′ :=
{w0, . . . , wt′} a subset of t′ + 1 vertices visited by W . Obviously, πv is at least the proba-
bility that v ∈ W ′. Thus it suffices to lower bound the latter probability.

By the definition of mixing time, regardless of the choice of w0, the distribution of
w1 is δ-close to the stationary distribution µ, which assigns a probability between 1/cn
and c/n to v (by Proposition 4.11). Therefore, Pr[w1 6= v | w0] ≤ 1− 1/cn+ δ. Similarly,
Pr[w2 6= v | w0, w1] ≤ 1− 1/2cn, and so on. Altogether, this means that

Pr[w0 6= v, w1 6= v, . . . , wt′ 6= v] ≤ (1− 1/cn+ δ)t/T (n)

≤ (1− 1/2cn)t/T (n)

≤ exp(−t/(2cnT (n)))

≤ 1− Ω(t/(cnT (n))).

In the last equality we used the fact that exp(−x) ≤ 1 − x/2 for 0 ≤ x ≤ 1. Thus
the complement probability is lower bounded by Ω(t/(cnT (n)). The calculation for πe is
similar.

4.5.8 Proof of Proposition 4.13

For every i = 0, . . . , t, define a boolean random variable Xi ∈ {0, 1} such that Xi = 1
iff vi = v. Let X :=

∑t
i=0Xi be the number of times that the walk visits v. For every

i ≥ T (n), we have

E[Xi] = Pr[vi = v]

≤ c/n+ δ

≤ 2c/n,

where the first inequality is due to the assumption that i ≥ T (n) and after the mixing
time, the distribution induced on each vertex is within δ of the stationary distribution,
and the second inequality is by the particular choice of the proximity parameter δ. Define
X ′ :=

∑t
i=T (n) Xi. By linearity of expectation, E[X ′] < 2ct/n, and by Markov’s inequality,

Pr[X ′ ≥ αc2T (n)] <
2t

αcnT (n)
.

By taking α a large constant (depending on the constant hidden in the asymptotic estime
of πv given by Lemma 4.12), and using Proposition 4.12, we can ensure that the bound on
the probability is at most πv/4. Thus the probability that X ≥ k for k := (1 + αc2)T (n)
is at most πv/4. Proof for the edge case is similar.
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4.5.9 Proof of Proposition 4.14

By the choice of v (that is not a designated vertex), the walk W has a chance of
visiting v as the initial vertex v0 only if it starts at a vertex chosen uniformly at random.
Thus the probability of visiting v at the initial step is 1/n ≤ 1/D.

Now, regardless of the outcome of the initial vertex v0, the probability of visiting v
as the second vertex v1 is at most 1/D, as v0 has at least D neighbors and one is chosen
uniformly at random. Thus, Pr[v1 = v] ≤ 1/D, and similarly, for each i, Pr[vi = v] ≤ 1/D.
A union bound gives the claim.

4.5.10 Proof of Proposition 4.15

We can write

Pr[vi = u | vj = v, E ] = Pr[vj = v | vi = u, E ] · Pr[vi = u | E ]

Pr[vj = v | E ]
.

Now, from the definition of mixing time, we know that

|Pr[vj = v | vi = u, E ]− Pr[vj = v | E ]| ≤ 2δ,

because regardless of the knowledge of vi = u, the distribution of vj must be δ-close to
the stationary distribution. Therefore,

|Pr[vi = u|vj = v, E ]− Pr[vi = u|E ]| ≤ 2δ/Pr[vj = v | E ]

≤ 2δ/(1/cn− δ)
≤ 8δcn/3.

4.5.11 Proof of Proposition 4.21

Let α := 6/ε2 so that np ≥ α lnn. Take any vertex v of the graph. The expected degree
of v is np. As the edges are chosen independently, by a Chernoff bound, the deviation
probability of deg(v) can be bounded as

Pr[| deg(v)− np| > εnp] ≤ 2e−ε
2np/3

≤ 2n−ε
2α/3 = 2/n2.

This upper bounds the probability by 2n−2. Now we can use a union bound on the vertices
of the graph to conclude that with probability at least 1− 2/n, the degree of each vertex
in the graph is between np(1− ε) and np(1 + ε).

4.5.12 Proof of Corollary 4.23

Choose α large enough so that, by Proposition 4.21 the graph becomes (np(1−ε), (1+
ε)/(1 − ε))-uniform, for a sufficiently small ε and so that Lemma 4.22 can be applied to
obtain Φ(G) = Ω(1). Let µ′ be the distribution obtained by any random walk on G in t
steps and denote by µ the stationary distribution of G. Now Theorem 4.20 implies that,

‖µ′ − µ‖∞ ≤ (1− Φ(G)2/2)t(1 + ε)/(1− ε),
and thus, it suffices to choose t = O(log(1/δ)) to have ‖µ′ − µ‖∞ ≤ δ.
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have the time.”

Steven Wright

Navigability with a Bias 5
In the first two chapters, we studied efficient algorithms for inferring the position of the

nodes for a given network. We then looked at network tomography or how we can identify
congested links/nodes from end-to-end measurements. In this chapter 1, we investigate
another important feature of networks, namely, navigability or how fast nodes can deliver
a message from one end to another by the means of local operations.

When each node has a full view or global map of the network, finding the shortest route
and hence routing information is only a matter of computation. However, in many net-
works, including social, peer-to-peer and neural networks, nodes can potentially commu-
nicate efficiently with one another even without such global knowledge. This phenomenon,
known as the small-world or six degrees of separation, dates back to the famous experi-
ment conducted by Milgram in the 1960’s [Mil67]. Milgram’s experiment was subsequently
confirmed by others under many different settings in recent years [NNK+05, DMW03].
These studies revealed that in such networks, the diameter is exponentially smaller than
the size. In other words, short routes exist in abundance. Many models have been proposed
in the literature to capture this property [WS98, Wat99, BC88]. However, as Kleinberg
observed in his seminal work [Kle00], the existence of such short paths does not imply that
a decentralized algorithm can find them. By revisiting Milgram’s experiment, Kleinberg
[Kle00] proposed a mathematical model similar to that of [WS98] to capture this aspect
of small-worlds.

In Kleinberg’s model, nodes of the network are embedded in a 2-dimensional grid which
are then augmented with additional shortcut edges as follows (see Figure 5.1). From each
node x in the network, a directed edge is added to some other node y according to a prob-
ability distribution that depends on the distance between x and y (in contrast to [WS98]
where it is assumed that this probability is uniform). More specifically, node x is con-
nected to node y on the grid with probability proportional to d−α(x, y). Kleinberg showed
that for the critical value of α∗ = 2, there exists a decentralized algorithm, called ”greedy
forwarding”, that finds paths of lengths poly-logarithmic in the size of the network. He
also established that for α < α∗ such short path exists but no decentralized algorithm will
be able to find them. When α > α∗, short paths no longer exist. As a result, to route a

1. This chapter is the result of a collaboration with S. Ioannidis and L. Massoulié.
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x

y

Figure 5.1 – Each node of the graph is augmented with a shortcut edge (a few of them are
shown). As shown in this figure, the greedy forwarding algorithm takes the blue dashed
path to route a message from x to y.

message in a decentralized manner from one node to another, the number of hops/steps it
takes is of the order of network size, unless α = α∗. This result can be easily generalized
to a k-dimensional grid in which case a shortcut edge between nodes x and y should be
sampled with a probability proportional to d−k(x, y).

In this chapter, we consider the following general framework for designing small world
networks which naturally extends Kleinbreg’s result:

Given a graph embedded in a metric space, how should one augment this graph
by adding edges in order to minimize the expected cost of greedy forwarding
over this graph?

Note that in this framework, nodes are not necessarily embedded in a 2-dimensional
gird. Moreover, we consider the above problem under the scenario of heterogeneous de-
mand, i.e., the probability that a message is sent from a node x to another node y is
not uniform. Earlier work on small-world network design focuses only on homogeneous
demand. Our contributions in this chapter are as follows:

– We show that the small-world network design problem under general heterogeneous
demand is NP-hard. Given earlier work on this problem under homogeneous demand
[FG10, FLL06], this result is interesting in its own right.

– We propose a novel mechanism for edge addition in the small-world design problem
under the heterogeneous demand, and provide an upper bound on its performance.

Our analysis generalizes and combines classical results from small-world network de-
sign in the context of heterogeneity. In particular, our upper bound relates the cost of
greedy forwarding to two important properties of the demand distribution, namely its
entropy and its doubling constant. We thus provide performance guarantees in terms of
the bias of the distribution of targets, captured by the entropy, as well as the topology of
their embedding, captured by the doubling constant.



5.1. Related Work 87

5.1 Related Work

Small world network design has been an active field of research in the past decade. It
has found numerous applications, including decentralized searching [Kle01], recommen-
dation systems [WBS08], and peer-to-peer networks [ZGG02], to name a few. A recent
survey of the field with a detailed account of new directions can be found in [Kle06].
Following Kleinberg’s result, many tried to extend it to more general settings. In [Kle01],
Kleinberg extended his model to hierarchical structures using a complete b-ary tree. The
small world networks with grid-like structures were analysed in [NM05], where the di-
ameter of such networks were computed. A more general framework, where nodes are
embedded in a metric space of bounded doubling dimension was considered in [Sli05].

Our work is most similar to Fraigneaud et al. [FLL06], where a condition under which
graphs embedded in a doubling metric space can be made navigable is identified. The same
idea was explored in more general spaces by Fraigneaud and Giakkoupis [FG10]. The main
difference in our approach to small-world network design lies in considering heterogeneous
demand, an aspect of small-world networks not investigated in earlier work.

5.2 Definitions and Notation

In this section, we introduce some definitions and notation which will be used through-
out this chapter.

Objects and Metric Embedding

Consider a set of objects N , where |N | = n. We assume that there exists a metric
space (M,d), where d(x, y) denotes the distance between x, y ∈ M, such that objects in
N are embedded in (M,d): i.e., there exists a one-to-one mapping from N to a subset of
M.

The objects in N may represent, for example, nodes of a peer-to-peer network or the
set of individuals in a social network.

Given an object z ∈ N , we can order objects according to their distance from z. We
will write x 4z y if d(x, z) ≤ d(y, z). Moreover, we will write x ∼z y if d(x, z) = d(y, z)
and x ≺z y if x 4z y but not x ∼z y. Note that ∼z is an equivalence relation, and
hence partitions N into equivalence classes. Moreover, 4z defines a total order over these
equivalence classes, with respect to their distance from z. Given a non-empty set A ⊆ N ,
we denote by min4z A the object in A closest to z, i.e. min4z A = w ∈ A s.t. w 4z v for
all v ∈ A.

Demand

We denote by N ×N the set of all ordered pairs of objects in N . For (s, t) ∈ N ×N ,
we will call s the source and t the target of the ordered pair. We will consider a probability
distribution λ over all ordered pairs of objects in N which we will call the demand. In
other words, λ will be a non-negative function such that

∑
(s,t)∈N×N λ(s, t) = 1. In general,

the demand can be heterogeneous as λ(s, t) may vary across different sources and targets.
We refer to the marginal distributions

ν(s) =
∑
t

λ(s, t), µ(t) =
∑
s

λ(s, t),
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Figure 5.2 – Example of dependence of c(σ) on the topology of the support supp(σ). When
supp(σ) consists of n = 64 objects arranged in a cube, c(σ) = 23. If, on the other hand,
these n objects are placed on a plane, c(σ) = 22. In both cases σ is assumed to be uniform,
and H(σ) = logN

as the source and target distributions, respectively. Moreover, will refer to the support of
the target distribution

T = supp(µ) = {x ∈ N : s.t. µ(x) > 0}

as the target set of the demand.
As we will see in Section 5.4, the target distribution µ will play an important role

in our analysis. In particular, two quantities that affect the performance of searching in
our scheme will be the entropy and the doubling constant of the target distribution. We
introduce these two notions formally below.

Entropy and Doubling Constant

Let σ be a probability distribution over N . The entropy of σ is defined as

H(σ) =
∑

x∈supp(σ)

σ(x) log
1

σ(x)
. (5.1)

We define the max-entropy of σ as

Hmax(σ) = max
x∈supp(σ)

log
1

σ(x)
. (5.2)

Given an object x ∈ N , we denote by

Bx(r) = {y ∈M : d(x, y) ≤ r} (5.3)

the closed ball of radius r ≥ 0 around x. Given a probability distribution σ over N and a
set A ⊂ N let σ(A) =

∑
x∈A σ(x). We define the doubling constant c(σ) of a distribution

σ to be the minimum c > 0 for which

σ(Bx(2r)) ≤ c · σ(Bx(r)), (5.4)

for any x ∈ supp(σ) and any r ≥ 0. Moreover, we will say that σ is c-doubling if c(µ) = c.
Note that, contrary to the entropy H(σ), the doubling constant c(σ) depends on the

topology of supp(σ), determined by the embedding of N in the metric space (M, d). This
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is illustrated in Fig. 5.2. In this example, |N | = 64, and the set N is embedded in a
3-dimensional cube. Assume that σ is the uniform distribution over the N objects; if
these objects are arranged uniformly in a cube, then c(σ) = 23; if however these n objects
are arranged uniformly in a 2-dimensional plane, c(σ) = 22. Note that, in contrast, the
entropy of σ in both cases equals log n (and so does the max-entropy).

5.3 Problem Statement

In the small network design problem, we consider the objects in N , embedded in
(M, d). It is also assumed that the objects in N are connected to each other. The network
formed by such connections is represented by a directed graph G(N ,L ∪ S), where L is
the set of local edges and S is the set of shortcut edges. These edge sets are disjoint, i.e.,
L ∩ S = ∅.

The edges in L are typically assumed to satisfy the following property:

Property 5.1. For every pair of distinct objects x, t ∈ N there exists an object u adjacent
to x such that (x, u) ∈ L and u ≺t x.

In other words, for any object x and a target t, x has a local edge leading to an object
closer to t.

Here the goal is to route a message from s to t over the links in graph G in a decen-
tralized manner. In particular, given graph G, we define greedy forwarding [Kle00] over
G as follows. Let Γ(s) be the neighborhood of s, i.e., Γ(s) = {u ∈ N s.t. (s, u) ∈ L ∪ S}.
Given a source s and a target t, greedy forwarding sends a message to neighbor w of s
that is as close to t as possible, i.e.,

w = min4tΓ(s). (5.5)

If w 6= t, the above process is repeated at w; if w = t, greedy forwarding terminates.
Note that local edges, through Property 5.1, guarantee that greedy forwarding from

any source s will eventually reach t: there will always be a neighbor that is closer to t
than the object currently having the message. Moreover, the closest neighbour w selected
through (5.5) can be found by using only local information. In particular, if the message
is at an object x, |Γ(x)| comparisons will suffice to find the neighbor that is closest to the
target.

The edges in L are typically called “local” because they are usually determined by
object proximity. For example, in the classical paper by [Kle00], objects are arranged
uniformly in a rectangular k-dimensional grid—with no gaps—and d is taken to be the
Manhattan distance on the grid. Moreover, there exists an r ≥ 1 such that any two objects
at distance less than r have an edge in L. In other words,

L = {(x, y) ∈ N ×N s.t. d(x, y) ≤ r}. (5.6)

Assuming every position in the rectangular grid is occupied, such edges indeed satisfy
Property 5.1. In this work, we will not require that edges in L are given by (5.6) or some
other locality-based definition; our only assumption is that they satisfy Property 5.1.
Nevertheless, for the sake of consistency with prior work, we also refer to edges in L as
“local”.
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The shortcut edges S need not satisfy Property 5.1; our goal is to select these shortcut
edges in a way so that greedy forwarding is as efficient as possible.

In particular, we assume that we can select no more than β shortcut edges, where β is
a positive integer. For S a subset of N ×N such that |S| ≤ β, we denote by CS(s, t) the
cost of greedy forwarding, in message hops, for forwarding a message from s to t given
that S = S. We allow the selection of shortcut edges to be random: the set S can be a
random variable over all subsets S of N ×N such that |S| ≤ β. We denote by

Pr(S = S), S ⊆ N ×N s.t. |S| ≤ β (5.7)

the distribution of S. Given a source s and a target t, let

E[CS(s, t)] =
∑

S⊆N×N :|S|≤β

CS(s, t) · P(S = S)

be the expected cost of forwarding a message from s to t with greedy forwarding, in
message hops.

We consider again a heterogeneous demand: a source and target object are selected at
random from N ×N according to a demand probability distribution λ. The small-world
network design problem can then be formulated as follows.

Small-World Network Design (SWND): Given an embedding of N
into (M, d), a set of local edges L, a demand distribution λ, and an integer
β > 0, select a r.v. S ⊂ N ×N that minimizes

C̄S =
∑

(s,t)∈N×N

λ(s, t)E[CS(s, t)]

subject to |S| ≤ β.

In other words, we wish to select S so that the cost of greedy forwarding is minimized. Note
that, since S is a random variable, the free variable of the above optimization problem is
essentially the distribution of S, given by (5.7).

5.4 Main Results

We formally state our results (Theorems 5.2 and 5.3) in this section, and present their
proofs in Sections 5.5.1 and 5.5.2.

Our first result is negative: optimizing greedy forwarding is a hard problem.

Theorem 5.2. SWND is NP-hard.

In short, the proof reduces DominatingSet to the decision version of SWND. In-
terestingly, the reduction is to a SWND instance in which (a) the metric space is a
2-dimensional grid, (b) the distance metric is the Manhattan distance on the grid and (c)
the local edges are given by (5.6). Thus, SWND remains NP-hard even in the original
setup considered by [Kle00].

The NP-hardness of SWND suggests that this problem cannot be solved in its full
generality. Motivated by this we focus our attention to the following version of the SWND
problem, in which we place additional restrictions on the shortcut edge set S. First,
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|S| = |N |, and for every x ∈ N there exists exactly one shortcut edge (x, y) ∈ S.
Second, the object y to which x connects is selected independently at each x, according
to a probability distribution `x(y). More specifically, for N = {x1, x2, . . . , xn}, the joint
distribution of shortcut edges has the form:

Pr(S = {(x1, y1), . . . (xn, yn)}) =
n∏
i=1

`xi(yi). (5.8)

We call this version of the SWND problem the one edge per object version, and denote it
by 1-SWND. Note that, in 1-SWND, the free variables are the distributions `x, x ∈ N .

For a given demand λ, recall that µ is the marginal distribution of the demand λ over
the target set T , and that for A ⊂ N , µ(A) =

∑
x∈A µ(x). Then, for any two objects

x, y ∈ N , we define the rank of object y w.r.t. object x as follows:

rx(y) ≡ µ(Bx(d(x, y))) (5.9)

where Bx(r) is the closed ball with radius r centered at x.

Suppose now that shortcut edges are generated according to the joint distribution
(5.8), where the outgoing link from an object x ∈ N is selected according to the following
probability:

`x(y) ∝ µ(y)

rx(y)
, (5.10)

for y ∈ supp(µ), while for y /∈ supp(µ) we define `x(y) to be zero. Eq. (5.10) implies the
following appealing properties:

– For two objects y, z that have the same distance from x, if µ(y) > µ(z) then `x(y) >
`x(z), i.e., y has a higher probability of being connected to x.

– When two objects y, z are equally likely to be targets, if y ≺x z then `x(y) > `x(z).

The distribution (5.10) thus biases both towards objects close to x as well as towards
objects that are likely to be targets. Finally, if the metric space (M, d) is a k-dimensional
grid and the targets are uniformly distributed over N then `x(y) ∝ (d(x, y))−k. This is the
shortcut distribution used by [Kle00]; (5.10) is thus a generalization of this distribution
to heterogeneous targets as well as to more general metric spaces.

Our next theorem, whose proof is in Section 5.5.2, relates the cost of greedy forwarding
under (5.10) to the entropy H, the max-entropy Hmax and the doubling parameter c of
the target distribution µ.

Theorem 5.3. Given a demand λ, consider the set of shortcut edges S sampled according
to (5.8), where `x(y), x, y ∈ N , are given by (5.10). Then

C̄S ≤ 6c3(µ) ·H(µ) ·Hmax(µ).

Note that the bound in Theorem 5.3 depends on λ only through the target distribution
µ. In particular, it holds for any source distribution ν, and does not require that sources
are selected independently of the targets t. Moreover, if N is a k-dimensional grid and µ
is the uniform distribution over N , the above bound becomes O(log2 n), retrieving thus
the result of [Kle00].
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5.5 Analysis

This section includes the proofs of our theorems.

5.5.1 Proof of Theorem 5.2

We first prove that the randomized version of SWND is no harder than its determin-
istic version. Define DetSWND to be the same as SWND with the additional restriction
that S is deterministic. For any random variable S ⊂ N that satisfies |S| ≤ β, there exists
a deterministic set S∗ s.t. |S∗| ≤ β and C̄S∗ ≤ C̄S . In particular, this is true for

S∗ = arg min
S∈N ,|S|≤β

CS(s, t).

Thus, SWND is equivalent to DetSWND. In particular, any solution of DetSWND will
also be a solution of SWND. Moreover, given a solution S of SWND any deterministic
S belonging to the support of S will be a solution of DetSWND.

We therefore turn our attention on DetSWND. Without loss of generality, we can as-
sume that the weights λ(s, t) are arbitrary non-negative numbers, as dividing every weight
by
∑

s,t λ(s, t) does not change the optimal solution. The decision problem corresponding
to DetSWND is as follows

DetSWND-D: Given an embedding of N into (M, d), a set of local edges L,
a non-negative weight function λ, and two constants α > 0 and β > 0, is there
a directed edge set S such that |S| ≤ β and

∑
(s,t)×N×N λ(s, t)CS(s, t) ≤ α?

Note that, given the set of shorcut edges S, forwarding a message with greedy forwarding
from any s to t can take place in polynomial time. As a result, DetSWND-D is in NP.
We will prove it is also NP-hard by reducing the following NP-complete problem to it:

DominatingSet: Given a graph G(V,E) and a constant k, is there a set
A ⊆ V such that |A| ≤ k and Γ(A) ∪ A = V , where Γ(A) the neighborhood
of A in G?

Given an instance (G(V,E), k) of DominatingSet, we construct an instance of
DetSWND-D as follows. The set N in this instance will be embedded in a 2-dimensional
grid, and the distance metric d will be the Manhattan distance on the grid. In particular,
let n = |V | be the size of the graph G and, w.l.o.g., assume that V = {1, 2, . . . , n}. Let

`0 = 6n+ 3, (5.11)

`1 = n`0 + 2 = 6n2 + 3n+ 2, (5.12)

`2 = `1 + 3n+ 1 = 6n2 + 6n+ 3. (5.13)

`3 = `0 = 6n+ 3, (5.14)

We construct a n1 × n2 grid, where n1 = (n− 1) · `0 + 1 and n2 = `1 + `2 + `3 + 1. That
is, the total number of nodes in the grid is

N = [(n− 1) · `0 + 1] · (`1 + `2 + `3 + 1) = Θ(n4).

The object set N will be the set of nodes in the above grid, and the metric space will be
(Z2, d) where d is the Manhattan distance on Z2. The local edges L is defined according
to (5.6) with r = 1, i.e., and any two adjacent nodes in the grid are connected by an edge
in L.
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Figure 5.3 – A reduction of an instance of DominatingSet to an instance of DetSWND-D.
Only the nodes on the grid that have non-zero incoming or outgoing demands (weights) are
depicted. The dashed arrows depict A1, the set of pairs that receive a weight W1. The solid
arrows depict A2, the set of pairs that receive weight W2.

Denote by ai, i = 1, . . . , n, the node on the first column of the grid that resides at
row (i − 1)`0 + 1. Similarly, denote by bi, ci and di the nodes on the columns (`1 + 1),
(`1 + `2 + 1) and (`1 + `2 + `3 + 1) the grid, respectively, that reside at the same row as
ai, i = 1, . . . , n. These nodes are depicted in Figure 5.3. We define the weight function
λ(i, j) over the pairs of nodes in the grid as follows. The pairs of grid nodes that receive
a non-zero weight are the ones belonging to one of the following sets:

A1 = {(ai, bi) | i ∈ V },
A2 = {(bi, bj) | (i, j) ∈ E}∪{(ci, dj) | (i, j) ∈ E}∪{(ci, di) | i ∈ V },
A3 = {(ai, di) | i ∈ V }.

The sets A1 and A2 are depicted in Fig. 5.3 with dashed and solid lines, respectively. Note
that |A1| = n as it contains one pair for each vertex in V , |A2| = 4|E| + n as it contains
four pairs for each edge in E and one pair for each vertex in V , and, finally, |A3| = n.
The pairs in A1 receive a weight equal to W1 = 1, the pairs in A2 receive a weight equal
to W2 = 3n+ 1 and the pairs in A3 receive a weight equal to W3 = 1.

For the bounds α and β take

α=2W1|A1|+W2|A2|+3|A3|W3 =(3n+1)(4|E|+n)+5n (5.15)

β = |A2|+ n+ k = 4|E|+ 2n+ k. (5.16)

The above construction can take place in polynomial time in n. Moreover, if the graph
G has a dominating set of size no more than k, one can construct a deterministic set of
shortcut edges S that satisfies the constraints of DetSWND-D.

Lemma 5.4. If the instance of DominatingSet is a “yes” instance, then the constructed
instance of DetSWND-D is also a “yes” instance.

Proof. To see this, suppose that there exists a dominating set A of the graph with size
|A| ≤ k. Then, for every i ∈ V \ A, there exists a j ∈ A such that i ∈ Γ(j), i.e., i is
a neighbor of j. We construct S as follows. For every i ∈ A, add the edges (ai, bi) and
(bi, ci) in S. For every i ∈ V \A, add an edge (ai, bj) in S, where j is such that j ∈ A and
i ∈ Γ(j). For every pair in A2, add this edge in S. The size of S is

|S| = 2|A|+ (|V | − |A|) + |A2| = |A|+ n+ 4|E|+ n ≤ 4|E|+ 2n+ k.
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Figure 5.4 – A “yes” instance of DominatingSet and the corresponding “yes” instance of
DetSWND-D. The graph on the left can be dominated by two nodes, 1 and 4. The corre-
sponding set S of shortcut contacts that satisfies the constraints of DetSWND-D is depicted
on the right.

Moreover, the weighted forwarding distance is

C̄w
S =

∑
(i,j)∈A1

W1CS(i, j)+
∑

(i,j)∈A2

W2CS(i, j)+
∑

(i,j)∈A3

W3CS(i, j).

We have ∑
(i,j)∈A2

W2CS(i, j) = W2|A2|

as every pair in A2 is connected by an edge in S. Consider now a pair ai, bi) ∈ A1, i ∈ V .
There is exactly one edge in S departing from ai which has the form (ai, bj), where where
either j = i is or j a neighbor of i. The distance of the closest local neighbor of ai from bi
is `1− 1. The distance of bj from bi is at most n · `0. As `1− 1 = n`0 + 2− 1 > n`0 greedy
forwarding will follow (ai, bj). If bj = bi, then CS(ai, bi) = 1. If bj 6= bi, as j is a neighbor
of i, S contains the edge (bj, bi). Hence, if bj 6= bi, CS(ai, bi) = 2. As i was arbitrary, we
get that ∑

(i,j)∈A1

W1CS(i, j) ≤ 2W1n.

Next, consider a pair (ai, di) ∈ A3. For the same reasons as for the pair (ai, bi), the
shortcut edge (ai, bj) in S will be used by the greedy forwarding algorithm. In particular,
the distance of the closest local neighbor of ai from di is `1 + `2 + `3 − 1 and d(bj, di) is
at most `2 + `3 + n · `0. As `1 − 1 > n`0, greedy forwarding will follow (ai, bj).

By the construction of S, bj is such that j ∈ A. As a result, again by the construction
of S, (bj, cj) ∈ S. The closest local neighbor of bj to di has `2 +`3 +d(bj, bi)−1 Manhattan
distance from dj. Any shortcut neighbor bk of bj has at least `2 + `3 Manhattan distance
from bi. On the other hand, cj has `3 + d(bj, bi) Manhattan distance from di. As `2 > 1
and `2 > n`0 ≥ d(bj, bi), the greedy forwarding algorithm will follow (bj, cj). Finally, as
A2 ⊂ S, and j = i or j is a neighbor of i, the edge (cj, di) will be in S. Hence, the greedy
forwarding algorithm will reach dj in exactly 3 steps. As i ∈ V was arbitrary, we get that∑

(i,j)∈A3

W3CS(i, j) = 3W3n.

Hence,
C̄w
S ≤ 2W1n+W2|A2|+ 3W3n = α

and, therefore, the instance of DetSWND-D is a “yes” instance.
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To complete the proof, we show that a dominating set of size k exists only if there
exists a S that satisfies the constraints in constucted instance of DetSWND-D.

Lemma 5.5. If the constucted instance of DetSWND-D is a “yes” instance, then the
instance of DominatingSet is also a “yes” instance.

Proof. Assume that there exists a set S, with |S| ≤ β such that the augmented graph
has a weighted forwarding distance less than or equal to α. Then

A2 ⊆ S. (5.17)

To see this, suppose that A2 6⊆ S. Then, there is at least one pair of nodes (i, j) in A2

with CS(i, j) ≥ 2. Therefore,

C̄w
S ≥ 1 ·W1|A1|+ [(|A2| − 1) · 1 + 2] ·W2 + 1 ·W3|A3|

= (3n+ 1)(4|E|+ n) + 5n+ 1>α,

a contradiction.

Essentially, by choosing W2 to be large, we enforce that all “demands” in A2 are
satisfied by a direct edge in S. The next lemma shows a similar result for A1. Using
shortcut edges to satisfy these “demands” is enforced by making the distance `1 very
large.

Lemma 5.6. For every i ∈ V , there exists at least one shortcut edge in S whose origin is
in the same row as ai and in a column to the left of bi. Moreover, this edge is used during
the greedy forwarding of a message from ai to bi.

Proof. Suppose not. Then, there exists an i ∈ V such that no shortcut edge has its origin
between ai and bi, or such an edge exists but is not used by the greedy forwarding from
ai to bi (e.g., because it points too far from bi). Then, the greedy forwarding from ai to
bi will use only local edges and, hence, CS(ai, bi) = `1. We thus have that

C̄w
S ≥ `1 + 2n− 1 +W2|A2|

(5.12)
= 6n2 + 5n+ 1 +W2|A2|

On the other hand, by (5.15) α = 5n+W2|A2| so C̄w
S > α, a contradiction.

Let S1 be the set of all edges whose origin is between some ai and bi, i ∈ V , and that
are used during forwarding from this ai to bi. Note that Lemma 5.6 implies that |S1| ≥ n.
The target of any edge in S1 must lie to the left of the 2`1 + 1-th column of the grid This
is because the Manhattan distance of ai to bi is `1, so its left local neighbor lies at `1 − 1
steps from bi. Greedy forwarding is monotone, so the Manhattan distance from bi of any
target of an edge followed subsequently to route towards bi must be less than `1.

Essentially, all edges in S1 must point close enough to bi, otherwise they would not
be used in greedy forwarding. This implies that, to forward the “demands” in A3 an
additional set of shortcut edges need to be used.

Lemma 5.7. For every i ∈ V , there exists at least one shortcut edge in S that is used
when forwarding a message from ai to di that is neither in S1 nor in A2.
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Proof. Suppose not. We established above that the target of any edge in S1 is to the left of
the 2`1+1 column. Recall that A2 = {(bi, bj) | (i, j) ∈ E}∪{(ci, dj) | (i, j) ∈ E}∪{(ci, di) |
i ∈ V }. By the definition of bi, i ∈ V , the targets of the edges in {(bi, bj) | (i, j) ∈ E}
lie on the (`1 + 1)-th column. Similarly, the origins of the edges in {(ci, dj) | (i, j) ∈
E} ∪ {(ci, di) | i ∈ V } lie on the `1 + `2 + 1-th column. As a result, if the lemma does
not hold, there is a demand in A3, say (ai, di), that does not use any additional shortcut
edges. This means that the distance between the 2`+ 1 and the `1 + `2 + 1-th column is
traversed by using local edges. Hence, CS(ai, di) ≥ `2 − `1 + 1 as at least one additional
step is needed to get to the 2`1 + 1-th column from ai. This implies that

C̄w
S ≥= 2n+W2|A2|+ `2 − `1

(5.13)
= W2|A2|+ 5n+ 1 > α,

a contradiction.

Let S3 = S \ (S1 ∪ A2). Lemma 5.7 implies that S3 is non-empty, while (5.17) and
Lemma 5.6, along with the fact that |S| ≤ β = |A2| + n + k, imply that |S3| ≤ k. The
following lemma states that some of these edges must have targets that are close enough
to the destinations di.

Lemma 5.8. For each i ∈ V , there exists an edge in S3 whose target is within Manhattan
distance 3n + 1 of either di or cj, where (cj, di) ∈ A2. Moreover, this edge is used for
forwarding a message from ai to di with greedy forwarding.

Proof. Suppose not. Then there exists an i for which greedy forwarding from ai to di does
not employ any edge fitting the description in the lemma. Then, the destination di can not
be reached by a shortcut edge in either S3 or A1 whose target is closer than 3n+ 1 steps.
Thus, di is reached in one of the two following ways: either 3n + 1 steps are required in
reaching it, through forwarding over local edges, or an edge (cj, di) in A2 is used to reach
it. In the latter case, reaching ci also requires at least 3n+ 1 steps of local forwarding, as
no edge in A2 or S3 has an target within 3n steps from it, and any edge in S1 that may
be this close is not used (by the hypothesis). As a result, CS(ai, di) ≥ 3n + 2 as at least
one additional step is required in reaching the ball of radius 3n centered around di or ci
from ai. This gives C̄w

S ≥ 5n+W2|A2|+ 1 > α, a contradiction.

When forwarding from ai to di, i ∈ V , there may be more than one edges in S3

fitting the description in Lemma 5.8. For each i ∈ V , consider the last of all these edges.
Denote the resulting subset by S ′3. By definition, |S ′3| ≤ |S3| ≤ k. For each i, there exists
exactly one edge in S ′3 that is used to forward a message from ai to di. Moreover, recall
that `0 = `3 = 6n + 3. Therefore, the Manhattan distance between any two nodes in
{c1, . . . , cn} ∪ {d1, . . . , dn} is 2(3n+ 1) + 1. As a result, the targets of the edges in S ′3 will
be within distance 3n+ 1 of exactly one of the nodes in the above set.

Let A ⊂ V be the set of all vertices i ∈ V such that the unique edge in S ′3 used in
forwarding from ai to di has an target within distance 3n + 1 of either ci or di. Then
A is a dominating set of G, and |A| ≤ k. To see this, note first that |A| ≤ k because
each target of an edge in S ′3 can be within distance 3n + 1 of only one of the nodes in
{c1, . . . , cn} ∪ {d1, . . . , dn}, and there are at most k edges in S ′3.

To see that A dominates the graph G, suppose that j ∈ V \A. Then, by Lemma 5.8,
the edge in S ′3 corresponding to i is either pointing within distance 3n+ 1 of either dj or
a ci such that (ci, dj) ∈ A2. By the construction of A, it cannot point in the proximity
of dj, because then j ∈ A, a contradiction. Similarly, it cannot point in the proximity of
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cj, because then, again, j ∈ A, a contradiction. Therefore, it points in the proximity of
some ci, where i 6= j and (ci, dj) ∈ A2. By the construction of A, i ∈ A. Moreover, by
the definition of A2, (ci, dj) ∈ A2 if and only if (i, j) ∈ E. Therefore, j ∈ Γ(A). As j was
arbitrary, A is a dominating set of G.

5.5.2 Proof of Theorem 5.3

According to (5.10), the probability that object x links to y is given by `x(y) = 1
Zx

µ(y)
rx(y)

,

where Zx =
∑

y∈T
µ(y)
rx(y)

is a normalization factor bounded as follows.

Lemma 5.9. For any x ∈ N , let x∗ ∈ min4x T be any object in T among the closest
targets to x. Then Zx ≤ 1 + ln(1/µ(x∗)) ≤ 3Hmax.

Proof. Sort the target set T from the closest to furthest object from x and index objects
in an increasing sequence i = 1, . . . , k, so the objects at the same distance from x receive
the same index. Let Ai, i = 1, . . . , k, be the set containing objects indexed by i, and let
µi = µ(Ai) and µ0 = µ(x). Furthermore, let Qi =

∑i
j=0 µj. Then Zx =

∑k
i=1

µi
Qi
.

Define fx(r) : R+ → R as

fx(r) =
1

r
− µ(x).

Clearly, fx(
1
Qi

) =
∑i

j=1 µj, for i ∈ {1, 2 . . . , k}. This means that we can rewrite Zx as

Zx =
k∑
i=1

(fx(1/Qi)− fx(1/Qi−1))/Qi.

By reordering the terms involved in the sum above, we get

Zx = fx(
1

Qk

)/Qk +
k−1∑
i=1

fx(1/Qi)

(
1

Qi

− 1

Qi+1

)
.

First note that Qk = 1, and second that since fx(r) is a decreasing function,

Zx ≤ 1− µ0 +

∫ 1/Q1

1/Qk

fx(r)dr = 1− µ0

Q1

+ ln
1

Q1

.

This shows that if µ0 = 0 then Zx ≤ 1 + ln 1
µ1

or otherwise Zx ≤ 1 + ln 1
µ0

.

Given the set S, recall that CS(s, t) is the number of steps required by the greedy
forwarding to reach t ∈ N from s ∈ N . We say that a message at object v is in phase j if

2jµ(t) ≤ rt(v) ≤ 2j+1µ(t).

Notice that the number of different phases is at most log2 1/µ(t). We can write CS(s, t)
as

CS(s, t) = X1 +X2 + · · ·+Xlog 1
µ(t)
, (5.18)

where Xj are the hops occurring in phase j.Assume that j > 1, and let

I =

{
w ∈ N : rt(w) ≤ rt(v)

2

}
.
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The probability that v links to an object in the set I, and hence moving to phase j− 1, is∑
w∈I

`v,w =
1

Zv

∑
w∈I

µ(w)

rv(w)
.

Let µt(r) = µ(Bt(r)) and ρ > 0 be the smallest radius such that µt(ρ) ≥ rt(v)/2. Since we
assumed that j > 1 such a ρ > 0 exists. Clearly, for any r < ρ we have µt(r) < rt(v)/2.
In particular,

µt(ρ/2) <
1

2
rt(v). (5.19)

On the other hand, since the doubling parameter is c(µ) we have

µt(ρ/2) >
1

c(µ)
µt(ρ) ≥ 1

2c(µ)
rt(v). (5.20)

Therefore, by combining (5.19) and (5.20) we obtain

1

2c(µ)
rt(v) < µt(ρ/2) <

1

2
rt(v). (5.21)

Let Iρ = Bt(ρ) be the set of objects within radius ρ/2 from t. Then Iρ ⊂ I, so∑
w∈I

`v,w ≥
1

Zv

∑
w∈Iρ

µ(w)

rv(w)
.

By triangle inequality, for any w ∈ Iρ and y such that d(y, v) ≤ d(v, w) we have

d(t, y) ≤ d(v, y) + d(v, t) ≤ d(w, y) + d(v, t) ≤ d(w, t) + 2d(v, t) ≤ 5

2
d(v, t).

This means that rv(w) ≤ µt(
5
2
d(v, t)), and consequently, rv(w) ≤ c2(µ)rt(v). Therefore,∑

w∈I

`v,w ≥
1

Zv

∑
w∈Iρ µ(w)

c2(µ)rt(v)
=

1

Zv

µt(ρ/2)

c2(µ)rt(v)
.

By (5.21), the probability of terminating phase j is uniformly bounded by∑
w∈I

`v,w ≥ min
v

1

2c3(µ)Zv

Lem. 5.9

≥ 1

6c3(µ)Hmax(µ)
(5.22)

As a result, the probability of terminating phase j is stochastically dominated by a ge-
ometric random variable with the parameter given in (5.22). This is because (a) if the
current object does not have a shortcut edge which lies in the set I, by Property 5.1,
greedy forwarding sends the message to one of the neighbours that is closer to t and (b)
shortcut edges are sampled independently across neighbours. Hence, given that t is the
target object and s is the source object,

E[Xj|s, t] ≤ 6c3(µ)Hmax(µ). (5.23)

Suppose now that j = 1. By the triangle inequality, Bv(d(v, t)) ⊆ Bt(2d(v, t)) and rv(t) ≤
c(µ)rt(v). Hence,

`v,t ≥
1

Zv

µ(t)

c(µ)rt(v)
≥ 1

2c(µ)Zv
≥ 1

6c(µ)Hmax(µ)
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since object v is in the first phase and thus µ(t) ≤ rt(v) ≤ 2µ(t). Consequently,

E[X1|s, t] ≤ 6c(µ)Hmax(µ). (5.24)

Combining (5.18), (5.23), (5.24) and using the linearity of expectation, we get

E[CS(s, t)] ≤ 6c3(µ)Hmax(µ) log
1

µ(t)

and, thus, C̄S ≤ 6c3(µ)Hmax(µ)H(µ).
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Alice: 'Which
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Alice: I don't

know Cat:Then it

doesn't matter.

Alice in

Wonderland

Content Search Through
Comparisons 6

The problem we study in this chapter 1 is content search through comparisons. In
short, a user searching for a target object navigates through a database in the following
manner. The user is asked to select the object most similar to her target from a small list
of objects. A new object list is then presented to the user based on her earlier selection.
This process is repeated until the target is included in the list presented, at which point
the search terminates.

Searching through comparisons is a typical example of exploratory search [WR09,
Mar06], the need for which arises when users are unable to state and submit explicit
queries to the database. Exploratory search has several important real-life applications
[Rut08]. An often-cited example is navigating through a database of pictures of humans in
which subjects are photographed under diverse uncontrolled conditions [TD10, TDDM11].
For example, the pictures may be taken outdoors, from different angles or distances, while
the subjects assume different poses, are partially obscured, etc. Automated methods may
fail to extract meaningful features from such photos, so the database cannot be queried
in the traditional fashion. On the contrary, a human searching for a particular person
can easily select from a list of pictures the subject most similar to the person she has in
mind. Moreover, in many practical cases, images that present similar low-level descriptors
may have very different semantic content and high level descriptions, and thus perceived
differently by users [SWS+00, LSDJ06].

As described in [DJLW08], users may also be unable to state queries because they are
unfamiliar with the search domain. For example, a novice classical music listener may not
be able to express that she is, e.g., looking for a fugue or a sonata. She might however
identify among samples of different musical pieces the closest to the one she has in mind.

Users may also resort to exploratory search when they do not have a clear target in
mind, but are able to identify interesting items when presented with them. For example,
a user surfing the blogosphere may not know a priori which post she wishes to read;
presenting a list of blog posts and letting the surfer identify which one she likes best can
be used to steer the search in the right direction. This problem is sometimes referred to
as the page zero problem in the literature [FG09].

1. This chapter is the result of a collaboration with S. Ioannidis and L. Massoulié.
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A lot of interest has been generated in content-based retrieval techniques by such
scenarios from both academia and industry [FISS03, GS04]. Note that in all the above
applications, the problem amounts to determining which objects to present to the user in
order to find the target object as quickly as possible. Formally, the behavior of a human
user can be modeled by a so-called comparison oracle: given a target and a choice between
two objects, the oracle outputs the one closest to the target. The goal is thus to find a
sequence of proposed pairs of objects that leads to the target object with as few oracle
queries as possible. This problem was introduced by [GLS08] and has recently received
considerable attention (see, for example, [LZ09, TD10, TDDM11, JN11]).

Content search through comparisons is also naturally related to the following problem:
given a graph embedded in a metric space, how should one augment this graph by adding
edges in order to minimize the expected cost of greedy forwarding over this graph? Recall
that this is precisely the problem we looked at in the previous chapter under the name of
“small-world network design”.

In this chapter, we again consider our problem under the scenario of heterogeneous
demand. This is very interesting in practice: objects in a database are indeed unlikely to
be requested with the same frequency. Ideally, assuming that some objects are more likely
to be targets than others, we would like to exploit this information to further reduce the
number of queries submitted to the oracle. Our contributions are as follows:

– We show that our mechanism for edge addition in the small-world design problem
in Chapter 5 has a natural equivalent in the context of content search through
comparisons, and we provide a matching upper bound for the performance of this
mechanism.

– We also establish a lower bound on any mechanism solving the content search
through comparisons problem.

– Based on these results, we propose an adaptive learning algorithm for content search
that, given access only to a comparison oracle, can meet the performance guarantees
achieved by the above mechanism.

Our analysis relates the cost of content search to two important properties of the demand
distribution, namely its entropy and its doubling constant. We thus provide performance
guarantees in terms of the bias of the distribution of targets, captured by the entropy, as
well as the topology of their embedding, captured by the doubling constant.

6.1 Related Work

Content search through comparisons is a special case of nearest neighbour search
(NNS), a problem that has been extensively studied [Cla06, IM98]. Our work can be seen
as an extension of earlier work [KR02, KL04, Cla06] considering the NNS problem for
objects embedded in a metric space. It is also assumed that the embedding has a small
intrinsic dimension, an assumption that is supported by many practical studies [ML09,
GM07]. In particular, [KL04] introduce navigating nets, a deterministic data structure for
supporting NNS in doubling metric spaces. A similar technique was considered by [Cla06]
for objects embedded in a space satisfying a certain sphere-packing property, while [KR02]
relied on growth restricted metrics; all of the above assumptions have connections to
the doubling constant we consider in this chapter. In all of these works, however, the
underlying metric space is fully observable by the search mechanism while, in our work,
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we are restricted to accesses to a comparison oracle. Moreover, in all of the above works
the demand over the target objects is assumed to be homogeneous.

NNS with access to a comparison oracle was first introduced by [GLS08], and further
explored by [LZ09] and [TD09, TD10]. A considerable advantage of the above works is that
the assumption that objects are a-priori embedded in a metric space is removed; rather
than requiring that similarity between objects is captured by a distance metric, the above
works only assume that any two objects can be ranked in terms of their similarity to any
targer by the comparison oracle. To provide performance guarantees on the search cost,
[GLS08] introduced a so-called “disorder-constant”, capturing the degree to which object
rankings violate the triangle inequality. This disorder-constant plays roughly the same
role in their analysis as the doubling constant does in ours. Nevertheless, these works also
assume homogeneous demand, so our work can be seen as an extension of searching with
comparisons to heterogeneity, with the caveat of restricting our analysis to the case where
a metric embedding exists.

An additional important distinction between [GLS08, LZ09, TD09, TD10] and our
work is the existence of a learning phase, during which explicit questions are placed
to the comparison oracle. A data-structure is constructed during this phase, which is
subsequently used to answer queries submitted to the database during a “search” phase.
The above works establish different tradeoffs between the length of the learning phase, the
space complexity of the data structure created, and the cost incurred during searching.
In contrast, the learning scheme we consider in Section 6.6 is adaptive, and learning
occurs while users search; the drawback lies in that our guarantees on the search cost are
asymptotic. Again, the main advantage of our approach lies in dealing with heterogeneity.

The use of interactive methods (i.e., that incorporate human feedback) for content
search has a long history in the literature. Arguably, the first oracle considered to model
such methods is the so-called membership oracle [Gar72], which allows the search mech-
anism to ask a user questions of the form “does the target belong to set A” (see also
our discussion in Section 5.2). [BWS+10] deploy such an interactive method for object
classification and evaluate it on the Animals with attributes database. A similar approach
was used by [GJ93] who formulated shape recognition as a coding problem and applied
this approach to handwritten numerals and satellite images. Having access to a member-
ship oracle however is a strong assumption, as humans may not necessarily be able to
answer queries of the above type for any object set A. Moreover, the large number of
possible sets makes the cost of designing optimal querying strategies over large datasets
prohibitive. In contrast, the comparison oracle model makes a far weaker assumption on
human behavior—namely, the ability to compare different objects to the target—and sig-
nificantly limits the design space, making search mechanisms using comparisons practical
even over large datasets.

The first practical scheme for image retrieval, based on the pairwise comparisons
between images, was proposed in [CMM+00]. It was then extended by [FG05] and [FG07]
to the context of content search. The use of a comparison oracle is not limited only to
content retrieval/search. As explained in [JS08, JS11], the individuals’ rating scale tends
to fluctuate a lot. In addition, ratings scales may vary between people. For these reasons
it is more natural to use the pairwise comparisons as the basis for the recommendation
systems. The advantages of this approach and the challenges of how to make such a system
operational is well described in [FJs11].

The relationship between the small-world network design and content search has been
also observed in earlier work [GLS08] and was exploited by [LZ09] in proposing their data
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structures for content search through comparisons; we further expand on this issue in
Section 6.4, as this is an approach we also follow.

6.2 Definitions and Notation

Our notation in this chapter has a lot in common with the one in Chapter 5, some of
which are summarized in Table 6.1. Whenever in doubt, please look at Section 5.2.

Objects and Metric Embedding

As in Chapter 5, consider a set of objects N , where |N | = n. We assume that there
exists a metric space (M,d), where d(x, y) denotes the distance between x, y ∈ M, such
that objects in N are embedded in (M,d).

The objects in N may represent, for example, pictures in a database. The metric
embedding can be thought of as a mapping of the database entries to a set of features
(e.g., the age of person depicted, her hair and eye color, etc.). The distance between two
objects would then capture how “similar” two objects are w.r.t. these features. In what
follows, we will abuse notation and write N ⊆M, keeping in mind that there might be a
difference between the physical objects (the pictures) and their embedding (the attributes
that characterize them).

Comparison Oracle

A comparison oracle [GLS08] is an oracle that, given two objects x, y and a target t,
returns the closest object to t. More formally,

Oracle(x, y, t) =

{
x if x ≺t y,
y if x 4t y.

(6.1)

Note that a tie d(x, t) = d(y, t) is revealed by two calls Oracle(x, y, t) and Oracle(y, x, t).

This oracle basically aims to capture the behavior of human users. A human interested
in locating, e.g., a target picture t within the database, may be able to compare other pic-
tures with respect to their similarity to this target but cannot associate a numerical value
to this similarity. We thus assume, effectively, that the user can order objects w.r.t. their
distance from t, but does not need to disclose (or even know) the exact values of these
distances.

It is important to note here that although we write Oracle(x, y, t) to stress that a
query always takes place with respect to some target t, in practice the target is hidden
and only known to the oracle. Alternatively, following the “oracle as human” analogy,
the human user has a target in mind and uses it to compare the two objects, but never
discloses it until actually being presented with it.

Demand and Entropy

We will consider a probability distribution µ over the set of objects in N which we will
call the demand. In other words, µ will be a non-negative function such that

∑
t∈N µ(t) =

1. In general, the demand can be heterogeneous as µ(t) may vary across different targets.
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Table 6.1 – Summary of Notation Borrowed From Chapter 5.

N set of objects d(x, y) distance between x, y ∈M
(M, d) metric space ν starting point distribution
H(µ) entropy of µ µ demand distribution
T target set x ∼z y x and y at same distance from z
Hmax(µ) max-entropy of µ Bx(r) ball of radius r centered at x
c(µ) doubling constant of µ x 4z y ordering w.r.t. distance from z

Recall that the entropy and the max-entropy of µ are defined as H(µ) =∑
x∈supp(µ) µ(x) log 1

µ(x)
and Hmax(µ) = maxx∈supp(µ) log 1

µ(x)
, respectively, where T =

supp(µ) is the support of µ.

The entropy has strong connections with the content search problem. More specifically,
suppose that we have access to a so-called membership oracle [CT91] that can answer
queries of the following form:

“Given a target t and a subset A ⊆ N , does t belong to A?”

Assume now that an object t is selected according to a distribution µ. It is well known
that to find a target t one needs to submit at least H(µ) queries, on average, to the oracle
described above (see [CT91, chap. 2]). Moreover, there exists an algorithm (Huffman
coding) that finds the target with only H(µ)+1 queries on average [CT91]. In the worst
case, which occurs when the target is the least frequently selected object, the algorithm
requires Hmax(µ)+1 queries to identify t. This problem is also known as the game of
twenty questions.

Our work identifies similar bounds assuming that one only has access to a comparison
oracle, like the one described by (6.1). Not surprisingly, the entropy of the demand dis-
tribution H(µ) shows up in the performance bounds that we obtain (Theorems 6.1 and
6.2). However, searching for an object will depend not only on the entropy of the demand
distribution, but also on the topology of the target set T . This will be captured by the
doubling constant of µ (for the precise definition, look at Section 5.2).

6.3 Problem Statement

For the content search problem, we consider the object set N , embedded in (M, d).
Although this embedding exists, we are constrained by not being able to directly compute
object distances. Instead, we only have access to a comparison oracle, like the one defined
in Section 6.2.

Given access to a comparison oracle, we would like to navigate through N until we
find a target object. In particular, we define greedy content search as follows. Let t be the
target object and s some object that serves as a starting (or source) point. The greedy
content search algorithm proposes an object w and asks the oracle to select, between s and
w, the object closest to the target t, i.e., it evokes Oracle(s, w, t). This process is repeated
until the oracle returns something other than s, i.e., the proposed object is “more similar”
to the target t. Once this happens, say at the proposal of some w′, if w′ 6= t, the greedy
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content search repeats the same process now from w′. If at any point the proposed object
is t, the process terminates.

Recall that in the “oracle as a human” analogy the human cannot reveal t before
actually being presented with it. We similarly assume here that t is never “revealed”
before actually being presented to the oracle. Though we write Oracle(x, y, t) to stress
that the submitted query is w.r.t. proximity to t, the target t is not a priori known. In
particular, as we see below, the decision of which objects x and y to present to the oracle
cannot directly depend on t.

More formally, let xk, yk be the k-th pair of objects submitted to the oracle: xk is
the current object, which greedy content search is trying to improve upon, and yk is the
proposed object, submitted to the oracle for comparison with xk. Let

ok = Oracle(xk, yk, t) ∈ {xk, yk}

be the oracle’s response, and define

Hk = {(xi, yi, oi)}ki=1, k = 1, 2, . . .

to be the sequence of the first k inputs given to the oracle, as well as the responses
obtained; Hk is the “history” of the content search up to and including the k-th access to
the oracle.

The starting object is always one of the first two objects submitted to the oracle, i.e.,
x1 = s. Moreover, in greedy content search,

xk+1 = ok, k = 1, 2, . . .

i.e., the current object is always the closest to the target among the ones submitted so
far.

On the other hand, the selection of the proposed object yk+1 will be determined by
the history Hk and the object xk. In particular, given Hk and the current object xk there
exists a mapping (Hk, xk) 7→ F(Hk, xk) ∈ N such that

yk+1 = F(Hk, xk), k = 0, 1, . . . ,

where here we take x0 = s ∈ N (the starting object) and H0 = ∅ (i.e., before any
comparison takes place, there is no history).

We will call the mapping F the selection policy of the greedy content search. In general,
we will allow the selection policy to be randomized; in this case, the object returned by
F(Hk, xk) will be a random variable, whose distribution

P(F(Hk, xk) = w), w ∈ N , (6.2)

is fully determined by (Hk, xk). Observe that F depends on the target t only indirectly,
through Hk and xk; this is consistent with our assumption that t is only “revealed” when
it is eventually located.

We will say that a selection policy is memoryless if it depends on xk but not on
the history Hk. In other words, the distribution (6.2) is the same when xk = x ∈ N ,
irrespectively of the comparisons performed prior to reaching xk.

Assuming that when xk = t, the search effectively terminates (i.e., the human reveals
that this is indeed the target), our goal is to select F so that we minimize the number of
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Figure 6.1 – An illustration of the relationship between 1-SWND and CTSC. In CTSC,
the source s samples objects independently from the same distribution until it locates an
object closest to the target t. In 1-SWND, the re-sampling is emulated by the movement
to new neighbors. Each neighbor “samples” a new object independently, from a slightly
perturbed distribution, until one closest to the target t is found.

accesses to the oracle. In particular, given a target t and a selection policy F , we define
the search cost

CF(t) = inf{k : xk = t}
to be the number of proposals to the oracle until t is found. This is a random variable, as F
is randomized; let E[CF(t)] be its expectation. The Content Search Through Comparisons
problem is then defined as follows:

Content Search Through Comparisons (CSTC): Given an embedding
of N into (M, d) and a demand distribution µ(t), select F that minimizes the
expected search cost

C̄F =
∑
t∈N

µ(t)E[CF(t)].

Note that, as F is randomized, the free variable in the above optimization problem is the
distribution (6.2).

6.4 Relationship Between SWND and CSTC

In what follows, we try to give some intuition about how SWND and CSTC are
related and why the upper bounds we obtain for these two problems are identical, without
resorting to the technical details appearing in our proofs.

Consider the following content selection policy for CTSC:

Pr(F(xk) = w) = `xk(w), for all w ∈ N .

In other words, the proposed object at xk is sampled according to the same distribution
as the shortcut edge in 1-SWND (see Section 5.4, equation (5.10)). This selection policy
is memoryless as it does not depend on the history Hk of objects presented to the oracle
so far.

A parallel between these two problems can be drawn as follows. Suppose that the same
source/target pair (s, t) is given in both problems. In content search, while starting from
node s, the memoryless selection policy draws independent samples from distribution `s
until an object closer to the target than s is found.

In contrast, greedy forwarding in 1-SWND can be described as follows. Since shorcut
edges are generated independently, we can assume that they are generated while the
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Algorithm 6.1 Memoryless Content Search

Input: Oracle(·,·,t) , demand distribution µ, starting object s.
Output: target t.

1: x← s
2: while x 6= t do
3: Sample y ∈ N from the probability distribution

Prx(y) ∝ µ(y)
µ(Bx(d(x,y)))

. (6.3)

4: x← Oracle(x, y, t).
5: end while

message is being forwarded. Then, greedy forwarding at the source object can be seen as
sampling an object from distribution `s, namely, the one incident to its shortcut edge. If
this object is not closer to the target than s, the message is forwarded to a neigboring node
s1 over a local edge of s. Node s1 then samples independently a node from distribution
`s1 this time—the one incident to its shorcut edge.

Suppose that the distributions `x vary only slightly across neighboring nodes. Then,
forwarding over local edges corresponds to the independent resampling occuring in the
content search problem. Each move to a new neighbor samples a new object (the one inci-
dent to its shortcut edge) independently of previous objects but from a slightly perturbed
distribution. This is repeated until an object closer to the target t is found, at which point
the message moves to a new neighborhood over the shortcut edge.

Effectively, re-sampling is “emulated” in 1-SWND by the movement to new neighbors.
This is, of course, an informal argument; we refer the interested reader to the proofs of
Theorems 5.3 and Theorem 6.1 for a rigorous statement of the relationship between the
two problems.

6.5 Main Results

Exploiting an underlying relationship between 1-SWND and CSTC, we can obtain
an efficient selection policy for greedy content search. In particular,

Theorem 6.1. The expected search cost of Algorithm 6.1 is bounded by C̄F ≤ 6c3(µ) ·
H(µ) ·Hmax(µ).

Like Theorem 5.3, Theorem 6.1 characterises the search cost in terms of the doubling
constant, the entropy and the max-entropy of µ. This is very appealing, given (a) the
relationship between c(µ) and the topology of the target set and (b) the classic result
regarding the entropy and accesses to a membership oracle, as outlined in Section 6.2.

A question arising from Theorem 6.1 is how tight this bound is. Intuitively, we expect
that the optimal shortcut set S and the optimal selection policy F depend both on the
entropy of the demand distribution and on its doubling constant. Our next theorem,
whose proof is in Section 6.7.2, establishes that this is the case for F .

Theorem 6.2. For any integer K and D, there exists a metric space (M, d) and a target
measure µ with entropy H(µ) = K log(D) and doubling constant c(µ) = D such that the
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average search cost of any selection policy F satisfies

C̄F ≥ H(µ)
c(µ)− 1

2 log(c(µ))
· (6.4)

Note that the above lower bound is established for search strategies that utilize the
entire search history. Hence, it is not restricted to memoryless search. By comparing
the bound in Theorem 6.1 with the one in Theorem 6.2 we see that it is tight within a
c2(µ) log(c(µ))Hmax factor.

6.6 Learning Algorithm

Section 6.5 established bounds on the cost of greedy content search provided that the
distribution (5.10) is used to propose items to the oracle. Hence, if the embedding of N
in (M, d) and demand distribution µ are known, it is possible to perform greedy content
search with the performance guarantees provided by Theorem 6.1.

In this section, we turn our attention to how such bounds can be achieved if neither
the embedding in (M, d) nor the demand distribution µ are a priori known. To this
end, we propose a novel adaptive algorithm that achieves the performance guarantees of
Theorem 6.1 without access to the above information.

Our algorithm effectively learns the ranks rx(y) of objects and the demand distribution
µ as time progresses. It does not require that distances between objects are at any point
disclosed; instead, we assume that it only has access to a comparison oracle, slightly
stronger than the one described in Section 5.3.

It is important to note that our algorithm is adaptive: though we prove its convergence
under a stationary regime, the algorithm can operate in a dynamic environment. For
example, new objects can be added to the database while old ones can be removed.
Moreover, the popularity of objects can change as time progresses. Provided that such
changes happen infrequently, at a larger timescale compared to the timescale in which
database queries are submitted, our algorithm will be able to adapt and converge to the
desired behavior.

Demand Model and Probabilistic Oracle

We assume that time is slotted and that at each timeslot τ = 0, 1, . . . a new query is
generated in the database. We also assume that the starting point of the search and the
target of the new query are selected according to a probability distribution λ over N ×N .
We denote by ν, µ the (marginal) distributions, respectively.

Our algorithm will require that the support of both ν, µ is N , and more precisely that

λ(x, y) > 0, for all x, y ∈ N . (6.5)

The requirement that the target set T = supp(µ) is N is necessary to ensure learn-
ing; we can only infer the relative order w.r.t. objects t for which questions of the form
Oracle(x, y, t) are submitted to the oracle. Moreover, it is natural in our model to as-
sume that the distribution ν is at the discretion of our algorithm: we can choose which
objects to propose first to the user/oracle. In this sense, for a given demand distribution
µ s.t. supp(µ) = N , (6.5) can be enforced, e.g., by selecting starting objects uniformly at
random from N and independently of the target.
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We consider a slightly weaker oracle than the one described in Section 6.2. In partic-
ular, we again assume that

Oracle(x, y, t) =

{
x if x ≺t y,
y if x �t y. (6.6)

However, we further assume that if x ∼t y, then Oracle(x, y, t) can return either of the two
possible outcomes with non-zero probability. This is weaker than the oracle in Section 6.2
that correctly identifies x ∼t y.

Data Structures

For every object x ∈ N , the database storing x also maintains the following associated
data structures. The first data structure is a counter keeping track of how often the object
x has been requested so far. The second data structure maintains an order of the objects
in N ; at any point in time, this total order is an “estimator” of 4x, the order of objects
with respect to their distance from x. We describe each one of these two data structures
in more detail below.

Estimating the Demand Distribution The first data structure associated with an
object x is an estimator of µ(x), i.e., the probability with which x is selected as a target. A
simple method for keeping track of this information is through a counter Cx. This counter
Cx is initially set to zero and is incremented every time object x is the target. If Cx(τ) is
the counter at timeslot τ , then

µ̂(x) = Cx(τ)/τ (6.7)

is an unbiased estimator of µ(x). To avoid counting to infinity a “moving average” (e.g.,
and exponentially weighted moving average) could be used instead.

Maintaining a Partial Order The second data structure Ox associated with each
x ∈ N maintains a total order of objects in N w.r.t. their similarity to x. It supports an
operation called order() that returns a partition of objects in N along with a total order
over this partition. In particular, the output of Ox.order() consists of an ordered sequence
of disjoint sets A1, A2, . . . , Aj, where

⋃
Ai = N \{x}. Intuitively, any two objects in a set

Ai are considered to be at equal distance from x, while among two objects u ∈ Ai and
v ∈ Aj with i < j the object u is assumed to be the closer to x.

Moreover, every time that the algorithm evokes Oracle(u, v, x), and learns, e.g., that
u 4x v, the data structure Ox should be updated to reflect this information. In particular,
if the algorithm has learned so far the order relationships

u1 4x v1, u2 4x v2, . . . , ui 4x vi (6.8)

Ox.order() should return the objects in N sorted in such a way that all relationships
in (6.8) are respected. In particular, object u1 should appear before v1, u2 before v2,
and so forth. To that effect, the data structure should also support an operation called
Ox.add(u,v) that adds the order relationship u 4x v to the constraints respected by the
output of Ox.order().

A simple (but not the most efficient) way of implementing this data structure is to
represent order relationships through a directed acyclic graph (DAG). Initially, the graph’s
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vertex set is N and its edge set is empty. Every time an operation add(u,v) is executed,
an edge is added between vertices u and v. If the addition of the new edge creates a cycle
then all nodes in the cycle are collapsed to a single node, keeping thus the graph acyclic.
Note that the creation of a cycle u→ v → . . .→ w → u implies that u ∼x v ∼x . . . ∼x w,
i.e., all these nodes are at equal distance from x.

Cycles can be detected by using depth-first search over the DAG [CLRS01]. The sets
Ai returned by order() are the sets associated with each collapsed node, while a total
order among them that respects the constraints implied by the edges in the DAG can be
obtained either by depth-first search or by a topological sort [CLRS01]. Hence, the add()
and order() operations have a worst case cost of Θ(n+m), where m is the total number
of edges in the graph.

Several more efficient algorithms exist in literature (see, for example, [HKM+08, PK03,
BFG09]), where the best (in terms of performance) proposed by [BFG09] yielding a cost
of O(n) for order() and an aggregate cost of at most O(n2 log n) for any sequence of add
operations. We stress here that any of these more efficient implementations could be used
for our purposes. We refer the reader interested in such implementations to [HKM+08,
PK03, BFG09] and, to avoid any ambiguity, we assume the above näıve approach for the
remainder of this chapter.

Greedy Content Search

Our learning algorithm implements greedy content search, as described in Section 6.3,
in the following manner. When a new query is submitted to the database, the algorithm
first selects a starting object s uniformly at random. It then performs greedy content
search using a memoryless selection policy F̂ with distribution ˆ̀

x, i.e.,

Pr(F(Hk, xk) = w) = ˆ̀
xk(w) w ∈ N . (6.9)

Below, we discuss in detail how ˆ̀
x, x ∈ N , are computed.

When the current object xk, k = 0, 1, . . ., is equal to x, the algorithm evokesOxk .order()
and obtains an ordered partition A1, A2, . . . , Aj of items in N \ {x}. We define

r̂x(w) =

i:w∈Ai∑
j=1

µ̂(Aj), w ∈ N \ {x}.

This can be seen as an “estimator” of the true rank rx given by (5.9). The distribution
ˆ̀
x is then computed as follows:

ˆ̀
x(w) =

µ̂(w)

r̂x(w)

1− ε
Ẑx

+
ε

n− 1
, i = 1, . . . , n− 1, (6.10)

where Ẑx =
∑

w∈N\{x} µ̂(w)/r̂x(w) is a normalization factor and ε > 0 is a small constant.

An alternative view of (6.10) is that the object proposed is selected uniformly at random
with probability ε, and proportionally to µ̂(wi)/r̂x(wi) with probability 1− ε. The use of
ε > 0 guarantees that every search eventually finds the target t.

Upon locating a target t, any access to the oracle in the history Hk can be used
to update Ot; in particular, a call Oracle(u,v,t) that returns u implies the constraint
u 4t v, which should be added to the data structure through Ot.add(u, v). Note that this
operation can take place only at the end of the greedy content search; the outcomes of
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calls to the oracle can be observed, but the target t is revealed only after it has been
located.

Our main result is that, as τ tends to infinity, the above algorithm achieves perfor-
mance guarantees arbitrarily close to the ones of Theorem 6.1. Let F̂(τ) be the selection
policy defined by (6.9) at timeslot τ and denote by

C̄(τ) =
∑

(s,t)∈N×N

λ(s, t)
∑
s∈N

E[CF̂ (τ)(s, t)]

the expected search cost at timeslot τ . Then the following theorem holds:

Theorem 6.3. Assume that for any two targets u, v ∈ N , λ(u, v) > 0.

lim sup
τ→∞

C̄(τ) ≤ 6c3(µ)H(µ)Hmax(µ)

(1− ε)

where c(µ), H(µ) and Hmax(µ) are the doubling parameter, the entropy and the max
entropy, respectively, of the demand distribution µ.

The proof of this theorem can be found in Section 6.7.3.

6.7 Analysis

6.7.1 Proof of Theorem 6.1

The idea of the proof is very similar to the one presented in Section 5.5.2 and follows
the same path. Recall that the selection policy is memoryless and determined by

P(F(Hk, xk) = w) = `xk(w).

We assume that the desired object is t and the content search starts from s. Since there
are no local edges, the only way that the greedy search moves from the current object xk
is by proposing an object that is closer to t. Like in the SWND case, we are in particular
interested in bounding the probability that the rank of the proposed object is roughly
half the rank of the current object. This way we can compute how fast we make progress
in our search.

As the search moves from s to t we say that the search is in phase j when the rank of
the current object xk is between 2jµ(t) and 2j+1µ(t). As stated earlier, the greedy search
algorithm keeps making comparisons until it finds another object closer to t. We can write
CF(s, t) as

CF(s, t) = X1 +X2 + · · ·+Xlog 1
µ(t)
,

where Xj denotes the number of comparisons done by comparison oracle in phase j. Let
us consider a particular phase j and denote I the set of objects whose ranks from t are
at most rt(xk)/2. Note that phase j will terminate if the comparison oracle proposes an
object from set I. The probability that this happens is∑

w∈I

P(F(Hk, xk) = w) =
∑
w∈I

`xk,w.
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Note that the sum on the right hand side depends on the distribution of shortcut edges
and is independent of local edges. To bound this sum we can use (5.22). Hence, with prob-
ability at least 1/(6c3(µ)Hmax(µ)), phase j will terminate. In other words, using the above
selection policy, if the current object xk is in phase j, with probability 1/(6c3(µ)Hmax(µ))
the proposed object will be in phase (j − 1). This defines a geometric random variable
which yields to the fact that on average the number of queries needed to halve the rank is
at most 6c(µ)3Hmax or E[Xj|s, t] ≤ 6c(µ)3Hmax. Taking average over the demand λ, we can
conclude that the average number of comparisons is less than C̄F ≤ 6c3(µ)Hmax(µ)H(µ).

6.7.2 Proof of Theorem 6.2

Our proof amounts to constructing a metric space and a demand distribution µ for
which the bound holds. Our construction will be as follows. For some integers D,K, the
target set N is taken as N = {1, . . . , D}K . The distance d(x, y) between two distinct
elements x, y of N is defined as d(x, y) = 2m, where

m = max {i ∈ {1, . . . , K} : x(K − i) 6= y(K − i)} .

We then have the following.

Lemma 6.4. Let µ be the uniform distribution over N . Then (i) c(µ) = D, and (ii) if
the demand distribution is µ, the optimal average search cost C∗ based on a comparison
oracle satisfies C∗ ≥ KD−1

2
.

Before proving Lemma 6.4, we note that Theorem. 6.2 immediately follows as a corol-
lary.

Proof of Lemma 6.4

Part (i): Let x = (x(1), . . . x(K)) ∈ N , and fix r > 0. Assume first that r < 2; then,
the ball B(x, r) contains only x, while the ball B(x, 2r) contains either only x if r < 1, or
precisely those y ∈ N such that

(y(1), . . . , y(K − 1)) = (x(1), . . . , x(K − 1))

if r ≥ 1. In the latter case B(x, 2r) contains precisely D elements. Hence, for such r < 2,
and for the uniform measure on N , the inequality

µ(B(x, 2r)) ≤ Dµ(B(x, r)) (6.11)

holds, and with equality if in addition r ≥ 1.
Consider now the case where r ≥ 2. Let the integer m ≥ 1 be such that r ∈ [2m, 2m+1).

By definition of the metric d on N , the ball B(x, r) consists of all y ∈ N such that

(y(1), . . . , y(K −m)) = (x(1), . . . , x(K −m)),

and hence contains Dmin(K,m) points. Similarly, the ball B(x, 2r) contains Dmin(K,m+1)

points. Hence (6.11) also holds when r ≥ 2.
Part (ii): We assume that the comparison oracle, in addition to returning one of the two

proposals that is closer to the target, also reveals the distance of the proposal it returns
to the target. We further assume that upon selection of the initial search candidate x0, its
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distance to the unknown target is also revealed. We now establish that the lower bound
on C∗ holds when this additional information is available; it holds a fortiori for our more
resticted comparison oracle.

We decompose the search procedure into phases, depending on the current distance
to the destination. Let L0 be the integer such that the initial proposal x0 is at distance
2L0 of the target t, i.e.,

(x0(1), . . . , x0(K − L0)) = (t(1), . . . , t(K − L0)) & x0(K − L0 + 1) 6= t(K − L0 + 1).

No information on t can be obtained by submitting proposals x such that d(x, x0) 6=
2L0 . Thus, to be useful, the next proposal x must share its (K − L0) first components
with x0, and differ from x0 in its (K − L0 + 1)-th entry. Now, keeping track of previous
proposals made for which the distance to t remained equal to 2L0 , the best choice for the
next proposal consists in picking it again at distance 2L0 from x0, but choosing for its
(K − L0 + 1)-th entry one that has not been proposed so far. It is easy to see that, with
this strategy, the number of additional proposals after x0 needed to leave this phase is
uniformly distributed on {1, . . . D − 1}, the number of options for the (K − L0 + 1)-th
entry of the target.

A similar argument entails that the number of proposals made in each phase equals 1
plus a uniform random variable on {1, . . . , D − 1}. It remains to control the number of
phases. We argue that it admits a Binomial distribution, with parameters (K, (D−1)/D).
Indeed, as we make a proposal which takes us into a new phase, no information is available
on the next entries of the target, and for each such entry, the new proposal makes a
correct guess with probability 1/D. This yields the announced Binomial distribution for
the numbers of phases (when it equals 0, the initial proposal x0 coincided with the target).

Thus the optimal number of search steps C verifies C ≥∑X
i=1(1+Yi), where the Yi are

i.i.d., uniformly distributed on {1, . . . , D − 1}, and independent of the random variable
X, which admits a Binomial distribution with parameters (K, (D − 1)/D). Thus using
Wald’s identity, we obtain that E[C] ≥ E[X]E[Y1], which readily implies (ii).

6.7.3 Proof of Theorem 6.3

Let ∆µ = supx∈N |µ̂(x)− µ(x)|. Observe first that, by the weak law of large numbers,
for any δ > 0

lim
τ→∞

Pr(∆µ > δ) = 0, (6.12)

i.e., µ̂ converges to µ in probability. The lemma below states, for every t ∈ N , the order
data structure Ot will learn the correct order of any two objects u, v in finite time.

Lemma 6.5. Consider u, v, t ∈ N such that u 4t v. Then, the order data structure in t
evokes Ot.add(u,v) after a finite time, with probability one.

Proof. Recall that Ot.add (u,v) is evoked if and only if a call Oracle(u, v, t) takes place
and it returns u. If u ≺t v then Oracle(u, v, t) = u. If, on the other hand, u ∼t v, then
Oracle(u, v, t) returns u with non-zero probability. It thus suffices to show that such, for
large enough τ , a call Oracle(u, v, t) occurs at timeslot τ with a non-zero probability. By
the hypothesis of Theorem 6.3, λ(u, t) > 0. By (6.10), given that the starting objects is
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u, the probability that F̂(u) = v conditioned on µ̂ is

ˆ̀
u(v) ≥ µ(v)−∆µ

1+(n−1)∆µ

1−ε
n−1

+
ε

n−1
≥ µ(v)−∆µ

(1+(n−1)∆µ)(n−1)

as Ẑv ≤ n−1 and |µ̂(x)−µ(x)| ≤ ∆µ for every x ∈ N . Thus, for any δ > 0, the probability
that is lower-bounded by

λ(u, t) Pr(F̂(u) = v) ≥ µ(v)− δ
1 + (n− 1)δ

Pr(∆µ < δ).

By taking δ > 0 smaller than µ(v), we have by (6.12) that there exists a τ ∗ s.t. for all
τ > τ ∗ the probability that Oracle(u, v, t) takes place at timeslot τ is bounded away from
zero, and the lemma follows.

Thus if t is a target then, after a finite time, for any two u, v ∈ N the ordered partition
A1, . . . , Aj returned by Ot.order() will respect the relationship between u, v. In particular
for u ∈ Ai,v ∈ Ai′ , if u ∼t v then i = i′, while if u ≺t v then i < i′. As a result, the
estimated rank of an object u ∈ Ai w.r.t. t will satisfy

r̂t(u) =
∑

x∈T :x≺vu

µ̂(x) +
∑

x∈N\T :x∈Ai′ ,i′≤i

µ̂(x) = rt(u) +O(∆µ)

i.e. the estimated rank will be close to the true rank, provided that ∆µ is small. Moreover,
as in Lemma 5.9, it can be shown that

Ẑv ≤ 1+log−1 µ̂(v) = 1+log−1[µv +O(∆µ)]

for v ∈ N . From these, for ∆µ small enough, we have that for u, v ∈ N ,

ˆ̀
u(v) = [`u(v) +O(∆µ)](1− ε) + ε

1

n− 1
.

Following the same steps as the proof of Theorem 5.3 we can show that, given that ∆µ ≤ δ,

the expected search cost is upper bounded by 6c3HHmax

(1−ε)+O(δ)
. This gives us that

C̄(τ) ≤
[6c3HHmax

(1− ε) +O(δ)
]

Pr(∆µ ≤ δ) +
n− 1

ε
Pr(∆µ > δ)

where the second part follows from the fact that, by using the uniform distribution with
probability ε, we ensure that the cost is stochastically upper-bounded by a geometric
r.v. with parameter ε

n−1
. Thus, by (6.12),

lim sup
τ→∞

C̄(τ) ≤ 6c3HHmax

(1− ε) +O(δ).

As this is true for all small enough δ, the theorem follows.





“ Amin, do

something.”

Rudiger Urbanke

Comparison-Based Active
Learning 7

In this chapter 1 we consider again the problem of search through comparisons, where
a user is presented with two candidate objects and reveals which is closer to her intended
target. In contrast to the previous chapter, we study adaptive strategies for finding the
target. As we will see, they require knowledge of rank relationships but not actual distances
between objects.

We have mentioned in the previous chapter that content search through comparisons
in this setup can be framed as an active learning problem. A well known algorithm for
active learning is the Generalized Binary Search (GBS) or splitting algorithm [Das05].
Applying this algorithm to submit queries to the oracle can locate the target within
OPT ·

(
Hmax(µ) + 1

)
queries, where OPT is the number of queries submitted by an

optimal algorithm. In practice, GBS performs very well in terms of query complexity,
suggesting that this bound can be tightened. However, the computational complexity of
GBS is Θ(n3) for n = |N |, which makes it prohibitive for very large databases.

In the previous chapter, we proposed a memoryless algorithm (Algorithm 6.1) that
determines the target inO

(
c3H(µ)Hmax(µ)

)
factor from the optimal, whose computational

complexity is O(1) per query. We also showed that OPT = Ω(cH(µ)), indicating that
Algorithm 6.1 is within c2Hmax(µ) from the optimal. Our contributions in this chapter
can be summarized as follows:

– First, we propose a new adaptive algorithm, RankNetSearch, locating the target
within O(c6H(µ)) queries to the oracle, in expectation. Our algorithm therefore
improves on GBS and Algorithm 6.1 by removing the term Hmax—which can be
quite large in practice—at a cost of a higher exponent in the dependence on the
constant c. Its computational complexity is O

(
n(log n + c6) log c

)
per query, which

is manageable compared to GBS; moreover, this cost can be reduced to O(1) by
pre-computing an additional data structure.

– Second, we extend RankNetSearch to the case of a faulty oracle, that lies with a
probability 0 < ε < 0.5. We show that the algorithm can locate the target with arbi-
trarily high probability at an expected cost close toO(

∑
x∈N µ(x) log 1

µ(x)
log log(µ(x))

and, thereby, close to H(µ).

1. This chapter is the result of a collaboration with S. Ioannidis and L. Massoulié.
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– Third, we evaluate extensively RankNetSearch, and prior art algorithms over
several datasets. We observe that RankNetSearch establishes a desirable trade-
off between query and computational complexity.

7.1 Definitions and Preliminaries

Consider a large finite set of objects N of size n = |N |, endowed with a distance metric
d, capturing the “dissimilarity” between objects. A user selects a target t ∈ N from a
prior distribution µ; our goal will be to design an interactive algorithm that queries the
user with the purpose of discovering t.

Comparison Oracle. Like in the previous chapter, we assume that the metric d ex-
ists, but our view of distances is constrained to only observing order relationships. More
precisely, we only have access to information that can be obtained through a comparison
oracle [GLS08]. Given an object z, a comparison oracle Oracle receives as a query an
ordered pair (x, y) ∈ N 2 and answers the question “is z closer to x than to y?”, i.e.,

Oracle(x, y, z) =

{
+1 if d(x, z) < d(y, z),
−1 if d(x, z) ≥ d(y, z)

(7.1)

Note that in the above, we used an equivalent definition of the comparison oracle (see
Section 6.2) in order to be able to frame the content search through comparisons as an
active learning problem. We will first assume that the oracle always gives correct answers;
in Section 7.4, we relax this assumption by considering a faulty oracle that lies with
probability ε < 0.5.

Prior Knowledge and Performance Metrics. The algorithms we study rely only
on a priori knowledge of (a) the distribution µ and (b) the values of the mapping
Oracle(·, ·, z) : N 2 → {−1,+1}, for every z ∈ N . This is in line with our assumption
that, although the distance metric d exists, it cannot be directly observed. Our focus is
on adaptive algorithms, whose decision on which query in N 2 to submit next are deter-
mined by the oracle’s previous answers.

As we mentioned in the previous chapter, the prior µ can be estimated empirically
as the frequency with which objects have been targets in the past. The order relation-
ships can be computed off-line by submitting Θ(n2 log n) queries to a comparison oracle,
and requiring Θ(n2) space: for each possible target z ∈ N , objects in N can be sorted
w.r.t. their distance from z with Θ(n log n) queries to Oracle(·, ·, z).

We store the result of this sorting in (a) a linked list, whose elements are sets of objects
at equal distance from z, and (b) a hash-map, that associates every element y with its
rank in the sorted list. Note that Oracle(x, y, z) can thus be retrieved in O(1) time by
comparing the relative ranks of x and y with respect to their distance from z.

We measure the performance of an algorithm through two metrics. The first is the
query complexity of the algorithm, determined by the expected number of queries the
algorithm needs to submit to the oracle to determine the target. The second is the com-
putational complexity of the algorithm, determined by the time-complexity of determining
the query to submit to the oracle at each step.
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7.2 Active Learning

Search through comparisons can be seen as a special case of active learning [Das05,
Now09]. In active learning, a hypothesis space H is a set of binary valued functions defined
over a finite set Q, called the query space. Each hypothesis h ∈ H generates a label from
{−1,+1} for every query q ∈ Q. A target hypothesis h∗ is sampled from H according to
some prior µ; asking a query q amounts to revealing the value of h∗(q), thereby restricting
the possible candidate hypotheses. The goal is to determine h∗ in an adaptive fashion, by
asking as few queries as possible.

In our setting, the hypothesis space H is the set N , and the query space Q is the set
of ordered pairs N 2. The target hypothesis sampled from µ is the unknown target t. Each
hypothesis/object z ∈ N is uniquely 2 identified by the mapping Oracle(·, ·, z) : N 2 →
{−1,+1}, which we have assumed to be a priori known.

Generalized Binary Search A well-known algorithm for determining the true hy-
pothesis in the general active-learning setting is the so-called generalized binary search
(GBS) or splitting algorithm [Das05, Now09]. Define the version space V ⊆ H to be the
set of possible hypotheses that are consistent with the query answers observed so far. At
each step, GBS selects the query q ∈ Q that minimizes |∑h∈V µ(h)h(q)|. Put differently,
GBS selects the query that separates the current version space into two sets of roughly
equal probability mass; this leads, in expectation, to the largest reduction in the mass of
the version space as possible, so GBS can be seen as a greedy query selection policy.

A bound on the query complexity of GBS originally obtained by Dasgupta [Das05]
and recently tightened (w.r.t. constants) by Golovin and Krause [GK10] is given by the
following theorem:

Theorem 7.1. GBS makes at most OPT ·
(
Hmax(µ)+1

)
queries in expectation to identify

hypothesis h∗ ∈ N , were OPT is the minimum expected number of queries made by any
adaptive policy.

GBS in Search through Comparisons. In our setting, the version space V comprises
all possible objects in z ∈ N that are consistent with oracle answers given so far. In other
words, z ∈ V iff Oracle(x, y, z) = Oracle(x, y, t) for all queries (x, y) submitted to the
oracle. Selecting the next query therefore amounts to finding the pair (x, y) ∈ N 2 that
minimizes

f(x, y) =
∣∣∑

z∈V µ(z)Oracle(x, y, z)
∣∣. (7.2)

As the simulations in Section 7.5 show, the query complexity of GBS is excellent in
practice. This suggests that the general bound of Theorem 7.1 could be improved in the
specific context of search through comparisons.

Nevertheless, the computational complexity of GBS is Θ(n2|V |) operations per query,
as it requires minimizing f(x, y) over all pairs in N 2. For large sets N , this can be truly
prohibitive. This motivates us to propose a new algorithm, RankNetSearch, whose
computational complexity is almost linear and its query complexity is within a O(c5(µ))
factor from the optimal.

2. Note that, for any two objects/hypotheses z, z′ ∈ N , there exists at least one query in N 2 that
differentiates them, namely (z′, z).
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Algorithm 7.1 RankNetSearch

Input: Oracle Oracle(·, ·, t)
Output: Target t
1: Let E ← N ; select arbitrary x ∈ E
2: repeat
3: ( R, {By(ry)}y∈R )←RankNet(x,E)
4: Find y∗, the object in R closest to t, using Oracle(·, ·, t).
5: Let E ← By∗(ry∗) and x← y∗;
6: until E is a singleton
7: return y

Algorithm 7.2 RankNet(x,E)

Input: Root object x, Ball E = Bx(R)
Output: ρ-rank net R, Voronoi balls {By(ry)}y∈R
1: ρ ← 1
2: repeat
3: ρ ← ρ/2; construct a ρ-net R of E
4: ∀ y ∈ R, construct ball By(ry)
5: Let I ← {y ∈ E : |By(ry)| > 1}
6: until I = ∅ or maxy∈I µ(By(ry)) ≤ 0.5µ(E)
7: return (R,{By(ry)}y∈R)

7.3 An Efficient Adaptive Algorithm

Our algorithm is inspired by ε-nets, a structure introduced by Clarkson [Cla06] in the
context of Nearest Neighbor Search (NNS). The main challenge that we face is that, con-
trary to standard NNS, we have no access to the underlying distance metric. In addition,
the bounds on the number of comparisons made by ε-nets are worst-case (i.e., prior-free);
our construction takes the prior µ into account to provide bounds in expectation.

7.3.1 Rank Nets

To address the above issues, we introduce the notion of rank nets, which will play the
role of ε-nets in our setting. For some x ∈ N , consider the ball E = Bx(R) ⊆ N . For any
y ∈ E, we define

dy(ρ, E) = inf{r : µ(By(r)) ≥ ρµ(E)} (7.3)

to be the radius of the smallest ball around y that maintains a mass above ρµ(E). Using
this definition 3, we define a ρ-rank net as follows.

Definition 7.2. For some ρ < 1, a ρ-rank net of E = Bx(r) ⊆ N is a maximal collection
of points 4 R ⊂ E such that for any two distinct y, y′ ∈ R

d(y, y′) > min{dy(ρ, E), dy′(ρ, E)}. (7.4)

3. Whenever ρ and E are unambiguous, we simply write dy rather than dy(ρ,E).
4. i.e. one to which no more nodes can be added.
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For any y ∈ R, consider the Voronoi cell

Vy = {z ∈ E : d(y, z) ≤ d(y′, z),∀y′ ∈ R, y′ 6= y}.

We also define the radius ry of the Voronoi cell Vy as

ry = inf{r : Vy ⊆ By(r)}.

Critically, a rank net and the Voronoi tessellation it defines can both be computed using
only ordering information:

Lemma 7.3. A ρ-rank net R of E can be constructed in O(|E|(log |E|+ |R|)) steps, and
the balls By(ry) ⊂ E circumscribing the Voronoi cells around R can be constructed in
O(|E||R|) steps using only (a) µ and (b) the mappings Oracle(·, ·, z) : N 2 → {−1,+1}
for every z ∈ E.

The proof is in Section 7.6.1. Equipped with this result, we turn our attention to how
the selection of ρ affects the size of the net as well as the mass of the Voronoi balls around
it. Our next lemma, whose proof is in Section 7.6.2, bounds |R|.

Lemma 7.4. The size of the net R is at most c3/ρ.

Finally, our last lemma determines the mass of the Voronoi balls in the net.

Lemma 7.5. If ry > 0 then µ(By(ry)) ≤ c3ρµ(E).

The proof is in Section 7.6.3. Note that Lemma 7.5 does not bound the mass of Voronoi
balls of radius zero.

7.3.2 Rank Net Data Structure and Algorithm

Rank nets can be used to identify a target t using a comparison oracle Oracle(·, ·, t)
as described in Algorithm 7.1. Initially, a net R covering N is constructed; nodes y ∈ R
are compared w.r.t. their distance from t, and the closest to the target is determined, say
y∗. Note that this requires submitting |R| − 1 queries to the oracle. The version space V
(the set of possible hypotheses) is thus the Voronoi cell Vy∗ , and is a subset of the ball
By∗(ry∗). The algorithm then proceeds by limiting the search to By∗(ry∗) and repeating
the above process. Note that, at all times, the version space is included in the current ball
to be covered by a net. The process terminates when this ball becomes a singleton which,
by construction, must contain the target.

An obvious question in the above setup is how to select ρ: by Lemma 7.5, small values
lead to a sharp decrease in the mass of Voronoi balls from one level to the next, hence
reaching the target with fewer iterations. On the other hand, by Lemma 7.4, small values
also imply larger nets, leading to more queries to the oracle at each iteration. We select ρ in
an iterative fashion, as indicated in the pseudocode of Algorithm 7.2: we repeatedly halve
ρ until all non-singleton Voronoi balls By(ry) of the resulting net have a mass bounded
by 0.5µ(E).

This selection leads to the following bounds on the corresponding query and compu-
tational complexity of RankNetSearch:
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Theorem 7.6. RankNetSearch locates the target by making 4c6(1 +H(µ)) queries to
a comparison oracle, in expectation. The cost of determining which query to submit next
is O

(
n(log n+ c6) log c

)
.

In light of the lower bound on the query complexity of Ω(cH(µ)) that we established
in the previous chapter (Theorem 6.2), RankNetSearch is within a O(c5) factor of the
optimal algorithm in terms of query complexity, and is thus order optimal for constant
c. Moreover, the computational complexity per query is O

(
n(log n + c6), in contrast to

the cubic cost of the GBS algorithm. As shown in Section 7.5, in practice, this leads to
drastic reductions in the computational complexity compared to GBS.

Note that the above computational cost can if fact be reduced to O(1) through amor-
tization. In particular, it is easy to see that the possible paths followed by RankNet-
Search define a hierarchy, whereby every object serves as a parent to the objects covering
its Voronoi ball. This tree can be pre-constructed, and search reduces to a descent over
this tree; we further study this Section 7.5.

7.4 Noisy Comparison Oracle

In a noisy setting the search must be robust against erroneous answers. Specifically,
assume that for any query Oracle(x, y, t), the noisy oracle returns the wrong answer with
a probability bounded by ε, for some 0 < ε < 1/2.

In this context, the problem with RankNetSearch arises in line 4 of Algorithm 7.1:
it is not clear how to identify the object closest to the target among elements in a net.
We resolve this by introducing repetitions at each iteration. Specifically, at the `-th step
of the search, ` ≥ 1, and rank-net size m, we define a repetition factor kδ(`,m) by

kδ(`,m) :=
2 log ((`+ 1/δ)2dlog2(m)e)

(1− ε)2
(7.5)

for some design parameter δ ∈ (0, 1). The modified algorithm then proceeds down the
hierarchy, starting at the top level for ` = 1. The basic step at step ` with a net R
proceeds as follows. A tournament is organized among elements of R, who are initially
paired. Pairs of competing members are compared kδ(`, |R|) times. The “player” from a
given pair winning the largest number of games moves to the next stage, where it will be
paired again with another winner of the first round, and so forth until only one player is
left. Note that the number of repetitions kδ(`,m) increases only logarithmically with the
level `.

To find the closest object to target t with the noiseless oracle, clearly we need to
make O(|R|) number of queries. The proposed algorithm achieves the same goal with
high probability by making at most a factor 2kδ(`, |R|) more comparisons. In this context
we have the following

Theorem 7.7. For a comparison oracle with error probability ε, the algorithm with rep-
etitions (7.5) outputs the correct target with probability at least 1− δ in

# of queries = O

(
1

(1
2
− ε)2

∑
x∈N

µ(x) log
1

µ(x)
log(

1

δ
+ log

1

µ(x)
)

)
,

with constants depending on c.
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Table 7.1 – Table of size, dimension (number of features), as well as the size of the Rank
Net Tree hierarchy constructed for each dataset.

Dataset Size Dim. Tree

iris 147 7 399
abalone 4177 11 21707

faces 698 4096 3664
ad 1924 1559 5816

swiss roll 1000 3 4229
netflix 1001 50 14585

The proof is given in Section 7.6.5. For the uniform distribution µ(x) ≡ 1/n, for all
x ∈ N , this yields an extra log log(n) factor in addition to the term of order H(µ) = log(n)
which, by Theorem 6.2, is optimal.

7.5 Numerical Evaluation

We evaluate RankNetSearch over six publicly available datasets 5: iris, abalone,
ad, faces, swiss roll, and netflix. We subsampled the latter two, taking 1000 randomly
selected data points from swiss roll, and the 1001 most rated movies in netflix. We map
these datasets to Rd (categorical variables are mapped to binary values in the standard
fashion) for d as shown in Tabel 7.1. For netflix, movies were mapped to 50-dimensional
vectors by obtaining a low rank approximation of the user/movie rating matrix through
SVD. For all our experiments, we use `2 distance and select targets from a power-law
prior with α = 0.4.

We evaluated the performance of two versions of RankNetSearch: one as described
by Algorithm 7.1, and another one (T-RankNetSearch) in which the hierarchy of
rank nets is precomputed and stored as a tree. Both propose exactly the same queries
to the oracle, so have the same query complexity; however, T-RankNetSearch has
only O(1) computational cost per query. The sizes of the trees precomputed by T-
RankNetSearch for each dataset are shown in Tabel 7.1.

We compare these algorithms to (a) the memoryless policy proposed in the previous
chapter (Algorithm 6.1) and (b) two heuristics based on GBS (the Θ(n3) computational
cost of GBS per query makes it intractable over the datasets we consider). The first
heuristic, termed F-GBS for fast GBS, selects like GBS the query that minimizes (7.2);
however, it does so by restricting the queries to pairs of objects in the current version
space V . This reduces the computational cost per query to Θ(|V |3), rather than Θ(n2|V |).
The second heuristic, termed S-GBS for sparse GBS, exploits rank nets in the following
way. First, we costruct the rank net hierarchy over the dataset, as in T-RankNetSeach.
Then, in minimizing (7.2), we restrict queries only to pairs of objects that appear in the
same net. Intuitively, S-GBS assumes that an equitable partition of the objects exists
among such pairs.

5. Sources: www.netflixprize.com,
http://isomap.stanford.edu/datasets.html,
http://archive.ics.uci.edu/ml.
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(a) Query Complexity
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(b) Computational Complexity
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Figure 7.1 – (a) Expected query complexity, per search, of the five algorithms applied
on each data set. As RankNet and T-RankNet have the same query complexity, only
one is shown. (b) Expected computational complexity, per search, of the five algorithms
applied on each dataset. For Memoryless and T-RankNet this equals the query com-
plexity.

Query versus Computational Complexity

The query complexity of different algorithms, expressed as average number of queries
per search, is shown in Fig. 7.1(a). Although there are no known guarantees for either
F-GBS nor S-GBS both algorithms are excellent in terms of query complexity across
all datasets, finding the target within about 10 queries, in expectation. As GBS should
perform as well as these algorithms, these suggest that it should also have low query
cost. The query complexity of RankNetSearch between 2 to 10 times higher; the
impact is greater for high-dimensional datasets, as expected through the dependence
of the rank net size on the c doubling constant. Finally, Memoryless performs worse
compared to all other algorithms. As shown in Fig. 7.1, the above ordering is fully reversed
w.r.t. computational costs, measured as the aggregate number of operations performed
per search. Differences from one algorithm to the next range between 50 to 100 orders
of magnitude. F-GBS requires close to 109 operations in expectation for some datasets;
in contrast, RankNetSearch ranges between 100 and 1000 operations and, in conclusion,
presents an excellent trade-off between query and computational complexity.

Scalability and Robustness

To study how the above algorithms scale with the dataset size, we also evaluate them
on a synthetic dataset comprising objects placed uniformly at random at R3. The query
and computational complexity of the five algorithms is shown in Fig. 7.2(a) and (b).

We observe the same discrepancies betwen algorithms we noted in Fig. 7.1. The linear
growth in terms of log n implies a linear relationship between both measures of complexity
w.r.t. the entropy H(µ) for all methods (we ommit the relevant figure for lack of space).
In Fig. 7.2(b), we plot the query complexity of the robust RankNetSearch algorithm
outlined in Section 7.4. For all simulations, the target success rate was set to 0.9, but
the actual success rates we observed were considerably higher, close to 0.99. As shown in
Fig. 7.3 we observe that, even for high error rates ε, the query complexity remains low.
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(a) Query Complexity
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(b) Computational Complexity
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Figure 7.2 – (a) Query and (b) computational complexity of the five algorithms as a
function of the dataset size. The dataset is selected u.a.r. from the `1 ball of radius 1.
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Figure 7.3 – Query complexity of RankNet as a function of n under a faulty oracle.

Moreover, the high success rates that we observe, combined with the independence of the
cost on n, suggest that we can further reduce the number of queries to lower values than
the ones required by (7.5).

7.6 Analysis

7.6.1 Proof of Lemma 7.3

Using the ordered list containing the sets of equidistant objects described in Sec-
tion 7.1, for any z ∈ N , we can partition N into equivalence classes Az1, A

z
2, . . . , A

z
k such
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that for any two objects y, y′ ∈ N , y ∈ Azi and y′ ∈ Azj with i < j if and only if
d(y, z) < d(y′, z).

To construct R, it suffices to show that (7.4) can be verified for any z, z′ ∈ E using
only the above partition and µ. If so, a ρ-rank net can be constructed in a greedy fashion
as a maximal set whose points verify (7.4). This can be obtained by adding sequentially
an arbitrary object to the net and excluding from future selections any nodes that violate
(7.4) w.r.t. this newly added object. Indeed, for all y ∈ E,

By(dy) =
⋃̀
j=1

Ayj ,

where

` = inf{i :
i∑

j=1

µ(Ayj ) ≥ ρµ(E)}.

The statement thus follows as (7.4) is equivalent to

y′ /∈ By(dy) ∨ y /∈ By′(dy′).

To construct the Voronoi balls By(ry) ⊆ E, y ∈ R, we initialize each such ball to contain
its center y. For each z ∈ E \ R, let jmin be the smallest j such that R ∩ Azj 6= ∅; the
object z is then added to the ball By(ry) of every y ∈ N ∩ Azjmin

.
For each y, By(dy) can constructed in O(log |E|) time via binary search on the ordered

list of equidistant objects. Constructing the rank net in a greedy fashion requires deter-
mining which objects violate (7.4) w.r.t. a newly added object on the net, which may take
O(|E|) time. Hence, the overall complexity of constructing R is O(|E|(|R|+ log |E|)). Fi-
nally, the construction of the Voronoi balls requires O(|R|) steps per object in E to assign
each object to a ball.

7.6.2 Proof of Lemma 7.4

Note first that, for all distinct y, y′ ∈ R, the balls

B(y, dy(ρ, E)/4) ∩B(y′, dy′(ρ, E)/4) = ∅.

To see this, assume w.l.o.g. that dy ≥ dy′ which implies that d(y, y′) ≥ dy−dy′ . This is due
to the fact that µ(B(y, dy′)) ≥ ρµ(E), and hence, by (7.3), dy can be at most dy′+d(y, y′).
In case dy or dy′ is zero, clearly

d(y, y′) > dy/2 > dy/4 + dy′/4.

If 0 < dy′ < dy/2, then
d(y, y′) > dy/2 ≥ dy/4 + dy′/4.

If dy′ ≥ dy/2 > 0, then

d(y, y′) ≥ dy′ ≥ dy/2 > dy/4 + dy′/4.

Hence, in all cases d(y, y′) > dy/4 + dy′/4 and as a result

B(y, dy/4) ∩B(y′, dy′/4) = ∅.
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To prove Lemma 7.4, observe that dy ≤ 2R for all y ∈ R since µ(y, d) ≥ µ(E) > ρµ(E)
for d ≤ 2R. Therefore, dy/4 ≤ R/2 and thus B(y, dy/4) ⊆ B(x, 2R). Hence, by the
definition of c(µ), ∑

y∈R

µ(B(y, dy/4)) ≤ µ(B(x, 2R)) ≤ cµ(E).

Moreover, ∑
y∈R

µ(B(y, dy/4)) ≥ c−2
∑
y∈R

µ(B(y, dy)) ≥ c−2ρµ(E)|R|.

Therefore, |R| ≤ c3/ρ.

7.6.3 Proof of Lemma 7.5

Observe first that, for all z ∈ E, there exists a y ∈ R such that z ∈ B(y, dy(ρ, E)). To
see this, assume otherwise. Then for any y ∈ R,

d(z, y) > dy(ρ, E) ≥ min{dy(ρ, E), dz(ρ, E)}

and we can add z to R, which contradicts its maximality.
To prove Lemma 7.5, we consider the following two cases. Suppose first 0 < ry ≤ dy.

By (7.3), for any r̃ < dy, we have µ(B(y, r̃) < ρµ(E). In particular, µ(B(y, dy/2) < ρµ(E).
By the definition of c,

µ(B(y, ry) ≤ µ(B(y, dy) ≤ cρµ(E).

For the second case, suppose that ry > dy. Let z ∈ Vy is the point for which d(y, z) = ry.
By the above observation, we know that there exists a y′ ∈ R such that d(z, y′) ≤ dy′ .
As ry > dy, y 6= y′. On the other hand, d(z, y′) ≥ d(z, y) since z ∈ Vy. Using the triangle
inequality, we get

d(y, y′) ≤ d(y, z) + d(y′, z) ≤ 2d(y′, z) ≤ 2dy′ .

We know that
B(y, ry) ⊆ B(y′, d(y, y′) + ry).

Since ry = d(y, z) ≤ dy′ we can say B(y, ry) ⊆ B(y′, 3dy′). Finally, by the definition of c,
we have

µ(B(y, ry)) ≤ µ(B(y′, 3dy′)) ≤ c2µ(B(y′, dy′)) ≤ c3ρµ(E).

7.6.4 Proof of Theorem 7.6

Note first that, by induction, it can be shown that the version space V is a subset
of E; correctness is implied by this fact and the termination condition. To bound the
number of queries, we first show that the process RankNet constructs a net with small
cardinality.

Lemma 7.8. RankNet terminates at ρ > 1
4c3

.

Proof. To see that the while loop terminates, observe that, by Lemma 7.5, for small
enough

ρ < min
z∈E

µ(z)/(c3µ(E)),
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all Voronoi balls By(ry) of the ρ-rank net R will be singletons, so I will indeed be empty.
Suppose thus that the loop terminates at some ρ = ρ∗. Since it did not terminate at
ρ = 2ρ∗, there exists a ball By(ry) of the 2ρ-rank net R such that ry > 0 and µ(By(ry)) >
0.5µ(E). By Lemma 7.5, µ(By(ry)) ≤ c32ρµ(E), and the lemma follows.

Hence, from Lemmas 7.4 and 7.8, we get that the rank nets returned by RankNet
have cardinality at most 4c6. On the other hand, by construction, a net covering a ball
Byry consists of either singletons or balls with mass less than 0.5µ(By(ry)). As a result,
at each iteration, moving to the next object either halves the mass of the version space
or leads to a leaf, and the search terminates. As at any point the version space has a
mass greater than µ(t), the search will terminate after traversing most dlog2(1/µ(t))e
iterations. Since, at each level, the number of accesses to the oracle are R− 1 ≤ 4c3, the
total query cost for finding target t is at most 4c6dlog2(1/µ(t)e, and the query complexity
statement follows. Finally, from Lemmas 7.3 and 7.8, the computational complexity of
each RankNet call is at most O

(
n(log n+ c3) log c

)
.

7.6.5 Proof of Theorem 7.7

We first show the following auxiliary result.

Lemma 7.9. Given a target t and a noisy oracle with error probability bounded by ε, the
tournament among elements of the net R with repetitions kδ(`, |R|) returns the element
in the set R that is closest to target t with probability at least 1− (`+ 1/δ)−2.

Proof. We assume for simplicity that there are no ties, i.e. there is a unique point in
R that is closest to t. The case with ties can be deduced similarly. We first bound the
probability p(k) that upon repeating k times queries Oracle(x, y, t), among x and y the
one that wins the majority of comparisons is not the closest to t. Because of the bound ε
on the error probability, one has

p(k) ≤ Pr(Bin(k, ε) ≥ k/2),

where Bin(·, ·) denotes the Binomial distribution. Azuma-Hoeffding inequality ensures
that the right-hand side of the above is no larger than exp(−k(1/2−ε)2/2). Upon replacing
the number of repetitions k by the expression (7.5), one finds that

p(kδ(`, |R|)) ≤ (`+ 1/δ)−2/dlog2(|R|)e.

Consider now the games to be played by the element within R that is closest to t. There
are at most dlog2(|R|)e such games. By the union bound, the probability that the closest
element loses on any one of these games is no less than (`+ 1/δ)−2, as announced.

By the union bound and the previous lemma we have conditionally on any target
t ∈ N that

Pr(success|T = t) ≥ 1−
∑
`≥1

(`+ 1/δ)−2).

The latter sum is readily bounded by δ. The number of comparisons given that the target
is T = t is at most

dlog2(1/µ(t))e∑
`=1

2|R`|kδ(`, |R`|) = O

(
1

(1
2
− ε)2

log
1

µ(t)
log(

1

δ
+ log

1

µ(t)
)

)
,
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where the O-term depends only on the doubling constant c. The bound on the expected
number of queries follows by averaging over t ∈ N .





“ I always wanted
to be somebody.

I should have been

more specific”

Lily Tomlin

Conclusion 8
In this thesis, we investigated the scaling laws of graph-based information process-

ing and its applications in large scale networks. In particular, all the applications we
considered shared an important feature: a low-dimensional graph structure can reliably
represent the available information. Based on this limited information, the goal was

– to position the nodes of the underlying graph (Chapters 2 and 3),
– to identify the defective nodes/edges of the graph and then route efficiently the

information (Chapter 4 and 5),
– to navigate through a database of objects by establishing a dynamic graph (chap-

ters 6 and 7).
We conclude the thesis by a brief discussion of the obtained results, open problems

and possible directions for future research.

Robust Positioning from Incomplete Information In Chapter 2, we investigated
the centralized and distributed sensor localization problem from a theoretical point of view
and provided analytical bounds on the performance of such algorithms. More precisely, we
analyzed the MDS-MAP and HOP-TERRAIN algorithms and showed that even when
only the connectivity information is given and in the presence of detection failure, the
resulting error of both algorithms is bounded and decays at a rate inversely proportional
to the detection range.

There are many open questions that one might be interested in. For instance, in our
model we assumed that all nodes have the same radio range. It would be interesting (and
more realistic) to generalize our results for the case where different nodes have difference
radio ranges. Another fruitful direction would be to understand the information theoretic
limits of the localization problem, given the aforementioned limited and noisy information.

Calibration Through Matrix Completion In Chapter 3, we introduced a theoretical
framework for calibration in circular ultrasound tomography devices. As we discussed, we
faced three sources of uncertainty: structured missing ToFs, random missing ToFs, and
an unknown time delay. To solve the calibration problem under this set of uncertainties,
we developed a novel method based on structured matrix completion that first estimates

133



134 Conclusion

the missing ToFs and then returns the positions. We also established an analytic bound
on the overall error of the process under the assumption that the time delay was known.

Even though we introduced a recursive algorithm for finding the time-delay, we were
not able to provide theoretical guarantees on its convergence (we mainly observed its
convergence through simulations). This is still an interesting theoretical challenge and
would require further work. It is quite reasonable to believe that our approach could be
applied to other calibration scenarios (beyond the circular topology) with simple geometry.

Graph-Constrained Group Testing In Chapter 4, we looked at a well-studied in-
verse problem in statistics, called non-adaptive group testing, under graph constraints. For
interesting classes of graphs we obtained a rather surprising result: the number of tests re-
quired to identify defective items is essentially similar to what is required in conventional
group testing problems, where no such constraints on pooling is imposed. Specifically,
if T (n) corresponds to the mixing time of the constraint graph, we showed that with
m = O(d2T 2(n) log(n/d)) non-adaptive tests, we can identify the d defective items in a
population of size n.

An important open question is how to come up with a better lower bound than
d log(n/d) that also captures the constraints imposed by the graph. Another interest-
ing direction would be to investigate the benefits of adaptive versus non-adaptive graph-
constrained group tests. It might be possible to dramatically reduce the number of required
tests by deploying an adaptive strategy. And finally, in this chapter, we only considered
static graphs. It would be very interesting to see whether similar results could be obtained
in dynamic graphs.

Navigability with a Bias In Chapter 5, we considered the problem of small-world
network design. We first established a negative result (not a good start;)) where we showed
that under the general heterogeneous demand the small-world network design is NP-hard.
We then proposed a novel mechanism for edge addition and showed that its performance
under greedy forwarding algorithm is bounded by two quantities: the bias of the target
distribution (captured by the entropy and max-entropy) and the bias of the embedding
(captured by the doubling constant).

One natural question that would arise after any NP-hard result is whether or not
we can effectively approximate the optimum solution with a polynomial time algorithm.
Another important aspect would be to obtain a uniform lower bound on the cost of the
greedy forwarding algorithm, given the demand distribution and the embedding. This
lower bound obviously depends on both the entropy and doubling constant. Although,
how it does so is not clear.

Content Search Through Comparisons In Chapter 6, we talked about navigating
through a database of objects by the means of comparisons. Based on the connection
we made with the small-world network design, we devised a memoryless algorithm and
bounded its performance. We also established a lower bound on any mechanism that solves
content search through comparisons problem. Finally, an adaptive learning algorithm was
proposed; it could effectively learn the demand distribution, as well as the ranks, and
meet the performance guarantees of the memoryless algorithm. (We will talk about the
open problems in the next paragraph)
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Comparison-Based Active Learning In Chapter 7, we studied adaptive strategies
for the problem of search through comparisons. We proposed a new strategy based on rank
nets and we showed that for target distributions with a bounded doubling constant, it finds
the target in a number of comparisons close to the entropy of the target distribution and,
hence, of the optimum. We also extended these results to the case of noisy oracles.

An obvious obstacle against the wide adoption of our method as the basis for navi-
gating through a database is the space complexity. The results of thousands of pairwise
comparisons could, of course, be contradictory. A challenging problem that still remains
open is to devise a search algorithm that, even in the presence of incomplete information
(e.g., few comparisons), can still navigate through the database. Throughout Chapters 6
and 7, we assumed that human inference of proximity is accurately captured by a metric
space structure. Another interesting research direction would be to assess the validity of
this assumption through user trials.
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The epigraph of Chapter 1 is a Chinese proverb:

“A journey of a thousand miles starts with a single step.”

Chapter 2 talks about localization. For the epigraph of this chapter I liked the story,
perhaps apocryphal, of legendary pianist Arthur Rubinstein who was approached by a
passer-by in the street near New York’s world-famous Carnegie Hall.

Passer-by: ’Pardon me sir, how do I get to Carnegie Hall?’
Arthur Rubinstein: ’Practice, practice, practice!’

Chapter 3 is about the calibration of circular ultrasound tomography devices. Because
they are mainly used for breast cancer screening, I quoted Jennifer Jergens as she opens
up her TED talk with,

“Yes, they are fake, the real ones tried to kill me,”

of course with a red face.
Chapter 4 is in the middle of this thesis. I think it makes perfect sense to quote

Rosabeth Moss Cantor on,

“The middle of every successful project looks like a disaster.”

Indeed, it looked like a disaster when I started writing.
Chapter 5 discusses the small-world phenomenon. I like the following quote by Steven

Wright:

“Everywhere is within walking distance if you have the time.”

When I was reading Alice in Wonderland, I fully appreciated the following conversation
between Alice and the Cheshire Cat. It also resonates well with the content of Chapter 6.

’Which road do I take?’ Alice asked.
’Where do you want to go?’ responded the Cheshire Cat.
’I don’t know,’ Alice answered.
’Then,’ said the Cat, ’it doesn’t matter.’

I should probably start the last technical chapter (Chapter 7) with Rudiger’s favorite
quote:

“Amin, do something.”

I hope I have done enough.
And finally, this thesis is concluded by one of Lily Tomlin’s quotes. The reason is

pretty obvious.

“I always wanted to be somebody. I should have been more specific.”
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